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Abstract

A new method is developed for the solution of the steady, two-

dimensional Euler equations for transonic flows. The discrete steady-

state equations are derived in conservative finite-volume form on an

intrinsic streamline grid, and are solved using Newton's method. Direct

solution of the linear system of Newton equations is shown to be more

efficient than iterative solution. Test cases include duct, cascade,

and isolated airfoil flows, and demonstrate the speed and robustness of

the method. The accuracy of the solutions is verified by comparison

against values obtained analytically, experimentally and by other

numerical methods.

2



Acknowledgements

Many friends and colleagues have helped in this research effort.

Firstly, I wish to thank Mark Drela for sharing two years of hard work

and fun, with all of the long hours, frustrations and successes, brain-

storming and tedious programming. Many thanks also to my thesis super-

visor Professor Tilt Thompkins for sharing our enthusiasm and letting us

have fun; he knew when to let us charge ahead boldly (or blindly?), and

when to be a critical observer, and I greatly appreciate his help during

the writing of this thesis. I also wish to thank the other members of

my committee, Professors Jack Kerrebrock and Earll Murman, for their

helpful discussions, and the other students in the group for their

technical comments and for their company during the late nights and the

long weekends. Finally, I wish to thank my family who has supported me

throughout my studies, and John Dannenhoffer who has helped me so much

as a friend and a colleague, with his encouragement, advice and thought-

ful criticisms.

3



Table of Contents

Page

Abstract 2

Acknowledgements 3

Table of Contents 4

List of Figures 6

List of Tables 10

List of Symbols 11

1. Introduction 12

2. Steady State Equations 20

2.1 Euler Equations 20

2.2 Duct Boundary Conditions 28

2.3 Auxiliary Pressure Relation 30

2.4 Possible Solution Methods 34

3. Artificial Compressibility 36

3.1 Introductory Discussion 36

3.2 One-Dimensional Analysis 40

3.3 Second Order Corrections 49

4. Newton Linearization 55

4.1 Euler Equations 57

4.2 Duct Boundary Equations 66

4.3 Artificial Compressibility 67

4.4 Initialization of Solution 69

4.5 Updating of Solution 71

5. Direct Method of Solving Newton Equations 74

5.1 Assembling the Equations 74

4



5.2 Block Tridiagonal Solution Method

6. Modified Direct Method for Choked Flow 80

6.1 Boundary Conditions 80

6.2 Solution Procedure 83

7. Iterative Method for Subsonic Flow 86

7.1 Pre-conditioning 88

7.2 Solution Procedure 92

8. Global Variables and Equations 94

8.1 Concept and Numerical Procedure 94

8.2 Cascade Boundary Conditions 98

9. Results 101

9.1 Duct with Sin 2(l(x) Bump 104

9.2 Duct with Elliptic Bump 108

9.3 Incompressible Gostelow Cascade 116

9.4 T7 Turbine Cascade 126

9.5 Garabedian Compressor Cascade 134

9.6 NACA 0012 Airfoil 147

9.7 Two-Dimensional Laval Nozzle 154

10. Conclusions 159

10.1 Discretization of Euler Equations 159

10.2 Newton Solution Method 161

10.3 Versatility of Approach 164

References 167

Appendix: Program Listing 170

5

79



2.1:

2.2:

2.3:

2.4:

2.5:

2.6:

List of Figures

Location of grid nodes and cell geometry.

Definition of vectors A1, A2 , B~, B+.

Location of flow variables.

Indexing for duct geometry.

Unconstrained "sawtooth" mode.

Cross-sectional areas for pressure correction.

3.1: Location of grid nodes and variables for Potential

equation.

3.2: Mach number distributions illustrating analytic
"boundary layer" behavior.

3.3: Results for 1-D streamtube, with ucon=
1 .5

3.4: Results for 1-D streamtube, with 4con= 1 .0

Figure 3.5: Results for 1-D streamtube, with ucon= 0 . 5

Figure 3.6:

Figure 3.7:

Figure 3.8:

Figure 4.1:

5.1:

5.2:

5.3:

5.4:

5.5:

Results for 1-D streamtube, with Uc =1.5, and second

order density corrections.

Results for 1-D streamtube, with uco =1.0, and second

order density corrections.

Results for 1-D streamtube, with Uc =0.5, and second

order density corrections.

Pressures on shared streamline face.

Global indexing system for unknown variables.

Indexing system for a particular pair of cells.

Structure of matrices Z., B., A., C .

Structure of matrices A 1, C .,

Structure of matrices B, A .16

Figure 6.1: Shift of rows in choked-flow equations.

Figure 7.1: Regular sheared grid for perturbation analysis.

Page

22

22

23

27

32

32

37

41

46

47

48

52

53

54

60

73

73

76

78

78

84

89

6

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure



Figure 9.la:

Figure

Figure

9. 1b:

9. 1c:

Figure 9.2a:

Figure

Figure

9. 2b:

9.2c:

Figure 9.3:

Figure

Figure

Figure

Figure

9.4:

9.5a:

9.5b:

9.5c:

Figure 9.6:

Figure

Figure

9.7a:

9.7b:

Figure 9.7c:

Figure 9.8:

Figure 9.9a:

Figure 9.9b:

Duct and grid geometry for test case 1:
duct with sin 2(i(x) bump.

Mach number contours with increments of 0.02.

Stagnation density contours with increments
of 0.00004.

Duct and grid geometry for test case 2:
duct with ellptic bump.

Mach number contours with increments of 0.05.

Stagnation density contours with increments
of 0.001.

Close-up of grid near stagnation point on
elliptic bump.

Streamlines in a stagnation point flow.

Duct and grid geometry for test case 2:
duct with elliptic bump using modified grid.

Mach number contours with increments of 0.05.

Stagnation density contours with increments
of 0.001.

Close-up of grid near. stagnation point on elliptic
bump with modified grid.

Airfoil and grid geometry for Gostelow cascade.

Mach number contours for Gostelow cascade
with increments of 0.005.

Stagnation density contours for Gostelow cascade
with increments of 0.00001.

Comparison of calculated and theoretical surface

pressure coefficients for Gostelow casade.

Close-up of the grid near the leading edge

stagnation point of the Gostelow cascade.

Close-up of the grid near the trailing edge
of the Gostelow cascade.

7

107

107

107

109

109

109

110

110

113

113

113

114

117

118

119

120

121

121



Figure 9.10a: Airfoil and grid geometry for T7 turbine cascade.

Figure 9.10b: Mach number contours for T7 turbine cascade 128
with increments of 0.05.

Figure 9.10c: Stagnation density contours for T7 turbine cascade 129
with increments of 0.001.

Figure 9.11: Close-up of the grid near the leading edge 130
stagnation point of the T7 turbine cascade.

Figure 9.12: Comparison of calculated and experimental surface 131
Mach numbers for T7 turbine cascade.

Figure 9.13: Variation of lift with inflow angle for T7 133
turbine cascade.

Figure 9.14a: Airfoil and grid geometry for Garabedian cascade, 136
using first order artificial compressibility.

Figure 9.14b: Mach number contours for Garabedian cascade, 137
using first order artificial compressibility
with increments of 0.1.

Figure 9.14c: Stagnation density contours for Garabedian cascade, 138
using first order artificial compressibility
with increments of 0.005.

Figure 9.15: Comparison of calculated and hodograph surface Mach 139
numbers for Garabedian cascade, using first order
artificial compressibility.

Figure 9.16a: Airfoil and grid geometry for Garabedian cascade, 140
using second order artificial compressibility.

Figure 9.16b: Mach number contours for Garabedian cascade, 141
using second order artificial compressibility
with increments of 0.1.

Figure 9.16c: Stagnation density contours for Garabedian cascade, 142
using second order artificial compressibility
with increments of 0.005.

Figure 9.17: Comparison of calculated and hodograph surface Mach 143
numbers for Garabedian cascade, using second order
artificial compressibility.

Figure 9.18: Close-up of the grid near the leading edge stagnation 144
point of the Garabedian cascade.

8

127



Figure

Figure

9.19a:

9.19b:

Figure 9.19c:

Figure

Figure

Figure

9.20:

9.21a:

9.2 1b:

Figure 9.21c:

Figure 9.22a:

Figure 9.22b:

Airfoil and grid geometry for NACA 0012 airfoil.

Mach number contours for NACA 0012 airfoil, with

increments of 0.1.

Stagnation density contours for NACA 0012 airfoil,

with increments of 0.005.

Surface pressure coefficients for NACA 0012 airfoil.

Duct and grid geometry for 2-D Laval nozzle flow.

Mach number contours for 2-D Laval nozzle flow,

with increments of 0.1.

Stagnation density contours for 2-D Laval nozzle

flow, with increments of 0.01.

Stagnation density changes on center streamtubes

of 2-D Laval nozzle flow.

Mach number distribution on center streamtubes

of 2-D Laval nozzle flow.

9

149

150

151

152

155

155

155

156

157



Table

Table

Table

Table

Table

Table

Table

Table

Table

9.1:

9.2:

9.3:

9.4:

9.5:

9.6:

9.7:

9.8:

9.9:

Table 9.10:

Table 9.11:

Table 9.12:

Table

Table

Table

9.13:

9.14:

9.15:

List of Tables

Summary of test cases.

Stagnation density errors for sin2 (lTx) bump.

Newton iteration histories.

Stagnation density errors for elliptic bump.

Stagnation density errors for elliptic bump;
modified grid.

Newton iteration histories; modified grid.

Newton iteration history for Gostelow cascade

using direct solver for Newton equations.

Effects of position of inlet/outlet boundaries.

Newton iteration history for Gostelow cascade
using iterative solver for Newton equations.

Newton iteration history for T7 turbine cascade.

Newton iteration history for Garabedian cascade
with first order artificial compressibility.

Newton iteration history for Garabedian cascade
with second order artificial compressibility.

Solutions of AGARD 02.

Newton iteration history for NACA 0012 airfoil.

Newton iteration history for Laval nozzle.

10

Page
103

105

106

111

115

115

122

123

125

132

145

146

147

153

158



List of Symbols

A1A2 face vectors

B-,B+ face vectors

c speed of sound

ht stagnation enthalpy

i,j discrete variable indices

m. mass flow in jth streamtube
J

mtot total mass flow

M Mach number

N normal vector

n unit vector in direction normal to streamlines

6n normal movement of grid node

p pressure (on normal faces)

q velocity

q--| speed

s=q/q unit vector in streamwise direction

s entropy

S streamwise vector

x,y coordinates

p density

Pt stagnation density

P artificial compressibility factor

II pressure (on streamline faces)

11



1. INTRODUCTION

This thesis presents a new algorithm for solving the steady-state

two-dimensional transonic flow through ducts, and over cascades and

isolated airfoils. The full flow field is governed by the Navier-Stokes

equations, but the assumption is made that the viscous and heat conduc-

tion effects are small and can be neglected. Under this approximation

the Navier-Stokes equations reduce to the Euler equations which describe

inviscid, rotational flow, and in integral form also give the correct

Rankine-Hugoniot shock relations. A further approximation which was

made by researchers in the past, is the approximation that the flow is

isentropic and irrotational, in which case the flow is governed by the

potential equation, a scalar equation, which can be solved much more

easily and economically. In subsonic flow, the flow is indeed isentro-

pic and irrotational, but in transonic flow shocks produce both entropy

and vorticity, and Salas et al [241 have shown that neglecting their

effect can lead to serious errors. Hence in this study the potential

approximation is not made, and instead the Euler equations are used.

This study is concerned solely with steady state solutions. At

present most methods for the numerical calculation of steady state,

transonic solutions to the Euler equations are time-marching methods, a

finite difference approximation to the unsteady Euler equations. The

advantage of this approach is that it is conceptually straightforward

and avoids the principal difficulty with the steady state transonic

equations. In supersonic regions the steady state equations are hyper-

bolic with four different characteristics. In subsonic flow two of

these characteristics become imaginary, or in other words become a

coupled elliptic system. Hyperbolic and elliptic equations in general

require different numerical solution methods. Space marching methods

are used for hyperbolic equations but cannot be used for elliptic equa-

tions, and relaxation methods are used for elliptic equations but cannot

be used for hyperbolic equations. The unsteady Euler equations, how-
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ever, are hyperbolic in time, both in supersonic and subsonic regions,

and so the time marching methods avoid this difficulty. The principal

disadvantage of these methods is that the convergence rate to the steady

state solution is limited by the relatively slow propagation of pressure

waves throughout the flow domain and their reflection at the boundaries

of the computational domain. Without the use of acceleration methods

several hundred iterations are required. Current methods overcome this

problem through a variety of acceleration methods such as using variable

time steps, in which the local time step is the maximum possible for

numerical stablity, implicit operators, which increase the stability

bound and so allow larger time steps, and multigrid, in which several

levels of grid coarseness are employed and larger time steps can be used

on the coarser grids. Despite all these advances over one hundred

iterations are still required in a typical transonic calculation.

The alternative approach is to solve the steady state equations

directly using some iterative method which bears no relation to the

physical time marching process. The problem, as mentioned before, is

the mixed hyperbolic/elliptic nature of the transonic equations. This

problem was first overcome for the transonic potential equation by

Murman and Cole [21] who introduced a form of numerical viscosity in the

supersonic region which allows a relaxation method to be used in the

supersonic region. When formulated conservatively as an upwinded den-

sity, this allows the capture of shocks without any loss of mass flux

across the shock, although momentum is not conserved due to the limita-

tions of the potential approximation that the flow is isentropic and

irrotational. One way of interpreting the relaxation procedure is that

it is an application of Newton's method (also called the Newton-Raphson

method) to a system of nonlinear equations. The unknowns are the values

of the potential at a set of points. The nonlinear equations are the

discrete mass equations, which state that the total mass flux into and

out of each computational cell is zero. Newton's method is to linearize

the nonlinear equations about the current approximate solution, and then

13



solve the linearized system to obtain a better approximate solution.

The linear Newton equations are usually solved using SLOR (Successive

Line Over-Relaxation) accelerated by multigrid.

This same approach has been applied to the Euler and Navier-Stokes

equations by Childs and Pulliam [7], and Jespersen [18]. Childs and

Pulliam solve the linear Newton equations using the factored implicit

algorithm of Beam and Warming [4] accelerated by multigrid, and Jesper-

sen uses Gauss-Seidel with multigrid. Their conclusions were mixed; the

Newton procedure worked, but did not have any advantages, either in

accuracy, capabilities or speed, over traditional time-marching methods,

which are much simpler to program. An intermediate approach, lying

between timemarching and full Newton methods, is the method of Mulder

and Van Leer [20], in which a Backward Euler time integration scheme is

used to solve the unsteady Euler equations. For small values of At, the

time step, this behaves like a time-marching method. In the limit At-o,

it becomes Newton's method. Again the implicit system of equations is

solved using SOR and SLOR with a multigrid accelerator. In applications

they use a small At initially while there are large changes in the flow

field and the shock position is not established, and then increase At to

obtain a rapid final convergence to the steady state solution. Their

results demonstrate that good computational efficiency can be achieved.

The approach in this thesis, developed independently from Childs and

Pulliam, and Jespersen, also uses Newton's method. Both direct and

iterative methods for solving the Newton equations are developed and it

is found that the direct method is more efficient than the iterative

method for grids of reasonable size. This is in contrast to the work of

Childs and Pulliam, Jespersen and Van Leer and Mulder for whom a direct

solution would be much more expensive, because their formulation of the

discrete equations has four variables per computational cell compared to

the two variables per cell required by the present method due to its

unique formulation of the discrete steady-state Euler equations.

14



Most finite difference discretizations of the steady state Euler

equations use conservative fluxes on a fixed grid of computational

cells. The grid points and computational cells have fixed positions set

initially by the user, and the discrete mass, momentum and energy equa-

tions are a discrete approximation to the integral form of the Euler

equations applied to each computational cell. The reason this approach

is called conservative is that the flux of mass, for example, out of one

cell is exactly equal to the flux of mass into the neighboring cell, and

so on a global view all of the internal flux cancel, and hence the mass

flux across the inlet boundary is exactly equal to the mass flux across

the outlet boundary. Thus mass is "conserved"; there is no "production"

of mass inside the domain. The advantage of the conservative approach

is that it guarantees the correct treatment of shocks. In exactly the

same way that the Rankine-Hugoniot shock jump relations can be obtained

from the Euler equations written in integral form (191, the conservative

form guarantees that the flux of mass, momentum and stagnation enthalpy

on either side of the shock are the same and so the flow on the two

sides of the shock must satisfy the Rankine-Hugoniot relations. An

alternative discretization of the steady state Euler equations is that

used by streamline curvature methods [22]. In this case one set of grid

lines corresponds to streamlines and so the grid is not fixed but deter-

mined as part of the solution. Instead of using a conservative flux

formulation the finite difference equations are a discrete approximation

to the normal and tangential momentum equations in differential form,

together with the conditions that the mass flux amd stagnation enthalpy

are constant along each streamtube. These equations are solved by a

relaxation procedure. The streamline curvature method remans popular

in industry for calculating subsonic flows in turbomachinery, but when

applied to transonic flow cases two problems arise. The first is that

the relaxation method may not be stable in the supersonic region because

of the change in the type of the steady state equations. The second is

that even if the steady state solution is obtained, it may have large

errors because the non-conservative formulation means that shocks are
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not correctly calculated.

