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A NUMERICAL ANALYSIS OF 3-D INVISCID

STATOR/ROTOR INTERACTIONS USING

NON-REFLECTING BOUNDARY CONDITIONS

by

ANDRE PIERRE SAXER

This dissertation presents a method for the computation of three-dimensional invis-

cid, transonic steady and unsteady flows, primarily in axial flow turbines. The work

is divided into two major contributions. The first is an algorithm for the solution of

the 3-D Euler equations which incorporates a second-order accurate numerical smooth-

ing for non-uniform grids and steady-state non-reflecting boundary conditions. Fourier

analysis applied to the linearized Euler equations is used to develop novel quasi-3-D

non-reflecting boundary conditions at the inflow/outflow and at the stator/rotor inter-

face. The accuracy, effectiveness and robustness of the boundary condition formulation

is demonstrated through several subsonic and transonic test cases and through compar-

ison with the standard 1-D formulation.

The second contribution consists in the study of three specific flow phenomena oc-

curring in an axial flow turbine. First, the steady-state effects of an inlet spanwise

stagnation temperature gradient in a transonic stage are analyzed. The mechanism for

the migration of the temperature as well as the extent of the non-uniformity are assessed.

Then, the secondary flow produced by a combined thermal and vortical inlet distortion

on a downstream moving rotor is studied. The extent of the radial mixing for steady

and unsteady flow is assessed as a function of the strength of the inlet disturbance. The

third case is an analysis of the steady, unsteady and time-averaged flow fields in a highly

loaded industrial transonic turbine stage. In particular, the unsteady shock interaction

due to the impact of the stator trailing edge shock wave off the downstream rotor is

studied. From the last two cases it is concluded that in many aspects the time-averaged

results are extremely close to the steady-state values, even with strong unsteady shock

interaction. For each case the mechanisms for the creation of the secondary flow and

deviations from a steady, uniform inlet conditions flow field are presented and analyzed.
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Chapter 1

Introduction

C'est pas demain la veille! Abraracourcix, chef gaulois.

The flow physics of a modern transonic turbine stage such as the one shown in Fig. 1.1

is extremely complex. The flow field is inherently unsteady due to the relative motion

between the stationary blades (stator) and the rotating rotor blades. In fact several

sources of unsteadiness are present in a turbomachine with frequency scales ranging

from a fraction of the shaft speed to several times that of the highest blade-passing

frequency, see for instance the reviews by Greitzer [43] and Giles [36]. Some of them

are purely of inviscid nature such as potential stator/rotor interactions, flutter, inlet

distortions. Others such as wake interactions with the subsequent blade row, vortex

shedding, passage and tip vortices originate due to the viscous nature of the gas. Also,

due to high Reynolds number and depending on the operating conditions, regions of

laminar, transition and turbulent flow may occur. This means that the length scales

can range from the circumference of the machine to a very small fraction of the blade

chord.

The next two paragraphs are not intended to present an extensive list of all the

studies previously done on turbine stator/rotor flow physics, but rather to expose review

papers in this field of research. The thesis is organized such that additional, more specific

references, are cited in the appropriate chapters.

Until recently, experimental study has formed the bulk of the research focussed on
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turbine stator/rotor related flow physics. A good summary of the relevant effects can be

found in the papers by Sharma et al. [96, 97] Joslyn et al. [62] and Joslyn and Dring [61].

References [96] and [97] focus on the effects of upstream wakes and temperature streaks

on losses, heat loads and secondary flows. The effects of upstream streamwise vortices

due to incoming endwall boundary-layer profiles has been experimentally investigated in

terms of aerodynamic loading and heat transfer. The studies show that large variations

in the size and strength of the rotor-relative secondary flow vortices occur which will

alter the velocity profile of the subsequent stator, and affect the development of the

boundary-layer. In general heat loads and losses on a turbine airfoil are increased by

the unsteady interaction between the suction surface boundary-layer and the wakes and

vortices from upstream rows. In References [62] and [61] aerodynamic data was acquired

in one and a half stage axial turbine in order to assess the effects of secondary flows

on radial transport, and analyze the three-dimensionality of the flow in terms of swirl

angles, static, total and rotary stagnation pressure spanwise distributions.

Because of the additional shock wave interactions with the above phenomena, in

the transonic regime things usually get worse. For instance extensive experimental

research on wake/rotor as well as shock wave/rotor interaction in turbines, [5, 8, 18,

93, 58, 571, has shown that the passing upstream distortion (wake, shock wave) can

cause an intermittent transition in the rotor's boundary-layer, causing the heat transfer

to alternate between a low, laminar value and a high, turbulent value, which in turn

affects the overall losses.

Confronted with a multiple-scale complex problem, it is extremely difficult to analyze

'as a whole' the flow occurring in an industrial transonic turbine stage. Hence, numerical

analysis, the technique adopted in this project, offers an interesting and complementary

(not alternative) approach towards the understanding of the flow physics occurring in

axial flow turbomachinery. As shown below in the literature review, an interesting

feature of computational fluid dynamics is its ability to 'segregate' different classes of

flows and flow phenomena.
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Numerical methods for calculating turbomachinery flow fields are reviewed by Mc-

Nally and Sockol [77] and Giles [36]. McNally and Sockol's review is older and focusses

on grid generation techniques, solution methods for the stream function equation, full

potential equation, Euler and parabolized Navier-Stokes equations. At that time only

a handful of codes for solving 3-D multi-stage flow fields were available. On the other

hand Giles' review is more recent and concentrates on methods for unsteady flow us-

ing different levels of approximations, i.e. linear potential, linearized Euler, Euler and

thin-shear-layer Navier-Stokes. In particular, the reviewer stresses the importance of

boundary conditions such as inlet, outlet, periodic and stator/rotor interface. The emer-

gence of linearized methods, and linearized Euler in particular is interesting. It indicates

that although Navier-Stokes flow predictions are better in terms of matching local ex-

perimental data, Euler methods are well suited to predict first-order effects or trends.

For instance, the Euler solvers of Ni [83] and Denton [17], which include modelling of the

viscous effects through a body force term in the momentum equations [16], are currently

being used in the turbine aero design process, whereas Navier-Stokes methods are still

not computationally cheap enough.

In the last few years in addition to Ni and Denton's, several papers have been pub-

lished in this area: Fourmaux [27] and Lewis [72], inviscid 2-D stator/rotor interaction;

Jorgenson [60] quasi-three-dimensional thin-layer unsteady Navier-Stokes stator/rotor

and Giles [37, 33] quasi-3-D inviscid/viscous unsteady stator/rotor interaction; Rai [87]

and Chen [12] 3-D viscous unsteady stator/rotor interaction and Dawes [15] 3-D steady

viscous. As opposed to experimental work, a majority of the papers on stator/rotor

numerical analysis have concentrated on algorithm issues such as conservative versus

non-conservative, ability to cope with arbitrary stator-to-rotor pitch ratios, boundary

conditions, and proof-of-concept demonstrations. Today, however, the emphasis seems

to turn towards applications in a search for better flow physics understanding. In that

respect, one important objective of this thesis is to isolate and investigate separately

some of the flow characteristics typically occurring in a (first) transonic turbine stage.

Surprisingly, although the genesis of the above mentioned problems is sometimes due to

viscosity (wakes, passage vortex for instance), the dynamics of the subsequent flow in-
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teractions is mainly driven by inviscid mechanisms. Hence, this work is entirely focussed

on inviscid flow phenomena.

1.1 Objectives of the thesis

This dissertation involves two distinct, though complementary, major objectives. The

first goal is to develop an efficient numerical algorithm solving the 3-D inviscid equations

of motion for turbomachinery flows. The Euler equations expressing the conservation

of mass, momentum and energy of an inviscid, compressible gas offer a suitable model

system for the numerical study of stator/rotor interactions. However, a major problem

associated with any numerical procedure is the handling of the boundary conditions.

The boundary conditions have to be formulated in order to avoid spurious reflections

that may contaminate the global solution. This is particularly important in a transonic

stage with small axial gaps, such as the one studied here, where shock waves propagate

indefinitely and can be be reflected by improper boundary conditions. Moreover, the

boundary condition formulation needs to be able to accurately represent details of the

flow field since the flow problems analyzed here involve variations from a current steady-

state, i.e. the steady as well as unsteady secondary flow must be a true representation

of a physical phenomenon.

To achieve this, a novel quasi-3-D non-reflecting boundary conditions formulation

is introduced. The theory is based upon Fourier analysis and eigenvectors applied to

the linearized Euler equations, and is implemented for transonic and subsonic axial flow

turbomachine calculations. The technique is designed to avoid numerical reflections and

ensures conservation of mass, momentum and energy when applied at the stator/rotor

interface.

The second major objective of this dissertation is to add flow physics understanding

to the body of research mentioned in the introductory section. This is accomplished in
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the second part of the thesis by applying the newly developed CFD tool to three specific

types of 3-D turbine stator/rotor interactions. The first case concerns the secondary

radial transport in the rotor due to a stator inlet non-uniform total temperature. This is

a typical problem encountered in a modern first turbine stage, because the requirement

of high operating temperatures in order to increase the cycle performance creates severe

heat loads. The flow leaving the combustor of a gas turbine is not temporally or spatially

uniform. The mean flow temperature is usually well above the limit supported by the

surrounding material. Cooling of the walls and the blades of the first stage is thus

usually necessary. Consequently, midspan streaks of hot, less dense gas pass through

the first stator row and become hot jets of fluid. A second-order non-linear effect causes

this fluid to preferentially migrate towards the pressure surface of the first rotor row.

This increases the mean temperature of the fluid at the edge of the boundary-layer, and

so increases the mean heat transfer, which can in turn lead to blade failure.

The second case involves thermal and shear flow driven secondary flow in a rotor

due to an incoming passage vortex coupled with a spanwise non-uniform temperature

distribution. It is well known that in three dimensions the blade rows interact with

the passage vortices generated by the upstream endwall boundary-layer and also with

the tip vortices. For highly loaded turbines a significant secondary flow is generated

in the blade passage due to the large turning. These secondary flows leave the blade

rows as organized streamwise vortices, which then interact with the following blade

row, affecting both the boundary-layer development and the heat transfer. Hence, with

respect to first turbine stages, both thermal and velocity gradients effects are important

in the development of secondary flow, and should be assessed from a steady and an

unsteady point of view.

The final case consists of comparing and analyzing the steady, unsteady and time-

averaged transonic flow fields in a highly loaded first turbine stage. For a supersonic

vane exit, a system of oblique shocks is generated at the trailing edge of the stator.

For small axial gaps, the shock extends to the rotor and impinges on the suction and

pressure sides. This causes unsteady rotor loading as well as unsteady shock/boundary-
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layer interactions. Relative to the time-averaged solution, it is important to assess the

extent of the unsteadiness due to the inviscid shock interaction in terms of secondary

flow and stator and rotor loadings, for instance.

The demand for improved performance of today's gas turbines requires the designer

to account for 3-D steady as well as unsteady effects. For example, the thermal analysis

of a turbine airfoil requires the knowledge of local heat loads, which means that the

knowledge of the average driving temperature in the blade passage is not sufficient to

optimally design the cooling system. Hence time-accurate values are required as well

as deviations from the average. Hence, the computation of steady and unsteady flow

fields in a complete industrial first turbine stage under different, though realistic inlet

conditions, will serve to evaluate the extent of the changes that may occur with respect

to the design conditions, i.e. uniform inlet conditions and steady flow field which rely

heavily on through-flow techniques [1, 110].

Another motivation for analyzing and comparing the steady and the time-averaged

unsteady flow solution stems from the emergence of methods that incorporate 'correc-

tions' to the baseline steady flow in order to account for deterministic periodic un-

steadiness, see for instance References [2] and [38]. In [2], Adamczyk derived a set of

average-passage flow equations for a multi-stage turbomachine by sequentially applying

an ensemble-averaging, a time-averaging and a passage-to-passage averaging operator to

the governing equations. In [38], Giles proposed an asymptotic approach for multi-stage

unsteady flow computations in which the effect of periodic unsteadiness on the steady

flow is included through quadratic terms. Compared tp the full non-linear unsteady

flow methods, these techniques offer potentially great savings in computer time, though

still retaining the global effects of unsteadiness. However, the use of these improved

'mean-flow' solution procedures needs to be justified by evaluating the extent of the

changes resulting from unsteadiness. These are examined here in the second (subsonic)

and third (transonic) flow cases which involve a combined vortical and thermal distur-

bance entering a moving downstream rotor, and a stator/rotor shock wave interaction,

respectively.
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1.2 Thesis outline

An important feature of the numerical procedure is that absolute and relative variables

are used, i.e. stator quantities are defined in an inertial frame of reference whereas rotor

quantities are defined relative to the rotating frame of reference. In Chapter 2 of this

thesis, the so-called Euler equations governing the motion of an inviscid compressible

gas are presented in a Cartesian system of reference rotating at a constant angular

speed. From this form, the equations in the absolute frame (stator) are easily derived.

Also presented in Chapter 2 are the reference quantities used to non-dimensionalize the

equations, and a system of cylindrical coordinates particularly useful when implementing

the boundary conditions. Circumferential periodicity is assumed throughout this thesis,

so that calculations can be performed on a single blade-passage. This is usually a good

assumption for turbine flow fields as opposed to compressor flows where inlet distortions

can lead to severe instabilities such as rotating stall, see for instance [42].

The discretization procedure is presented in Chapter 3. The Ni-Lax-Wendroff al-

gorithm implemented on an unstructured grid formed by an ensemble of hexahedral

cells is discussed together with the properties of accuracy and consistency. Then, the

implementation of this scheme on a multi-processor machine together with the periodic

and wall boundary conditions are presented.

The numerical algorithm adopted in this work requires the addition of a so-called

numerical smoothing, whose purpose is to ensure both stability and shock capturing. It

has the form of a combined fourth- and second-difference operator acting on the state

vector. The fourth-difference smoothing used in this work is designed to ensure second-

order accuracy for shock-free solutions even in the presence of grid irregularities. This

property is important when comparing different solutions. It is an extension to 3-D of a

method introduced by Holmes and Connell [54]. This matter is discussed in Chapter 4.

The quasi-3-D non-reflecting boundary conditions for steady-state flows are presented

in Chapter 5. The objective of this formulation is to allow calculations to be performed
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on truncated domains such as the ones encountered in a numerical simulation of a

turbomachine flow field, without the generation of spurious non-physical reflections at

the far-field boundaries. The theoretical aspect of the quasi-3-D approach using Fourier

analysis performed upon the linearized Euler equations is presented and linked to the

standard 1-D formulation. The quasi-3-D non-reflecting boundary conditions can also

be used to match together a stator and a rotor computation so that the interface is

treated in an average conservative manner. The importance of the interface treatment

becomes crucial when simulating flows in turbines with small axial gaps where shocks

must cross the boundary without being reflected. Chapter 5 concludes by presenting

results showing the effectiveness of the quasi-3-D boundary conditions by comparing

them to the standard 1-D formulation for several cases.

Validation of a 3-D unsteady inviscid solver is not a trivial task. The results pre-

sented in Chapter 6 attempt to achieve this by using an analytical and an experimental

test case. Another way of validating the code is to check upon certain integral quantities

that have to be conserved in the computational domain.

The 3-D applications of the Euler solver to stator/rotor interactions are presented

in Chapters 7 through 9.

In Chapter 7, the present method is used to analyze the effects of an inlet radial

temperature distribution coming out of the combustor of a gas turbine onto the first

turbine stage. In this simulation, the Munk and Prim [80] substitution principle is used

to show that no 3-D secondary flow associated with the spanwise temperature gradient

occurs in the vane. However, a significant secondary flow is generated in the relative

frame of reference, which is a consequence of the rotor relative non-uniform inlet total

pressure distribution as well as the rotor-relative inlet angle. The effect of the rotor-

relative secondary flow on the upstream stator is also discussed. The results of this

chapter are analyzed with respect to the flow field occurring in the stage with uniform

inlet conditions.
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In Chapter 8, an attempt is made to assess the effects of thermally and shear flow

driven secondary flows on a downstream rotor. In particular, a model for a passage

vortex is proposed and then coupled to a spanwise temperature profile. This combined

vortex/temperature flow field is set as inlet conditions of a partial vane which is con-

nected downstream to a moving rotor. Steady-state results are presented and compared

with the unsteady computation. For unsteady computations, a simple stator/rotor in-

terface boundary condition which uses 1-D characteristics theory is employed. This

algorithm, also presented in Chapter 8, restricts the stator-to-rotor pitch ratio to 1.

In Chapter 9, a full unsteady calculation of a highly loaded transonic first turbine

stage is presented together with the steady-state results. The flow physics of the steady-

state and the unsteady shocks motion are discussed, and a comparison between the

time-averaged and the steady-state solutions is presented. As will be seen, the unsteady

shock system produces a secondary flow of vortical nature absent in the steady-state

calculation.