The discretization used in this thesis combines the conservative

formulation of finite volume schemes with the intrinsic streamline grid

of streamline curvature methods. The discrete steady-state equations

are an approximation to the integral form of the Euler equations, app-

lied to quadrilateral cells which are defined such that there is no mass

flux across two of the four sides. The only contribution to the steady-

state equations from the streamline faces comes from the pressure con-

tribution to the momentum equations. The mass and energy equations for

each cell are particularly simple since mass flux and stagnation enthal-

py are conserved along each streamtube. Since one set of grid lines is

defined to be streamlines, the grid is not known a priori, but must be

determined as part of the solution. Although it might appear that this

increases the number of unknown variables in the problem, in fact the

linear Newton equations can be manipulated to reduce to just two equa-

tions and two unknowns per computational cell, which is fewer than for

normal finite volume formulations and so is much more efficiently solved

by the direct solution method used for the Newton equations. An addi-

tional, very important, advantage of this formulation is that it is as

simple to specify the pressure on the surface of an airfoil and deter-

mine the shape of the airfoil, as it is to specify the position of the

shape of the airfoil and determine the pressure distribution. The

former problem is called the inverse problem and its solution for trans-

onic flow is extremely difficult, but this method with the streamline

grid determined as part of the solution and the robust Newton procedure

is ideally suited for it. The application of this method to the inverse

problem is not discussed in this thesis, but is presented in the Ph.D.

thesis of a colleague, Mark Drela (111. His thesis also presents a

method for incorporating a coupled boundary layer analysis, using an

integral boundary layer method. The power and simplicity of the Newton

solution procedure is demonstrated by the fact that the boundary layer

equations and the coupling relations between the boundary layer and the
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outer inviscid flow can simply be treated as additional equations and

included in the Newton iterative procedure.

The historical roots of the steady-state discrete equations lie in

previous work by Wornom [28-30] and Giles (13]. In reference [28]

Wornom solved the steady Euler equation for quasi-one-dimensional flow

using a box formulation. One particularly interesting feature of this

work is that for subsonic flow no artificial dissipation of any sort is

needed, and only physical boundary conditions are required, as opposed

to most time-marching schemes in which some form of extrapolation is

required at boundaries in addition to the physical boundary conditions.

In the case of transonic flow Wornom introduces artificial compressi-

bility in order to maintain a well-posed problem. This involves repla-

cing the density in the mass equation by a weighted average of the den-

sities at a given node and the its upstream neighbor, and was first used

by Eberle [12], and Hafez et al. [16] for the full potential equation.

Wornom then extended his method to two-dimensional supersonic flow on a

fixed grid [291, using special shock and sonic point operators instead

of artificial compressibility. Independently, Giles [13] used a box

method to solve the unsteady Euler equations for quasi-one-dimensional

transonic flow. Special conservative treatment of the sonic and shock

cells, incorporating shock fitting, was used to obtain a method which

had no artificial dissipation, and no non-physical boundary conditions.

For subsonic steady flow the discrete equations were identical to those

used by Wornom (28]. One conclusion of this work was that the use of

artificial compressiblity, instead of the special treatment of shocks

and sonic cells, was preferable for reasons of robustness and simpli-

city.

The work which is presented in this thesis represents the natural

extension of the box method to two-dimensional flow. In particular the*

discrete equations for a streamtube with a straight centerline in the

two-dimensional case reduce exactly to the equations for the quasi-one-
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dimensional case. Some intermediate work and preliminary results of the

current research were presented in three research papers. The first

paper [9] contains a solution method for supersonic flow, with applica-

tions to both a duct flow for verification purposes, and a free super-

sonic jet problem to demonstrate the inverse capability of specifying

the pressure on the surface streamline instead of the position of the

surface streamline. The solution is obtained using Newton's method

applied in a space-marching way, very similar to the Keller Box method

for solving finite difference boundary layer equations [6]. The paper

also presents preliminary results for subsonic and transonic flow,

solved by a line-relaxation method instead of the Newton method. The

second paper [10] introduces the Newton solution procedure for transonic

flow and the incorporation of the coupled integral boundary layer anal-

ysis. The final paper [14] presents the solution of the inverse problem

for transonic flow, again using the Newton solution procedure.

Chapter 2 of this thesis derives the discrete steady-state Euler

equations and the corresponding boundary conditions. Chapter 3 dis-

cusses the introduction of artificial compressibility into the mass

equation in supersonic regions. An analysis of first order artificial

compressibility shows that there is a minimum amount required for the

problem to be well-posed, and that twice this level produces sharp

shocks. Also a second order accurate correction is defined, and numer-

ical test cases demonstrate it produces smaller stagnation density

errors. Chapter 4 introduces the Newton procedure and shows the manner

in which the discrete nonlinear equations are linearized, including both

the Euler equations and the boundary conditions. Chapters 5, 6 and 7

discuss different ways of solving the linear set of Newton equations.

Chapter 5 presents a direct solution method which uses a modified block-

tridiagonal algorithm. Chapter 6 shows the modifications to both the

boundary conditions and the solution procedure required for cases in

which the flow is choked. Chapter 7 discusses the relative advantages

of direct and iterative solution methods, and then presents an iterative
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method for solving the Newton equations for subsonic flow. This uses a

preconditioning which effectively decouples the convective entropy equa-

tion from the elliptic pressure equation. Chapter 8 introduces the con-

cept of global variables and constraints which are important in giving

the overall method a great amount of flexibility. The global variables

can be variables such as inlet and outlet flow angle, for casades, or

angle of attack and circulation, for isolated airfoils. The correspond-

ing global constraints can be specified lift and a Kutta condition,

which specifies that there is no jump in pressure across the trailing

edge of the airfoil. The global variables could also represent a change

in the pitch, for a cascade, or a change in the freestream Mach number,

for an airfoil, allowing one to examine the linear sensitivity of the

solution to different global parameters. To obtain the same information

with a time-marching method would require a series of calculations with

slightly different global parameters, which would be much more expen-

sive. Chapter 9 presents a number of test cases to demonstrate the

robustness of the Newton method and the accuracy of the solutions ob-

tained. The calculated results are compared to values obtained theo-

retically, experimentally, or by other numerical methods. Chapter 10

discusses the results and draws some final conclusions.
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2. STEADY STATE EQUATIONS

In this chapter the discrete steady state Euler equations are

derived, together with the boundary conditions required for a two-

dimensional duct problem. The first section shows how the discrete

Euler equations for a single computational cell are derived from the

integral form of the Euler equations. The second section discusses the

inlet, outlet and solid wall boundary conditions necessary for a duct

problem. The third section shows that an additional relation is

required to achieve consistency, and to match the number of equations

and unknown variables. Finally the fourth section discusses different

approaches to solving this set of steady-state equations.

2.1 Euler Equations

The starting point for the derivation of the discrete Euler equa-

tions is the integral form of the steady state, two dimensional Euler

equations. For a closed curve C with outward normal n the integral

equations are [19]

Mass equation pq n ds = 0 (2.1)

C

Momentum equation p(q-n)q + pn ds = 0 (2.2)

C

Energy equation pq-n ht ds = 0 (2.3)

C
The discrete finite-volume Euler equations are a discrete approxi-

mation to these equations, in which the curve C is the boundary of an

area usually referred to as a conservation cell. This approach is

standard in computational fluid dynamics, but a unique feature of this

implementation is that the cells are defined such that one pair of

opposing faces are streamlines of the flow and so there is no mass flux

20



across them. Hence the only contribution to the above integrals from

these two faces is the pressure term in equation (2.2). This means that

the density and velocity need only be defined on the other two faces,

and also the direction of the velocity must somehow be related to the

local geometry to be consistent with the statement that two of the faces

are streamlines. A further consequence is that unlike most numerical

methods the grid geometry is not known a priori and must be determined

as part of the solution.

A typical conservation cell is shown in Figure 2.1. The geometry

variables (x,y) are located at the grid nodes marked X. The nodes

marked as - are defined to be at the midpoints of the lines connecting

the grid nodes. The upper and lower bent faces of the cell are the

streamline faces across which there is no mass flux. Figure 2.1 shows

the node numbering convention used when discussing the discrete Euler

equations for a particular cell, and is the same as that used in the

program.

Four vectors which need to be defined are the vectors along the

faces of the cell, which are illustrated in Figure 2.2. For the bent

streamline faces the vectors are the vector sum of the two parts.

1++ 1 1 1
A = I(x +x 1 -+x2) , A = -(y++y2) -(y-+y~) (2.4ab)
X1 21 21 y 21 212

A = !2+X 2+x-) , Ay ! 2  + 2+y) (2.4c,d)
x2 2(x2 +) 23y

1 1 1
B- = [(x-+x-)- x-] + [x-- (x-+x-)J = (x--x-) (2.4e)x 2 32 2 2 22 1 23 1

B- = [.(y-+y-)- y-J + [y- -+y-)] = (y--y-) (2.4f)

B+ 3+(x+x+)- X+j + [x+- (x+x+)] = 1(X+-X) (2.4g)
xB 3 2 2 2 2  1 2 3+

B r C-~y+y+ y~ + 4y. 1(y-4.* = 1~-+ (2.4h)y 2 y3 y 2 2 22 (y2 2 1(y2 31 1
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Figure 2.1: Location of grid nodes and cell geometry.
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Figure 2.2: Definition of vectors AV, A2 , p~ B+
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An additional two vectors which it is convenient to define are S,

which is the average of B- and B+, and N, which is the average of A

and A2.

S = ,(B+B+) S = -(B~+B+) (2.5a,b)x 2 x x y 2 y y

N = (A +A2 ) N = I(A +A2 ) (2.5c,d)
x 2 xi x2 y 2 y1 y2

Since the nodes (x+,y+),(x ,y'),(x ,y ) and (x-,y-),(x-,y~),(x-,y~)

are defined to be streamlines, the local velocity direction must be

related to them. This is accomplished by defining the unit flow vector

1 to be tangent to the line joining the average of nodes 1+ and 1- to

the average of nodes 2 and 2 . The unit flow vector s2 is defined

similarly. Both are shown in Figure 2.3, and their definitions are

given below.

s = (x-+x)/2 - (x~+x+)/2 , sy = (y-+y )/2 - (y-+y )/2 (2.6a,b)

2 2 1/2
s = (s +s )l/ , = s /s, , y= s y/s 1 (2.6c-e)

sx2 (x-+x )/2 - (x2+x )/2 , s2 (y+y)/2 - (y-+y )/2 (2.7a,b)x2 3 3 2 2 y2 3322

2 2 1/2s2 (sx2+sy2' s = sx2 /s 2 s = s y2/s2 (2.7c-e)

The velocity at the midpoint of the left face of the conservation

cell is thus defined to have directions1 and magnitude q1 so that

q, = q1s The final geometric quantities to be defined are the normal

areas An1 and An2' which are the vector dot products of the unit

velocity vectors and the normal area vectors of the faces. Since A and
1

A2 are defined along the faces, not normal to them, the actual

definitions of An1 and An2 are

An= s A -sA Js lAA 1 , An2 = s Ay2-sy2Ax2 Is2xA (2.8a,b)
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where the operator I I is defined to mean taking the scalar component in

the third (out of plane) dimension, and will only be applied to vectors

having only a component in the third dimension. It is important to note

that the scalar value given by may be positive or negative, depend-

ing on the direction of the vector. The operator does not return the

absolute value and so is an unconventional operator, but one that is

very convenient in this application.

The flow variables p, density, q, speed, and p, pressure are lo-

cated at the midpoints of the faces which are not streamlines, as shown

in Figure 2.3, and another pressure variable, denoted differently by H

for clarity, is located on the streamline faces where, as previously

noted, no other flow variables are required.

The discrete mass equation is simply a statement that the mass flux

along a streamtube is a constant.

m = P q1An1 =2 2An2 (2.9)

With due regard to the directions of the vectors A,A2,~B and B+

the discrete approximations to the x and y-components of the integral

form of the momentum equation (2.2) are,

P1q Ans -pqA2 s +pA A-p + n+B+ _ -B1iln1iX1 2 2n2 x2 +liyl 2 y2 y y

2 2 1+
= P1 Ans - P2 2An2 sx2 + APq2 2)N + (n+-)s + (n++f--p 1  2)(B+-B)

= 0 (2.10)

1q I A n1 s - 2 nqA s p A + p2A - +B+ + f~BP1 1 s1  2 2 n2 y2 1 xi 2 x2 x x

2 2 -
= Pq 1 Ans - P2 q2An2 s 1 2)N - (p+-ip)S - (++ -- p 2 xx)(B+-Bp2)

-0 (2.11)
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The step from the first line to the second line in these two

equations is achieved using the definitions of S and N, and the identity

Bk-B= A 2-A

The energy equation reduces to the statement that the stagnation

enthalpy is constant along a streamtube, although of course the value of

the stagnation enthalpy, like the value of the mass flux, may vary from

one streamtube to another.

h = + . q2 _ ' 2 + 1 2 (2.12)
t Y-1 Pi 2 1 y-1 P2 2 2
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2.2 Duct boundary conditions

This section presents the boundary conditions necessary for the

solution of a two-dimensional duct problem. As illustrated in Figure

2.4, there are I grid nodes in the streamwise direction, and J grid

nodes in the normal direction. Thus there are J-1 streamtubes, and each

streamtube has 1-2 conservation cells.

The solid wall boundary conditions are very simple. The position

of the grid nodes is specified. No other boundary conditions are re-

quired, in contrast to almost all other Euler methods which require

pressure extrapolation, or other special treatment, at solid walls. In

addition it is just as simple to specify either a displacement thickness

which allows the calculation of coupled viscous-inviscid flows, or the

wall pressure which allows the solution of the inverse flow problem in

which one determines the geometry which produces a specified desired

pressure distribution. These two developments are the subject of the

Mark Drela's Ph.D. thesis [11].

There are three flow quantities specified at the inlet. The first

two are the mass flux and stagnation enthalpy of each streamtube.

These remain constant along each streamtube, and are treated as such in

the discrete Euler equations in the last chapter. The third quantity

is the inlet stagnation density, which is defined as,

Pt = P1 (1 + M 1/(y-) = P (1-q /2h ) (2.13)

where the subscript 1 denotes the variables at the inlet face.

An important thing to note with this set of inlet boundary con-

ditions is that it is only well-posed if the flow is not choked. If the

flow is choked the total mass flow is determined uniquely by the inlet

stagnation enthalpy and density and duct geometry. For example, the

choked mass flow for a quasi-l-D converging/diverging duct is given by
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2 1/(y-1) 2(y-1) 1/2 1/2 *m = (-~) ( )+ pt(h ) A (2.14)
-Y+1 -Y+1 t t

where A* is the area of the sonic throat. The correct boundary con-

ditions for choked flow are discussed in Chapter 6, along with the nec-

essary modifications to the solution procedure. The reason they are not

discussed earlier is that the solution procedure becomes significantly

harder to understand, and also is approximately four times as expensive

computationally. Thus it is preferable to use the above unchoked bound-

ary conditions wherever possible.

The discrete Euler equations also require boundary conditions for

the position of the grid nodes at the inlet and outlet planes. In all

the cases to be presented in this thesis the inlet flow is uniform and

so the inlet nodes are spaced according to the fractional mass flow in

each streamtube. Thus,

=,j+11,j ,(yJ ,-y1 ) m /mtotal (2.15)

Since the inlet area, yi -y1 S, and the streamtube mass fluxes are

all specified, this implies for the duct problem that the inlet node

positions are fixed.

At the outlet the same approach cannot be used because the flow is

no longer uniform due to entropy production at shocks. Instead the

boundary condition is that the streamtube area at the Ith streamwise

station is the same as the area at the I-1th station.

(yIj+1 Ij I-1,j+1 I-1,j) = 0 (2.16)
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2.3 Auxiliary pressure relation

At this point it is instructive to count the number of variables

and the number of equations. Including all of the boundary nodes, there

are IJ grid nodes. Each grid node has both x and y variables, but for

the duct problem the nodes are constrained to move along lines x=constant

so there is really only 1 unknown per grid node, giving a total of IJ

grid point variables. In more general geometries such as cascades and

airfoils the grid nodes are constrained to move in a direction approx-

imately normal to the local streamline. In addition there are three

unknown variables, p,q,p, at each of the (I-1)(J-1) normal streamtube

faces, and one unknown variable, H, at each of the (I-2)J streamline

faces, giving a total of 51J-3I-5J+3 unknown variables.

Counting the equations now, there are two momentum equations for

each of the (I-2)(J-1) conservation cells, and there are two equations,

the mass equation and the stagnation enthalpy equation, at each of the

(I-1)(J-1) normal streamtube faces. In addition there are 21 solid wall

boundary conditions, J-1 inlet stagnation density conditions, and 2(J-2)

inlet and outlet grid node equations, giving a total of 41J-2I-3J+1

equations. Thus IJ-I-2J+2 = (I-2)(J-1) additional equations are re-

quired to make the numer of equations equal to the number of unknown

variables. This is exactly one additional equation per computational

cell.

The origin of the additional equation comes from the realization

that as yet nothing constrains the average value of H. For two-

dimensional uniform flow in a constant area duct the discrete Euler

equations are perfectly satisfied by a solution in which the p variables

are equal to one constant value and the H are equal to a different

constant value. This is because the momentum equations essentially are

concerned with pressure differences. The x-momentum equation for
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uniform p,q gives p1-p2=0 and the y-momentum equation gives n~-r+=O. The

averaqe p value is constrained through the mass and stagnation enthalpy

equations, but there is nothing which constrains the average n value,

and in this example it can take any value. For consistency the average

local value of H must be approximately equal to the average local value

of p with the equality becoming exact in the limit that Ax,Ay-*O. Thus,

bearing in mind that exactly one equation for each computational cell is

required to match the number of unknowns and equations, this is achieved

most simply by the following equation, which will be referred to as the

auxiliary pressure relation.

n- + + = p1 + p2  (2.17)

A more general form for the auxiliary pressure relation is,

H~ + n+ = p 1 + p2 + 2Pc (2.18)

where Pc is a function which approaches zero in the limit Ax,Ay-+O. The

reason this more general form is sometimes required is that the discrete

equations including (2.17) are satisfied by a solution which has uniform

density, velocity and pressure, and a grid which has a "sawtooth" oscil-

lation in both the streamwise and normal directions, as shown in Figure

2.5. Usually this does not appear in a direct solution because it is

inhibited by the far-field and solid-body boundaries, but it sometimes

can be seen in regions in which there is a strong local streamline cur-

vature, and also it causes problems in the iterative solution procedure

to be given in Chapter 7. Considering the particular conservation cell

shown in Figure 2.6, the physical reason why the "sawtooth" solution

should not be valid is that the cross-sectional area A at the middle of
c

the cell is greater than the average of the areas A1 and A2 at the two

ends, and for subsonic flow this means that the average of H+ and I-

should be greater than the average of p1 and p2 by an amount Pc which
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Figure 2.5: Unconstrained "sawtooth" mode.
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Figure 2.6: Cross-sectional areas for pressure correction.
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can be determined by assuming an isentropic expansion. By the same

reasoning the II values on the neighboring streamtube need to be reduced

due to the pinching of that conservation cell, and it is the resultant

mismatch in the n values on either side of the steamline which prevents
the "sawtooth" solution from being valid.