Finally in Chapter 10, the major contributions of this work are outlined, some ex-

tensions for future research are proposed and some conclusions are drawn about the

utility of the present approach.

It is worthwhile to outline the material presented in Appendices A through E.

The mesh generation technique is discussed in Appendix A. It describes how a set

of simple 2-D profiles from industrial data can be manipulated to define second-order

continuous surfaces such as the blade and the upper and lower annulus walls that are

then used to generate a structure suitable for 3-D numerical grid generation. Chosen

for its robustness and relative ease of implementation, the distribution of the field mesh

points is found by solving a set of elliptic partial differential equations. The source terms

are automatically evaluated in the iterative solution procedure to produce a control of

cell size and skewness at the blade boundary.
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The derivation of the cell volume as well as the areas of the cell faces is presented

in Appendix B.

For explicit time-marching methods such as the Ni-Lax-Wendxoff scheme, the al-

lowable time-step is restricted by the so-called Courant-Friedrichs-Levy (CFL) stability

limit, which states that the numerical domain of dependence must contain the complete

domain of dependence of the original hyperbolic differential equation. The stability

analysis is performed in Appendix C.

In Appendix D, the implementation of the quasi-3-D non-reflecting boundary con-

ditions are discussed. Subsonic, as well as supersonic, inflow and outflow conditions are

presented.

Finally, Appendix E contains a discussion of the effects of scaling the rotor blade

in order to get a stator-to-rotor pitch ratio equal to 1, which compares to 1.69 in the

actual geometry.

CHAMBER ec

Figure 1.1: Transonic turbine stage.
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Chapter 2

Governing Relations

2.1 Three-dimensional Euler equations

Reynolds and Prandtl numbers of the order of a million and unity, respectively are

typical values encountered in a gas turbine engine. This means that the viscous and

thermal effects are confined to thin shear layers. This is particularly true in the turbine

section in which the fluid does not have to work against a mean adverse pressure gradient

as in the compressor section. Outside these regions, the gas is assumed to be non

heat-conducting, inviscid and compressible. By applying the fundamental principles of

conservation of mass, momentum and energy to this kind of fluid, the so-called Euler

equations of fluid dynamics are obtained. Integral forms of the conservation laws are

presented in several books, see for instance Ryhming [91], Anderson [4], Liepmann &

Roshko [73] and Kuethe & Chow [67].

The conservation laws can be derived for either a fixed or moving control volume in

space. The differential form is usually obtained from the integral form by shrinking the

control volume to a point and applying the divergence theorem. As mentioned earlier,

a relative motion between the blade rows is inherent to a stator/rotor interaction. The

algorithm developed in this thesis solves the flow fields associated with a non-rotating

and rotating row in their own Cartesian coordinate systems. Thus, the conservation

laws for a fixed control volume can be used. Absolute values subscripted ab are used
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in the stator, fixed frame of reference, whereas rotor-relative quantities subscripted ,el

are used in the rotating coordinate system'. Appropriate transformations are then

performed at the interface to match the two flow fields. Also, the subscripts in! and

ot are used to indicate an inlet and outlet quantity, respectively. Thus, in a combined

stator/rotor computation, these subscripts refer to the stator inlet and the rotor outlet,

respectively.

The flow field is modelled by the Euler equations for an inviscid, adiabatic compress-

ible gas. Used in a conservative formulation, the resulting system correctly accounts

for the formation of shocks and their associated entropy and vorticity production. In

a Cartesian coordinate system rotating at constant speed fl around the x axis, see

Figure 2.1, the Euler equations can be expressed as

OU OF 8G OH
-+- +--+ 5 =Q, (2.1)

where U is the state vector in the relative frame defined as U = (p, pu, pv, p, pE)T.

The fluxes F, G, H of mass, momentum and energy are given by

Pu Pv PW

pu2+p puv puw

F= puv ,G= pv2 +p H pvw . (2.2)

puu pvw Pw2+p

puI pvl pwI l

The source term Q, representing the centripetal and Coriolis forces per unit volume,

acting on a fluid particle at radius R = /y2 +z2 is defined as

'The subscripts b, and ,I are used only when a confusion may occur and so are otherwise dropped.
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0

0

Q = p(2y - 2gw) . (2.3)

p(11 2z + 20v)

0

E is the total rotary internal energy per unit mass, i.e.

121
E = e + 1(u 2 +v 2 +w 2 )rel - 1 2R2 (2.4)

2 2

where e is the internal energy per unit mass, defined as e = cvT for a calorically perfect

gas. cv is the specific heat at constant volume and T the static temperature. The static

pressure p and the rothalpy I are related to the density p, relative velocity components

u, v and w, and E by the following two equations which assume a perfect gas with

constant specific heat ratio -1 = cp/c,.

p = (7 - 1)p (E - 1(U2+V2+W2)re + 12R2 , (2.5)

I= E + + I(U2+V2+W2 )re i 2R2. (2.6)
p -- 1p 2 2

Using absolute velocities and total energy, the above relations are also valid in the

absolute frame (stator, fl = 0) in which case Q is set to zero and the rothalpy is replaced

by the stagnation enthalpy ht,

ht = h+ 1(u2+V2+W2)abs, (2.7)

where h is the static enthalpy defined as h = cT and c, is the specific heat at constant

pressure.

The derivation of the equations from the absolute frame of reference to the rotating

frame is elegantly presented in Reference [39] using tensor analysis and is not reported
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here.

2.2 Non-dimensionalization

It is useful to rewrite the above equations in non-dimensional form. Using non-dimensional

variables allows an easier comparison between different flow cases, by avoiding unit con-

version factors. Also, the scaling laws that may appear in the flow fields are explicit

in dimensionless quantities. The inlet stagnation density, (pt);in, stagnation speed of

sound, (ct)i.z, and the blade axial chord at the hub, Lhab, are chosen as reference values.

In the case of a combined stator/rotor calculation, the axial chord of the stator (first

row) is used as the length of

non- dimensional variables,

Lhub

U

(ct)inl

p p =
(Pt );ni

reference. Introducing these quantities gives the following

, Y
y =

V

(ct);nl

' p
p=(pt )ini(ci ni

I z
z=

Lhub

(Ct)

t' t

Lhub/(Ct )inl

(2.8)

fi' = n
(ct)j;nr/Lhub

ee' =
(ct)nz

h'= h
(Ct'inl

With this procedure, the form of the non-dimensional governing equations becomes

identical to that of the dimensional equations. Thus, for convenience the primes are

dropped and reference is henceforth made to the non-dimensional variables only. For
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instance, the stator inlet state vector written in terms of dimensionless variables is

(1'

Uinl= 1

(1+'-- M;2n

L
(1+2-2z

(1+-y-M1)T

-y (-y-1)

(2.9)

Using the definition of the local speed of sound c,

S= p
C=rp (2.10)

and the shorthand notation

V =(U + 2 + 'IVW2 )abs,

the inlet Mach number MinI is defined as

Min1 = (M2);n + (M2);n1 + (Mf);i.

In addition, the following inlet stagnation quantities are found.

1

(2.11)

(2.12)

(2.13)
1

(ht)n = (Pt)ini = 1, (Pt)ini =
7-1 7

2.3 Cylindrical coordinate system

As mentioned earlier, the 3-D Euler equations are solved in a Cartesian coordinate

system, that is either fixed as in the stator frame, or rotating at constant angular speed

Q in the case of the rotor. However, it is more natural to apply boundary conditions in
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a turbomachinery environment using a cylindrical coordinate system. Thus, a relation

between the Cartesian and the cylindrical coordinates is needed. With reference to

Figure 2.1 the following relations apply,

y = R cos 0, (2.14)

z = R sin 0, (2.15)

R = y 2 + z 2, (2.16)

0 = arctan , (2.17)

,& = sin j -cos 0 k, (2.18)

R = cos j+sin k. (2.19)

Both coordinate systems are right-handed if thought of as (x, y, z) and (x, 9, R).

Using the cylindrical coordinates, the absolute velocity V = (u,, uO, UR)abs in the

stator frame of reference is related to the relative velocity W = (ut, us, UR)rel in the

rotor by

i = W + UW, (2.20)

where U, is the rotor wheel speed defined as

Uw = fIR 6 . (2.21)

Rotation around the x axis is defined as

(2.22)

Hence,

(Ux)abs = (Ux)eli, (2.23)

(UO)abs = (uo),et + fR, (2.24)

(UR)abs = (UR)rel. (2.25)
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Figure 2.1: Cartesian and cylindrical coordinate systems.

The two prescribed flow angles needed as inlet boundary conditions in Chapter 5 are

defined in Figure 2.2. With respect to the cylindrical coordinate system the following

relations apply to any vector V = (ux, u, UR).

Ux = V cos ao sin aR,

UO = V sin a sin aR,

(2.26)

(2.27)

(2.28)UR = V cos aR-
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Figure 2.2: Prescribed inlet angles.
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Chapter 3

Discretization Procedure

3.1 Lax-Wendroff algorithm on unstructured hexahedral

cells

An explicit time-marching numerical algorithm of Lax-Wendroff type is used to solve the

Euler Equations (2.1). The flow variables are located at the vertices of the hexahedral

cells and are assigned according to an initial condition. For each node the governing

equations are then integrated in time and, subject to adequate boundary conditions, a

steady-state or periodic unsteady solution can be obtained.

The flux across each cell face is based upon the average of the fluxes F, G, and H

at the corner nodes. The flux residual is evaluated by summing the fluxes through the

six faces, and adding the source term for the cell. From this residual, the changes in the

flow variables are distributed back to the eight corners, according to the Lax-Wendroff

algorithm which guarantees numerical stability, subject to the Courant-Friedrichs-Levy

time-step limit. The basic integration scheme is similar to that introduced by Ni [81],

re-cast by Hall [46] and then extended to 3-D by Ni and Bogoian [82]. However, it

differs from the other formulations in precise details for non-uniform grids and it is here

described to be used in a flow solver that handles unstructured grids. The derivation is

valid for any arbitrary grid defined only by the coordinates (X, y, z) of its grid nodes in

a Cartesian space.
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8 7 face nodes

11 2376

2 1485

3 3487

L___ 4 1562

-r,k 5 5678

7 6 1234

Figure 3.1: Hexahedral cell nomenclature.

Formally the Lax-Wendroff algorithm starts by considering the second-order Taylor

series expansion for Un+1 = U((n + 1)At), where the superscript " denotes the time

level and At = t,+1 _ tn.

Un+1 =Ul + At --U + -At2 (3.1)
at 2 at2

Substituting from Eq. (2.1) and changing the order of differentiation yields,

(F aG FH _At a a
U'+-U-- x +-7Y+ -Q) AF"+-G+ AH -AQ" ,-

y z 2 (Ox Y

(3.2)

where

OF n G OH 8QAF = At - AG4 = At--, AH = At , AQ" = At . (3.3)at at' at at

It is easier to explain the construction of the Lax-Wendroff algorithm on unstructured

grids by considering the Figures 3.1 and 3.2. The grid nodes are numbered and the cells

are referred to by capital letters. Surrounding node 1 are the eight nearest neighboring

mesh cells denoted A, B, C, D, E, F, G, H. The state vector change at node 1 is

defined as 6U1 Un+1 - Ul". This residual is found by integrating Equation (3.2) over
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cell A

pseudo -mesh
cellP 

Figure 3.2: Control volume of pseudo-mesh cell P (dashed)
cell neighbor A. The center of the adjacent cells marked by

surrounding node 1, with
capital letters are located

at the corners of P.

the pseudo-mesh cell P of finite volume V and by applying Gauss' theorem, i.e.

-1Jul = -- (V
- Atfj (FG,H)(nx,,ny,nz)dS + AtV1Q 1

At~f At
- -t f(AF, AG, AH)(n., ny, nz)dS + -V 1 AQ 1 ).2 cell P 2 (3.4)

n = (nx, ny, nz) is the unit normal vector directed outside the surface element dS and

the notation

(F, G, H)(n., n, n.) = Fn, + Gny + Hnz (3.5)

is used. The residual 6U1 is now expressed as a function of the changes occurring in the

eight cells of which node 1 is a corner, i.e.

8 cells

Jul= 8U1 = SU1A + 6U1B + 6U1C + +U-D + SU1E + SU1F + 6U1G + 6 U1H.
i=1

(3.6)

Thus all of the cells surrounding node 1 contribute to the change 6U1 .

The two integrals in Equation (3.4) are considered separately. The first integral, rep-
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1

L~L

Figure 3.3: Contributions of cell A to the
integration.

first-order, left, and second-order, right, flux

resenting the first-order flux contribution at node 1, can be split into eighth independent

closed surface integrals, each of these being approximated as one eight of the surface

integral over the larger cells A,... , H. Also an average value of the first-order source

term is defined at each center of the larger cells A,..., H and contribute equivalently

to node 1. The second-order flux contribution to node 1 uses the same control volume

V as the first-order terms but is approximated as a sum of open surface integrals, see

Figure 3.3. For instance, the first- and second-order contributions of cell A to node 1

are given by

1 At rr A
6U1A t- - (F, G, H)(n., ny, nz)dS + tAVAQA

V 8 JceuIA 8

At (AF, AG, A H)(n., ny, nz)dS
- ' 4 fffaces (1-3-5)A

+ AtAVAAQA) (3.7)

The average first-order change in U for the whole cell A in the time-step AtA is denoted

AUA and written as

AUA = -- (FG,)(nnyn,)dS + AtAQA
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= - (") E vs '+Os'+AIs')f c + AtAQA + O(14), (3.8)
V 

-(f=1oeae ) cell A

where the superscript - denotes an arithmetic average over the four grid nodes defining

the face f of cell A. S;, S. and S, are the projected areas on the yz, xz and xy planes

of the face f, respectively. The derivation of the areas as well as the volume for a cell is

given in Appendix B. Note that the sum in Eq. (3.8) represents a flux balance for the

cell A. With this, Eq. (3.7) is re-written as

U V V ) AUA - Z (AFA,9X+AGAAy+AH,9z)f + -- AQ A ,
Sf =1,3,5 2

(3.9)

where S, 3, and S2 refer to the averaged projection areas of opposite faces and thus

represent the faces of the pseudo-cell P sketched in Fig. 3.2. Note that according to the

cell nomenclature defined in Figure 3.1, the second-order fluxes of cell A contribute to

the state vector change of node 1 only through the (average) faces 1, 3 and 5.

For a time-marching calculation the convergence to steady-state flow is accelerated

by using variable time-steps, see Appendix C. The arrangement of the At terms in

Equation (3.9) ensures that conservation is independent of the local time-step.

The second-order flux terms AFA, AGA and AHA are obtained from

( F (OG \(H'
AFA = -) AUA, AGA = AUA, AHA = AUA, (3.10)

F U A G U A HU A

whereas the second-order source term AQA is given by

AQA = (-) AUA. (3.11)
OU A

In Eqs. (3.10) and (3.11) the Jacobians are evaluated using UA, the cell-average of the

eight nodes. For computational efficiency it is best not to actually form the Jacobian

matrix and perform the matrix-vector multiplication. Instead the following equations

are used.

AF1 = A(pu)
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AF2 = t(pu) + piAu + Ap

AF3 = fIA(pv) + PIVAu (3.12)

AF4 = i!A(pw)+ PfVAu

AF = i(A(pE)+Ap)+ pIAu

AG 1 = A(pv)

AG 2 = ;iA(pu) + PniAV

AG3 = vA(pv) + fniAv + Ap (3.13)

AG4 = ;A(p)+ PtAv

AG5 = v(A(pE)+Ap)+ IpAv

AH1 = A(pw)

AH2 = fvA(pu) + ptAw

AlH3 = f)A(pv) + pAw (3.14)

AH4 = iA(pw) + p3Aw + Ap

AlH5 = t(A(pE)+Ap) + pIA w

AQ 1 = 0

AQ 2 = 0

AQ3 = f 2qAp - 2fA(pw) (3.15)

AQ 4 = f 22Ap + 20A(pv)

AQ5 = 0,
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where

A~U =(A(pu) - iiAp)/p

AV = (A(pv) - fA)/p

AW = (A(pw) - iAp)/fl (3.16)

Ap = (i-1) A(pE)i- A(pu) - IA(pv) - vA(pw)+ A(i2+2+iv2 + 02R2)).

Now that the contribution of cell A to node 1 has been defined, the same procedure

applies to the other cells B, ... , H according to Equation (3.6) and

AUB - E (AFBgx+AGBASY+AHBS)f -
f =2,3,5

AUc - 1 (AFcSx+AGcsy+AHc52)f +
f =2,4,5

BAQB}

AUD - E (AFDo9+AGDgy+AH,9z)f + VQ ,
f=1,4,5 2

AUE - E (AFE 19+AGEy+AHE~z)f +
f=1,3,6

AUF - E ( AFFSx+AGFLy+AHFSz)If +
f=2,3,6

E AQ}

VF AQ

VGAQ}
E (AFGA9x+AGGy+AHGz)f +

f =2,4,6

1 (At {X) AUH - E (AFg4+AG,6y+AHgz)f + Y-AQH}.
f =1,4,62

(3.17)
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3.2 Conservation and accuracy

A numerical algorithm that solves the non-linear inviscid equations ought to be conser-

vative, since this property guarantees the correct Rankine-Hugoniot shock jump rela-

tions and the correct treatment of other discontinuities such as slip lines. Analytically

conservation is expressed by

T J U d dy dy + JJ(F, G, H)(nx, ny, nz)dS = Qddy dz. (3.18)

The Lax-Wendroff scheme decomposes the domain into cells and approximates the above

analytical equation by a discrete equation. Conservation is ensured as well as consis-

tency if the discrete solution approaches the analytic solution as the grid is refined. As

mentioned in [34] the Lax-Wendroff algorithm is proven to be conservative if

S(SU =E(boundary fluxes) + (source terms), (3.19)
jnodes At

where 5Uj is equal to the sum of the contributions from all of the cells of which node j

is a corner. The sum of the boundary fluxes and the source terms can be replaced by

the sum of the contributions to the corner nodes from all the cells, i.e.

EZ( 6u) =>j (sum of contributions to corner nodes)i, (3.20)
j nodes ( i cells

which in turn can be divided into sums of contributions from the first-, the second-order,

the smoothing and the source terms.

: ( V 6U)= E (1 st-order)i + (2nd-order)i + (smoothing)i + (source terms);.
j nodes A i cells

(3.21)

The second-order flux terms are written in a way such that the sum of their contributions

to the corner nodes of a cell is zero. This feature holds also for the second- and fourth-

difference smoothing operators (see Chapter 4). Thus, the only contributions to the

right-hand side of Equation (3.19) is given by the first-order inviscid fluxes and the

source terms. As already pointed out, the first-order terms represent a flux balance for

the cell, i.e. the scheme is written such that the flux out of a particular cell across a
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particular face is equal an opposite to the flux out of the neighboring cell across the

same face. Hence all the interior fluxes cancel leaving only the boundary flux terms.

Using the discretization procedure of Section 3.1 the solution for steady flows is

formally spatially second-order accurate even for non-uniform grids that have metrics

discontinuities. Indeed, Hall [46] observed that as steady-state is approached, that is

U -+ 0, the first-order change AU behaves similarly, i.e. AU -+ 0 (in an inertial

frame of reference, i.e. Q = 0). This is consistent with Eqs. (3.9) and (3.17) since the

second-order terms AF, AG, AH and AQ are zero for AU = 0. Hence, the essential

term to be considered for accuracy is the flux balance for a single cell as expressed

by Eq. (3.8). This is locally fourth-order accurate and thus integrating over the entire

domain composed of the order of 1/12 boundary cells results in a global flux balance

which is second-order accurate. This is an advantage over the cell-averaged finite-volume

schemes such as that of Jameson et al. [56], in which second-order spatial accuracy is

obtained only on smooth grids.

For a combined stator/rotor calculation, conservation ultimately depends on the

data transfer algorithm used at the interface. This is discussed in Section 5.5 for steady

flows and Section 8.3 for unsteady flows.

The second-order terms introduce an effect similar to upwinding or downwinding,

which is necessary to ensure the proper domain of dependence. Thus, the Lax-Wendroff

algorithm is consistent with the local wave propagation. Also, these terms stabilize the

numerical procedure and make the overall scheme second-order time-accurate. Addi-

tional details can be found in References [81, 46, 104, 3].
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3.3 Unstructured meshes and implementation

As opposed to the mesh generation technique described in Appendix A, the imple-

mentation of the solution method uses an unstructured grid. This technique offers

the advantage of effectively uncoupling the mesh generation from the flow solver, see

Reference [75].

In this method, a one-dimensional array is used in which each index is associated

with a grid coordinate. The flow variables associated with each node together with

some cell-related variables are also defined in a one-dimensional array. One set of cell

variables is defined as pointers giving the indices of the grid nodes which form the corners

of the cell. The pointer system is required because the Lax-Wendroff algorithm sweeps

through the list of cells from which corner nodes information is gathered to calculate

the fluxes and the source terms and then distributes appropriate changes to the flow

variables back to the corner nodes.

The implementation of the Lax-Wendroff scheme on unstructured grids is briefly

outlined here. The first pass calculates the fluxes F, G and H at all nodes. The second

pass calculates on a cell-by-cell basis the AU, AF, AG, AH and AQ and then the

contributions to the changes at each of its nodes. The contributions to the node changes

from the second- and fourth-difference smoothing terms are also evaluated in this pass

together with the changes at the boundary nodes due to the inlet/outlet /interface and

wall boundary conditions. The third pass adds the changes onto the flow variables at

each node and evaluates the convergence checks.

The numerical scheme is implemented such that one simultaneously calculates the

flow in both the stator and the rotor, with interface boundary conditions implemented

to couple the two calculations together. A system of cell coloring, designed to eliminate

data dependencies at the cell corners, makes it possible to take full advantage of vector

and concurrent arithmetic. By construction, no two cells of the same color touch each

other, so computations on one color can be performed simultaneously on either a vector
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pipeline or multi-processor machine. This coloring system is used in the second pass

and makes it also possible to compute, in the same loop, the rotating and non-rotating

fluxes. A set of 16 colors is used in each of the two frame of references. Half of the

16 colors are assigned to cells connected to the blade, hub and tip solid surfaces which

are then used in the implementation of the wall boundary condition. The remaining 8

colors are assigned to the field cells.

Periodic and solid wall boundary conditions are discussed in the next two sections.

Inlet /outlet and stator/rotor interface boundary conditions are the subject of Chapter 5.

3.4 Periodic boundary condition

For steady-state turbomachinery axisymmetric flow calculations it is possible to reduce

the size of the computational domain from multiple blade passages to one blade-to-blade

passage, even if the rotor pitch does not match the stator pitch. The calculation is then

performed with suitably defined boundary conditions at periodic surfaces. Using the

Lax-Wendroff algorithm this is easily implemented by adding the update contributions

that one periodic node on one side of the boundary surface (say lower) obtains from

its contributing cells C, D, G and H to the contributions that the corresponding upper

periodic node obtains from its cells A, B, F and E. In the axisymmetric case (as

opposed to the linear cascade), the third and fourth Cartesian components of the changes

in the state vector U on one side of the periodic surface have to be rotated by the pitch

angle Op before they can be added to their counterparts on the other periodic surface.

For instance, the changes on the lower periodic surface are expressed as

SUixer = 6 Uier + W Uppe,

SU2 1wer = U2lne, + 5 U2upe,-

6Ui3ower = Uiower + U3uppe C.cos(OP)-6U4uper sin(Op) (3.22)
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U41oue,. = SU4awe. + U3upper sin(Op) + 6 U4upper cos(Op)

16 U51ower = 'SUsowe, + ErU5pper,

where

27zr
Op = 2. (3.23)

number of blades(

The sum of the upper and lower contributions is then used to update the flow variables

at both nodes.

For unsteady stator/rotor computations this same periodic boundary condition is

used, which means that the stator-to-rotor pitch ratio has to equal 1. For non-equal

pitches the stator/rotor interface boundary conditions as well as the periodic conditions

get more complicated (although conceptually not much more difficult) and are not

considered in this thesis.

3.5 Wall boundary condition

A solid wall boundary condition is applied at the hub, the tip and the blade surface.

The wall boundary condition states that there is no normal flow relative to the surface.

This is analytically expressed by

V - = 0 stationary frame, (3.24)

and

-. = 0 rotating frame. (3.25)

i is the unit vector normal to the boundary surface and V, W are the absolute and

relative velocity vectors, respectively. An equivalent statement is that there is no flux

of mass through the wall, and so the only contribution from the wall faces to the fluxes

is through the pressure.

52



/ 4 3

i /1 1/ 2

Figure 3.4: Wall boundary cells with modified control volume (dashed). Wall face 6 of
cell A is defined by the edge nodes 1234.

The solid surface algorithm is implemented in the overall procedure after the Lax-

Wendroff changes 6U have been distributed to all the nodes, including the nodes at the

walls. Assume that nodes 1 to 4 of cell A lie on a solid wall that is also defined by

the bottom faces of cells B, C and D, see Figure 3.4. Since the mesh cells E, F, G

and H do not exist and thus do not contribute to the fluxes, the control volume of the

pseudo-mesh cell P is altered. The algorithm sweeps through the list of wall-colored

cells and corrects the Lax-Wendroff changes of the eight corner nodes, using the wall

faces fluxes. For instance, the contribution of cell A to 6U1A is modified as

(U1A)wall = (6 U1A)field + 1 (At) (AUA)wallcor.ection, (3.26)

where

0

PSX

(A UA)wall corection= (PS +OSY+$fS)f 6 - P. (3.27)

psz

Jf =6

The first term on the right-hand-side of the above equation represents the flux error

introduced in the field calculation, whereas the second term is the actual pressure con-

tribution from face number 6 of Figs. 3.1 and 3.4.
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Chapter 4

Numerical Smoothing

The Numerical smoothing consists of a damping operator which is added to numer-

ical schemes in order to stabilize them by preventing unwanted high-frequency waves in

smooth flow regions. In the Lax-Wendroff algorithm the second-order flux term is analo-

gous to a dissipative operator of upwind type. This feature renders the scheme stable for

the calculation of smooth flow fields. However it can be shown, see for instance [104] and

[109], that the Lax-Wendroff finite difference approximation of the model wave equation

introduces a third-order dispersion (and a fourth-order dissipation) error. Dispersion

is a phenomenon in which waves of different frequencies travel at different speeds and

arises because of the non-linear relation between wave number and frequency in the

discrete approximation to the differential equation. As a result steady-state oscillatory

modes known as odd-even decoupling modes are allowed as part of the solution in the

basic scheme. Hence, a so-called background or freestream smoothing is necessary to

damp out these non-physical oscillations.

Numerical smoothing is also required to capture discontinuities such as shocks. In the

mechanism of creation of a shock, it is known that viscosity as well as heat conduction

play a dominant role. These effects allow smooth variations of pressure and density

(as well as other flow quantities such as Mach number and velocity) so that the shock

thickness remains finite. It is thus only in the limit of no heat conduction and no viscosity

that the variations approach the discontinuous values given by the Rankine-Hugoniot

theory. Hence, a dissipative operator is required in order for a shock capturing technique

to give a thickness to the shock. This layer is usually of the order of a few mesh cells
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characteristic length. The shock smoothing is usually obtained by a second-difference

operator.

While its presence is essential, it is important that the numerical smoothing terms

be kept as small as possible to minimize degradation of the solution accuracy.

In this work, the numerical smoothing is constructed as a combination of a fourth-

and a second-difference damping operator. Though the structure of the smoothing

operators vary, this is a standard approach adopted by many researchers, see for instance

References [56, 90], and which conceptually corresponds to adding terms of the form

- (SF)smo4 V - (lV(12V2U)) + (SF)smo2V - (K(IVU)), (4.1)

to the right-hand-side of Equation (2.1). (SF)smo4 and (SF)imo2 are scaling factors for

the fourth- and second-difference operators, respectively. I is a length comparable in

magnitude to the local grid size, and rc is an artificial bulk viscosity. Numerically, the

damping terms are both added to the basic Lax-Wendroff scheme when evaluating the

changes in the state vector variables. The following sections discuss these two types of

damping.

4.1 Fourth-difference smoothing

Acting at node 1, the change in the state vector U due to the fourth-difference smoothing

operator is

/At) 8cells /

(6U1)smo4 = A a-v4 (D? - Dr). (4.2)

This contribution is added to the right-hand-side of Equation (3.6), and the eight cells

refer to the neighboring cells A,-..., H of Figure 3.2. D2 is a pseudo-Laplacian based on

the six edge nodes surrounding node 1, see Fig. 4.1, and defined by Holmes and Connell
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Figure 4.1: Stencil for pseudo-Laplacian. For clarity cells B,..., H are not represented.

[54] as

6 nodes

Di=E Oj (Uj - U1).(4)
j=1

Notice that this technique is not restricted to using the stencil shown in Figure 4.1. U1

and U represent nodal values of the state vector, whereas Dj is the discrete represen-

tation of a cell-averaged pseudo-Laplacian, i.e.

8 corner nodes

= D . (4.4)
j=1 8-

In Eq. (4.3), Oj is a grid dependent weight which is designed to be close to unity to

ensure an even dependence on all of the neighboring nodes. This is achieved by defining

p = 1 + A4j and using Lagrange multipliers to minimize the cost function C1 ,

6 nodes

L = C1 = E (AI) 2 , (4.5)
j=1

under the constraints that linear functions in x, y and z produce a pseudo-Laplacian

with zero value, that is

6 nodes

f (A#5) O A ~ z)=Z b(X-aXi)=0,
j=1

6nodes

g(A45) D2(y) = 3 45(yj -y1) = 0, (4.6)
j=1
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6 nodes

h(Ab)j) D'(z) = E Oj(zj - zi) = 0.
j=1

According to the Lagrange multiplier technique, see for instance [52], this is equivalent

to specify that the 'auxiliary function',

q = L - Af - Avg - Azh (4.7)

attains a relative maximum or minimum at node 1, when no constraints are imposed.

Thus,

O(Alb).= 0 (4.8)

(4.9)==*Ab= A,(x-x,) + A(y 1-y,)+ Az(z 3-zi).

Replacing Eq. (4.9) into Eqs. (4.6) and solving the resulting system using Cramer's rule,

the following relations are obtained for the unknowns A., A. and Az.

X -R (IIzz -I2z) + Rv (IxyIzz -I~zzy) -RZ(IXYIvz -IYYIzz)
I(IY~jzz -12Z) -T Iz(IXYIZz - IzlYZ) + Iz (IXYIUZ - ivy Iz)'

A Rx (IxyIzz - Izyz) Ry (IxxIzz - Ixz) + Rz (Ixxlyz - Ixylz)
A I,(I,I - II2z) - R(IIz -I ) Iz(Iylyz -IyIzz)

A -Rx (IxyIyz -IyyIxz) + Ry(IxxIvz -IXYI~z) - R(IxI~ y -Ity)

Y~jzz - 2z) - IV (IXVIZZ - IzYz) + Iz(IXYIyz - IvYIzz)'

(4.10)

6 nodes

R = E (Xj - xi),
j=1

6 nodes

IXX = Z (Xj - X1)2, Iy
j=1

6 nodes

RY = E (yg
j=1

6 nodes

j=1

6 nodes

- yi), RZ = E (z - zi),
j=1

- Y) 2 , Iz =

6 nodes

E (Zj - Zi)2,
j=1

6 nodes

hzy= Z (g
j=1

6 nodes

IYz = E (Y
3=1

- X1)(Yj - y1),

- Yi)(Z3 - Z,).

6 nodes

Izz = E (Xj - xi)(Zj - zi),
j=1

(4.13)
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The purpose of the constraints is to ensure that the smoothing term does not corrupt

a linear solution on an irregular mesh. The importance of this was first established by

Lindquist [74] and Giles [31] but their approach is computationally more expensive

and complicated to implement in 3-D since it would require division of the cells into

tetrahedra. Note that this procedure for computing the weights does not require a

special treatment of the weights at the mesh boundaries. The branches of the pseudo-

Laplacian stencil located outside the computational domain are simply cut-off and the

weights adjust themselves accordingly.

(At/V)1 is the (time-step/volume) ratio associated with the grid node 1, whereas

(V/Atm ,)j is the (volume/maximum time-step) ratio for cell i. The use of the local

maximum time-step in the smoothing terms (2n and 4 th) ensures that steady and

unsteady calculations use the same (time-step/volume ratio). This is important when

comparing steady to time-averaged unsteady solutions, see Chapters 8 and 9.

In Eq. (4.2), v4 is a coefficient whose typical value is 0.002. However, to accelerate

convergence in a steady-state calculation a value of order 0.01 can be employed.