This discussion suggests that Pc should be defined by

p = (A -1(A +A ) = 2 /1-M2) A -(A +A (2.19)
c 8A s,ht=const c 2 1 2 A c 2 1 2

This definition, however, has P -o as M-+1 which is undesirable. In
c

practice it was found that no pressure correction was needed in super-

sonic regions, so it was decided to bring Pc smoothly to zero at M=1.

Also the area terms are replaced by an expression based on streamline

segments which is equivalent for an approximately uniform grid. The

third modification is that an arbitrary multiplicative constant k is

introduced. It was found in numerical test cases that a value for k

of 0.05-0.2 was sufficient to prevent the sawtooth mode from appearing.

Thus the final chosen form for P is
c

2 2 s 2 2 2
k p YM (l-M ) , M <1

P = 2 SxN(2.20)

0 , 2 >

where

p = 1(p+) , M = (M +M ) (2.21a,b)

and

s~ = x 2-x, sly y2 -y , s2x 3 2 , s =2y Y-Y2  (2.22a-d)

For smooth flows with smooth grids PC =O(Ax
2 ,y 2 ), -which satisfies

the condition that P -0 as Ax,Ay+0 and preserves global second order

accuracy.
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2.4 Possible solution methods

This chapter has presented the steady state equations obtained from

the particular choice of discretization of the Euler equations, and

their associated boundary conditions. The next question is how to solve

this system of nonlinear equations. There are two general classes of

iterative solution methods for a system of nonlinear equations.

The first class uses Newton's method applied to the entire non-

linear system of equations. Each one of the nonlinear equations is

linearized about the current approximate solution to obtain a linear

system of N equations in N unknowns, the corrections needed to produce a

better approximate solution. N here is the total number of equations,

and variables, which is very large, so the question then is how to solve

this system of equations. Jespersen (18], who has tried this general

approach for the Euler equations with a different form of discretiza-

tion, considered the system to be too large to be solved efficiently by

direct methods, and so uses a method which he labels "Newton-Multigrid,"

in which he solves the linear Newton equations by a iterative Gauss-

Seidel method accelerated using multigrid, a technique first developed

by Brandt [5] for solving elliptic equations.

The second class of methods iterates directly on the nonlinear

equations. At each step of each iteration, all of the variables are

held fixed except for those at a particular grid node (point Gauss-

Seidel), or a particular line (line Gauss-Seidel). The nonlinear equa-

tions which correspond to this point or line are linearized to obtain a

relatively small system of linear equations, which are solved to get the

corrections for those variables. This iterative procedure converges

slowly usually, so Jespersen [18] accelerates it using the nonlinear

full multigrid algorithm developed by Brandt (5]. Jespersen labels this

method "Multigrid-Newton" since it uses the nonlinear multigrid algo-

rithm with a Newton method at each node as the local relaxation method.
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In this thesis the first approach is followed for several reasons.

Firstly, the Newton method is conceptually very straightforward. Provi-

ded the initial trial solution is not "too far" from the true solution,

the method always converges and asymptotically the convergence is quad-

ratic. Secondly, the Newton method allows the introduction of global

variables and global constraints. As will be discussed in Chapter 8,

these are special variables, such as circulation, and special equations,

such as the Kutta condition at the trailing edge, which in some sense

have a global span or influence. In the Newton method they are treated

simply as additional variables and equations, although in the program-

ming implementation they are handled separately. It is not clear how

they would be included under the second class of methods.
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3. ARTIFICIAL COMPRESSIBILITY

3.1 Introductory discussion

The concept of artificial compressibility was first introduced by

Eberle [12], Harten [171 and Hafez et al. [16] for the solution of the

full potential equation in transonic regimes. Following the normaliza-

tion adopted by Hafez, the full potential equation for steady two-

dimensional flow is

a(P ) + a(P ) = 0 (3.1)

where, due to the isentropic assumption, p is given by

2 2 1/('Y1) X-1 (12- $2 802 1/(X-1) (3.2)
0= (Mc) 2 M(- x - -1 ) 1

The conservative discretization of (3.1) on a cartesian grid, as

shown in Figure 3.1, is

(+i,( i+1, 0' Pi1( ipj -0i-1,j)]/Ax2

+ P. - )- . ( . ) = 0 (3.3)
, j+2 1, J+ 1 i , 2- J ,1

where

1
P = -( p +p. .) , etc. (3.4)
i+2,j 2 i+1,j 1,j

(M2 2 1/([1) Y-1 2 2 1/(Y-1)
p. =(Mc. .) = [1 2 q -) 35ij 00 ij 2 oo i 1, )

q = ($ .- )/2Ax]2 + ((0.. - 0 )/2Ayx] 2  (3.6)
i,3 i+1,j i-1,j i,3+1 i,3-1

This set of equations is satisfactory for the subsonic regions of

the flow field which are elliptic, but in the supersonic regions of the

flow field, which are hyperbolic, equation (3.3) needs to be modified.
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Figure 3.1: Location of grid nodes and variables for Potential
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As described in (16], the modified equation is

2

i+2,j i+1,j- 0 ,) - ), i_,3i i-1,3

~ ~ 2
+ (Pi. . 1($. . - 0. .) - Pp (0. .- . . 1)/Ay = 0 (3.7)

,j+ 2  jj+1 .,) 1,J-2 1,j 1,]J

where

P. .P +_P. .) ,-etc. (3.8)

and

-aP
Pij i,j i,j as (39)

is an approximation to the streamwise derivative of p, evaluated
as

on the upstream side of the node (i,j), so that p . is a weighted aver-

age of the values of p at (i,j) and the adjacent upstream nodes. y.L'

is a function of the local Mach number.

-2 2 2
1. . = max(0,1-M. ) max(0,1-c. ./q. (3.10)
1,3 i1, i,] i,]

This choice of definition for y appears to have been based on

numerical experience rather than a numerical stability analysis.

Artificial compressibility has also been used by Wornom [28] in

solving the quasi-one-dimensional Euler equations. The steady state

version of his discrete equations is

(pqA). - (pqA) = 0 (3.11)

(pA+pq 2A). - (pA+pq 2A), _ (- P )(A-Ai_ ) = 0 (3.12)

where A is the cross-sectional area of the streamtube, and p is

determined by assuming uniform stagnation enthalpy.

P =- p (h- 1) (3.13)

Wornom defined p, which he called a retarded density, as
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p. = p. - y(p.-p. 1  (3.14)

with

P. = max(0,1-M 2/M. 1 ) (3.15)
C 12

Mc is a reference Mach number taken to be slightly less than unity

and M. 1 is the average of M. and M. . Again no explanation is given
2 1 1

for the choice of formula for u, and the results presented demonstrate a

certain amount of smearing of shocks, indicating that possibly too much

dissipation is being added by the artificial compressibility.

The discretization of the steady two-dimensional Euler equations,

presented in the last chapter, can be viewed as a natural extension of

Wornom's one-dimensional equations. In particular the discretization

applied to a single streamtube with a straight centerline reduces to

Wornom's equations for a quasi-one-dimensional streamtube. Hence it

was decided to follow Wornom's approach in introducing artificial

compressibility into the mass equation (2.9).

m = P q1A=n1 2 2An2 (2.9)

The modified mass equation is

M = P qAn 2q2 An2 (3.16)

where

P2 p P2 -42(P2-P1) (3.17)

Rather than using Wornom's definition for p, however, an analysis

was performed to determine the optimum amount of artificial compress-

ibility required to produce a well-posed discrete problem, with sharp

shocks and a minimum of undesirable stagnation pressure errors in the

smooth supersonic region.
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3.2 One-dimensional analysis

The one-dimensional analysis considers linearized perturbations

about uniform flow in a constant area duct. To gain insight it is

helpful to first analyze the analytic Euler equations with a term in the

mass equation corresponding to the artificial compressibility.

(p - uAx ) q = const = m (3.18)ax

pq2 + p = const = P (3.19)

.Y P + q2 = const = h (3.20)
Y-1 P 2 t

Now each variable is expressed as a sum of steady uniform part,

denoted with an overbar, and a unsteady perturbation.

p = p(1+p' ) , p = T(1+P') , q = q + -cq' (3.21a-c)

When these are substituted into equations (3.18)-(3.20), and second

order terms are neglected, the resultant linearized equations are

(p'- Ax 8- M + q' = 0 (3.22)

YM2 P + 2yMq' + p' = 0 (3.23)

(p'-p') + Mq' = 0 (3.24)
7:-1

where M is the Mach number of the steady flow. Eliminating p' and q'

using all three equations yields a first order differential equation

for p'.

(M2_y 1 - PAx(Y+1)M2 a - 0 (3.25)
ax

This equation has an exponential solution.

M2_
p' e exp(kx) , k = M 1 2 (3.26)

UAx(Y+1)M
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analytic "boundary layer" behavior.
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The most important feature of k is that it changes sign when M

passes through M=1. When M<1, k<O, which means that for subsonic flow

the linear perturbation produces a "boundary layer" type phenomenon at

the inlet boundary, with an exponential solution decaying to zero away

from the inlet. When M>1, k>O, which means that for supersonic flow

there is a "boundary layer" phenomenon at the outlet boundary. of

particular interest is what happens when there is a shock. In this

case the linear perturbation approach is not valid in the shock itself,

but it remains valid on either side of the shock. On the supersonic

side k>O,.and on the subsonic side k<O. Hence on both sides the per-

turbation from uniform flow decays exponentially away from the shock.

Figure 3.2 illustrates all of these features.

This analysis of the modified differential equations is important

for interpreting the analysis of the discrete equations, which is

performed next, because the behavior of the discrete solution must be

qualitatively the same as the behavior of the analytic solution for the

discrete problem to be well-posed. Thus the discrete solution should

also exhibit the exponential decay away from the shock on both sides

and the "boundary layer" type behavior at subsonic inlets and supersonic

outlets.

The discrete equations for a straight, uniform area streamtube

reduce to

(p2 - 1(P2 -P1 )] q2 = const = m (3.27)

2 2
p2q2 + p2 = 1 1 + p1 = const = P (3.28)

y p2  1 2 Y 1 1 2
Y + - q 2  + f q, = const = h ('3.29)

7- 2 2 -1 P 21

The corresponding linearized perturbation equations, obtained by

the same procedure used for the analytic equations, are
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(p; - y(P;-pj) M + q; = 0 (3.30)

YM2p + 2yM q + p = 0 (3.31)

-- (p - ) + M q = 0 (3.32)

When q' and p' are eliminated using all three equations the

resultant first order difference equation for p' is

(y -P) P' + P P' 0 (3.33)
crit 2

where

2

y = M -1 (3.34)
(y+1)M

Equation (3.33) has an exponential-type solution

p.O z , -i= (3.35)

Numerical well-posedness requires that the exponential behavior is

qualitatively the same as in the analytic case. For M<1, k<0, and the

corresponding behavior for the discrete problem is IzI<1, which is auto-

matically satisfied for p.' 0 since for M<1, pcrit<0.

For M>1, k>0, and the corresponding behavior for the discrete

problem is Izi>1. In this case however Izi can be greater than or less

than unity, depending on the value of y.

a) yP > crit => 1<z<w

For this range of values of p, the solution is well-posed and

there is a smooth exponential decay away from shocks on the supersonic

side..

b) > n > 1 t>t-e a y hp m crit 2 'crit'

In this range jzj is still greater than unity so the problem is
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well-posed, but now because z is negative there is an oscillatory

exponential decay away from the shock.

1
c) f ycrit > U > 0 => -1<z<0

In this range, there is insufficient artificial compressibility

because Iz|<1. In actual computations with this level of artificial

compressibility the iterative Newton procedure fails because the

Jacobian aR/aU (defined at the beginning of chapter 4) becomes very
nearly singular.

The sharpest possible shocks correspond to z=0 for M<1, and z= 0'

for M>1, so in one sense the optimal choice for p is y=max(Oyit).

However another consideration is the amount of stagnation pressure

error produced in the smooth supersonic region by the artificial

compressibility, and since it is proportional to U it suggests that yi

should be chosen to be closer to crit /2 in smooth flow regions. In

actual computations it is found to be preferable to introduce artificial

compressibility at high subsonic speeds to prevent the Jacobian aR/8U
from becoming nearly singular, and so the robust definition of p which

is used is

M<M.,y=
crit'

2 2 (3.36)
M -Mi

M>M .,y=ycrit
critM con 2

(y+1)M

where Mcrit is slightly less than 1.0 and Ucon lies between 0.5 and 1.0.

Typical values used are M . =0.9 5 and Ucon = 0.9.

To verify the predictions of the analysis, a quasi-one dimensional

version of the code was developed by considering only one variable area

streamtube with a straight centerline. This code was applied to a

Laval nozzle problem with subsonic inlet and outlet, and a choked

throat at x=0.5. Figures 3.3 to 3.5 present results from three calcula-
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tions with the same boundary conditions and the same M crit =0.9. Each

figure displays the compressibility p, the Mach number M, and the frac-

tional change in stagnation pressure. The plots of yi also have lines

indicating ycrit and crit /2 for reference purposes. The three cases

differ in the values of pcon which are used. The first case uses

pcon= 1 .5. Figure 3.3 shows that there the shock is rather smeared and

there is an erroneous increase in stagnation pressure in the supersonic

region. In the second case pcon= 1 .0, and Figure 3.4 shows that the

shock is much sharper,and the stagnation pressure errors are smaller, as

predicted. In the final case pcon= 0 .5, and so U is only slightly above

the predicted stability threshold. Both the Mach number and stagnation

pressure plots show oscillations which decay slowly upstream away from

the shock, as predicted by the analysis. The overall level of

stagnation pressure error in the supersonic region is slightly less

than for p =1.0. When pcon was further reduced to 0.45 the iterative

Newton procedure failed and no solution could be obtained. Thus these

cases verify the essential points of the analysis, that the stability

threshold is p=p crit /2, that the sharpest shocks are obtained by p=pycrit

and the minimum stagnation pressure errors are obtained by choosing P to

be slightly greater than pycrit /2.
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3.3 Second order corrections

The artificial compressibility in the mass equation produces a

first order error, because the modified density differs from the true

density by approximately pAs(8p/as), where 8p/as is the streamwise

derivative of the density and As is the streamwise distance between two

nodes. To correct for this a correction term can be added to the

modified density.

2 2 2 (P2 -p1 ) + Pc 2 (P1- 0 ) (3.37)

When y'c 2=
0 ' this definition for p2 is exactly the same as (3.17),

but when yc2=U2 , the modified density p2 is approximately equal to

2 a2p
P2-(As) 2VP and so the truncation error is reduced to being second

order. This has the effect in actual calculations of greatly reducing

the magnitude of the stagnation pressure errors introduced in the smooth

supersonic region. To determine the well-posedness of the new modified

mass equation, the analysis of Section 3.2 has to be repeated.

The model analytic mass equation is now

(p - (y-ycI)Ax p _cAx2  p) q = const = m (3.38)

where Ui is assumed to be less than U.

After linearizing and eliminating q and p , the resultant second

order differential equation for p is

M 2_ 1 - 2 a2P'I

2 p ~ (-c)Ax a - ca 2x 0 (3.39)
(Y+1)M ax x4

This equation has two solutions of the form p'=Z exp(kx) where

2 1/2
1 1 2 4 V.c(M -1)

kAx = - (.-Uc) -+L (4-4c) 2 -- (3.40)
(Y+1)M
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For M<1, either the two values of k are real and negative, or they

are a complex conjugate pair of which the real part is negative. In

both cases the result is a combination of two "boundary layer" phenomena

at subsonic inlets and on the subsonic side of shocks. For M>1, both

roots are real, one is positive and the other is negative, so there is

"boundary layer" phenomenon at supersonic inlets and outlets, and on

the supersonic side of shocks.

The discrete modified mass equation is

[P2 - )(P 2 _P 1 ) +Pc(P1 P0)] q2 = const = m (3.41)

After linearizing and eliminating q and p , the resultant second

order difference equation for p is

(Vcrit 1 2 + (y+pc P1 - Pcp = 0 (3.42)

where pcrit is again as defined in equation (3.34).

This equation has two solutions of the form p'm zi where

- (11+4c) ((I+uc 2+4 c (Ucrit-1 1/2
= 2 (yL -y4) (3.43)

crit

For M<1 it can be shown that, provided Q<y c<u, the two roots z1
and z2 may both be real, or may form a complex conjugate pair, but in

either case they both have magnitude less than unity, and so the quali-

tative behavior is the same as for the analytic solution.

For M>1 it can be shown that both roots are real, and one root, z ,

has magnitude less than unity, while the other root, z2 ' depends on the

values of p and p.
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a) ucrit< P => 1 < 2

b) w < Pcrit< 2(y+u C) => z2 < -1

c) 2(y+yC < V crit => -1 < z2 < 0

Thus for the discrete behavior to be qualitatively the same as the

analytic behavior, which requires 1z 1 1<1 and Iz2 >1, the artificial

compressibility must satisfy 2(u+pc )>crit, and the sharpest shocks are

again obtained by p=pcrit*

In applications it has been found to be desirable to set Uyc =0 close

to shocks, so an algorithm is used which sets Uc =p in the smooth

supersonic region and then smoothly reduces pc to zero just before the

shock. Full details can be obtained from the program listing. To

illustrate the effect of the second order corrections the three test

cases presented in the last section were recalculated with the second

order corrections. Figures 3.6-3.8 show v, p c , the Mach number M and

the fractional change in the stagnation pressure. It can be seen that

the stagnation pressure errors in the smooth supersonic region have

been almost totally eliminated. The oscillations on the supersonic

side of the shock for the case pcon=0 .5 are more evident, and the

sharpest shock is still obtained by choosing pcon= 1 .0, although the

solution corresponding to pcon =1.5 is not much worse.
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4. NEWTON LINEARIZATION

The Newton method for solving the nonlinear scalar equation

R(U) = 0 (4.1)

is to linearize the function R about the current approximate solution Un

to obtain

R(U+) = R(Un+6Un) = R(U n) + () n6Un (4.2)

and then setting this equal to zero determines the correction 6U.