Conservation is ensured by defining Di as in Eq. (4.4), i.e. the sum of the smoothing

contributions to the corner nodes of a cell is zero. By operating a conservative second-

difference with the second-order pseudo-Laplacian, one ensures that neither mass, mo-

mentum or energy is produced by this smoothing nor that the effects of inlet distortions

on the flow field are smoothing dependent, except for second-order effects. As noticed

by Holmes and Connell [54], the optimum weights for some distorted grids may differ

significantly from unity. For stability reasons, they elect to clip the weights in the range

(0,2). However, although a slower convergence rate has been observed, some of the

results presented in this work have been calculated without clipping.
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4.2 Shock smoothing

As mentioned earlier, the purpose of the shock smoothing is to stabilize shocks calcula-

tions. Conceptually, it consists of a second-difference operator acting on the state vector

U. It is written as

(SU1)smo2 = A- 8 c) (Ut - U1 ). (4.14)

V )18l Atina i

As for the fourth-difference smoothing term, Eq. (4.14) is added to the right-hand-side

of Equation (3.6). U; is the cell-averaged state vector as defined by Eq. (4.4) and rj

is a cell-defined artificial bulk viscosity tailored by the local flow divergence and Mach

number to avoid large shock overshoots and not to alter the global accuracy of the

scheme in smooth flow regions. The derivation of the bulk viscosity stems from an idea

of von Neumann and Richtmeyer and is discussed in the following paragraph.

The internal structure of a physical shock is determined by the balance of the inviscid

flux and the flux due to the bulk viscosity of the fluid. For instance, the Navier-Stokes

solution for a 1-D normal shock layer can be found in Reference [111]. The idea of von

Neumann and Richtmeyer [89] is to introduce a purely artificial dissipative mechanism

into the momentum equation of an otherwise inviscid fluid so that the shocks could be

captured as part of the solution. For 1-D flow, the modified equation1 in conservative

form is

Opu+ Opu2  -Op a Ou (4.15)
7 Ox Ox ax O_ x

With ordinary viscosity, in which the stress is proportional to the rate of shear, the

thickness of the transition layer varies with the shock strength, approaching zero for

a very strong shock and infinity for a very weak one. However, one wishes to ensure

that the shock width remains nearly the same, i.e. of the order of the local grid spac-

ing, regardless of the shock strength. For that reason, von Neumann and Richtmeyer

'This momentum equation in this form is dimensional, and so is x. All the other equations in this
chapter are in non-dimensional form, and thus so is K1 .
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proposed the following definition for a variable 'pseudo-viscous' coefficient K,

p 12 , & < 0
0j ;, 1 a >0 (4.16)

Setting . to zero when the flow divergence (or volumetric dilatation) is positive pre-

vents smoothing of expansion regions. The variable I represents the shock width and is

proportional to the local mesh spacing.

Applying this concept to 3-D flows requires the definition of a scaled flow divergence

for a given cell i. With reference to Figure 3.1 this is defined as

dio~s)I f - dS

6 f aces

v 213  Vf Sf
f=1

1 6 faces

1=E (surface fluxes)f
f=1

1 6f aces

v 2 / 3  Z (iiS + VSy + ib2)f. (4.17)
i f=1

i = V in the absolute frame and i = W in the rotating frame. S., Sy and S, are the

projected areas on the yz, xz and xy planes of a face cell, respectively, see Appendix B.

il, V and ii3 represent the face-averaged values from the four corner nodes. For instance

f on face 1 is given by

)= I (U2 + u3 + u7 + u6). (4.18)4

V and iv- are defined similarly. In particular, the total volume flux out of the cell in the

y direction is given by

6 f aces

Z (;Sy)f = (tSy)1 + (VSV) 2 + (USy) 3 + (fYSy) 4 + (iSy) 5 + (fYSV) 6. (4.19)
f=1

In the x and z directions, the summations are obtained by replacing (;3S.) by (i!S2) and

(fS2), respectively.
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Then, the local cell-defined artificial bulk viscosity ri is defined as

V2 Pi lIfi' |iV(i|, div(i6) < 0 (4.20)
0, div()i > 0

The definition of div(i); means that in smooth flow regions it is approximately the

flow divergence multiplied by a cell length, and in regions with a discontinuity due

to a shock it is approximately the velocity jump across the shock. Thus the shock

smoothing is second-order accurate in smooth flow region and consistent with the basic

scheme. The coefficient v2 has a value of approximately 0.1. The local cell-averaged

Mach number is introduced in the artificial bulk viscosity variable in order to prevent

excessive smoothing of decelerating flow near stagnation points. Note that unlike von

Neumann and Richtmeyer's approach, the shock smoothing used here applies to the

variables in conservation form and is employed in the mass, momentum and energy

equation. Finally, notice that if ri was taken to be a small positive uniform value,

then this smoothing would be very similar to Ni's original smoothing as described in

Reference [81].
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Chapter 5

Quasi-3-D Non-Reflecting Boundary Conditions

5.1 Overview

One typical difficulty occurring in a numerical simulation of a turbomachine flow field is

the handling of the boundary conditions (b.c.'s). This is because in an internal flow en-

vironment the computation has to be performed on truncated domains, whose far-field

boundaries do not represent an undisturbed known flow field as in external aerodynam-

ics. Typically, most of the codes available today are not capable of preventing spurious,

non-physical reflections at inflow and outflow boundaries. This leads to erroneous per-

formance predictions, since the calculated flow field is dependent on the position of

the far-field boundary condition. Also for secondary flow calculations accurate bound-

ary conditions are needed since using the standard 1-D approach corrupts the solution

locally, as shown later in the results section.

The theoretical foundations of non-reflecting boundary conditions for model initial

boundary value problems have been established by mathematicians specializing in the

analysis of partial differential equations, see for instance [65] and [20]. Some applications

involving the Euler equations of fluid dynamics have been done. For 2-D steady-state

flow, exact non-reflecting boundary conditions for the solution of the linearized Euler

equations can be derived using Fourier expansion in the direction along the inlet and

the exit boundaries. This has been done by Ferm and Gustafsson for an airfoil and
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a channel flow [25, 26]. Hirsch and Verhoff [53] used a similar approach for cascade

flows, though expanding the characteristic variables instead of the primitive ones used

by Ferm and Gustafsson. In [35] Giles presented a unified theory on the formulation

of non-reflecting boundary conditions and the application to the Euler equations. In

particular, he derived different types of boundary conditions. These include exact 1-

D and 2-D as well as approximate 2-D boundary conditions to be used for steady

and unsteady flows. A different approach has been proposed by Bayliss and Turkel [7].

They used the asymptotic behavior of the wave equation to derive a boundary condition

formulation for external flows.

The purpose of this chapter is to present a quasi-three-dimensional non-reflecting

boundary condition formulation that can be used in a numerical simulation of steady-

state inviscid flow fields. The objective in formulating the non-reflecting boundary

conditions is to prevent non physical reflections at inflow and outflow boundaries as

well as at stator/rotor interfaces. The method is an adaptation of the exact 2-D steady

non-reflecting boundary conditions of Giles [35] to three dimensions. The theoretical

approach, based upon Fourier analysis and eigenvectors is presented here as well as

the extensions required for the linearized Euler equations. Implemented in a turbo-

machinery environment, the approach assumes that the solution at the boundary is

circumferentially decomposed into Fourier modes, the 0 th mode corresponding to the

average solution. The average mode is treated according to the standard 1-D boundary

condition formulation, which allows the user to specify certain physical quantities at

the boundaries. The features of the 1-D approach as well as some of its limitations

are discussed in Sections 5.2 and 5.3. The remaining part of the solution, represented

by the sum of the harmonics is treated according to the exact 2-D theory and pre-

vents spurious reflections at the boundaries. A very brief summary of the theory is

that upstream and downstream of the blade row in an infinite duct which produces no

incoming modes, the steady-state perturbations in the density, velocity and pressure

must satisfy certain linear relationships. These relationships are found by analyzing

the propagation of eigenmodes that are solutions of the linearized Euler equations and

vary sinusoidally in the pitchwise direction. Enforcing these relationships at the in-
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flow and outflow boundaries imposes steady-state non-reflecting boundary conditions

which ensure that no incoming modes are generated. This approach together with its

implementation in a 3-D context is discussed in Section 5.4.

The stator/rotor interface treatment is discussed in Section 5.5.

The circumferential Fourier decomposition (versus radial decomposition) is moti-

vated by the fact that in an axial flow turbomachine the pitchwise variations are usu-

ally larger than the radial variations. The results presented in Section 5.6 show clearly

that using this quasi-3-D non-reflecting boundary condition formulation improves the

accuracy.

A very brief summary of this chapter together with the essential conclusions is given

in Section 5.7.

Finally note that while this chapter discusses the theoretical aspect of non-reflecting

boundary conditions, the reader may refer to Appendix D for the implementation pro-

cedure.

5.2 1-D non-reflecting boundary conditions

The usual 1-D approach is to assume perturbations travelling normal to the boundary

in the x-direction, see for instance [113]. Hence, the linearized Euler equations written

in primitive form reduce to

a up+ IUP = 0, (5.1)
at ax
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where

p-p ) f p 0 0 0

u-i I 0 L 0 01

UP,= '-li = ,A= 0 u 0 0 . (5.2)

W-W w 0 0 0 f 0

p-P 0 -YP 0 0 u,

The elements of the vector U, represent perturbations from a uniform flow, and the

Jacobian matrix A is evaluated using those same uniform flow conditions. Notice that

this represents only a local linearization of the flow, i.e. within one mesh cell, since

when concerned with turbomachinery applications the coefficients of A may still vary

with radius for instance.

A can be diagonalized by the similarity transformation,

U 0 0 0 0

0 f 0 0 0

T-1.T 0 0 a 0 0 -A (5.3)

0 0 0 U+E 0

0 0 0 0 U-E

where i = y'/j is the mean flow speed of sound. The diagonal components of A

represent the speed of propagation of five characteristic waves, called the entropy, the

two vorticity, and for subsonic flow, the upstream and the downstream irrotational

pressure waves, respectively. Multiplication of Eq. (5.1) by T- 1 yields,

- + A-- = 0, (5.4)

where % = T- 'U,. 4 is referred to as the vector of linearized characteristic variables,
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and in detail the five variables are,

1 ) -

02

#4

0 0 0 1

0

0

0

0

0 pE

0 0

flE 0

-3d 0

0

Xi

0

0

0

0

1

1

The transformation from the 1-D

U2 0

v 0

iv- 0

pi~ 0

characteristic

0 0

0 0

1 0

01

0 0

1

1

0
0

0

I

variables is given by U,= TI, i.e.

_ 11

0 03 (5.6)

0 #4

" s j 0

At a subsonic inlet the correct unsteady, non-reflecting boundary conditions would

be

01)

= 0,

while at an outlet the correct non-reflecting boundary condition would be

0s = 0.

(5.7)

(5.8)

The standard numerical method for implementing these would be to calculate or

extrapolate the outgoing characteristic values from the interior domain, and then use

Eq. (5.6) to reconstruct the solution on the boundary.
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5.3 1-D steady-state reflecting b.c.'s

For calculations of steady-state external flows, these one-dimensional boundary condi-

tions may be applied without modification. In these types of calculations the far-field

represents uniform conditions in which the inlet flow corresponds to the outlet one. That

is, the steady-state perturbations in the density, velocity and pressure are zero. Hence,

setting the incoming characteristics to zero is consistent with uniform flow conditions,

so that this boundary condition formulation is non-reflecting.

For time-marching calculations of steady-state internal flows, however, the one-

dimensional (unsteady) non-reflecting boundary conditions require modification. In a

typical turbomachinery application one wishes to specify certain physical quantities at

the boundaries. For example, at the outflow boundary one usually specifies the static

pressure. This means that the incoming characteristic variable <r,, instead of being

zero, must have the value required to give the correct exit pressure. This is now a re-

flective boundary condition, since an outgoing unsteady pressure wave will produce an

incoming pressure wave to keep the exit pressure constant. Similar unsteady reflections

are generated at the inflow boundary through the specification of particular physical

quantities.

The numerical implementation of the boundary conditions is dependent on the nu-

merical algorithm being used for the interior equations. Using a Lax-Wendroff type

algorithm to time-march the solution to the steady-state, the changes in the boundary

values from time level n to time level n + 1 are required. Thus the characteristic vari-

ables are defined in terms of perturbations to the average inflow or outflow at the time

level n.

At the inflow, the average characteristic changes are calculated from the requirement

that the average entropy, radial and tangential flow angles, and stagnation enthalpy have
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certain values.

(.g)n+1 = in ,

(d R) aRinl,

(Is)7+1= h inl. (5.9)

3 is an entropy-related function defined by

3 = log(Yp) - Y log p, (5.10)

and ht is the mean total enthalpy. aeinj and aRinl together with ginj and Inj are

user-specified average inflow angles, entropy and total enthalpy, respectively, which are

usually function of the radius.

For an axially subsonic outflow, the first four characteristics are outgoing, so only

the fifth characteristic variable needs to be set. The average change in the characteristic

is determined to achieve the user-specified average exit pressure pt. at a certain radius

together with the requirement that the outflow is in radial equilibrium. The latter

condition is expressed by

= p--., (5.11)
OR R'

together with the specification of &ut at some particular radius.

A detailed description of the implementation procedure is given in Appendix D.

The standard one-dimensional boundary conditions are also 'reflective' in a steady-

state sense. This is most clearly understood at the outflow boundary where a circum-

ferentially uniform exit pressure has been specified. If the outflow is supersonic there

will be an oblique shock extending from the trailing edge to the outflow boundary. The

uniform pressure condition forces the generation of a reflected expansion wave at the

boundary. This expansion wave extends upstream to the blade row, and can produce
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significant errors. The objective of the new boundary conditions presented in the next

section is to prevent this reflection, and similar reflections at the inflow boundary.

5.4 Quasi-3-D approach

5.4.1 Outline

By the principle of linear superposition it is possible to split a general solution into

a sum of different frequencies, and calculate their contributions independently, each

with its own forcing terms and boundary conditions. Here we are concerned with axial

turbomachines in which the flow variations are usually larger in the circumferential than

in the radial direction. Hence, by assuming a periodic solution in the pitchwise direction

it is quite natural to perform a Fourier decomposition of the flow at the boundary into

a sum of a mean and circumferential components.

In this approach, the 0th Fourier mode corresponds to the circumferential solution

average and is treated according to the standard 1-D characteristics theory. Specifically,

this allows the user to specify the value of the circumferential average characteristics,

but this quantity may be radius dependent. For instance, this is how the average inlet

tangential, radial flow angles, stagnation enthalpy and entropy can be specified, as well

as the outlet radial equilibrium condition.

The remaining part of the solution, represented by the sum of the harmonics, is

treated according to Giles' 2-D non-reflecting boundary conditions theory [35]. Imple-

mented in 3-D, this part of the formulation uncouples the tangential flow variation from

the radial variation. However, the advantage of this improved approach over the stan-

dard 1-D formulation is that when sweeping along the span, exact 2-D non-reflecting

boundary conditions can be imposed on each Fourier mode in the tangential direction.
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Section 5.5 describes how the same boundary condition approach can be used to

match together a stator and a rotor calculations, so that the interface is treated in an

average, conservative manner. Since this method considers radial flow variations in the

average mode only, it is called quasi-3-D non-reflecting boundary conditions.

Note that in the absence of any radial variations, the boundary conditions are exact

within the 2-D linear theory.

5.4.2 Fourier analysis: dispersion relation

The boundary condition treatment is approached by assuming that the flow is governed

by the linearized Euler equations, which, written in primitive form for two-dimensional

steady-state variations are

(5.12)wrP + n aUP = 0,

where Up and .4 axe given by Eqs. (5.2) and P represent

I

; 0 P 0 0

0 U 0 0 0

B= 0 0 ;v 0 1
P

0 0 0-y 0 0

Fourier analysis considers wave-like solutions which are

multiplying a constant column vector.

U,(x, y) = ei(kx+ly)UR.

Substituting this into the differential equation gives

(k. + fl3-uR = 0,

s the following matrix

(5.13)

equal to a scalar wave function

(5.14)

(5.15)
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which has non-trivial solutions provided that

det(kA + iB) = 0. (5.16)

Evaluating Eq. (5.16) gives the dispersion relation, which is a polynomial equation of

degree 5 in each of k and 1.

(fik + ;V-1) 3 ((uk + jl)2 _ E2 (k 2 + 12)) = 0. (5.17)

We will be concerned with the roots k, of this equation for given values of 1.

Three of the five roots are clearly identical.

-iii
ki, 2 ,3 = - . (5.18)

The other two roots are given by

(E2 _ f2) k2 - 2Ukl - (Vl) 2 + (El)2 = 0. (5.19)

Hence the fourth and the fifth roots are defined by,

k4 = (,iil+ cl) (5.20)
E2_-f,

k5 = - , (5.21)

where

i sign(j))E V/= _2_+_;2) , (f2+;V2) < E2

/3 = (5.22)

-sign(;V)v (-+2 3 g+2) > E2.