6Un= - R(Un n (4.3)

The same approach can be used to solve a system of N nonlinear

equations with N variables. The difference is that equation (4.2) is

dR n
now a vector equation and dR becomes an NxN matrix. Thus 6U is deter-

mined by solving the linearized equation

n + (aR) 6Un = 0611 =0 (4.4)

where the ith component of the vector R(Un) is the ith function Ri eval-

uated at the current approximate solution Un, and the (i,j) h element of

8R n &Ri
(-) is -- , the partial derivative (or sensitivity) of Ri with respect

U Uj

to a variation in U., the jth component of U, evaluated again at the

n
current approximate solution U

In the application here, the vector of functions R includes all of

the discrete Euler equations and the appropriate boundary conditions.

Section 4.1 describes the process of linearizing the discrete Euler

equations about the current approximate solution to obtain the appro-

Priate rows of the linearized equation system (4.4). Section 4.2 dis-

cusses the linearization of the duct boundary conditions. Section 4.3

presents the modifications neccesary due to artificial compressibility.

Section 4.4 presents the initialization procedure for the Newton method
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and finally Section 4.5 discusses some issues involved in the updating

of the solution using the corrections calculated by the Newton method.
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4.1 Euler equations

To minimize the computational cost of solving equation (4.4) it is

desirable to use the smallest possible number of independent variables,

and so the equations are formulated with only the density, p, and grid

node positions, x,y, as independent variables.

In this section it will first be shown how the other variables at a

given iteration level n can be derived from the known values of p,x and

y. It is then shown that there are still two steady-state equations per

computational cell which have not been exactly satisfied. It is the res-

iduals corresponding to these two equations which drive the corrections

6p, the change in the density, and 6n, the displacement of the node

normal to the local streamline. Next, the two equations are linearized

with respect to variations in both the independent variables, p,x,y, and

the dependent variables, p,f,q and various geometric variables. Lastly,

the variations in each of the dependent variables are expressed as

linear functions of the variations in the independent variables to

obtain the final form of the linearized equations.

n n n
At the beginning of iteration n, p ,x ,y are known, together with

the mass flux and stagnation enthalpy in each streamtube, which are

invariant throughout the iterative process. For each streamtube all the

geometric quantities are evaluated using equations (2.4-2.8). Each q is

then determined from the mass equation

m = p2 q2An2  (2.9)

which implies

q n m (4.5)
2 n A n

P2 n2

Next p is calculated from the energy equation
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n

h y 2 + 1 n2 (2.12)

2

which implies

n y-1 Pn 1n~2

p2 = p (ht- q2 ) (4.6)

The auxiliary pressure relation

IF+ i+ = p1 + p2 + 2Pc (2.18)

gives the sum of n- and n+, the pressures on the streamline faces.

The difference between them is obtained by taking a linear combination

of the x and y momentum equations (2.10,2.11). Using the auxiliary

pressure relation, (2.18), the momentum equations are

P q 2 Ans - p2q 2A 2s 2 + (p1-p2 )N + (I+-)S + P (B+-B-) = 0 (4.7)1 1 1 22 2x2 12y y cy y

p q 2 Ans - p2q 2 sy2 A 1  2)N - (n+-n-)S -P (B+-B-) = 0 (4.8)1 1n1 l 22 n y2 1_P xx cx x

Taking N times (4.7) + N times (4.8), and dividing by ISxNj gives
x y

the equation which is termed the normal momentum equation

p q 2 - P2 2g2 - n+ + n~ + Pg 3  0 (49)

where

S A n1 N-s An2N-s 2 (4.ab)
1= , + , 2 = _+41b

SxN I ISxNj

and

INx(B+.g- IAixA21
g3  + + + +A . (4.10c)

ISxNj SxN|

From (4.9), the definition of Pc equation (2.19), and the auxiliary

pressure relation, the values of n- and n+ are calculated, completing

the calculation of all the variables at iteration level n.
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There are two respects in which these variables do not satisfy the

steady state equations. The first is that only one linear combination

of the momentum equations, the normal momentum equation, has been satis-

fied. A second combination which gives the streamwise momentum equation

has not been satisfied. Also the value of n~ on the face of a cell in

the jth streamtube is not neccessarily equal to the value of n+ on the
same face of the cell in the j-1th streamtube, as illustrated in Figure

4.1. In the the final steady state solution both of these conditions

must be satisfied, and so it is these errors which are the forcing terms

which drive the changes in the density- and grid node positions.
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Next the linearized equations have to be determined, expressed in

terms of changes in the density and grid node positions. The first

equation is obtained by linearizing equations (4.7) and (4.8) and taking

S times the former plus S times the latter, divided by jSxiN. This
x y
will be referred to as the streamwise momentum equation since it is a

vector dot product of a streamwise vector and the linearized momentum

equation.

2
2 2 11 An+
qf1  1  + 2p q f  6q + (Pq f /A) 6A 1 + S-6s

ISxNI

2
2 2 22 n2 +

- q2f2 6 2 - 2p2 2 2f2 6q2 - (P2 q2f2/An2) 
6An 2 - + + S-s2

SxN(

+ 1l2 x6 + +B + - + f 6c + PC6B+

ISxNI ISxNI 2SxN3

2 2 (4.11)
1 11 2 2 2 1 P2 c 3

where

An S-s An2S-s2
f n1 f A + + (4.12a,b)

ISxNI |SxNI

and

f = = .-BB-xgf (4.12c)

The term underlined by dots is extremely small since PC =O(Ax2) and

so this term is neglected.

The second equation, which will be called the linearized normal

momentum equation, is N times the linearized x-momentum equation (4.7)

plus N times the linearized y-momentum equation (4.8) divided by ISxNI.
y
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2
2 2 1 1 n1

q1g 1 6p 1. + 2p 1q 6q1 + (Piq1g 1/An1) 6An1 + + > N-6s1
SxN|

2

2  2 2 2 2An2 + 2
S22 62 - 2p2292 62 (P2q2g2/An2) 6An2 + + N-6s2

lSxNx

-Sxd - |ESx611 + 6n+ - 6n- + g 6P + P Ix6
++ + 3 C C ++N|SxN| SxN Ix

= -( p - 2 2 + n+ -n- + P 93 (4.13)2 222 3

g1 , g2 and g3 were previously defined in equations (4.10a-c). 
The

term underlined by dots is again neglected since PC =O(Ax
2). Because of

of equation (4.9), which was used to calculate H- and n+, the right

hand side of equation (4.13) is zero.

Ultimately both of these linearized momentum equations need to be

expressed solely in terms of variations in density and grid node posi-

tion. To eliminate the 6n terms in equation (4.13) two relations are

used. The first is the linearized auxiliary pressure relation

61~ + 6R+ = 6p1 + 6p2 + 26Pc (4.14)

which means that either one of the 6n can be eliminated leaving only the

other one to be eliminated. The second relation is that in the con-

verged steady state solution the H+ of a cell in the j-1th streamtube

must be identical to the n~ of a cell in the jth streamtube as was

illustrated in Figure 4.1. The linearized statement of this is

rit + 6+_ = n- + 611 (4.15)
3-i 1 -1 j-1 j-1

which may be rewritten as

61+ - 61- = - (n+ - 11-) . (4.16)
j-1 j j-1 )

Using this relation to eliminate the 6H+ of the j-1th streamtube

cell and the 6f~ of the jth streamtube cell, one gets a combined normal
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momentum equation covering the two cells (see Figure 4.1) and containing

no 6U terms.

[qg 6p1 + 2p q g 6q + (p q 2g /A ) 6A 1

[ 2 g p 2 q q2 g A)6
2 2

- q2g2 t 2 - 2p2 q2 g2 t 2 2 (292/An2) tSAn

- - 2 Sx6N
SxN I

2

+ N-96s

1 SxN|

2
p q 2A2 2 n2

+ N-6s2
|SxN I

1+-1 Ix6I 
1 - ap2 - (2-g3 )6Pc

SxN Ij-l

q2g1 dp + 2p q g 6q + (p q g /A ) 6A 1

q 2 g6 2pq96 pq2 g A)6
2 2

- q2g2 t6p2 2 9~2 q2 2 (2I22/An 2) SAn2

2
p1 1 n1 + ^+ N-6s
jSxN|

2
+2 2An2 + ^

+ N-6s2
1 SXNI

- -* 1x60 - 1 6 + 6p 1+ 2  + (2+J3 c
SX I I SXN

--
2 (n+_ - ) (4.17)

Equations (4.11) and (4.17) are the linearized equations to be

solved, but there is still the matter of eliminating the SP c , 6p and 6q

terms. The 6p terms are eliminated using the enthalpy equation.

ht - y + q2

Thus, by differentiating

6p = ( p) n q + (-E) 6p
3q p=const 8P q=const

where

(aP) =.
P q=const P

(2.12)

(4.18a)

(4.18b)
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- Pq .l(4.18c)

8q p=const Y

The 6q terms are eliminated using the mass equation

m = pqAn (2.9)

which when linearized gives

Sq = (T) 6p + 6A (4.19a)
aP A=const + A p=const n

where

(- q (4.19b)
aP A=const P

8.-q = q (4.19c)
(A p=const An

Similarly the 6Pc term can be eliminated by differentiating its

defining equation, (2.20). The resulting expressions are rather

complicated and can be obtained from the program listing.

Also the geometric variations have to be expressed in terms of the

primitive grid node movements. Each node moves a distance 6n in a

direction n specified to be approximately normal to the streamline.

Thus one gets the variational relations

1 -1 1 - 1 1
6S = - -5n-n- -6n+n+ + -5nn~3 + -Sn n+ (4.20)

1 1 ^ ^1 ^ 3
6N = - 6nln-+ !6n+n+ - nn- + 6n+n+ - 6n-n- + !6n+n+ (4.21)

2 1 2 1 1 2 2 2 2 2 3 3 2 3 3

1 + 1 ^ 1 ̂
6s1 s 6s - s (s 6s1) s s 1x(6s 1xs1 ) (4.22)

1 1 1

from which, for example, one gets

Sx6SI = - NIsxn~I Sn- - .sxn~j 6n+ + Isxn-I 6n- + |IPxn+I 6n+ (4.23)
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6A (A, s )jasxs + I= xs x (6A - 6)
ni 1 1 11 11 1 1 s1

8A 3A 8A 8A
n + 1 n+) 6nn + n 6n (4.24a)

1 1 2 2

where

&A nl1 leAn1 ^ - 1 A_-s_
.- = sxnf(- + ) (4.24b)1 1 2s1

8An1 ^-1  1 _
+n =+ s1xn 1( 2s (4.24c)

1 1

n- =slxn-2 1 2s 1) (4.24d)
2 1

An ^ 1 A _s__
+ =sxn j2 2s (4.24e)

2 1
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4.2 Duct boundary conditions

The linearized form of the solid wall boundary condition is simply

6n. = 6n. = 0 (4.25)
i,1 i,J

since the grid nodes are fixed on the lower and upper sides of the duct.

The linearized form of the inlet stagnation density condition

P P 1-q2 /2 -1/(X-1)= P)(.3
Pt P1 ( 1 /2ht) t specified (2.13)

is

Pt it 6

P= q ( specified -Pt (4.26)
1 ( y-1) (h t-q1 /2)

The linear variation 6q is expressed in terms of variations in the

density and grid node positions using the linearized mass equation and

geometric definitions, as done in the last section.

The linearized form of the inlet condition

1, j+1 1,j = lJ 1,1) m /Mtotal (2.15)

is simply

6n . -6n .= 0 . (4.27)
1,j+1 1,j

since the inlet area y f-y1 f and the mass fluxes are all constants.

The linearized form of the outlet condition

(y I1 j+1-y (yI-1,j+1I- 1 ,j) = 0 (2.16)

is simply

(6n j+1 -6n ) - (6nI-1, j+1-6n 1 =' 0 . (4.28)
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4.3 Artificial compressibility

When the local flow is supersonic, or close to supersonic, arti-

ficial compressibility appears in the mass equation, as explained in

Chapter 3. This modifies the linearization in Section 4.1 in two ways.

The first difficulty arises in calculating qn using the modified mass

equation.

m = P2 2 An2 (3.16)

where

2 =2 - P2 2~r) + 'c2 (P 1 ~P 0 ) (3.37)

and ji and pc are as defined in chapter 3.

The problem with using equation (3.16) to calculate q2 is that p12'
and hence p2, are functions of q2. This problem is overcome by calcu-

lating a temporary value q using U n- the value of U2 at level n-1.

= m / n2 p2 n-i pn2n) + n-i (Pnpn)1 (4.29)

This value of q is then used to calculate p , which in turn is

used to calculate q .

n m / n n_ nn n) + n-1
2 n2 2 12 2'91) + 2 1-p0)I (4.30)

Note that uc is held fixed at its value derived at the end of iter-

ation level n-1.

The second change is in the linearized mass equation. Differen-

tiating.(3.16) and (3.37) gives
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6 2 2[ (1- 2)6p2 + (U 2+VC2 )6P 1~ P c2 ap0  (P2-p1 )6u2+ (P1P-0)
64c2 I

P2

2 6A (4.31)

An2 n2

Three approximations are now made. The first two are that 6p0 and

6yc2 are both zero. The third approximation is that 6y2 is expressed 
in

terms of variations in density, by assuming that velocity changes are

isentropic. This is necessary since p2 is actually a function of q2 and

q, not p2 and p . Thus 6U 2 is approximately given by

6U = T 2 (P + 6p . (4.32)
2 q2 \ 2/isen 2 aq p1/isen

With these three approximations, 6q2 is given by

6q 2 2) 6p + ( ) 6p + (2) 6A (4.33a)
2 ap 2 2 ap 1 1 aA 2 n2

where

= - 2  -2] (4.33b)

-2 [(p+uc2 2.-( 1 1 ] (4.33c)
ap 2 2 2 qT

and

(4.34)
n n2
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4.4 Initialization of Newton Solution

The Newton iterative procedure has to be supplied with an initial,

approximate solution. If this initial guess is very poor then it could

affect the robustness of the method. In particular it is important for

this problem to have a reasonably good initial position for the stream-

lines. This is achieved by using an elliptic grid generator which pro-

duces a grid, one set of whose grid lines correspond to streamlines of

incompressible flow. The method was first developed by Thompson [26].

A transformed set of coordinates (&,n) is defined by the equations

& +& = 0 (4.35a)

rx + n = 0 (4.35b)
xx yy

After changing coordinate systems these two equations become

" x - 2P x + y x = 0 (4.36a)

a y - 2P y &n + y y = 0 (4-36b)

where,

a = x2 + y2 P= x x ++ y 2 +y . (4.37a-c)

The line &=0 is chosen to correspond to the physical inlet boundary

and the line E=1 corresponds to the outlet boundary. The line n=0 cor-

responds to the lower duct wall, or in the case of a cascade the suction

surface of the blade together with the stagnation streamline whose posi-

tion is guessed to be a straight line of the correct angle coming from

the leading and trailing edges of the blade. Similarly the line n=1

corresponds to the upper duct wall, or the pressure surface in the case

of a cascade. The computational grid is defined to be uniformly spaced

in the & direction, and in fhe n direction the spacing is proportional

to the mass flux in each streamtube.

E. .' = i .(4.38a)
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- m
= _ k (4.38b)

k=1 total

The (x,y) coordinates of the grid boundaries are specified, and

then equations (4.36a,b) are solved by a standard SLOR relaxation proce-

dure to obtain the coordinates of the interior nodes. Because of the

choice of the Laplace equation, (4.35b), to define n, the n=const lines

are streamlines of the correspoding incompressible flow, and so the grid

produced is an excellent approximation to the grid corresponding to the

compressible flow solution.

The initialization of the densities is much less important, and all

the calculations presented in this thesis were obtained by initializing

all densities to be equal to the value corresponding to a Mach number of

0.5. This was an arbitrary choice, but it was found that alternative

initializations made a difference of no more than one or two in the

total number of Newton iterations.
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4.5 Updating of Newton Solution

For most Newton iterations the solution is updated by simply

adding the calculated changes in density and node position.

6P n+1 Pn + . (4.39a)
iJ ij ij

n+l n(43b
x. . x. + (n). .6n. (4.39b)
I,] ij x ij i,]

n+1 n ^
V ij = y. . + (n ). .6n. . (4.39c)

'iJ iJ y i,j i,j

For some iterations however equation (4.39a) would produce some

densities that would be negative and would cause the Newton procedure

to fail. To prevent this from happening an under-relaxation factor is

employed and equations (4.39a-c) are modified to become

n+1 n(40a6pij Pi . + r 6P . (4.40a)

n+1 n
x.. =x.. + r (n ). .6n. (4.40b)
1,] 1,] x 1,j i,j

n+1 n ^
y. y. . + r (ny )ij 6n ij (4.40c)

where r is chosen to be either 1 or the value which produces a maximum

density change of factor 2, if this value is less than 1. Chapter 9,

which lists iteration histories for all the calculated test cases, also

lists the value of r whenever it is not 1. It will be seen that this

clamp is usually only needed in the first iteration and during the

formation and movement of a strong shock. Other methods of clamping,

such as making r a local quantity instead of a global quantity, are also

possible but have not been investigated since the current clamping

procedure works very well.