Notice that for supersonic flow, # does not depend on 1. The two relations for

/ reflect the difference in the behavior of a perturbation propagating in subsonic or

supersonic flow. In subsonic flow, the perturbation decays exponentially, whereas in

supersonic flow it propagates indefinitely. The appearance of two values for # is further

discussed in Reference [32].
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5.4.3 Fourier analysis: eigenvectors

A critical step in the construction and analysis of boundary conditions is to separate the

waves into incoming and outgoing modes. This is accomplished by looking at the velocity

of energy propagation, i.e. the group velocity [112] of the five dispersive propagating

waves. This would require to introduce the time dependent term in Eqs. (5.12), but the

direction of propagation is already known from the analysis given in Section 5.2.

The column vector uR is the right null-vector of the singular matrix (kI+ I 41).

(kI + A- lB)uR - A-'(kA + ljl)uR = 0, (5.23)

i.e. uR is a right eigenvector of l~A with eigenvalue -k. The construction of the

non-reflecting boundary conditions requires also the row vector VL which is the left

null-vector of the singular matrix A'~(kA + iP).

VLA-1l(kA + 1B) = 0. (5.24)

The important feature of this left null-vector is its orthogonality to uR. If km and kn

are two different solutions of the dispersion relation for the same values of 1, and if uR

and vn are the corresponding right and left eigenvectors, then

V.A~1(kmA + l 3)u" = 0, (5.25)

and

.A~(k- J + lDjfu = 0. (5.26)

Subtracting one from the other gives

(km - kn)V Lu$R = 0 - vLuR = 0. (5.27)

This orthogonality condition will be used later in the next section.

Root 1: entropy wave
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-I
-Uki = _V (5.28)

After some algebra, it can be shown that appropriate right and left orthonormal

eigenvectors are

U=U1

I -1 /2

0

0

0

0 /

(5.29)

and

L =0 0 0 1 ). (5.30)

This choice of eigenvectors corresponds to the entropy wave. This can be verified by

noting that the only non-zero term in the right eigenvector is the density, so that the

wave has varying entropy, no vorticity and constant pressure. Also, the left eigenvector

'measures' entropy in the sense that rfU, is equal to the linearized entropy, -2

Root 2: first vorticity wave

k2= (5.31)
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The second set of right and left eigenvectors for

i' \

UR
U2 =

pc

/k2

0

0
/

=C 1
pc~

the multiple

0

0

0

root is given by

(5.32)

and

L
V2 =c(0 -il -;V- 0 -i/p ) (5.33)

This root corresponds to a vorticity wave, which can be verified by noting that the

right eigenvector gives a wave with vorticity, but uniform entropy and pressure.

Root 3: second vorticity wave

k3 -= . (5.34)

The third set of right and left

UR~1
PC

and

eigenvectoi

I

\L
0

0

0

0 I

s for

1

the multiple root is given by

0

0

0

-1 / i

0 /

L
V3 = A4 0 0 0 -;v- 0)

As with root 2, this set of eigenvectors corresponds to a vorticity wave.
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Since the first three roots are a multiple root we must check that the chosen right

and left eigenvectors satisfy the necessary orthogonality relations.

nu = 0, n, m = 1, 2, 3, n# m. (5.37)

It is easily verified that these are correct.

Root 4: downstream running pressure wave

sAil+ El
k4 = - -2 .E(5.38)

E2 _; -

The eigenvectors are

r (-k 4 /1-;)

k4/1

4= 2pc~

and

1

0

p(-iik4 /1l -;V)L /
1

2p~-i~)

(5 +5 +

ep +; ;v

C2 _U2

0

-E ( E + f# ),

v'=4p(o -0 n 0 #/pE).

(5.39)

(5.40)

This root corresponds to an isentropic, irrotational pressure wave, travelling down-

stream.

Root 5: upstream running pressure wave

iiil-E~3l
k5 = -2 (5.4 1
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The eigenvectors are

k5/l )

1

0

p(-fzk5 /1-;V)

__ 1

-ii 0 I/p ).

This root corresponds to an isentropic, irrotational pressure wave, travelling up-

stream provided ii < E.

Note that the above defined eigenvectors are only determined to within an arbitrary

factor.

5.4.4 Ideal 2-D steady non-reflecting b.c.'s

Suppose that the differential equation is to be solved in the domain x >0, and one wants

to construct non-reflecting boundary conditions at x =0 to minimize or ideally prevent

the reflection of outgoing waves. At the boundary at x = 0, U, can be decomposed into

a sum of Fourier modes with different values of 1, so the analysis begins by considering

just one particular choice of 1. In this case the most general form for U, is

5
U,(X, Y) = anUne ' e*.

1n=1I
(5.44)

ka is the fth root of the dispersion relation for the given value of 1, and un is the

corresponding right eigenvector.

The ideal non-reflecting boundary conditions would be to specify that an = 0 for
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-- (E - ;)

e2 _U-2

0

I
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each n that corresponds to an incoming wave. Because of orthogonality,

v1U = VL [Zamu eikx] ei1y

= an(v un)e eteY (5.45)

and so an equivalent specification of non-reflecting boundary conditions is

vLU = 0, (5.46)

for each n corresponding to an incoming mode, i.e. n = 1, 2, 3, 4 at the inflow and n = 5

at the outflow.

Both the right, uR, and left, vL, eigenvectors as defined in Sections 5.4.2 and 5.4.3

have a physical significance. As used in Eq. (5.44), the right eigenvector shows the

variation in the primitive variables caused by a particular wave mode. Due to the

orthogonality relations, the left eigenvector provides a measure of the amplitude of a

particular wave component when applied to a general solution.

5.4.5 Extension to 3-D

As mentioned earlier, the construction of the quasi-three-dimensional non-reflecting

boundary conditions starts by performing a Fourier decomposition of the flow field at

the boundary. We begin by considering a linear cascade with pitch P in the y-direction

and a boundary at x =0. The perturbation U, can be written as

00

U(y, z, t) = U(z, t) + U m(Z, t)elmY, (5.47)
-oo,m-;O

where U,(z, t) represents the pitchwise solution average at the boundary that has been

constructed according to the standard 1-D approach. It also corresponds to the m =0

Fourier mode, whereas the harmonics are defined by

Upm(Z, t) = - U,(, y, Z, t)e-m dy, (5.48)
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where

IM = 27rm
(5.49)

At each spanwise location, ideal 2-D steady-state non-reflecting boundary conditions

can now be constructed for each Fourier mode m, (m$ 0), according to Section 5.4.4.

The boundary conditions for (m $0) are

Upm = 0 (5.50)

for each incoming wave n. Using

reflecting boundary conditions are,

t 0

0

--#E;V

02

0

0

0

at the inflow and at the outflow the

( 0 PEU

the eigenvectors defined in Section 5.4.3 the non-

0 0 1

-Aav3 0 -c-
Upm = 0,

0 --Paf 0

pzf 0 1 /

boundary condition is

-#Ef 0 3 )Upm = 0.

The non-reflecting boundary conditions are now expressed in terms of the spatial

Fourier transform of the one-dimensional characteristic variables.

C 2C 2F~

0 0 0
2pc 2pc2

Upm= 0 0 0 0 3. (5.53)

0 0 0 0 04PC

0 0 0 21 5

78

(5.51)

(5.52)



Hence the inflow boundary condition becomes

0

0

f,

0

0

Vi

0

0

0

P (-0)

03

\05

02

b3

\05

= 0, (5.54)

= 0. (5.55)

1

0

0

\0

and the outflow equation becomes

0 -i 0 12( P+;V) 2(-3) )

Unlike the standard 1-D approach in which the harmonics of the incoming charac-

teristics are set to zero, this improved method defines the incoming characteristics to

be function of the outgoing ones by using Eqs. (5.54) and (5.55). This gives

/ I/t42

03

U

E+;u

0

E+;U- )0

(5.56)

/

and

~5 (5.57)02 -4.

These algebraic relations are then lagged, see References

well-posedness of the pseudo-time evolution process, so that

dimensional sense), steady b.c.'s. turn out to be,

[35] and [32] to ensure the

finally the exact (in a two-
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at inflow:

0 = (+. (5.58)

\4 2

At outflow:

)5_ 2 2 - (+ -
=_-#- _ 44 (5.59)

Numerical experience indicates that a suitable choice for o- is E/P.

Boundary conditions for an annular cascade with many blades are obtained from

these linear cascade b.c.'s by substituting (0, R) for (y, z) and (ue, un) for (v, w).

This approximation implicitly assumes that the blade pitch is much smaller than the

tip radius, which is true for many turbomachine applications. The error associated

with this approximation is believed to be smaller than the error arising because of the

uncoupled radial and tangential modes.

5.5 Stator/rotor interface

In a steady stator/rotor interaction calculation, time-averaged rotor data and spatially-

averaged stator data are being transferred from one row to another. This raises the

question of what is the correct way in which to perform the averaging procedure. A rig-

orous definition is based upon the 'mixed-out' flow field and can be described as follows.

If one assumes that sufficiently far upstream or downstream the flow is circumferentially

uniform, then the flux F based upon this uniform value UF must be equal to the average

flux P at the boundary under consideration. As illustrated in Figure 5.1, the following
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mixed-out UF

y, 6 g
m x n

F(U) = F(UF)

Figure 5.1: Flux averaging procedure.

definition is used.

(5.60)

where

F = - F(U) dy.
P "

(5.61)

This gives the following set of equations for UF.

PF UzF = F1,

PF UxF + PF = F2 ,

PFUxFUOF = F3 ,

PFUxFURF = F4 ,

PF UxF IF = F5.

Together with the equation

If PF 12 2 2 1R2
IF + UF + UOF RF 22

-7- 1 PF 22

these can be solved to obtain,

PF 2-+~ 2 P + 3

(5.62)

(5.63)
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F 2 - PF

UeF =IF F,

F1
U RF ---

PF = - (5.64)
UzF

Note that in Eqs. (5.62), (5.63) and (5.64) a cylindrical coordinate system has been

used, where UzF, ueF and URF are the axial, circumferential and radial flux-averaged

velocity components, respectively. Based on these quantities, 'mixed-out' values of

all other flow variables can be defined, and will be denoted by the subscript F- An

important point to note is that the physical mixing process implied in this procedure

will generate viscous losses, and will result in a flow with higher entropy level. Hence,

when applied to a flow at the outlet boundary this averaging procedure will tend to

produce higher 'measured' losses than other averaging methods, such as averaging the

outgoing entropy. Further discussion of this point for an arbitrary spatially non-uniform

and unsteady flow is contained in a study by Fritsch [28].

At the stator/rotor interface, mass, momentum and energy have to be conserved, so

that the objective is to make the flux of these out of the stator equal to the flux into

the rotor. Using the flux-averaging technique an equivalent objective is to match the

average flow quantities.

PF stator = PF rotori

UzF stator = UxF rotor,

UOF stator = UeF rotor + QR,

URF stator = URF rotor,

PF stator = PF rotor. (5.65)
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Note that because of the use of relative flow variables, the rotor wheel speed QR has to

be introduced into the condition of matching circumferential velocities.

If the current computed solution does not satisfy these matching conditions then it

can be interpreted as a jump in the characteristic values.

A 61  -2 0 0 0 1 PFstator -PFrotor

A02 0 0 'PE 0 0 UxFstator - UxFrotar

A03  = 0 0 0 pE 0 UfFstator -UGFrotor -f R (5.66)

A04 0 pC 0 0 1 URFstataor - URFrotor

A$ 5  0 -PE 0 0 1 PFstator -PFrotor

The average characteristic changes at the stator outflow and rotor inflow are now

set to eliminate each of these characteristic jumps, taking note of the direction of prop-

agation of each characteristic. Once this is done for both sides of the interface, the

remainder of the boundary condition treatment is exactly the same as for a standard

inflow and outflow boundary.

This stator/rotor interface treatment has been implemented such that the number

of nodes (in both the tangential and the radial direction) on one side of the interface

is not required to be the same as on the other side. This is achieved using a local flux

transfer scheme that ensures flux conservation, see Appendix D.

5.6 Results

The effectiveness of the steady-state quasi-3-D non-reflecting boundary conditions is

demonstrated in this section by presenting results for the high-turning turbine stage

represented in Figs. 5.2 and 5.3. The design of this stage was performed by Rolls-Royce

and is representative of a high pressure, cooled aircraft turbine operating in the transonic

regime. In particular the small axial gap between the stator trailing edge and the rotor
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leading edge (approximately 30% of the vane axial chord) is typical for this kind of

turbine. For these closely spaced blades the formulation of the boundary conditions at

the stator/rotor interface becomes a key point in the numerical simulation.

Firstly, results are presented for computations performed on the inlet guide vane

alone, i.e. no rotor row attached downstream. The midspan flow fields shown in Fig. 5.4

have been calculated for supersonic outflow conditions (but still axially subsonic), with

two different locations of the far-field boundaries. Notice that the location of the small

domain exit boundary corresponds to the stator/rotor interface position in the computa-

tions of the complete stage reported later in this section. The solutions look very similar,

although not identical due to the second-order non-linear effects caused by the presence

of two weak oblique shocks extending from the trailing edge. Indeed, the linearization

of the Euler equations at the boundaries introduces an error which is proportional to

the square of the steady-state perturbation at the inflow and the outflow. However, the

error is unnoticeable at the inflow and very much smaller at the outflow than the error

introduced in the solution by using the standard boundary conditions, which impose

uniform exit pressure, see Fig. 5.5. Using non-reflecting boundary conditions, the local

maximum mismatch in pressure between the two solutions of Figure 5.4 is less than 4%

of the vane exit dynamic head. Clearly, the formulation of the quasi-3-D non-reflecting

boundary conditions allows the flow to adjust circumferentially (and also radially as

seen later on) to account for the presence of the stator trailing edge. On the other

hand, using the standard 1-D b.c.'s the outgoing shocks produce reflected expansion

waves which greatly contaminate the solution on the blade, see Fig. 5.6. These spurious

reflections produce a local error in pressure (compared to the solution with quasi-3-D

b.c.'s) which accounts for up to 43% of the vane average exit dynamic head. Hence the

non-reflecting boundary conditions give a major improvement in accuracy.

The midspan blade surface pressure computed by using the quasi-3-D and the l-D

formulations on the small and the large domain are compared in Fig. 5.6, where the inlet

stagnation pressure pt id is used as a reference. Notice that the disturbances produced

by the outlet reflecting boundary do not propagate ahead of the choked throat, which is
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consistent with inviscid flow theory. Due to the strong shock/exit boundary interaction

in the 1-D formulation the location of the outlet surface affects the shocks' reflections,

i.e. the solutions on the two domains are different with multiple wave reflections on

the small one. This local behavior also produces average changes. For instance, the

1-D boundary condition formulation leads to a change in the flux-average turning angle

compared to the quasi-3-D b.c.'s, as seen in Fig. 5.7. In a stator/rotor interaction

this average change in the stator swirl angle can lead to a change in the rotor relative

incidence angle of several degrees, and thus significantly affect the rotor loading.

The steady-state results for four coupled transonic stator/rotor calculations are sum-

marized in Figs. 5.8, 5.9 and 5.10. To achieve an accurate basis for comparison, the small

domain results were computed using circumferentially averaged exit pressures PF(R) ob-

tained from the large domain calculations. Notice that in a full stage computation the

matching of the stator and the rotor flow at the interface is done automatically without

any user intervention. In these four computations, the quasi-3-D b.c.'s have been used at

the stator inlet and outlet as well as at the rotor inlet. Thus, relative to the calculations

using the quasi-3-D formulation at all inlets/outlets, the introduction of the 1-D b.c.'s

at the rotor outlet does not visibly affect the vane flow field. However, the rotor field is

affected through the trailing edge reflected shock which is clearly apparent. It should

be pointed out that in the case of a calculation performed with 1-D b.c.'s implemented

at the stator inlet, at the interface and at the rotor exit, the discrepancies between the

1-D and the 3-D formulations would be much larger. As mentioned in the preceding

section, the use of 1-D b.c.'s at the stator outlet does affect the rotor inlet conditions.

Thus, the rotor flow field in turn produces a change in the average stator/rotor interface

pressure.

Fig. 5.9 indicates that the quasi-3-D formulation performs well at all radii, whereas

the pressure plots in Fig. 5.10 demonstrate that as far as the blade loading is concerned,

the use of the quasi-3-D formulation gives good results. The rotor-relative exit Mach

number is very close to unity. It has been numerically observed that while the flow

is converging to a steady-state solution, the exit boundary condition 'switches' from
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subsonic to supersonic and vice versa, until the flow at lower radii settles to an average

supersonic exit Mach number while the flow closer to the tip is subsonic. This point is

important to notice, for the implementation of the non-reflecting boundary conditions

requires a Fourier transform in the subsonic case, but none in the supersonic case.