In cases with blunt leading edges, the clamp r is also used to

prevent the position of the stagnation point node changing by more than

half the node spacing. In addition to this, whenever the stagnation
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node moves half the node spacing, or whenever the total movement over a

number of iterations is this large, an adjustment algorithm is employed

which adjusts the position of the nodes by moving them along their

streamline in order to maintain a smooth distribution of nodes along

each streamline. The iteration histories in Chapter 9 also indicate

when this streamwise adjustment algorithm is used. Typically it is only

used once or twice during the earlier Newton iterations when the changes

are largest.
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Figure 5.2: Indexing system for a particular pair of cells.
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5. DIRECT METHOD

The simplest approach to solving the linear system of Newton

equations is to solve the system directly. This chapter shows that the

equations can be assembled into a block tridiagonal form in which the

variables correponding to each block are all of the density and node

changes at one particular streamwise station. Due to artificial compre-

ssibility there is an additional fourth diagonal of blocks in the super-

sonic region, and so the solution procedure is slightly modified from a

conventional block tri-diagonal algorithm (1,81.

5.1 Assembling the linearized equations

As indicated schematically in Figure 5.1 the unknowns are 6 n. . for

16iI , 19j9J, and 6p. . for ligI-1 , 14j9J-1 . Figure 5.2 shows the

indexing system for a particular pair of conservation cells. Thus for

each i, that is for each streamwise station, there are 2J-1 unknowns.

The modified block tridiagonal form into which the linearized equations

are assembled is

SA D R
: 1  A: 1: R 1

: 2: 2: 2 : 2  2

. . . . . D R
3: 3 3 33 3

.. . . . . . .D R
SI-i I-i: I-i I-i: I-i I-i

:Z B ~A D R:... ....... . ... . ... D R:1I:1I:1I: II

(5.1)

Each of the matrices Z,B,A,C is square and has dimension 2J-1, the

number of unknowns at each streamwise station. Likewise each vector D
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and R has length 2J-1. The matrix D. contains all of the unknown linear

perturbations at the ith streamwise station, arranged in the following

order:

D. =
1

6n.

6n.

6 n i'

6Pi,2

6 Pi,J-2

6 piiJ-1

(5.2)

The matrices Z.,B.,A.,C., for all values of i except 1 and I, have

the same banded structure, shown in Figure 5.3 with a reminder above

each column of the variable in D which corresponds to it. A cross, "x,"

in the matrix means that there is a non-zero entry. A circle, "o,"

means the entry is zero if there is no artificial compressibility. A

blank means the entry is always zero. Rows 1 and J are the solid wall

boundary conditions, (4.25). Rows 2 to J-1 are the linearized normal

momentum equation (4.17) for j going from 2 to J-1. Finally rows J+1 to

2J-1 are the linearized streamwise momentum equation, (4.11) for j going

from 1 to J-1. Note that the Z matrix is entirely zero if there is no

artificial compressibility.
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Figure 5.3: Structure of matrices Z.,B.,A. and C..
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Figure 5.4 shows A and C the matrices in the first block row.

Rows 1 and J are the solid wall boundary condition, rows 2 to J-1 are

the inlet conditions, (4.27), and rows J+1 to 2J-1 are the streamwise

momentum equations for the first column of conservation cells.

Figure 5.5 shows Z ,B and A the matrices in the last block row.

Remember that there are no 6p variables at i=I so the last J-1 variables

in the subvector D are dummy variables. As a consequence rows J+1 to

2J-1 simply correspond to setting these dummy variables equal to zero.

Rows 1 and J are again the solid wall conditions, and rows 2 to J-1 are

the outlet conditions, (4.28).
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Figure 5.4: Structure of matrices A and C
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Figure 5.5: Structure of matrices B and A .
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5.2 Block tridiagonal solution

The solution of this set of modified block tridiagonal equations

is straightforward using a modification of well-established methods

[1,8]. At the block level the algorithm is

Forward sweep

i = 1 to I B =B. -ZC I
S 1 i i-2

A A. -BC
1 1 ii-

C. = A. 1C.
1 1 1

I I f

,R. = R. - Z.R
i 1 i i-2
it I fi t

, R. = R. - B.RRi = i R-

, fi.t' A ' 11 .i
i i i

eliminate Z.1

eliminate B.
1

normalize row

Backward sweep

= I to 1 D. = R. - C'D.
1 1 i i+l

The above algorithm assumes that all matrices which have not

otherwise been defined, such as C_,CQ,Z,B,Z 2 I, are zero.

Two things are done to improve the computational efficiency. The

inverses of A are never explicitly calculated. Instead A' 1C and A'1 R

are calculated directly by Gaussian elimination, taking full advantage

of the limited remaining sparseness in A' (see the program listing for

details). Secondly, in calculating all matrix products such as Z CI-

full advantage is taken of any sparseness in either matrix.
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6. MODIFIED DIRECT METHOD FOR CHOKED FLOW

6.1 Boundary conditions

The boundary conditions presented in Section 2.2 need to be modi-

fied for choked transonic flow. For a single streamtube a well-posed

choice of boundary conditions is to specify the mass flow and stag-

nation enthalpy, which remain constant along the streamtube, and the

static pressure at the outlet. For the two-dimensional problem with

coupled streamtubes, the choice of boundary conditions is to specify ,as

usual, the mass flux and stagnation enthalpy in each streamtube, and in

addition specify the difference in inlet stagnation densities between

neighboring streamtubes, and the mass-averaged outlet stagnation den-

sity. This choice was based on two observations.

Firstly, the Crocco theorem [19,25] states that for steady flow

TVs + ZxM = Vht (6.1)

which means that specifying the normal gradient of stagnation density

and enthalpy at the inlet, which in turn gives the normal gradient of

entropy, is equivalent to specifying the inlet vorticity, w. Since vor-

ticity is convected downstream by the flow, it clearly needs to be spec-

ified at the inlet, so the choice of boundary conditions satisfies this

requirement. In all of the test cases the inlet flow is assumed to be

irrotational and have uniform stagnation enthalpy, so the normal gradi-

ent of stagnation density is set equal to zero.

Secondly, the small perturbation potential equation for linearized

irrotational perturbations to uniform flow is

2 a2$ 2 2
- + = , j = 1-M . (6.2)

To investigate the effect of outlet boundary conditions for a duct

problem, consider the solution of (6.2) on the domain O<y<r, x<O, with

the boundary conditions
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-(x,O) = -(x,) = 0 , 0(0,y) = f(y) , $ bounded as x-*-o (6.3)
ay ay

The solution can be written as a sum of Fourier modes,

00

$(x,y) = Fn cos(ny)exp[n~xl (6.4)

n=0

where

Ir

- f(y) dy n=0

0
F = (6.5)
n

- 3 f(y)cos(ny) dy , n>O

0

The important point is that in the limit x+-co, $-+F0, which is the

average value of $ at x=0. The effects of all the other Fourier modes,

corresponding to n>O, decay exponentially away from the downstream boun-

dary. Thus far upstream of the outlet boundary the flow only "sees" the

average of the values specified at the outlet boundary. This suggests

specifying the average stagnation density at the outflow boundary, since

the average stagnation density is no longer specified at the inlet

boundary.

A very similar analysis is valid for turbomachinery cascades, and

demonstrates that for such flow problems the far-field boundaries need

be as little as one chord length upstream and downstream from the cas-

cade, because of the exponential decay in the far-field. This contrasts

with the 1/r decay in the farfield of isolated airfoils, which requires

that the far-field boundary be placed much further away in order to

obtain accurate solutions.

Having justified the choice of boundary conditions, the numerical

implementation of these conditions will now be described. The modifica-

tion to the inlet boundary condition is achieved very simply. The old
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boundary condition is specified inlet stagnation density, and the linea-

rized form of this is equation (4.26). The new condition is a specified

difference, usually zero, in the stagnation density of neighboring

streamtubes. The linearized form of this is obtained by simply subtrac-

ting (4.26) for streamtube j from (4.26) for streamtube j+1.

Pt + 2qP 1 6 + 2 6q[ 1 (Y-1)(ht q2/2) 1 j+1 [P1  1 (Y-1)(h q2 /2) j-

t 
(APspecified -t j+ t) j (6.6)

The outlet condition is specified mass-averaged stagnation density

which, when linearized, is

J-1 6.P q 6q 2-1 m.Pt.
+Mq[+q Pt t (6.7)

j=1 'tot I (Y-1)(ht- /2) I-1,j spec. j tot

Note that the overall number of boundary condition equations has

not altered, since the J equations specifying the inlet stagnation

densities have been replaced by J-1 equations like (6.6) specifying the

difference in inlet stagnation density between neighboring pairs of

streamtubes, and one equation (6.7) at the outlet. This "shift" of one

equation from the inlet boundary conditions to the outlet boundary

conditions requires that the block tridiagonal solution procedure be

altered as explained in the next section.
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6.2 Solution procedure

The modified block tridiagonal form into which the linearized equations

are assembled -is

.A . . . D R

. A C E D R
: 2: 2: 2: 2: 2 2

. Z B A . D R
: 3 : 3 : 3 : 3 : 3 : 3 3

~ZB A D R.. ........... ........... DSI-li I-11 I-1i I-i I-i I-1

:Z . B . A D R
: 1I:1I:1I: II

(6.8)

The vectors D are exactly the same as defined in Section 5.1, and

the matrices Z,B,A,C are only slightly different from the matrices

defined in Section 5.1. Z1 1,B and A, are exactly the same, and for i

from 2 to I-1 the only difference is that the J+j th row of Z.,B.,A.
shift 1 i

and C. ,which corresponds to the streamwise momentum equation for the

shiftth streamtube, is shifted up by one block to become the J+j shiftth

row of B. ,A. ,C. and E. , as indicated in Figure 6.1. j is
1-1 i-i 1-1 i-i shift

chosen to correspond to the streamtube with the largest mass flow. The

J+jshift th row of Z I-,B I_,A _1and C I- now becomes the outlet static

pressure equation (6.7). This leaves only the first block row. Rows

1 to J are unchanged, and row J+j is the row which has been shifted
shift

up from the i=2 blocks. This leaves rows J+1 to J+j shift-1 which are

equation (6.6) for j from 1 to j shift-1, and rows J+jshift+1 to 2J-1

which are equation (6.6) for j from jshift to J.
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s-momentum e
for j=jshift
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__________I t___________ ___________
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I-1 block row
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quat ion

mass-averaged outlet
stagnation density

Figure 6.1: Shift of rows in choked-flow equations.
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The block solution method outlined in Section 5.2 needs to be

s-lightly modified because of the new E matrices.

Forward sweep

i = 1 to I B =B. -ZC.
1 1 i i-2

A. =A. -B.C.

C. =A'1C -i i i
C. A. C.

A. = A. - Z.E
1 i i1-2

C. = C. - B.E

E:= A E.
1 1 1

I I II

R. = R. - ZR.
. 1 i-2

R. = R. - B.R.

i iti -
,R. =A. R.

1 1 1

Backward sweep

i = I to 1 D. = R i- C'. D
1 1 i i+1

- E'D
i i+2

Since E has only two non-zero entries, E' has only two full columns

and so, with some careful programming, this algorithm involves very

little additional computational work compared to the procedure for un-

choked transonic flows outlined in the last chapter. Full details can

be obtained from the program listing.

85



7.ITERATIVE METHOD FOR SUBSONIC FLOW

Chapters 5 and 6 presented direct methods for solving the linear

system of Newton equations. The alternative approach is an iterative

method in which the calculated solution converges towards the exact

solution, and becomes equal to it, to within machine accuracy, after an

unknown number of iterations. This is the approach which has been fol-

lowed by Jespersen (18], Childs and Pulliam [7] and Mulder and Van Leer

(20].

The reason that iterative methods are employed, despite the great

increase in programming complexity, is that they offer large potential

savings in computational costs for large problems. The direct methods

in Chapters 5 and 6 invert 0(I) matrices, each of which is 0(J) in size.

This requires a total of O(J3I) operations to solve each set of Newton

equations. Iterative methods by contrast require only O(JI) per itera-

tion, and provided the number of iterations needed to solve the Newton

equations to machine accuracy is independent of I and J then the total

computational cost is O(JI). Thus for sufficiently large J, iterative

methods will be more efficient than the direct method.

There are three points one can criticize in the above line of

reasoning which justifies the use of iterative methods. The first is

the assumption that an iterative method can be constructed. For each

new application a considerable amount of effort may need to be spent to

devise an efficient iterative method, whereas the direct solution method

can be applied to any system of equations. The second is the assumption

that the number of iterations to solve the Newton equations is indepen-

dent of I and J. For elliptic problems, such as the classical Poisson

equation, iterative methods such as Gauss-Seidel require 0(max(1 2 ,j2 ))

iterations, while optimized SOR (Successive OverRelaxation) requires

O(max(I,J)) iterations. To obtain an iterative method which is truly

independent of I and J one must use a multigrid method. Multigrid was

pioneered by Brandt [5] and has been successfully applied to a range of
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problems, including the transonic full potential equation. The diffi-

culty with multigrid methods is that they can become very complex,

involving a considerable amount of development effort, especially if the

computational domain is not very simple. The final point is the value

of J at which the iterative methods become more efficient than the

direct method. If the direct method requires aJ3I operations, and the

iterative method requires bJI operations, then the two are equal when

J=V(b/a). If b>>a then this value may be so large that for grids of

practical interest, giving excellent accuracy, the direct method is more

efficient than the iterative method.

In order to examine these issues this chapter presents an iterative

method for solving the Newton equations for subsonic flow. A precondi-

tioning of the Newton equations is employed to effectively separate the

convective entropy equation from the elliptic pressure equation, so that

suitable iterative methods can be applied to each half of the problem.

This works well for subsonic flows but does not work for transonic flows

because of the strong coupling between the entropy and pressure equa-

tions. However the subsonic test cases are sufficient to demonstrate

that the iterative procedure is not any faster than the direct procedure

for practical grids with good resolution. Thus no additional work has

been performed on extending the method to handle transonic flow.
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7.1 Preconditioning

Preconditioning of a system of linear equations, Ax=b, in general

means converting the equations into a different, but equivalent, system

of equations, A'x'=b', where x =Cx, b =Bb and A =BAC 1 . The purpose of

preconditioning for iterative solution procedures is to obtain a matrix

A' which has certain desirable features, such as having very small off-

diagonal elements. Such features accelerate the rate of convergence of

the approximate solution towards the true solution.

The difficulty with preconditioning is that there is no general

theory to guide the choice of B and C for a particular problem. This is

especially true for the current problem being considered, since the

linearized steady-state Euler equations implicitly contain two types of

behavior. Firstly, there is the convection downstream of entropy, or

vorticity (the two are equivalent for isoenergetic flow), which is a

hyperbolic equation. Secondly, there is the two-dimensional pressure

equation, which is elliptic for subsonic flow and hyperbolic for super-

sonic flow. It would be desirable to precondition the system so that

these two different parts are clearly separated, and so iterative

methods, suitable to each half, could be applied separately.
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Figure 7.1: Regular sheared grid for perturbation analysis.

89

x



To find the correct form of preconditioning, it is helpful to

perform a small perturbation analysis of linearized perturbations about

a two-dimensional uniform flow with a regular sheared grid, as shown in

Figure 7.1. In this case the streamwise momentum equation (4.11)

reduces to

q2 6p + 2pq6q + 2 6A + 6p - q2 6 + 2pq6q + 6A + 21 A 122 A Y 2 2 71

The enthalpy equation (2.12) gives

6p.= pq 6q. + p 6p. , i=1,2 (7.2)

and the mass equation for subsonic flow (2.9) gives

6q - 6P - - 6A. , i=1,2 (7.3)
i p i A i

When these are substituted into (7.1), the resultant equation after

some simplification is

M 2 2
6 1 - 1 M 2A 6P2 - (7.4)

The significance of this equation is that the isentropic variation

of density due to area changes is,

2
-) M p (7.5)8A s=const 1-M2 A

so that by writing

6P = ( )6A + (T)a 76
- A s=const6  s A=const (7.6)

equation (7.4) becomes simply

6s, =6s 2 (7.7)

which is a statement that entropy is convected along the streamtube.

This analysis suggests the following preconditioning. Define the

variable 6T as the variation in density due to a change in entropy.
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P = 2L A6A + 6-5
1 1M2 A 1 1 1
1-M 1

2 &A 8A 3A 8A
2 p 11- 1 16

= - 6n+ + - n 6n+ + - 6n- + 6(7.8)
2 A 8n+ 1 an 1 an2 2 an 28

1-M 1 1 1 2 2

When this equation is substituted into all of the Newton equations,

a system of equations for 6n and 6T is obtained, which has the property

that for uniform flows the streamwise momentum equations contains only

6T terms, and more generally for non-uniform flows the coefficients of

the 6n terms are extremely small. Note that once 6n and 6T have been

calculated 6p is obtained from equation (7.8).
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7.2 Solution procedure

With the preconditioning the Newton equations may be expressed

symbolically in two halves.

A 6T + A 6n = d (7.9a)
pp pn p

A 6T + A 6n = d (7.9b)
np nnl n

The first half (7.9a) corresponds to the streamwise momentum

equation, with the preconditioning ensuring that Apn is very small.

The second half, (7.9b), corresponds to the normal momentum equation,

with both A and A being in general of the same magnitude. For the
np nn

purposes of choosing an iterative solution technique, the interesting

feature is that A is a discrete convective operator with no entries

above the main diagonal, which means that if 6n were known then 6T could

be calculated immediately. Ann however is a discrete elliptic operator

which requires some form of classic elliptic relaxation procedure.

The iterative algorithm which is therefore employed has two parts:

a) First assume 6n is fixed, and solve equation (7.9a) to obtain a new

value for 6T,

b) Then assume 6T is fixed and perform several cycles of an SLOR

(Successive Line Over-Relaxation) procedure to obtain an approximate

solution for 6n.

This algorithm is then repeated iteratively until 67 and 6n con-

verge to the true solution. More complete details can be obtained from

the program listing. The convergence rate is dominated by the relaxa-

tion procedure in part b), which can be slow for large problems. One

way of improving it would be to use multigrid acceleration, which was

first proposed by Brandt [51, and has been used by Jespersen and Childs

(7], Pulliam [23] and Mulder and Leer (20]. However this would still

not increase the speed sufficiently to change the conclusion drawn in

the next chapter that iterative methods are not faster than direct
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methods, for two-dimensional problems with sufficient grid resolution to

obtain good solutions. For this reason also, little effort was made to

extend this algorithm to handle transonic flows, in which the entropy

and pressure equations do not uncouple, due to the presence of shocks

and artificial compressibility.
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8. GLOBAL VARIABLES AND EQUATIONS

8.1 Concept and Solution Procedure

For the duct problem considered so far each variable and equation

is local in the sense that each variable is associated with a particular

node and each equation involves only variables in a localized region of

the flow. In other flow problems there are sometimes a few global

variables which appear in many equations and a few global equations

which involve variables at many nodes. In the case of the duct problem

an example would be allowing the total mass flux to vary in order to

achieve a specified average inlet Mach number. The total mass flux

would be a global variable because through the linearized mass equation

the change in the mass would enter into every one of the momentum equa-

tions. The equation specifying the inlet Mach number would be a global

equation because it involves the inlet variables of all of the stream-

tubes. With this additional variable and equation the linearized

equation set (5.1) becomes,

.. . .x D R1 : 1 :1
. . . x D R2 2 2 -2 2

. x D R3. 3i 3 3 3 3

x (8.1)

x

x

.Z . B . A x D RI I I

x x x x x x x x -m--R
totalL m

In this equation the total mass variable and the inlet Mach number

equation are really just an additional Newton variable and equation. It

is just their span, in terms of how many equations and variables they

involve, which makes them different from the other variables and equa-
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tions. This diffetence becomes important only when solving the linear

system of equations (8.1), since the algorithm detailed in Section 5.2

now needs modification. The simplest way to solve (8.1) is to rearrange

the equations into the following form.

.. .: .. .: d.1 - 2A C: D R R
1 1:; 1 1 1

:~ D 2:B :A :C :[D R R
2 2 2 2 2 2

z B A C D R R23 3* 3 3 3 3 3

. + 6m (8.2)- - -.total

SZ i B i A
: I : I : I :

D1 R1
2R1

and

(x x x x x x x x)

D1

D2

D

6Mtotal I
(8.3)= R

m

Equation (8.2) is solved to obtain

D 1~ - 2
11

2
D D2
12
3 3

S+ 6Mtotal

1
DI

2

an equation of the form

(8.4)

This is accomplished by essentially the same algorithm explained
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in Section 5.2.

Forward sweep

i = 1 to I

B. = B. - Z.C.
1 1 i i-2

, , -1
C= (A.) C.

1 1 1e

Backward sweep

i = I to 1

1' 1 1'''
R. = R. - Z.R. ,
i i i i-2

1'' 1' ' '
R. = R. - B.R.

1 1 1 1-1

, R. = (A.) R. ,1 i i 1

1 1''' 1
D. = R. - C.D.

1 1 1 1+1

2' 2 2'''
R. = R. - Z.R.
i i i i-2

211 2 1 1
2''~ 2' 2'''Ri R i R -1

2'' 1 -1 2''1
R. = (A.) R.1 1 1

2 2''' f 2
D. = R. - C.D.

1 1 i +1

Once equation (8.4) is obtained, it is substituted into equation

(8.3) to eliminate the D vectors and obtain a simple scalar equation of

the form

a 6mtotal = b (8.5)

from which 6m is calculated. With 6m now known equation (8.4)
total total

gives the final value of the D vectors and the density and node

positions are updated.

The above example had only one global variable and equation. In

general there may be more than one global variable, with the corres-

ponding number of global equations. If there are M global variables

then an equation of similar form to (8.2) will be solved by the same

method to obtain an equation like (8.4).

0-
D
1

02

D7
1

1

D12

D

+

- 2-
1
2

D 2

+ 6 2

- 3-
1
3

D 3
2

3D1

+ .... 6

D M+1
1

DM+
2

M+1
DI

(8.6)
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When this is substituted into the M linearized global equations a

system of M equations is obtained from which the M unknowns, 6 162.. 6M
are calculated. Then equation (8.6) above gives the final linearized

corrections with which to update the density and grid node positions.
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8.2 Cascade Boundary Conditions

In this thesis only duct geometries have been considered until this

moment. The solution of flow over turbomachinery cascades or isolated

airfoils requires several changes to the boundary conditions presented

in Section 2.2. Full details are presented in the Ph.D. thesis of M.

Drela (11] but for completeness the boundary conditions for the cascade

problem are also presented here. They illustrate the use of global un-

knowns and equations, and the role of the Kutta condition in determining

the circulation around each blade.

The first change to the boundary conditions is the periodicity

conditions which are imposed across the stagnation streamline, upstream

and downstream of the blade. The two conditions are

X. = x. , y. = y. + Pitch (8.8a,b)

f+, = Il (8.9)
i,J i,1

The first condition states that the J h streamline is identical to

the first streamline except that it is displaced by the pitch (the blade

-to-blade distance) in the y-direction. The second condition is that

the pressures match across the stagnation streamline, which is identical

to the matching conditions across all of the other streamlines. Thus

away from the blades the stagnation streamlines are treated exactly the

same as any other streamline. When linearized equations (8.8a,b) reduce

to a statement that the 6n for the two streamlines are equal, and the

linearization of (8.9) produces an equation analogous to (4.16) which is

then incorporated into an n-momentum equation spanning across the stag-

nation streamline.

These conditions are applied to all of the grid nodes on the stag-

nation streamline which do not lie on the blades. They are also applied

to the leading edge stagnation point for blades with blunt leading edges

with the modification that n, the direction in which the grid node is

98



constrained to move, is directed along the surface of the blade, instead

of normal to the streamline as it is usually defined.

The inlet and outlet boundary conditions are identical to those in

Sections 2.2 and 4.2 with the exception that 6n and 6n 1,, the move-

ment of the nodes at the ends of the stagnation streamline, are no

longer set equal to zero, but are instead set equal to two global

variables 6ninlet and 6noutlet. Corresponding to these two varaiables

there need to be two global equations. The first is usually chosen to

be a specified inlet flow angle (defined in a mass-averaged sense) but

can alternatively be chosen to be a specified lift on each blade ele-

ment, or any other suitable condition. The second is chosen to be the

Kutta condition which states that the pressures on the two sides of the

trailing edge should be equal. -This condition is based on experimental

evidence that this is the condition that determines the circulation

around airfoils for attached flows. Normally this condition is not

applied in numerical Euler calculations performed using time-marching

methods. It is believed that the numerical viscosity which is used in

such methods mimics, in some fashion, the physical viscous mechanisms

which produce the Kutta condition. In the present method there is no

such mechanism and so the Kutta condition must be explicitly enforced.

In this regard the present method is identical to Potential methods and

to the method of Wu [311 for solving the Euler equations, in which there

is no artificial viscosity and the circulation is determined by applying

the Kutta condition.

In the present method the Kutta condition is applied by requiring

lit = 1 (8.10)
t.e. t.e.'

When linearized, this is incorporated into an n-momentum equation,

as usual, and it is this equation which is used as the global equation.

One advantageous consequence of the solution procedure involving
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global variables and global equations is that one obtains the linear

sensitivity of the flow field to variations in the global parameters.

2 3
For example, in the above case the solution vectors D. and D. obtained

1 1

during the numerical procedure represent the change in the flow field

due to unit changes in 6n and 6n . Through the global equa-
inlet outlet

tions, 6ninlet and 6noutlet can in turn be related to the change in the

inlet flow angle ainlet* Hence one can find the linear variation of the

entire flow field due to variations in ainlet. In particular one can

3C
obtain - l, the variation in the lift coefficient with respect to the

inlet flow angle, or other important quantities of engineering interest.

The boundary conditions for the flow over an isolated airfoil are

handled in a very similar manner. The far-field in represented as the

combination of a flow at an angle of attack together with the far-field

of a compressible vortex. The values of the angle of attack and the

vortex strength are the two global variables, and the two global equa-

tions are the Kutta condition together with either specifed angle of

attack (which results in a trivial identity equation) or specified lift

(which is a useful option when comparing to experimental results in

which it is better to match the lift than the angle of attack due to

uncertainties associated with wind tunnel wall corrections). The full

details are available in [11].
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9. RESULTS

The primary aim of the test cases is to prove that the algorithm

which has been developed works. This requires showing both that the

Newton iterative procedure converges to the solution of the discretized

equations, and that this discrete solution is an accurate approximation

to the solution of the analytic equations. The first part is achieved

by presenting iteration histories, which usually consist of the maximum

and r.m.s. (root mean square) values of the changes 6p and 6n at each

Newton iteration. The second part is more difficult since a simple

closed form solution to the analytic equations can not usually be ob-

tained. In this chapter four different approaches are used. In one case

a closed form solution is known for an incompressible cascade flow con-

structed by a conformal transformation, and a comparison with the numer-

ical solution can be made by using a inlet Mach number sufficiently low

to avoid compressibility effects. In a second case a comparison is made

with quasi-one-dimensional analytic theory for a choked Laval nozzle.

In a third case comparison is made with experimental results for a

subsonic turbine cascade. In two other cases the numerical solution is

compared to numerical solutions obtained by completely different numer-

ical method. Finally, in some other subsonic cases, the stagnation

density changes are used as an indication of numerical errors, since the

analytic solution for subsonic, inviscid flow has uniform stagnation

density, assuming it is uniform at the inlet. This test is particularly

useful for determining the order of convergence, which is the rate at

which the numerical truncation errors, due to the finite grid size

Ax,Ay, go to zero as Ax,Ay are reduced to zero. Another accuracy issue

is the stagnation density errors produced by the artificial compressi-

bility in the smooth supersonic region of transonic flows, and the

effectiveness of the second order corrections in reducing these errors.

A second purpose of these tests is to demonstrate the solution of

the Newton equations using each of the three solution rtethods, the
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direct method, the modified direct method for choked flows, and the

iterative method for subsonic flows, and compare their relative

efficiencies.

A third objective is to demonstrate the flexibility offered by the

Newton approach through the use of global variables and global const-

raints. For example, instead of specifying the angle of attack for an

airfoil problem, as one does for normal time-marching Euler methods, one

can allow the angle of attack to be a global variable and prescribe the

lift as a global constraint. Also it is possible to very efficiently

calculate a number of solutions corresponding to different values of a

particular parameter. For example, one might wish to calculate the C 1 -a

curve, relating the lift coefficient to the angle of attack, for an air-

foil for some given freestream Mach number, or alternatively, one might

wish to calculate the Cd-M curve relating the inviscid drag coefficient

(due to shocks) to the freestream Mach number for a given value of C .

The C -a curve is important in aircraft stability analysis, while the

Cd-M curve is important for determining the total inviscid drag for an

aircraft as a function of the cruise Mach number.

Table 9.1 presents a list of the test cases, with a summary of the

test geometry, flow conditions, basis for determining accuaracy, and

principal purposes of the test.
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Table 9.1: Summary of test cases

Geometry

duct with
sin 2(7x)
bump

duct with
elliptic
bump

Gostelow
cascade

T7 turbine

Garabedian
cascade

NACA 0012

2-D Laval
nozzle

Flow
Conditions

subsonic

subsonic

subsonic

subsonic

transonic

transonic

choked
transonic

Accuracy
Criterion

stagnation density
errors

stagnation density
errors

analytic solution

experimental results

numerical hodograph
solution

numerical test data

Quasi-1-D Laval
nozzle theory

Point of
Interest

order of
convergence

order of
convergence

accuracy,
iterative solver

grid with high shear

accuracy, artificial
compressibility

strong normal shocks

modified direct
solver for choked
flow
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9.1 Duct with sin 2(nx) bump

The test geometry for this case is,

Inlet x=-1.0

Outlet x= 2.0

0.5 x<O ,x>1
Upper wall = 10.5-0.1sin2(fx) O<x<1

0. x<O , x>1
Lower wall y=Q i (o= 0.sin2(x) O<x<l

Figure 9.la shows the geometry with a 61x11 grid, corresponding to

a converged solution. The flow conditions are,

ht~l(l ' 4tinlet= 1. , mtot=0.1 , y=1.4

which gives an inlet Mach number of approximately 0.20, and a maximum

Mach number of approximately 0.40. Figures 9.1b and 9.1c show contours

of Mach number and stagnation density changes, respectively.

The purpose of this case is to investigate the order of accuracy of

the discretization of the Euler equations for a subsonic flow with no

stagnation points. The accuracy can be gauged from the stagnation

density changes since they are zero for the analytic solution because

the flow is inviscid and subsonic, and hence isentropic and isenthalpic.

There are several points to note about the stagnation density errors.

The overall level of error is vey small, with the maximum being approx-

imately 2.5e-4, and mostly the errors are positive, representing an

increase in stagnation density. Por this symmetric geometry the errors

are also symmetric, which is to be expected since, with the exception

of the inlet/outlet boundary conditions, the discrete equations are

symmetric and do not know the direction of the flow for subsonic flow.

For transonic flow this is no longer the case because the direction of

the flow is linked to the direction of the density, upwinding due to the
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artificial compressibility. Finally, the maximum errors are in the

region of the strongest flow curvature, which is a typical feature of

this discretization applied to subsonic flows, and in general means

that the maximum stagnation errors are generated in the neighborhood of

leading edge stagnation points where the flow is strongly curved.

Table 9.2 lists the 'average' stagnation density errors for grids

of different sizes. The 'average' error is defined by a weighted root-

mean-square average.

E = [.[(P -p )2 / M.1/2 (9.1)
. .J i,j tile tinlet ..

i,j i,j 1/

The mass flux weighting ensures that narrow streamtubes with small

mass fluxes do not contribute as much to the overall average as thicker

streamtubes with larger mass fluxes.

Table 9.2: Stagnation density errors for sin 2(nx) bump

J
E

11 21 31

31 1.10e-4 1.11e-4 1.11e-4

I 61 : 3.11e-5 3.15e-5 3.15e-5

121 : 8.09e-6 8.15e-6 8.13e-6

Table 9.2 shows that the error E is approximately independent of J,

and proportional to I- 2, so the discretization of the Euler equations is

second order accurate for subsonic flows with no stagnation points.

Also of interest in this example is the rate at which the Newton

iteration converges to the steady-state discrete solution. Table 9.3
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presents the root-mean-square changes in the density and node positions

at each iteration of the cases using the 31x11 and 121x31 grids. It can

be seen that after three iterations the solution has already converged

to machine accuracy, thus verifying the extremely fast quadratic conver-

gence feature of the Newton iterative procedure. Also it is clear that

the number of iterations is approximately independent of the size of the

grid, which is to be expected since for a linear problem the solution

would be obtained in one iteration independent of the grid size.

These calculations were performed on a Perkin-Elmer 3242 computer.

The CPU time per iteration was approximately 3 secs. for the 31x11 grid

and 2.2 mins. for the 121x31 grid.

Table 9.3: Newton iteration histories

Iteration : 31x11 121x31
number : Sp/p Sn 6p/p Sn

1 : 1.0le-1 2.06e-4 1.0le-1 4.36e-4

2 : 2.47e-4 2.83e-5 2.54e-4 6.02e-5

3 : 4.99e-7 4.49e-6 5.02e-7 2.02e-6

4 : 4.35e-7 2.83e-6 4.39e-7 2.61e-6

5 : 4.81e-7 2.19e-6 4.24e-7 2.75e-6
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9.lc: Stagnation density contours with increments
of 0.00004.

0.22-

0.20-I

Figure 9.lb: Mach number contours with increments of 0.02.

Figure 9.la: Duct and grid geometry for test
duct with sin 2 (7x)

107

Figure

bump.
case 1:

1.00004



9.2 Duct with elliptic bump

The test geometry for this case is,

Inlet

Outlet

x=-1.0

x= 2.0

0.5
Upper wall y= 0.5-0.1[1-(x-0.5)2 1/2

0.
Lower wall y= 10.1[1-(x-0.5) 2 ]1/2

x<0 , x>1

0<x<1

x<O , x>1

O<x<1

Figure 9.2a shows the geometry with a 61x11 grid, corresponding to

a converged solution. The flow conditions are,

ht ' Ptinlet=1. ,V m tot=O.1 , y=1.4

which gives an inlet Mach number of approximately 0.20, and a maximum

Mach number of approximately 0.70. Figures 9.2b and 9.2c show contours

of Mach number and stagnation density changes, respectively.

The purpose of this case is to examine the problems associated

with a stagnation point. If the mass flux in each streamtube is the

same, as in the example just presented, the streamtube at the stagnation

point becomes very large, as can be seen more clearly in Figure 9.3. To

quantify the errors resulting from this lack of grid resolution at the

stagnation point, Table 9.4 lists the average stagnation density errors

for grids of different sizes, with the average errors defined as before.
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Figure 9.2c: Stagnation density contours
of 0.001.

with increments

Figure 9.2b: Mach number contours with increments of
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Figure 9 .2a: Duct and grid geometry for test case 2:
duct with elliptic bump.
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Figure 9.3: Close-up of grid near stagnation point on
elliptic bump.
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.x

Figure 9.4: Streamlines in a stagnation point 
flow.
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Table 9.4: Stagnation density errors for elliptic bump

J
E:

: 1 21 31

31 2.64e-3 2.84e-3 2.94e-3

I 61 : 8.52e-4 8.39e-4 8.35e-4

121 : 2.90e-4 2.55e-4 2.41e-4

Table 9.4 shows that, compared to the sin
2 (frx) bump case in the

last section, the error is still much more strongly dependent on I than

J, but now a weak dependence on J is apparent for I=121, and also the

rate of convergence, keeping I/J fixed, is now less than second order,

although still more than first order. Thus the stagnation point has

caused some deterioration in the order of convergence, at least when

maintaining equal mass fluxes in each streamtube.

To improve this situation it is clearly desirable to use stream-

tubes with varying mass fluxes, so that the streamtubes near the stag-

nation point have less mass flux and so give better resolution of the

flow in the neighborhood of the stagnation point.