The rotor results point out that by extending the computational domain sufficiently

far downstream, the results calculated using the 1-D formulation tend to match the

quasi-3-D b.c.'s solution, see Figs. 5.8 and 5.10. This is consistent with both the

quasi-3-D and the 1-D b.c.'s formulations since these two techniques give the same

results when applied to a uniform flow as it develops here in the constant area duct

downstream of the rotor. However, as mentioned earlier this is true only because the

rotor exit boundary condition alone is altered from being either quasi-3-D or 1-D.1

Hence, only minor differences in pressure exist (i.e. less than 2% of the vane pressure

drop) between the solutions computed with non-reflecting b.c.'s and the solution using

the 1-D b.c. formulation on the large domain, see Fig. 5.10. This type of behavior is

not apparent in the isolated stator computations of Figures 5.4 and 5.5 partly due to

the downstream duct area change and the location of the large domain exit boundary

which is still too close to the stator trailing edge. The 1-D b.c. formulation applied on

the small domain produces errors up to 17% of the vane average pressure drop. In an

actual turbine environment, it is not possible to extend the limits of the boundaries far

upstream and far downstream. In particular, the axial gap between the stator and the

rotor of Figures 5.2 and 5.3 is typical of a modern aircraft turbine. Hence, the use of

accurate non-reflecting boundary conditions in a multi-stage environment is necessary

in order to assess the performance of the whole engine.

The results for the subsonic flow in a linear turbine cascade are presented in Fig. 5.11.

In this case no radial variations exist and the quasi-3-D formulation reduces to the exact

2-D non-reflecting boundary conditions where only second-order non-linear errors can

arise. However, in this shock-free flow these are very small as shown by the virtual

'In order to show the effects of imposing the standard 1-D b.c.'s at one particular location, the full
stage calculations presented here were computed with only the rotor exit boundary condition formulation
modified to be either quasi-3-D non-reflecting or 1-D.
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perfect match of the pressure contours between the small and the extended domain

calculations (the discrepancy in pressure between the two solutions is smaller than

0.001 times the exit dynamic head).

5.7 Conclusions

A theory for the construction of steady-state quasi-3-D non-reflecting boundary condi-

tions has been developed and applied to the Euler equations. The boundary condition

formulation is derived using Fourier analysis applied to the linearized equations. A

fundamental approximation is that radial effects are accounted for in the average mode

only. In the absence of any radial variations, the boundary conditions are exact within

the linear theory.

The quasi-3-D formulation has been implemented for transonic and subsonic axial

flow turbomachine calculations with realistic operating conditions and for standard

designs. In the transonic case where a shock wave crosses the computational boundary,

the solution is virtually independent of the position of the computational domain limits

with local discrepancies in pressure less than 2% of the vane average pressure drop,

which compares to 24% when using the standard 1-D formulation. Hence, the second-

order non-linear errors together with the error due to the uncoupling of the radial and

tangential variations are very much smaller than the ones introduced in the solution

when using the standard one-dimensional approach. In the subsonic case the solution

is completely independent of the position of the far-field boundaries.

87



x

Figure 5.2: Side view of a transonic first turbine stage including stator suction and rotor

pressure sides.

0

x

Figure 5.3: Mean height blade-to-blade mesh (stator: 80 x 30 x 24, rotor: 77 x 30 x

30 nodes). The stator and the rotor grids shown here are used in the small domain

calculations.
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Figure 5.4: Stator midspan pressure contours (p/pt ml) using quasi-3-D non-reflecting

boundary conditions, Meit = 1.2. Isolated stator calculations.

large .30
domain

.4

.5

.50

.96
.98

.50

small .40
domain .30

.9

eflecting boundary con-

89

'

.40

small
domain .38

.38

.98

.34

.40

.42

0
A

Figure 5.5: Stator midspan pressure contours (p/pt inl) using r

ditions at the outflow, Merit = 1.2. Isolated stator calculations.
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Figure 5.6: Midspan stator blade surface pressure using non-reflecting and reflecting
b.c.'s. Isolated stator calculations. L: large domain, S: small domain.
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Figure 5.7: Flux-averaged turning angle at the large domain stator exit using non-
reflecting and reflecting b.c.'s. Isolated stator calculations.
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Figure 5.8: Rotor midspan pressure contours (p/pt it), Mext = 1.1. Coupled sta-

tor/rotor calculations.
a) Quasi-3-D non-reflecting b.c.'s.

b) Standard 1-D reflecting b.c.'s. at rotor outlet.
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Figure 5.9: Rotor blade-to-blade and hub-to-tip pressure contours (p/pt in) at 20%

chord downstream the trailing edge (equals half way between trailing edge and small

domain exit). Coupled stator/rotor calculations. Increments = 0.01.

a) Quasi-3-D non-reflecting b.c.'s small domain and b) large domain.

c) Standard 1-D reflecting b.c.'s. small domain and d) large domain.
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Figure 5.10: Midspan rotor blade surface pressure using non-reflecting and reflecting

b.c.'s. Coupled stator/rotor calculations. L: large domain, S: small domain.
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Figure 5.11: Pressure contours (p/pt mi) using quasi-3-D non-reflecting boundary con-

ditions, Mexit = 0.75. Linear cascade. Increments = 0.01.
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Chapter 6

Code Validation

An essential ingredient in the development of a CFD code is the validation itself.

This can be a large time-consuming process especially for three-dimensional unsteady

cases, so naturally the definition of validation has to be clarified in some sense.

The first step is to show that the numerical method converges to the solution of

the discretized equations. For steady-state this is usually accomplished by looking at

iteration histories. These consist of the maximum and root mean square values of the

changes 6U at each Lax-Wendroff iteration, and should tend to machine accuracy. All

the steady-state calculations presented in this thesis were converged to an absolute

maximum residual below 5 x 10-6, which means that the mean residual is between

five to ten times smaller. For unsteady turbomachinery flow in which the unsteadiness

arises solely from the relative motion between the rotor and the stator, the convergence

is achieved once periodic flow is obtained, see Chapters 8 and 9.

This chapter is mostly devoted to steady-state flow, because the implementation

procedure is exactly the same for steady and unsteady flow except for two flmdamental

differences. The first resides in the definition of the time-step. For unsteady computa-

tions, the time-step is taken to be the same for all the computational cells, whereas local

time-stepping is used to compute steady solutions, see also Appendix C. The second dif-

ference appears in the handling of the stator/rotor interface boundary condition, which

is discussed in Sections 5.5 and 8.3 for steady and unsteady flow, respectively. Hence,

the additional validation work for unsteady flow is merely a check of data transfer at
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the interface.

The most difficult part of the validation is to show that the discrete solution of

the Euler equations is an accurate approximation to the analytical equations. Since

analytic solutions are known for simple cases only, different approaches are used. The

first approach consists of defining two test cases for which either analytical or experi-

mental values are available for comparison with the computed solution. In both cases,

the amount of discretization errors is indicated by the stagnation pressure changes.

These should analytically be zero since the flows are subsonic and were computed us-

ing uniform inlet conditions. The two cases refer to 2-D flows in cascades which are

artificially extended to 3-D. The first case is discussed in Section 6.1 and involves the

incompressible flow within the Gostelow cascade [41] for which there is an analytic solu-

tion. The second calculation is performed upon a high subsonic, large turning cascade

for which experimental blade surface data are available, see Section 6.2. In both cases

the comparisons are good.

The Munk and Prim substitution principle [80] can be used as a means for checking

3-D solutions for steady inviscid flows in an actual non-rotating turbomachinery com-

ponent. It can be shown that because of the decoupling of the energy equation from the

mass and momentum equations, certain physical quantities have to remain the same for

different flow solutions satisfying this principle. This is discussed in Chapter 7.

Another way of examining the solution is to check upon certain integral quantities

that have to be conserved within the computational domain. This is the subject of

Section 6.3.

6.1 Gostelow cascade

In this section, the present method is used to calculate the steady flow through the

Gostelow cascade. In [41], Gostelow used a conformal mapping transformation to derive
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the analytic incompressible solution.

Since the flow is inherently 2-D, it is appropriate to construct a 3-D cascade by

stacking a few grid planes along the span. For that purpose, a modified version of the

ISES elliptic grid generator [30] is used to define the 2-D mesh. The calculation involves

a single blade passage of 120 nodes along the streamwise direction and 30 nodes from

blade-to-blade, as seen in Fig. 6.1. 5 of these planes were then used to define the span.

The stagger angle is 37.50 and the solidity 1.248.

There are two main problems associated with the Gostelow case. Firstly, the present

method is not well suited for the calculation of incompressible flow, since the pressure

waves associated with the time-marching procedure take a long time to damp out. Thus

the convergence rate is low.

The computed Mach number contours are plotted in Figure 6.2. Note that the

maximum Mach number is approximately 0.182, so that the compressibility effects are

very small. Gostelow's tabulated results together with the computed surface pressure

coefficients are compared in Fig. 6.3. The agreement is nearly perfect.

The second difficulty arises due to the analytic square-root pressure singularity at

the trailing edge of the blade that sets the Kutta condition. To capture this effect

as well as the large gradients in the flow solution around the leading edge, grid nodes

clustering is required at both the leading edge and the trailing edge, see Figures 6.4

and 6.5, respectively. A product of a cubic and a sine function is used to get this kind

of blade node spacing.

The prescribed inlet flow angle is 53.50 relative to the axial direction. The outlet

angle is dependent upon the Kutta condition. Using the present method it has been

established to 30.230, which compares to the analytic value of 30.0250 indicating an

error of the order of 1% in the tangential force. Finally, since the flow is nominally isen-

tropic, the variations in stagnation pressure through the domain highlight the amount

97



of numerical errors. For this low Mach number flow these are best quantified by looking

at the stagnation pressure coefficient defined as

Pt - PtinI
C,,t 2 . (6.1)

Vilin'

The Cp, contours are plotted in Figure 6.6. Errors occur essentially around the blade

with the larger values in magnitude concentrated at the leading edge where the trun-

cation errors are the highest. Except for the leading edge region, the blade stagnation

pressure error represents less than than 8% of the inlet dynamic head.
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Figure 6.1: Blade and grid geometry for the Gostelow cascade. 120 x 30 (x5) nodes.
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Figure 6.2: Mach number contours for the Gostelow cascade. Increments = 0.005.
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Figure 6.4: Blow-up of the Gostelow mesh near the leading edge.Axial chord = 1.
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Figure 6.5: Blow-up of the Gostelow mesh near the trailing edge.
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Figure 6.6: Stagnation pressure coefficient contours (C,) for the Gostelow cascade.

Increments = 0.01.
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6.2 T7 turbine cascade

The T7 turbine nozzle is a subsonic high-turning linear cascade designed by Rolls-Royce

and for which blade surface pressures are available. These were compared to numerical

solutions in References [107] and [30].

As with the Gostelow cascade, a 2-D elliptic grid is first generated and then stacked

along the span. One of the five blade-to-blade grid planes is shown in Fig. 6.7. Note

that in contrast to the Gostelow grid, this mesh defines cells of nearly constant volumes,

which allows the use of larger time-steps.

This case has an inlet flow angle of 52.80 and an exit angle of -72.70. It is thus

a useful test case to determine the effects of grid shear on the algorithm. Figure 6.8

presents the Mach number contours. The maximum Mach number in the field is 0.817

whereas the exit Mach number is 0.75. The numerical errors are assessed by plotting

the stagnation pressure contours, see Fig. 6.9. The maximum error in total pressure

is 3.6 % of the inlet stagnation value, and accounts for 13% of the exit dynamic head.

The maximum error is generated at the cusped trailing edge due to the lack of mesh

resolution and part of it is convected downstream. Except for the leading and the trailing

edge region, the blade surface stagnation pressure is within 1.5% of the exit dynamic

head. The calculated and the measured surface pressures converted to isentropic Mach

numbers using the inlet total pressure are compared in Fig. 6.10. The agreement is

good except towards the trailing edge on the suction side, where viscous effects become

more important.
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Figure 6.7: Blade and grid geometry for the turbine T7. 110 x 35(x5) nodes.
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Figure 6.8: Isentropic Mach number contours for the turbine T7.
Increments = 0.02, Mmax = 0.82.
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Figure 6.9: Total pressure contours (pt/ptij,) for the turbine T7.

Increments = 0.002, max = 1.017, min = 0.964.
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6.3 Integral quantities

As mentioned earlier, the purpose of this section is to validate the 3-D Euler solver

with respect to integral quantities that have to be conserved within the computational

domain. These are mass flow, angular momentum and power. Numerically conservation

of mass, momentum and energy is expressed (and implemented) on a cell-by-cell basis.

Also, as mentioned in Section 3.2 the flux contributions from the interior cell faces

cancel out leaving only the boundary flux terms. Thus, errors expressing an unbalance

of mass, angular momentum and power for the blade row and which are solely based

upon quantitites at the domain boundary (inlet/outlet and solid walls) provide a check

on the interior domain implementation procedure. In addition, an important aspect

to notice is that the Euler code does not directly solve for the conservation of angular

momentum and power on a cell-by-cell basis, though analytically these can be replaced

by conservation of momentum and energy. For instance, if mistakes were made in the

implementation of the source terms, they would show up in the angular momentum and

power errors.

The errors for different steady-state stator/rotor calculations are presented in Ta-

ble 6.1.

The error in mass flux balance is expressed by

Em, = .j , r=s out or r inl. (6.2)

7irnl is the stage inlet mass flow, whereas fniutt and 7n,.j1 represent the stator exit and

the rotor inlet mass flow, respectively.

For an axisymmetric geometry, conservation of momentum is replaced by the con-

servation of angular momentum. For a spatially fixed control volume V surrounded by

the surface S this is expressed as

Jf (p x F)dV + (p -i-)( x F)dS = . x = . (6.3)
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This equation states that the changes in angular momentum due to the unsteady fluc-

tuations within the control volume plus the change in the flux of angular momentum

across the control surface equals the sum of the externally applied torques. For turbo-

machinery applications, the axial component of the torque (due to the tangential force,

or lift) is particularly important because it is used to derive the power delivered by the

fluid to the blades. Thus the axial component of Equations (6.3) applied for a steady

flow (in the frame of the blade row) is

JjueR pu, dS = b FeR = Tx. (6.4)
* ' blade

That is the the difference between the angular momentum flowing into the blade row in

all the inlet streamtubes and that flowing out in the downstream tubes plus the torque

T, acting on the blade due to the streamtubes sum to zero. The torque T ,,, for a

given stator or rotor blade row is defined as

T,= Z p (YS - 2SU), (6.5)
blade.,,

where the sum is taken over all the cell faces composing the blade surface. The change

in angular momentum within the control volume is defined as

tip tip

s"' iTn = pFUFRU eF S - pFUxF RUOF S (6.6)
\hub ) Sr out (hub ,,inl

Using this relation, the error in angular momentum conservation is defined as

As 'atT. _ Txs.
E A uts r l .(6.7)

Conservation of energy requires that the power delivered to the fluid by the rotating

blades must be balanced by the power received by all the streamtubes in the turbine

row. The latter one is expressed by(tipti
*nP = P,, out - Ps,1. = PFUF htFSz - (PFUzF htF Sx)

hub rot (hub nl
(6.8)
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where

htF PF 12 2
7-pPF +2

(6.9)

Therefore the integrated error function Ep for the rotor

Ep A"tP - fITX r,
EP = - r nI Tr, -- rotor, (6.10)

in which QT,. is the power delivered by the rotor blade to the fluid represents a lack

of conservation of energy. For a non-rotating row, Ep indicates an error in the the

conservation of stagnation enthalpy flux and is defined as

Ep = AinP stator.
Psi

(6.11)

Notice the use of circumferentially flux-averaged quantities in Eqs. (6.6) and (6.8).

case Ei Ee Ep comments

sr922 0.0085 0.0077 0.0080 Stator, see Section 5.6
0.0230 0.0057 -0.0094 Rotor, quasi-3-D long domain

sr921 0.0048 0.0069 0.0053 Stator, see Section 5.6
0.0058 0.0040 0.0310 Rotor, 1-D long domain

sr772 0.0096 0.0077 0.0090 Stator, see Section 5.6
0.0221 0.0090 -0.0035 Rotor, quasi-3-D short domain

sr771 0.0091 0.0078 0.0088 Stator, see Section 5.6
0.0180 0.0056 0.0033 Rotor, 1-D short domain

sr80 0.0056 0.0008 0.0027 Stator, see Section 7.4
0.0025 0.0009 0.0058 Rotor, htinj = const case

sr80T -0.0026 0.0043 -0.0043 Stator, see Section 7.4
-0.0333 0.0024 -0.0349 Rotor, variable htia = ht(R) case

Table 6.1: Errors in mass flow (Es), angular momentum (Ee) and power (Ep) for
steady-state cases. The errors are in %.
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Chapter 7

Steady-State Temperature Migration in a

Transonic Turbine Stage

It is well known that the temperature coming out of the combustor of a gas turbine

is spatially (and often temporally) non-uniform. The walls and the blades of the first

stage of a modern gas turbine are cooled in order to protect the material from melting.

Thus the stage inlet temperature is higher at midspan than at the hub and the tip

walls. Pitchwise variations may also exist but are not considered here. The effects

of temperature gradients are important in turbomachinery flow and in a turbine in

particular, because they generate thermal wakes, affect the loading of the blades by

creating secondary flows and modify the wall heat transfer.

The purpose of this chapter is to analyze the effects of a spanwise non-uniform inlet

temperature distribution on the aerodynamics of a highly loaded transonic first turbine

stage. Specifically, one is looking for 3-D secondary flow in the stage due to the migration

of the total temperature. To enhance the understanding of the flow physics involved in

the temperature migration process and to assess the magnitude of the secondary flow,

the results are analyzed relative to the case of constant inlet stagnation enthalpy, see

Figure 7.1. Notice that in both cases the inlet stagnation pressure is constant. The

assumption of uniform stage inlet stagnation pressure is justified by the fact that at the

combustor exit the Mach number is small (~ 0.1) and the flow is in radial equilibrium

so that the stage inlet pressure is constant and equal to the total pressure. As seen later

in the analysis, the mechanisms driving the secondary flow are based on vorticity and

113



simple dynamics derived from steady-state velocity/vorticity triangle arguments as well

as inviscid steady-state secondary flow theory. Hence, although the unsteady potential

field is lost in the time-averaged solution, the steady result captures the major effects

associated with temperature migration since it is primarily an inviscid steady process.

Cattafesta [10] performed an experiment in the MIT Blowdown Turbine Facility

Scaling to assess the effects of inlet radial temperature profiles on the efficiency of a

transonic turbine stage. This facility allows to simulate the continuous operation of

a full scale high performance turbine [21]. In the present work, computations were

performed on the same turbine stage. It consists of a highly loaded first turbine stage

designed by Rolls-Royce for transonic flow. The overall geometry and the grid used

for the calculations are shown in Figs. 7.2 and 7.3. The actual geometry consists of 36

stator blades and 61 rotor blades but the computational domain has been reduced to

one blade-to-blade passage using periodic boundaries.

The numerical analysis of temperature migration in the stage is decomposed in two

major parts. In the first part, a set of two computations with different inlet stagnation

temperature distributions were performed on the isolated vane (no rotor downstream) of

Figures 7.2 and 7.3. The purpose of the isolated stator calculations is double. Firstly,

this case allows to introduce the the Munk and Prim [80] substitution principle, a

concept that is extremely useful to explain the differences occurring between the two

flow solutions. In addition to its practical application in this work, I think that it

offers a very interesting approach towards the understanding of inviscid, steady-state

compressible flow. Since it is usually not discussed in the basic fluid mechanics courses

although it originally appeared in 1947, I feel that not only the description of this

concept but also its derivation is appropriate.

Briefly summarized the Munk and Prim principle states that if a steady isentropic

flow field is determined for a specified geometry and total pressure distribution, then the

streamlines pattern, Mach number, static and total pressure fields remain unchanged

for any stagnation temperature distribution. Clearly, the second reason for performing
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the isolated vane computations is to check the implementation of the Euler solver since

the two solutions should match perfectly for certain physical quantities according to the

Munk and Prim principle. In addition, the application of this concept to the stage flow

explains why no 3-D secondary flow associated with the spanwise temperature gradient

occurs in the vane.

In the second part of this chapter, the results for a complete stage computation with

the two different inlet stagnation temperature conditions are presented. The comparison

of these flows clearly demonstrate that a secondary flow occurs in the rotor frame

of reference. The secondary flow, which shows up as a strong radial flow primarily

on the rotor pressure surface, is explained using velocity/vorticity triangles arguments

and simple dynamics. The full stage computations also allow to determine the effects

associated with the temperature migration of one row onto the other, effects which

would not appear in the case of an isolated vane.

This chapter is structured as follows. A brief literature review on the subject of tem-

perature distortions in turbines is presented in Section 7.1 followed in Section 7.2 by the

derivation and consequences of the Munk and Prim substitution principle. This concept

is then applied in Section 7.3 to analyze the flow in an isolated vane for two different

inlet stagnation temperature distributions. The results for the coupled stator/rotor are

presented in Section 7.4. Finally, the essential conclusions are summarized in Section 7.5.
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Tt = Tt (R)
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Figure 7.1: The radial temperature migration problem.
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Figure 7.2: Side view of a transonic first turbine stage including stator pressure and

rotor suction sides.

0
A

x
Figure 7.3: Mean height blade-to-blade mesh (stator: 80 x 30 x 30, rotor: 80 x 30 x 34

nodes).
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7.1 A brief literature review

The effects of temperature distortions in an axial flow turbine have been investigated

both experimentally and computationally.

Butler et al. [9] conducted an experiment in which hot air seeded with C02 was

introduced at the inlet of a subsonic axial turbine stage. The temperature distortion

consisted of a hot spot centered at 40% span at one circumferential location with a ratio

of hot to cold air set to 2. A secondary flow was measured in the rotor frame of reference,

but none in the stator row. Rai and Dring [88] carried out a 2-D analysis of the redis-

tribution of an inlet temperature distortion in a turbine stage by solving the thin-layer

Navier-Stokes equations. Also in 2-D, Krouthen and Giles [66] performed a numerical

simulation of the effects of hot streaks in a turbine rotor. The domain was decomposed

into a inviscid core region, where the Euler equations are solved, and a viscous region

where the Reynolds-averaged, thin-layer Navier-Stokes equations are solved. Both 2-D

studies presented unsteady temperature contours and predicted the migration of the hot

gas towards the pressure surface, which is consistent with experimental observations.

More recently, Harasgama [47], Takahashi and Ni [105] and Dorney et al. [19] per-

formed numerical simulations with inlet temperature distortions. In [47] the 3-D Navier-

Stokes solver of Dawes [14] was used to analyze the rotor-relative flow field under the

influence of a uniform, radially parabolic and radially skewed parabolic rotor inflow

temperature profile. Takahashi and Ni used an Euler solver (with viscous modelling)

to predict the rotor temperature redistribution resulting from the effects of circular hot

jets as modelled in Butler's experiment. Periodic unsteady and steady 2- and 3-D re-

sults were presented. Among other conclusions, this study indicates that the steady and

the time-averaged rotor pressure distribution agree well. However, the steady solution

underestimates the temperatures. In a concurrent paper [19], 3-D unsteady Navier-

Stokes computations were performed with similar inlet conditions. Both computations

show similar trends, with the Navier-Stokes technique providing more detailed agree-

ment with the experimental data. In addition, these studies clearly indicate that by
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comparing the rotor surface temperature distribution to the 2-D simulations and the

experiments, 3-D effects are essential in the temperature migration process of circular

hot streaks. Notice that in all the above mentioned studies the turbine operated under

subsonic flow conditions.

Lakshminarayana [68] carried out an analysis to predict thermally driven secondary

flow in a nozzle and a rotor that is based upon Helmholtz's vorticity equation for

inviscid compressible flow. He derived approximate relations relating the rotation of the

isothermal surfaces to the gradient in stagnation temperature and provided expressions

for the strength of the secondary vorticity and for predicting the temperature profiles at

the exit at the exit of the blade row. These expressions were derived from the equation

for the growth of secondary vorticity (streamwise) written in intrinsic coordinates.

7.2 Munk and Prim substitution principle

The derivation of the Munk and Prim substitution principle starts by considering the

equations of motion of an inviscid, steady and adiabatic perfect gas of constant specific

heats'. Also, there must be no body forces, hence this principle cannot be applied in a

rotating frame of reference.

V - (pV) = 0, (7.1)

# -.O Vp
(V V)V = , (7.2)

V - Vht = 0. (7.3)

The last equation indicates that the total enthalpy ht is constant along a streamline,

although ht may vary from one streamline to another. The goal of the following deriva-

tion is to express the equations for the conservation of mass and momentum in terms of

'Note that an extension of this principle to account for viscous stresses and heat transfer has been
proposed by Greitzer et al. [44]. The extended principle, however, is only approximate.
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variables where the density and stagnation enthalpy do not explicitly appear. For that

purpose, it is useful to replace the stagnation enthalpy ht by the "maximum" velocity

Vm,. This velocity is defined as

ht = V2 ax (7.4)
2

and represents the velocity of the gas at the state where the energy is completely trans-

formed into kinetic energy, i.e. T = h = 0. Also, define

C = (7.5)
Vmax

as the reduced velocity vector. Hence, the energy equation along a streamline for a

perfect gas of constant specific heat becomes

1
ht = cPTt = h + 1V2 h -C (7.6)

2 1 - C2(76

The continuity Equation (7.1) is now written in terms of the reduced velocity d.

V -(pV) = V - (pt h)( )

- p h V' - () + (-)d V(ptv/2ht) = 0. (7.7)

The second term to the right of the above equation is zero. This is because the quantity

Ptv'2;i is constant along a streamline2 , so that its gradient must be perpendicular to V

or d. Thus

V - ((i)d) = 0. (7.8)

The density term is replaced by a reduced velocity function using isentropic relations

and Eq. (7.6).

1 1

P = - - = (1 C2)- (7.9)
Pt T ht

Thus, the continuity equation becomes

V . [(1 - C2)_i dj = 0. (7.10)

2 Although pt changes discontinuously across a shock, the argument is still valid ahead and down-
stream of the discontinuity.
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The momentum Equation (7.2) is also rewritten in terms of the reduced velocity d.

p(Vaa,d - V)(Vmax0) + Vp = 0

- PV2az0 Vd + pVa 2,(d - VVmax) + Vp = 0 (7.11)

Notice that VVmax = 0 along a streamtube. Apply Eq. (7.4) to get

ph 2 (d - V)d + Vp = 0. (7.12)

For a perfect gas ph can be defined as

ph = p-T = p 2R T = P. (7.13)

Thus the momentum equation expressed in terms of pressure and reduced velocity vector

alone is

27 p C2 (d-V)d+VP=O, (7.14)
-f-1 1-C2 )

which can be rewritten as

(d V)d + 7 (1 - C2) V(hnp) = 0. (7.15)
27-

The continuity Equation (7.10) and the dynamic Equation (7.15) form a system of two

equations for the two unknowns d and p.

The fact that the stagnation enthalpy (or total temperature) does not explicitly

appear in the equations of motion expressed in terms of the reduced velocity C and

static pressure p, indicates that the energy equation is effectively uncoupled from the

other equations of motion. Thus a solution of Eqs. (7.10) and (7.15) really consists

of a family of solutions corresponding to different assignments of the total enthalpy to

streamtubes. However, for each solution the pressure field p and the streamtubes area

are the same, independent of the assignment of ht. To express the relations between the

solutions in terms of total pressure, Mach number, mass flow, and so on as a function of

the given stagnation temperature distribution, it is best to focus on two single solutions

determined for a specific geometry.
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Consider for instance two steady-state flow fields occurring in the isolated stator

of Figs. 7.2 and 7.3. The inlet and outlet conditions relative to these two flows are

the same except for the inlet stagnation enthalpy distribution among the streamtubes.

Focusing on one particular streamtube characterized by ht,,, in one solution and htO,

in the other, it is readily seen that due to the invariance of C the two velocity fields are

related by the following relations

Vc0ld _ htCsl _ (7.16)
Vho ht, t..

In addition the same pressure field will keep the flow in equilibrium, i.e.

Pcold = Phot (7.17)

and the streamline pattern is the same in both solutions. The following relations are

then easy to demonstrate.

___*d =-_ Mcold = Mhot (7.18)
Thot Tthot

Pcold _ Ttho (7.19)
Phot Ttld

Pcold VCe2ld P = pt (7.20)

ncold t(7.21)
Mnhot Tcd
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7.3 Isolated vane

The stator inlet radial temperature profile is typical for a high performance combustor

and consists of a parabolic shape with 20.8% over-temperature at midspan compared to

the hub and tip walls, see for instance [10]. In Figure 7.4 the vane outlet mass-averaged

total temperature is plotted as a function of percent span for the cases without and

with inlet radial stagnation temperature variation. All other boundary conditions are

the same for the two cases. Note that the subscript cold is used to describe a quantity

related to the flow of constant inlet stagnation temperature whereas the subscript hot

refers to the case with spanwise temperature gradient. The third curve plotted in Fig. 7.4

represents the prescribed inlet temperature profile for the 'hot' flow case. Note also that

T =nlet T outl= 1/(7 -1), which is correct since each streamtube conserves its

stagnation temperature. In the 'hot' flow case the the maximum over-temperature is

well conserved at midspan but the minima at the hub and the tip are slightly higher at

the exit than at the inlet indicating an effect of the numerical dissipation.

It is important to realize that in the 'hot' flow case vorticity is being introduced as

part of the inlet boundary condition as sketched in Fig. 7.1. This is done while keeping

Ptcolc inet = Pthot inlet = const. Hence, according to Eqs. (7.16) to (7.21), the 'hot' flow

case (rotational) may be substituted for the 'cold' flow case (irrotational) without affect-

ing the local values of static and total pressure, as well as Mach number. Consequently,

no streamwise vorticity associated with the spanwise temperature gradient occurs in the

vane.

Another way of checking this statement is to use Hawthorne's secondary flow theory

[48, 50, 51]. He showed that, within the frame of the above mentioned assumptions,

the secondary circulation formation is driven by a gradient in total pressure but not

stagnation enthalpy. Since the total pressure is constant in both cases, the additional

vortex lines introduced in the 'hot' case have to remain perpendicular to the flow, i.e.

no streamwise vorticity is generated. This can be verified by using the relations for the
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growth of streamwise vorticity written in natural coordinates.

8 (w, 2w, 1 T ap

as pV pVO- p 2 V2 T Ob an

_ 2 0 Pt
2  -b (7.22)

pptV20.- ab

Equation (7.22), taken from Reference [55], was derived from the Helmholtz equation

that governs the generation and growth of vorticity for an inviscid compressible flow

and in the absence of body forces. Using intrinsic coordinates, the vorticity is written

as

W = S, + ftn + Wb, (7.23)

where w,, w, and wb are the components of vorticity in the streamwise (9), principal

normal (ft) and binormal (b) directions, respectively, and o- is the local radius of cur-

vature of the streamline, see Fig. 8.12. Note that this theory is more extensively used

in Chapter 8 to discuss the secondary flow occurring in a 3-D linear cascade due to a

vortex and temperature gradient.

The important point to notice here is that the constancy of the stagnation pressure

implies that the growth of secondary flow in the vane is zero. Hence, in the 'hot'

flow case and according to Eq. (7.22), the secondary flow developed by the turning

of the inlet normal vorticity w. is exactly balanced by the secondary flow induced by

the temperature gradient (aT/Ob). Consequently, since no inlet streamwise vorticity

is present in the 'cold' and 'hot' cases and none is generated along the passage, the

solutions exhibit the Munk and Prim similarity. Indeed this shows up in the numerical

simulation as indicated by Figures 7.5, 7.6 and 7.7, i.e. the two solutions lay on top of

each other.

As shown in the next section, in the coupled stator/rotor calculation and compared

to uniform inlet total enthalpy, the radial temperature variation indirectly affects the

vane flow field region downstream of the choked throat, through the rotor flow field.

124



1.2

% span

0.

0

800- -- - ----- ------ -- - -- --------

40 - --------- - -- - - - - - -

0.950 1.150

cold
hotexit
hotinlet

1.250

mass-averaged TI/Tt inz cold

Figure 7.4: Isolated vane: mass-averaged stagnation temperature at vane inlet and exit.

cold case hot case

tip

hub

Figure 7.5: Munk and Prim test: vane pressure at 8% axial chord downstream trailing
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Figure 7.6: Munk and Prim test: midspan vane pressure (p/pt ird). Increments = 0.02.

cold case hot case

Figure 7.7: Munk and Prim test: midspan vane Mach number. Mexit = 1.2. Increments

= 0.05.
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7.4 Coupled stator/rotor results

The pressure fields at the hub wall and at a constant radius (~ midheight) are repre-

sented in Figures 7.8 and 7.9 for the 'cold' case. The discussion of the flow features of

the transonic stage operating under constant inlet conditions ('cold' case) is postponed

until Chapter 9. Instead, this section focusses on the effects of the non-uniform inlet

stagnation temperature profile and the resulting secondary flow occuring in the rotor

frame.

For convenience, the flux-averaged flow parameters for the two cases are summarized

in Table 7.1.

In the rotor frame of reference, both the inlet velocity and the tangential angle have

larger values at midspan than they would have in the case of no radial variation. This

can easily be demonstrated by subtracting the rotor tangential speed from the stator

radial velocity shear, see Figure 7.10. Figure 7.10 is to be considered as representative

of two velocity triangles drawn at midspan of the stator exit (or rotor inlet) and where

Vcdl/Vhat is given by Eq. (7.16). The rotor-relative flux-averaged inlet angles for the

two cases are displayed in Figure 7.11.