The stream-function for the incompressible flow in a stagnation

corner, as shown in Figure 9.4, is given by [2],

T(x,y) = Bxy , B=constant (9.2)

Now suppose that one chooses a set of streamlines that cross the line

x=y (the line of maximum separation between streamlines) at equal in-

tervals As, that is the jth streamline passes through (jAs/%/2,jAs/V2).

The mass flux in the corresponding set of streamtubes is given by,
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m. = P(jAs/v/2,jAs//2) - TY((j-l)As//2,(j-1)As/v2)
J

1 2 1 2
= B(jos) - B((j-1)As)

= BAs2 (j- ) (9.3)

This suggests that to obtain uniform resolution in the neighborhood

of the stagnation point one should choose the mass fluxes to be linear

in the index of the streamtube. Thus the case of the duct with the

elliptic bump was redone with the mass fluxes defined by,

m. = B min(j,J-j) (9-4)
J

with B chosen to match the total mass flux.

J- 1

B = m / min(j,J-j) (95)

j=1

Figure 9.5a shows the modified 31x11 grid for a converged solution,

and Figures 9.5b and 9.5c show the Mach number and stagnation density

error contours. Figure 9.6 shows a close-up of the stagnation point

region, from which it is clear that there is now much better resolution.

Table 9.5 lists the average stagnation density errors. The results are

now much more similar to the results for the sin
2 (Tx) bump, in that

there is little dependence on J, and the error is approximately

proportional to I- 2. Thus, with careful treatment of stagnation points,

global second order accuracy can be maintained for subsonic flows.
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Figure 9.5c: Stagnation density contours with increments
of 0.001.
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Figure 9.5b: Mach number contours with increments of 0.05.
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Figure 9.5a: Duct and grid geometry for test case 2:
duct with elliptic bump using modified grid.
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Figure 9.6: Close-up of grid near stagnation point on
elliptic bump with modified grid.
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Table 9.5: Stagnation density errors for elliptic bump; modified grid

J

: 11 21 31

31 2.95e-3

I 61 : 8.32e-4

121 : 2.45e-4

3.15e-3 3.18e-3

8.47e-4 8.62e-4

2.18e-4 2.16e-4

Table 9.6 presents the Newton iteration histories for two of the

solutions with the modified mass fluxes. The Newton procedure again

converges to machine accuracy in three iterations, independent of the

size of the grid. The CPU time per iteration was approximately 3 secs.

for the 31x11 grid, and 2.2 mins. for the 121x31 grid.

Table 9.6: Newton iteration histories; modified grid

Iteration : 31x11 121x31
number : 6p/p 6n 6p/p 6n

1 : 9.45e-2 1.60e-3

2 : 7.30e-4 2.44e-4

3 : 2.17e-5 4.92e-6

4 : 6.28e-7 1.47e-6

5 : 7.20e-7 2.06e-6

9.49e-2 4.96e-4

5.30e-4 7.11e-5

2.13e-6 5.11e-6

1.46e-6 3.79e-6

1.51e-6 2.10e-6
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9.3 Incompressible Gostelow cascade

This test case is a closed-form analytic solution of incompressible

flow past a cascade, which was derived by Gostelow using a conformal

transformation method [15]. This is thus an excellent test case for

comparison purposes provided the compressible solution is obtained for

an inlet Mach number which is sufficiently low to avoid compressibility

effects. Figure 9.7a shows the geometry, with a converged 122x23 grid.

Figures 9.7b and 9.7c show the corresponding contours of Mach number and

stagnation density errors. The maximum Mach number is approximately

0.1, so that the compressibility is negligible. Figure 9.8 shows the

excellent agreement between the calculated surface pressure coefficient

distribution and Gostelow's tabulated results. The inlet flow angle was

specified to be the same as that used by Gostelow, 53.50 relative to the

axial direction, but the outlet flow angle was determined through the

Kutta condition applied at the trailing edge, and so is a particularly

sensitive measure of the accuracy of the method. The calculated value

is 30.060 compared to Gostelow's exact value of 30.0250. To achieve

this level of agreement required good resolution both at the leading

edge, as shown in Figure 9.9a, where there are large gradients in the

flow quantities, and at the trailing edge, as shown in Figure 9.9b,

where there is an analytic square-root singularity in the pressure.
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Figure 9.7a: Airfoil and gri d geometry for Gostelow cascade.
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Figure 9.7b: Mach number contours for Gostelow cascade
with increments of 0.005.
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1.00001

1.00000

Figure 9.7c: Stagnation density contours for Gostelow
cascade with increments of 0.00001.
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Figure 9.8: Comparison of calculated and theoretical surface
pressure coefficients for Gostelow cascade.
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Figure 9.9a: Close-up of the grid near the leading edge
stagnation point of the Gostelow cascade.

Figure 9..9b: Close-up of the grid near the trailing edge
of the Gostelow cascade.
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Table 9.7 lists the root-mean-square variation in density and node

position at each iteration of the Newton procedure. It can be seen that

after six iterations the solution is converged to machine accuracy. At

the very first iteration an under-relaxation factor of 0.39 had to be

employed to prevent an excessive change in the location of the leading

edge stagnation point. Also after iterations 1, 2 and 4 the grid nodes

had to be adjusted in the streamwise direction to maintain a 'good'

grid. Both of these procedures were discussed in section 4.5.

Table 9.7: Newton iteration history for Gostelow cascade
using direct solver for Newton equations

Iteration :
number 6p/p 6n Comments

1 : 1.28e-1 6.64e-3 S, RLX=0.39

2 : 7.47e-2 3.95e-3 S

3 : 4.38e-5 1.19e-3

4 : 6.17e-6 5.33e-5 S

5 : 1.65e-5 3.52e-5

6 : 3.54e-6 6.81e-5

7 : 1.19e-6 5.30e-5

8 : 5.60e-7 2.49e-5
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Several calculations were performed with different positions of the

inlet and outlet boundaries to determine the effects on the solution.

Table 9.8 lists the results with the distances of the inlet boundary

from the leading edge, and the outlet boundary from the trailing edge,

non-dimensionalized by the axial chord length. These results show that

the solution is relatively insensitive to the position of the inlet and

outlet boundaries, due to the exponential decay of disturbaces in the

streamwise direction, which was shown in section 6.1. The results also

show that the solution is more sensitive to the position of the inlet

boundary than the outlet boundary, which is consistent with the Mach

number contours shown in Figure 9.7b which show stronger disturbances

propagating upstream than downstream.

Table 9.8: Effects of position of inlet/outlet boundaries

Inlet Outlet : Outlet flow angle

Gostelow : 30.0250

1.2 1.0 : 30.060

1.2 0.5 30.070

0.6 1.0 : 30.080

0.6 0.5 : 30.080
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This case is also used to test the effectiveness of the iterative

solver for solving the Newton equations. At each Newton iteration the

Newton equations are approximately solved using twenty relaxation iter-

ations, with each relaxation iteration applying the procedure described

in Section 7.2. Table 9.9 lists the Newton iteration history. It can

be seen that initially the residuals decay rapidly as in Table 9.7 which

gives the iteration history for the direct method, but that after five

iterations the residuals decay rather slowly with machine accuracy being

reached in eleven iterations, compared to the five iterations required

by the direct method. The total CPU time required is also greater than

for the direct method since each Newton iteration using the iterative

solver took approximately 1.7 mins., compared to 1.2 mins. for each

iteration using the direct solution method. The total CPU time for the

iterative method is independent of the choice of the number of relaxa-

tion iterations per Newton iteration, because the limiting feature is

the rate-of-convergence of the linear relaxation process, not the

quadratic Newton procedure. Thus decreasing the number of relaxation

iterations per Newton iteration will increase the number of Newton

iterations while keeping fixed the total number of realaxation itera-

tions and the total CPU time.
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Table 9.9: Newton iteration history for Gostelow cascade
using iterative solver for Newton equations

Iteration :
number : 6p/p 6n Comments

1 1.28e-1 6.64e-2 S, RLX=0.92

2 : 9.14e-3 3.20e-2

3 : 3.10e-5 3.6le-3

4 : 1.28e-5 8.25e-4 S

5 : 1.19e-5 5.61e-4

6 : 6.65e-6 3.65e-4

7 : 4.60e-6 2.54e-4

8 : 3.33e-6 1.82e-4

9 : 1.89e-6 1.10e-4

10 : 1.51e-6 8.93e-5

11 : 1.18e-6 6.49e-5

12 : 6.03e-7 4.71e-5

13 : 6.90e-7 3.48e-5

14 : 4.85e-7 2.48e-5

15 : 8.16e-7 4.93e-5
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9.4 T7 turbine cascade

The T7 turbine cascade is a subsonic linear cascade designed by

Rolls-Royce, for which there are experimental surface pressure measure-

ments [27]. This case is presented here to test the robustness of the

algorithm. In particular, the inflow angle is approximately 500, and

the outflow angle is approximately -700, so the grid is badly sheared in

most of the flow domain, as can been seen in Figure 9.10a, which shows a

fully converged 117x21 grid. Sheared grids cause difficulties for time-

marching Euler methods, requiring more restrictive time-step limitations

and more numerical smoothing. Table 9.10 presents the Newton iteration

history for this case, showing that the Newton procedure appears unaffe-

cted by the high grid shearing. After six iterations the solution has

converged to machine accuracy. An under-relaxation factor of 0.88 was

required on the first iteration, and streamwise node adjustments were

performed after the first three Newton iterations. The CPU time per

iteration was 1.1 mins.

Figures 9.10b and 9.10c show contours of the Mach number and the

stagnation density. Figure 9.11 presents a close-up of the grid at the

leading edge stagnation point, showing that good resolution is obtained

by varying the mass flux in each streamtube, with the stagnation stream-

tubes having the least mass flux. Finally, Figure 9.12 shows a compar-

ison between the calculated surface Mach numbers and those measured

experimentally. The agreement is good except towards the trailing edge.

In [10] it is shown that the inclusion of viscous effects through a

coupled integral boundary layer analysis improves the agreement in this

region.
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Figure 9.10a: Airfoil and.grid geometry for T7 turbine cascade.

127



0.25-

0.30-

0.70

Figure 9.10b: Mach number contours for T7 turbine cascade
with increments of 0.05.
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1.001

1.000

Figure 9.10c: Stagnation density contours for T7 turbine
cascade with'increments of 0.001.
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Figure 9.11: Close-up of the grid near the leading edge
stagnation point of the T7 turbine cascade.
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Figure 9.12: Comparison of calculated and experimental surface

Mach numbers for T7 turbine cascade.
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Table 9.10: Newton iteration history for T7 turbine cascade

Iteration
number 6p/p 6n Comments

1 9.62e-2 1.06e-1 S, RLX=0.88

2 1.79e-2 1.92e-2 S

3 : 8.96e-4 4.20e-3 S

4 : 5.16e-4 2.06e-4

5 : 3.95e-5 7.12e-6

6 9.79e-6 1.22e-6

7 : 5.53e-6 6.44e-7

8 8.29e-6 9.90e-7

9 : 1.08e-5 1.51e-6

10 : 8.79e-6 1.91e-6

This case is also used to demonstrate the flexibility of the Newton

approach. Figure 9.13 shows the variation of the lift coefficient as

the inlet flow angle is varied, with the total mass flow and stagnation

enthalpy and density being held fixed. Since the upstream velocity and

static density are not constant, the lift is non-dimensionalized with

respect to the axial chord length, the inlet stagnation density and the

inlet stagnation speed of sound. Each of the calculated points on the

curve were obtained using only three Newton iterations, using the solu-

tion from the previous point as the initial solution. Also for compar-

ison the dotted straight line through the design point has the slope

predicted by the design point calculation using the global linear sensi-

tivities, as discussed at the end of Section 8.2. The agreement is

excellent, showing the utility of the linear sensitivities.

132



0.0136-

0.0132-
design point

CL

0.0128-

calculated points

0.0124-

1.1 1.3 tan(ai ) 1.5inlet

Figure 9.13: Variation of lift with inflow angle
for T7 turbine cascade.
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9.5 Garabedian compressor cascade

This test case is a supercritical compressor cascade designed by

Garabedian using a numerical hodograph method [3], which is considered

to be an accurate calculation, against which other numerical methods can

be compared. The geometry is shown in Figure 9.14a with a converged

78x23 grid. An interesting feature of the geometry is that Garabedian

included the displacement thickness due to a boundary layer in his calc-

ulations so the the trailing edge of the airfoil is not closed, and this

gap is held fixed in the wake. This was treated in the current formu-

lation by setting the prescribed wake thickness in the initial grid,

which is then maintained throughout the calculation, while the wake

position is free to move as usual under the condition that the pressures

on the two sides of the wake are equal.

One point of interest in this case is the effect of the artificial

compressibility, and the second order corrections. Figures 9.14b and

9.14c show the contours of Mach number and stagnation density for a

solution obtained with only first order artificial compressibility with

c =1 .0 and M2 . =0.7. Figure 9.15 presents a comparison between the
con crit

calculated surface Mach numbers, and those given by Garabedian [3].

The agreement is very good except in the supersonic zone, where slight

numerical errors and the formation of a very weak shock produce stagna-

tion density changes of the order of 1% which are convected downstream,

as can be seen in Figure 9.14c. Figures 9.16a,b,c show the grid, and

contours of Mach number and stagnation density changes, for a solution

obtained with second order artificial compressibility corrections, as

detailed in Section 3.5. The stagnation density changes have been

greatly reduced, and the agreement with Garabedian's surface Mach number

distribution, shown in Figure 9.17, is much better. The only slight

differences are at the points at which the sonic line joins the surface,

near which the hodograph method has some difficulty, so that the dis-

agreement is as likely due to the hodograph method as it is due to the
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present method.

Figure 9.18 shows a close-up of the grid and Mach number contours

at the leading edge. Despite the good grid resolution, the Mach number

changes by up to 0.07 between streamwise stations due to the very rapid

flow expansion on the suction surface side of the leading edge, but this

is better than the resolution achieved by Garabedian, and the second

order accuracy keeps the stagnation density errors small.

The increase in accuracy using the second order density corrections

for the artificial compressibility, is achieved at the cost of rate of

convergence of the Newton iteration procedure. Tables 9.11 and 9.12

show the iteration histories for the two cases. The case with first

order artificial compressibility converges to machine accuracy in six

iterations, while the one with the second order corrections requires an

additional nine iterations, during which the residuals decay by a factor

of approximately 0.5 at each iteration. This non-quadratic terminal

convergence rate is due to the approximations in the Newton lineariza-

tion introduced in Section 4.3, in particular the neglect of changes in

P_ 1 and pC. The removal of these approximations would require modifi-

cations to the direct solution method for the Newton equations which

would greatly increase the computational cost of each Newton iteration,

and so would not produce any overall savings in the computational cost

of the solution. The CPU time per iteration in these calculations was

50 secs.
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Figure 9.14a: Airfoil and grid geometry for Garabedian cascade,
using first order artificial compressibility.
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0.7-

0.8-

Figure 9.14b: Mach number contours for Garabedian cascade,
using first order artificial compressibility
with increments of 0.1.
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Figure 9.14c:

1.000

1.005

Stagnation density contours for Garabedian cascade,
using first order artificial compressibility
with increments of 0.005.
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Figure 9.15: Comparison of calculated and hodograph surface Mach
numbers for Garabedian cascade, using first order
artificial compressibility.
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Figure 9.16a: Airfoil and grid geometry for Garabedian cascade,
using second order artificial compressibility.
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Figure 9.16b: Mach number contours for Garabedian cascade,
using second order artificial compressibility
with increments of 0.1.
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Figure 9.16c: Stagnation density contours for Garabedian cascade,
using second order artificial compressibility
with increments of 0.005.
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Figure 9.17: Comparison of calculated and hodograph surface Mach
numbers for Garabedian cascade, using second order
artificial compressibility.
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Figure 9.18: Close-up of the grid near the leading edge stagnation
point of the Garabedian cascade.
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Table 9.11: Newton iteration history for Garabedian cascade

with first order artificial compressibility

Iteration :
number : 6p/p 6n Comments

------ --------------------------

1 : 1.09e-1 7.43e-3 S, RLX=0.52

2 : 7.02e-2 5.06e-3 S

3 : 1.22e-2 3.08e-3

4 : 1.46e-3 7.15e-5

5 : 4.49e-5 2.44e-6

6 : 1.26e-5 5.18e-7

7 : 2.95e-6 8.47e-7

8 : 2.60e-6 7.79e-7

9 : 2.36e-6 4.65e-7

10 : 4.97e-6 8.94e-7

145



Table 9.12: Newton iteration history for Garabedian cascade
- with second order artificial compressibility

Iteration :
number : 6p/p 6n Comments

1.09e-1

7.02e-2

1.25e-2

7.37e-3

5.78e-3

3.36e-3

1.41e-3

7.93e-4

4.26e-4

2.25e-4

1.10e-4

5.57e-5

2.56e-5

1.19e-5

7.52e-6

3.99e-6

3.24e-6

4.86e-6

3.22e-6

3.18e-6

7.43e-3

5.06e-3

3.23e-3

8. 17e-4

4.03e-4

1. 30e-4

4.57e-5

3.13e-5

1.49e-5

8. 11e-6

2.80e-6

1.99e-6

5.OOe-7

5.17e-7

6.04e-7

8.92e-7

6.42e-7

5.89e-7

6.12e-7

6.18e-7

c

S, RLX=O.52

S

+

: Supersoni
: region
: settling
: down

+

Steady
convergen
with
spectral
radius
=0.5
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9.6 NACA 0012 airfoil

This test case is one of a series of cases proposed by the AGARD

Fluid Dynamics Panel, Working Group 07 to formulate a set of benchmark

solutions, against which new computational methods can be judged for

accuracy [321. The case which is analyzed here is AGARD02, the tran-

sonic flow past a NACA 0012 airfoil, with a freestream Mach number of

0.85 and an angle of attack of 10. Table 9.13, taken from reference

(231, lists lift, drag and moment coefficients of solutions submitted to

the Working Group by various contributors. The table also lists the

type of grid used, the grid size, and the distance (in chords) of the

outer boundary from the airfoil. Unfortunately the results give no

clear consensus on the correct solution to the problem, but further

developments in the next year or two will hopefully resolve much of the

discrepancy between the different solutions. The latest results of

Pulliam, listed as #10 in Table 9.13, are probably the most accurate,

given the fine grid resolution and the quality of the solutions display-

ed in reference [23].

Table 9.13: Solutions of AGARDO2

Sol. # type mesh size O.B. Dist. CL CD CM
1 C 193 x 29 10/14/10 0.3405 0.0464 -0.0951

2 C 188 x 24 4/6/7 0.3436 0.0541 -0.1093

3 0 158 x 23 16 0.3637 0.0556 -0.1209

5 C 249 x 67 48/96/96 0.3889 0.0590 -0.1378
6 0 192 x 39 50 0.3472 0.0557 -0.1167
8 0 128 x 28 5 0.3300 0.0528 -0.1040
9 0 320 x 64 25 0.3584 0.0580 -0.1228
10 C 560 x 65 24/48/48 0.3938 0.0604 -0.1393
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Figure 9.19a shows the airfoil geometry with the converged 113x32

grid, which extends two chord lengths upstream and downstream, and ten

chords in the normal direction. Normal grid lines have been clustered

in the region of the shocks on the pressure and suction surfaces.

Figures 9.19b and 9.19c show contours of Mach number and stagnation

density, and Figure 9.20 shows the surface pressure coefficient. The

calculated lift, drag and moment coefficients are,

C =0.3950 , C =0.0610 , C =-0.1400
1 d m

which agree very well with Pulliam's results which are,

C 1=0.3938 , C =0.0604 , Cm =-0.1393

The quality of the agreement with Pulliam may be slightly fortui-

tous. An estimate of the numerical error in calculating the lift and

moment coefficients can be obtained by considering the uncertainty in

the position of the shock on the suction surface. The error in the

shock position will be at least of the order of the grid spacing, which

is 1% of the chord length, and the jump in the pressure coefficient

across the shock is approximately 1.0, producing an error estimate of

0.01 for the lift coefficient, and 0.005 for the moment coefficient.

Thus the agreement with Pulliam's results is probably better than could

be expected.

Table 9.14 lists the iteration history, showing that convergence

is achieved in twenty-one iterations. Most of the time is spent in the

suction surface shock moving to the correct location. The CPU time per

iteration was 3.5 mins.
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Figure 9.19a: Airfoil and grid geometry for NACA 0012 airfoil.
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Figure 9.19b: Mach number contours for NACA 0012 airfoil, with
increments of 0.1.
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Figure 9.19c: Stagnation density contours for NACA 0012 airfoil,
with increments of 0.005.
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9.20: Surface pressure coefficients for NACA 0012 airfoil.
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Table 9.14: Newton iteration history for NACA 0012 airfoil

Iteration :

number 6p/p 6n Comments

1 : 1.68e-1 3.17e-2 S, RLX=0.75

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

S

RLX=0.49

RLX=0.28

RLX=O.20

RLX=0.14

RLX=0.13

RLX=0.13

RLX=0.10

RLX=Q.15

RLX=0.19

RLX=0.23

RLX=0.34

RLX=0.46

RLX=0.53

RLX=0.76

Shock

forming

and moving

downstream

to correct

position
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9.60e-2

9.84e-2

1.16e-1

1.37e-1

1.65e-1

1.88e-1

1.77e-1

2.lOe-1

1.52e-1

1.32e-1

1.0le-1

7. 17e-2

5.7le-2

4.32e-2

2.94e-2

1.88e-2

1.04e-2

2.89e-3

3.35e-4

5.57e-5

1.97e-5

1.33e-5

4.74e-5

2.74e-5

7.78e-3

7.02e-3

6.72e-3

6.01e-3

5.98e-3

6.32e-3

4.98e-3

6.08e-3

4.18e-3

3.83e-3

3.87e-3

4.05e-3

3.25e-3

2.15e-3

1.27e-3

2.67e-4

3.24e-4

1.58e-4

1.92e-5

8.84e-6

7.76e-6

4.26e-6

5.08e-6

2.66e-6



9.7 Two-Dimensional Laval nozzle

The purpose of this test case is to demonstrate the modified direct

solver for choked transonic flows. The test geometry is,

Inlet x=-0.1

Outlet x= 1.1

0.2 x<0 , x>1
Upper wall y=

U 0.2-0.05sin 2 (x) 0<x<1

0. x<0 , x>1
Lower wall y= 2  0(x<1

Figure 9.21a shows the geometry with a converged 61x11

grid. The flow conditions are,

ht=1/(Y-1) , m tot=0.065 , y=1.4

with an average outlet stagnation density of 1.0. Using quasi-one-

dimensional Laval nozzle theory the throat area is 0.1, and so the

stagnation density at the throat, and hence everywhere upstream of the

shock, must be 1.123. Since the average outlet stagnation density is

1.0 this implies that the shock area is 0.126, implying that the shock

is at x=0.67, and the fractional change in the outlet stagnation density

is 0.110.

Figures 9.21b and 9.21c show contours of the Mach numbers and the

stagnation density (normalized by the inlet stagnation density). The

dotted lines indicate the analytic position of the shock determined

above. Figure 9.22a and 9.22b show the fractional change in stagnation

density and the Mach number distribution along one of the center stream-

tubes. The results are in good agreement with the quasi-one-dimensional

analysis. Table 9.15 lists the Newton iteration history. The CPU time

per iteration was 15 secs.
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1.00 0.90

0.89

Figure 9.21c: Stagnation density contours for 2-D Laval nozzle
flow, with increments of 0.01.

1.00 1.50

0.40-- -0.40

Figure 9.21b: Mach number contours for 2-D Laval nozzle flow,
with increments of 0.1.

Figure 9.21a: Duct and grid geometry for 2-D Laval nozzle flow.
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Figure 9.22a: Stagnation density changes on center streamtubes
of 2-D Laval nozzle flow.
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Figure 9.22b: Mach number distribution on center streamtubes

of 2-D Laval nozzle flow.
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Table 9.15: Newton iteration history for Laval nozzle

Iteration :
6p/p 6n Comments

number
------ ------------------------

1 1.36e-1 9.80e-5

2 : 1.64e-1 2.68e-4 RLX=0.52

3 : 1.76e-1 2.00e-4 RLX=0.35

4 : 1.68e-1 3.39e-4 RLX=0.37

5 : 1.26e-1 3.24e-4 RLX=0.43

6 : 8.57e-2 3.6le-4 RLX=0.61

7 : 5.20e-2 2.26e-4

8 : 2.46e-2 3.78e-4

9 : 2.39e-3 1.88e-4

10 : 2.91e-4 8.16e-6

11 : 3.45e-5 6.36e-7

12 : 5.35e-6 3.07e-7

13 : 3.31e-6 3.51e-7
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10. CONCLUSIONS

10.1 Discretization of Euler Equations

This thesis has presented a novel method of discretizing the steady

state transonic Euler equations. The approach used is to apply the

integral form of the Euler equations to a four-sided finite volume cell,

two sides of which are defined to be streamlines of the flow. This

intrinsic grid formulation is different from most current methods for

solving the transonic Euler equations, in that-it requires the position

of the grid nodes to be determined during the calculation procedure.

Intrinsic grids have been used with a class of streamline curvature

methods, but these methods do not have a conservative formulation

because they are based on the differential form of the Euler equations,

and so cannot correctly calculate transonic solutions with shocks. The

present method however, since it is based on the integral form of the

Euler equations, ensures the correct Rankine-Hugoniot shock jump rela-

tions, and so will converge to the analytic solution in the limit of

infinite grid resolution.

A feature of the thesis is the analysis of the artificial compress-

ibility, which is added to the mass equation to ensure a well-posed

solution in the supersonic region. The analysis of linearized pertur-

bations of uniform one-dimensional flow reveals both a minimum level of

artificial compressibility required for well-posedness, and an optimum

level which ensures sharp shocks. Numerical experiments verify this

analysis for a quasi-one-dimensional test case. In addition, a new

method of density corrections to obtain second order accuracy is

presented and analyzed, and numerical tests demonstrate the resultant

decrease in stagnation density errors.

Since the discretization of the Euler equations is new, it has been

validated by a series of test cases. The first case, the flow over a

sin 2(rx) bump in a duct, verified the second order accuracy of the
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discretization for smooth subsonic flow, meaning that the numerical

errors are proportional to Ax2 , where Ax is the grid spacing. The

second test case is the subsonic flow over an elliptic bump in a duct.

One potential problem with an intrinsic grid is a lack of grid resolu-

tion at stagnation points, and this test case shows that if one uses

streamtubes with equal mass flux there is a loss of accuracy due to the

stagnation points, but that if one varies the distribution of the total

mass flux between the streamtubes, one can regain the full second order

accuracy for subsonic flow. All subsequent calculations of cascade and

isolated airfoil flow achieved good grid resolution at leading edge

stagnation points by using streamtubes with small mass fluxes. The

third test case was incompressible flow over a cascade designed using a

conformal transformation method. Excellent agreement with the analytic

solution was obtained, verifying the incompressible limit of the discre-

tization and the Kutta condition employed to determine the circulation

around each airfoil. The fourth test case was subsonic flow over a

turbine cascade with 1200 turning in flow direction, which tested the

ablility of the method to handle grids with extreme shearing. Good

agreement was achieved with experimental results. The fifth case was a

transonic supercritical cascade designed using a numerical hodograph

method. Numerical calculations with the present method demonstrated

good agreement using the first order artificial compressibility, and

even better agreement using the second order density corrections. The

sixth test case is transonic flow over a NACA 0012 isolated airfoil,

producing shocks on both the suction and the pressure surfaces. The

computed lift, drag and moment coefficients are in very good agreement

with the most accurate results in the literature. Finally, the seventh

case is choked, transonic flow through a twodimensional Laval nozzle,

which verifies the boundary condition formulation for choked flow, and

the correct Rankine-Hugoniot shock jump relations.
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10.2 Newton Solution Method

A second principal conclusion of this thesis is that Newton's

method can be very efficient for solving a large system of nonlinear

equations. To a large extent this conclusion is independent of the

choice of the particular discretization of the Euler equations employed

here, although the current discretization does have the advantage that

the resultant linearized system can be reduced to having only two varia-

bles per grid node, and so the total number of unknowns is smaller than

would be the case for other possible discretizations. The main advan-

tage of Newton's method is that it converges quadratically to the solu-

tion of the nonlinear equations, once the approximate solution is close

to the true solution. The.iteration histories for the subsonic test

cases showed convergence to machine accuracy in three to five itera-

tions. The transonic solutions with first order artificial compressi-

bility took longer, with a period of up to ten iterations during which

the shock established itself and moved to the correct position, followed

by five iterations of near-quadratic convergence to the solution. These

additional iterations required for the shock movement are due to the

strong inherent nonlinearities associated with a shock, but it is impor-

tant to note that the algorithm handles this shock movement robustly,

aided by the under-relaxation clamp which prevents excessively large

changes in either the densities or the position of the leading edge

stagnation point. The calculations with the second order density corre-

ctions took up to 10 iterations more than the calculations with only the

first order artificial compressibility, because of approximations made

in the linearization of the nonlinear equations which prevented quad-

ratic convergence and instead led to a terminal convergence in which the

residuals decreased by factor 0.5 per iteration.

Another advantage of Newton's method is that it is a very simple,

straightforward procedure, at least in principle, and so can be applied

to a wide range of problems, for which time-marching or other approaches
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may be inappropriate or very inefficient. In practice one must be very

careful in performing the linearization and in programming the method,

and the final program is more complicated than a time-marching algorithm

applied to a simple logically rectangular computational grid. On a more

positive note, debugging of the program is eased by the ability to check

the linearization of different parts of the equation set independently,

and the quadratic terminal convergence rate makes it clear when a part

of the program is working correctly, and when it is not. Also, apart

from the artificial compressibility required to ensure well-posedness in

the supersonic region, no numerical smoothing is required, unlike in

time-marching methods in which the choice and implementation of numer-

ical smoothing can critically the stability and accuracy of the method.

An important question to address is whether it is more efficient to

solve the linear system of Newton equations by a direct method, or by an

iterative method. It can be argued, as in Chapter 7, that for a suffi-

ciently large system of equations an iterative solution method will be

more efficient than a direct method based upon a block tri-diagonal

algorithm. However, for the test case #4, the incompressible flow past

the Gostelow cascade, the total CPU time for the iterative method was

18.7 mins. compared to 7.2 mins. for the direct method. These times

were for a grid of 122x23. Now if there is no modification to the iter-

ative procedure then the number of iterations required by the iterative

solver increases proportional to max(1 2,j2 ), and the work per iteration

scales as IJ, so the total CPU time scales as max(1 3J,IJ3 ). Since the

CPU cost of the direct method scales as IJ3 this implies that the direct

method will always be more efficient than the iterative method. If,

however, one could accelerate the iterative procedure using a multigrid

algorithm, then, as discussed in Chapter 7, the number of iterations

would remain fixed as I and J increase. Following this assumption with

the numbers above as a baseline, the direct method and the iterative

method with multigrid would be equal for a grid in which J=32. This

size of grid is more than is necessary to obtain very good results for
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cascades and subsonic isolated airfoil flows. A grid of 113x32 was

needed for the transonic NACA 0012 isolated airfoil case in order to

place the far-field boundary 10 chords away in the normal direction, but

in this case a new iterative algorithm would be necessary for the trans-

onic flow and it is unlikely to be as efficient as the subsonic algor-

ithm which was constructed to take advantage of the natural separation

of the convective entropy equation from the elliptic pressure equation.

Another issue which affects this question is the suitability of the

algorithm for vector programming. In the direct method almost all of

the CPU time is spent in inverting and multiplying matrices whose size

is O(J), and this can very easily be programmed to be done in vector

mode on a pipeline machine such as CRAY 1 or a CYBER 205, or on an array

processor such as the Floating Point Systems FPS 120B, which is attached

to the Perkin-Elmer 3242 on which the current calculations were per-

formed. Using the FPS 120B would decrease the quoted CPU times for the

cases in this thesis by approximately a factor of ten. The iterative

method could also be vectorized, but with multigrid could require a

substantial programming effort, and a full factor ten improvement in

speed is unlikely. For these reasons the direct method is considered to

be the best method for solving the Newton equations.
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10.3 Versatility of Approach

Another important feature of the Newton approach is the inherent

versatility of the method. One aspect of this is the global unknowns

and global constraints discussed in Chapter 8. In the test cases pre-

sented in the Chapter 9, the global unknowns were degrees of freedom in

the specification of the far-field boundaries, the normal movement of

the inlet and outlet planes for the cascade cases, and the far-field

angle of attack and circulation for the isolated airfoil case. The

corresponding global constraints were specified inlet flow angle and the

trailing edge Kutta condition for the cascade cases', and specified angle

of attack and trailing edge Kutta condition for the isolated airfoil

case. Time-marching methods can calculate solutions under these condi-

tions, but consider now another useful capability, the ability to spec-

ify the lift coefficient of the airfoil instead of the angle of attack.

This ability is very useful for comparison with experimental wind tunnel

data because the presence of the wind tunnel walls causes an effective

change in the angle of attack, which can be estimated only approxima-

tely. Thus it is preferable to compare results with a numerical calcul-

ation which matches the lift coefficient rather than the corrected angle

of attack. To do this with a time-marching method requires a series of

calculations at different angles of attack to determine the angle of

attack which gives the required lift coefficient. With the Newton

method one simply changes the global constraint from specified angle of

attack to specifed lift coefficient, and the Newton procedure automati-

cally solves the new problem. Another example of a useful capability

is to be able to vary the gap/chord ratio in a cascade to achieve the

same flow turning with a different specified amount of loading on each

individual blade. This could be accomplished in the current method by

introducing a stretching factor in the blade-to-blade direction as an

additional global unknown, with the specifed lift coefficient for the

blade being an additional global constraint. This option would require

substantial additional programming since each of the Euler equations
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for all of the cells would have to be linearized with respect to

variations in this new global unknown, but this could be done in a

straightforward manner and would provide a capability which could only

be achieved using a time-marching by a costly series of calculations

for different gap/chord ratios.

This discussion would not be complete without reference to the

Ph.D. thesis research of Mark Drela, who has extended the method in this

thesis to solve two extremely important, and difficult, classes of

problem. The first problem is the solution of strongly coupled viscous/

inviscid interactions, in which the viscous boundary layer solution is

calculated using an integral boundary layer method. The details are

available in reference [11], but an important point for the current

discussion is that the boundary layer equations, and the relations which

couple the boundary layer solution to the outer inviscid solution, are

simply treated as additional nonlinear equations, and the Newton

procedure is then applied to the entire set of equations. This use of

the conceptual simplicity of Newton's procedure leads to a method which

is robust and more efficient than current methods for coupling time-

marching algorithms for the Euler equations to finite difference bound-

ary layer calculations, using strong interaction coupling laws. This

also supports the opinion that the direct method is the preferable

method for solving the Newton equations, since it is very unclear how

one would iteratively solve the resultant set of Newton equations, and

even if it were possible it would lose the essential simplicity of the

Newton approach. The second class of problems which is solved by Drela

is the inverse airfoil problem. The usual analysis problem is to

determine the flow and surface pressure distribution for an airfoil of

given geometry. The inverse airfoil problem is to determine the flow

and the airfoil geometry which corresponds to a specified surface

pressure distribution. Again the details are complicated and are

presented in reference [111, but there are two points to be noted here.

The first is that the ablility to handle a changing airfoil geometry is
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inherent in the intrinsic coordinate system which is used for the

discretization of the Euler equations. The second is that extensive

use is required of global unknowns and constraints to satisfy a number

of compatibility requirements, which are handled easily by the Newton

procedure, but could not be treated by time-marching methods.
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Appendix: Program Listing

THIS PROGRAM LISTING IS AVAILABLE ON REQUEST.
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