The first consequence of this is that the rotor relative total pressure is affected as well

by the introduction of the stagnation temperature variation, see Figure 7.12. The static

pressure and relative stagnation pressure (on the pressure side of the blade) are shown

on Figures 7.13 and 7.14 for the 'cold' and 'hot' flow cases, respectively. Relative to

the (Tcoidlet = const) calculation case, the 'hot' flow case result shows a total pressure

excess at midspan, and a deficit at the hub and the tip. This produces a radial pressure

gradient on the pressure surface, which is comparable in magnitude to the axial pressure

gradient, and generates a secondary flow from midspan towards the hub and the tip.

This effect, can more clearly be seen by looking at the blade streamlines plotted on

Figs. 7.15 and 7.16. Another way of visualizing the secondary flow is to look at the

relative velocity vectors, see Reference [92] or the surface tufts plotted on the pressure
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side, see Fig. 7.17. Note that the surface streamlines and tufts were generated using

VISUAL3, the graphic visualization package developed at MIT by Giles and Haimes

[40].

An important factor in determining the boundary-layer heat flux is the inviscid

relative total temperature shown here on the pressure and suction sides for the 'hot'

flow case, see Fig. 7.19. By transforming the velocity vectors from the stator absolute

to the rotor relative frame of reference, a spanwise difference in rotor relative inlet angle

and velocity magnitude occurs, see Fig. 7.10. At this point, Fig. 7.103 represents the

stator/rotor interface velocity triangles at midspan and at the hub (or tip) for the 'hot'

flow case only. The subscripts cold and jet are now referred to quantities at the endwalls

and midspan, respectively.

The hot midspan fluid is oriented more towards the rotor pressure side and moves at

a higher relative speed as compared to the cold endwall gas. Thus, as the two streams

(hot midspan and cold endwalls) move through the rotor, the hot fluid migrates towards

the pressure side relative to the cold fluid as seen in Figure 7.18. This segregation effect

is based upon arguments inferred from the velocity triangles dxawn at midspan and

endwall. In their 2-D analysis of the collection of high temperature compressor rotor

wakes on the pressure side of the downstream stators, Kerrebrock and Mikolajczak [63]

used a similar velocity triangle argument to explain the segregation between wake fluid

and inviscid fluid. Here, the segregation effect seems to be enhanced by the rotor relative

secondary flow in the sense that the hot midspan gas spreads out, on the pressure side,

towards the upper and lower walls of the channel. On the suction side, however, the

cold fluid tends to move towards midspan, see Figure 7.19. This is consistent with the

experimental observations of Butler et al. [9]. Also, Figures 7.19 and 7.20 indicate

that the rotor trailing edge, on the pressure side, is over-heated along its entire span.

In the 'cold' flow case, however, the stagnation temperature remains approximately

constant on the blade. Compared to the case with no stagnation temperature variation,

3Actually the wheel speed varies along the span, and in that respect Fig. 7.10 is more representative
of a 3-D linear stator/rotor cascade. However, this does not affect the conclusions.
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it becomes evident that rotor relative inviscid secondary flow has been induced by the

stator inlet total temperature radial gradient.

Another way of understanding these results is to look at the vorticity field. In

Figure 7.10, a vector representative of the hub vorticity in the absolute frame ' is de-

composed into a rotor relative streamwise component o, and a normal component W,.

Note that the tip vorticity if drawn, would have opposite direction. According to the

results of Section 7.3, no streamwise vorticity is generated in the vane, hence the stator

exit absolute vorticity is perpendicular to the flow. However, it is readily seen that a

negative component of streamwise vorticity is present at the rotor inlet and thus con-

tributes to the development of secondary flow. As the fluid particles move through the

lower half of the rotor passage, this streamwise vorticity tends to develop a radially up-

ward component of velocity on the suction side and a downward velocity on the pressure

side. On the upper half of the channel where fluid particles with positive streamwise

vorticity enter the rotor, this mechanism is reversed inducing a radially upward motion

on the pressure side and a downward velocity component on the suction surface. This

is only a qualitative argument since the rotor inlet fluid vorticity is intensified or weak-

ened according to secondary flow theory applied to a rotating duct. For an inviscid

non-isentropic compressible flow rotating at constant angular speed f, it is not possible

to derive for the growth of streamwise vorticity a simple expression such as the second

form of Eq. (7.22). In general the gradient of two quantities such as the entropy and

the rotary stagnation pressure pt,

* p+ 1p ((U2+V2+W2) _ 2 R2) , (7.24)

are required, see for instance [51, 100, 50]. Only in particular instances such as incom-

pressible or homentropic flow, expressions for the growth of streamwise vorticity can be

written as a function of the gradient of rotary stagnation pressure only.

In the full stage calculations analyzed here, though the rotor exit pressure is the

same, the stator/rotor interface pressure in the 'hot' case differs from the 'cold' case.

Relative to the case with uniform inlet total temperature, the calculation with varying
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total temperature shows a lower flux-averaged stator exit pressure that can be expressed

as

(PFcold - PFhot)hub vane exit 0.365 - 0.349 = 0.016, (7.25)
PtinI

where PtinI = 1/7. This pressure change represents 4% of the vane exit dynamic head

(based on a hub Mach number of 1.31). This is different from the isolated vane results

discussed in Section 7.3 in which two flows were compared with different inlet stagnation

temperature profiles but the same exit pressure so that the Munk an Prim principle

could be used. As explained earlier, one of the consequences of increasing the inlet

stagnation temperature is to increase the rotor relative inlet angle at midspan. For a

fixed mass flow, this results in larger midspan tangential velocity, hence larger total

velocity and Mach number, see Figure 7.21. The flux-averaged pressure is thus ?educed

but, on account of the radial equilibrium coupling, this occurs not only at midspan but

also at the endwalls. Consequently, for the same inlet total pressure, the stator exit

velocity and hence the Mach number are also increased at the hub and the tip walls, see

Fig. 7.22. Notice that the influence of the rotor flow field does not extend upstream of

the choked stator throat. In the relative frame of reference, and compared to the case

of constant inlet total temperature, higher incidence angles are now expected over the

entire span, see Figure 7.11. This forces a shock, otherwise not present in the constant

stagnation enthalpy calculation, to develop at the suction side of the rotor root, see

Figures 7.23 and 7.24.

The generation of the rotor-relative secondary flow influences both the rotor heat

transfer and boundary-layer development. In [95] Sharma and Graziani analyzed the in-

fluence of cross-flow on the development of the midspan suction surface boundary-layer

in a turbine cascade. They showed that the effect of the endwall flow is to generate

a cross-flow velocity gradient which drives endwall fluid towards midspan. Also, they

demonstrated that the overall mass in the boundary-layer is greater than the 2-D value.

This produces a thickening of the midspan suction surface boundary-layer and conse-

quently an increase of the midheight losses, decrease in the Reynolds shear stress, skin

friction and Stanton number. This is a general secondary flow mechanism that can be
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applied to the flow treated here. In this application, however, the secondary flow is

particularly strong on the pressure side of the rotor with a cross-flow driving midspan

fluid towards the endwalls. It is expected that under the influence of the radial flow, a

thinning of the midspan pressure surface boundary-layer would occur accompanied by

an enhanced rotor blade heat transfer.

Another set of computations 4 involving a spanwise temperature variation in the

stage was set up in order to compare the solutions using the present Euler solver and

the results obtained by Pappas [84] running Denton's solver (inviscid version) [17].

Though the contraction of the annulus was the same, the stator and the rotor blade

geometries used in the two calculations differed. For instance, different radial cuts were

used to define the stator geometry. This affects both the thickness of the blade which, at

the crown, varies about 20% from the tip (thicker) to the hub, and the twist, especially

at the tip were differences in the exit swirl angle of 30 (relative to an average vane

exit angle of 720 at the hub) appear between the two solver solutions. Pappas' trailing

edge cusps (both stator and rotor) are much more elongated and slender than the ones

defined in this work (about 5 times longer). Also, in Pappas' work, the rotor leading

edge has been altered from rounded to cusped. These changes decrease the blade aspect

ratio by increasing the axial chord (estimated at +10%) and affect the loading at the

leading and the trailing edge.

In general, a qualitative agreement has been observed between the two sets of com-

putations, with similar trends for the secondary flow consistent with the analysis given

above. For instance, relative to the uniform inlet flow solution, the predicted magni-

tude of the midpsan excess in stagnation pressure and deficit at the hub (and the tip)

is the same in the two computations with a value equal to 34% of the rotor-relative

inlet dynamic head at the hub (based on Pappas' predicted hub Mach number of 0.45).

Thus, both codes were able to predict the temperature migration in the rotor passage

4 The set involved a calculation with a constant inlet temperature and another one with a 30% increase
in stagnation temperature at midspan compared to the hub and tip values. The corrected speeds are
the same with and without temperature variations. These computations were performed with an exit
pressure 20% lower than the exit pressure of the cases summarized in Table 7.1.
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and in particular on the blade surface, with the strongest effects occurring at the tip on

the pressure side near the trailing edge. However, the predicted level of temperatures

on the blade surface is different, see Figure 7.25. For instance, compared to 5% in

Pappas' solution, the present method predicts a heating of the tip on the pressure side

corresponding to 8.5% of the rotor-relative inlet stagnation temperature at midspan.

7.5 Conclusions

The effects of an inlet spanwise non-uniform stagnation temperature distribution in an

industrial transonic first turbine stage have been analyzed. Computations onIeh&vane

alone and on the combined stator/rotor geometry were performed with an inlet radial

temperature profile (21% over-heated flow at midspan compared to the hub and the

tip wall, and parabolic spanwise variation) typical for these kind of axial flow turbines.

To assess the importance of the resulting secondary flow (both in terms of magnitude

and direction), computations with a uniform inlet stagnation temperature were also

performed.

The isolated vane solutions computed with and without inlet temperature variations

but the same stagnation pressure, exhibit an invariance of Mach number and pressure

which is in accordance with the Munk and Prim subsitution principle. Also, the calcu-

lations show that no secondary flow is generated by the introduction of the stagnation

temperature distortion as predicted by secondary flow theory. Hence, the isolated stator

computations provided a useful test case for the Euler solver.

The solutions for the complete stage indicate that a significant secondary flow occurs

in the rotor row. The introduction of the stator inlet temperature gradient results in

general in the collection of hotter gas on the rotor pressure side than on the suction

side. On the pressure side, the hot fluid is spreading from midspan towards the hub

and the tip walls resulting in the heating of the upper and lower walls. At the tip on
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the pressure side near the trailing edge, the heating reaches 8% of the inlet stagnation

temperature reference value, which almost corresponds to one-half of the inlet midspan

distortion.

The segregation effect between hot and cold fluid with the hot midspan gas oriented

more towards the pressure side of the rotor blade (an increase of 60 in rotor inlet angle

compared to the uniform inlet conditions solution) is explained from the stator/rotor

interface velocity triangle. Relative to the uniform inlet conditions solution, the temper-

ature distortion calculation exhibits an excess of rotor-relative inlet stagnation pressure

at midspan and a deficit at the hub and the tip of about 12% of the rotor inlet dynamic

head (kaised on a rotor-relative Mach number at the hub of 0.63), which contributes to

the generation of secondary flow and the migration of hot fluid from midspan towards

the upper and lower walls on the pressure side.

Relative to the solution with a uniform stagnation temperature at the inlet, the

stator/rotor interface pressure is reduced (17% of the rotor inlet dynamic head), which

in turn produces an increase in both the stator exit and rotor inlet Mach numbers and

also the rotor inlet angle, see Table 7.1. This is sufficient to trigger a shock a the rotor

root. This feature, together with the stagnation temperature migration indicates that

the rotor-relative secondary flow is significant in the case examined.
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Figure 7.8: Cold case: pressure contours at the hub wall.

134



Figure 7.9: Cold case: pressure contours at constant radius (R :- midspan rotor leading

edge).
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Figure 7.10: Velocity and vorticity triangles at stator/rotor interface.
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parameter sr80(cold) sr80T (hot)

Ratio of inlet mass flow (2ld.)= 1.061

Ratio of inlet stagnation temperature 1.000 (cst) 1.208 (parabolic)

hub 0.00 0.00
Stator inlet tangential angle mid 0.00 0.00

tip 0.00 0.00
hub 72.50 72.50

Stator outlet tangential angle mid 75.20 74.90
tip 74.80 74.60

hub 50.50 51.60
Rotor-relative inlet tangential angle mid 48.80 54.30

tip 39.20 40.90

hub -55.20 -57.30
Rotor-relative outlet tangential angle mid -69.20 -68.40

tip -76.60 -81.30
hub 0.15 0.15

Stator inlet Mach number mid 0.13 0.13
tip 0.13 0.13

hub 1.31 1.33
Stator outlet Mach number mid 1.20 1.23

tip 1.14 1.16
hub 0.63 0.66

Rotor-relative inlet Mach number mid 0.47 0.55
tip 0.39 0.41

hub 1.06 1.05
Rotor-relative outlet Mach number mid 1.00 1.01

tip 0.97 0.96
hub 0.76 0.75

Rotor Mach number mid 0.81 0.74

tip 0.85 0.85

Rotor wheel speed ( 0.097 0.097
(Ctin / Lhub)

Ratio of specific heats -7 1.27 1.27

Table 7.1: Flow parameters for transonic turbine stage with and without inlet stagnation
enthalpy gradient.
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Chapter 8

Effect of a Stator Embedded Vortex and

Temperature Gradient on a Downstream Rotor

Flow Field

The appearance of streamwise vorticity downstream of a cascade due to the turning

of the vortex filaments of the inlet boundary-layer can be understood by considering

the classical secondary flow theory introduced originally by Squire and Winter [102] and

Hawthorne [48]. It is also well known that the endwall boundary-layer present in front

of a cylinder on a flat plate rolls up into a vortical motion, called the horseshoe vortex

due to its shape as it flows on both sides of the cylinder. As discussed by Sieverding

[99] in a survey paper, both phenomena are present in turbine blade passages and

contribute to the formation of secondary flows. An important point to extract from this

survey is that endwall streamsurfaces gradually rotate and develop into what is called a

passage vortex, see Figure 8.1. This type of secondary flow has been extensively studied

experimentally, see for instance References [6, 76, 71, 79].

The genesis of vorticity in the passage vortex is due to viscous effects. However,

the dynamics of the subsequent flow interactions with the downstream rotor is driven

primarily by inviscid mechanisms. In addition to shear flow interactions, most of the

turbines operate with non-uniformities in the temperature at the inlet. In particular,

radial temperature gradients are present at the combustion chamber exit. As discussed

in Chapter 7 this generates secondary flow. In that respect, the objective of this chapter
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is to investigate the combined effects of thermally and velocity driven secondary flows

occurring in a downstream rotor. In an actual engine, two vortices usually of equal an

opposite strength are present close to the hub and the tip endwall. For the flow in the

first turbine row, this is combined with a radial temperature profile representing cool

flow at the endwalls and heated gas at midspan. In this study only one vortex, located

at midspan is present and combined with a linear spanwise temperature gradient. This

avoids grid resolution issues, which is known to affect numerical solutions of vortical

flows. However, the strength of the vortex and the magnitude of the temperature

variation are chosen in accordance with experimental observations. Hence, though more

academic than the flow discussed in Chapter 7, this case provides an upper bound for the

magnitude of a disturbance entering a subsonic high-turning rotor, that combines both

a shear flow and a temperature gradient. The analysis of the resulting secondary flow

in the rotor (steady and unsteady) is important for several reasons. First, this allows to

evaluate the strength of the rotor-relative secondary flow, relative to uniform inlet flow

conditions. Second, the comparison of the steady flow solution to the time-average of

the unsteady flow shows the effect of the steady-state stator/rotor interface averaging

procedure described in Section 5.5. Finally, by setting the temperature gradient to

zero, but allowing for the vortex-induced shear flow to enter the rotor, it is possible to

reveal which one of the two disturbances, i.e. vortex or temperature gradient, creates a

stronger secondary flow.

The generation of the passage vortex itself is not computed in this study. Instead,

an analytical model is proposed to define it. The vortex is then inserted at a suitable

location in the vane (stator). According to several experimental observations see for

instance [99, 76, 71, 79], it is reasonable to assume that the secondary flow develops

into a vortical structure in a region close to the trailing edge. Thus, the computational

procedure uses a stationary row (vane) which has no blades and in which the inlet

boundary corresponds to the trailing edge region of an actual cascade, see Figure 8.2.

In a turbomachine environment the rows consist of multiple blade passages, hence

multiple passage vortices are formed due to the turning of the endwall boundary-layer.
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Figure 8.1: Cascade endwall flow structure, from Ref. [94].

The analytical model used for the passage vortices is discussed in Section 8.1. This

model assumes that the secondary flows leave the vane row as organized streamwise

vortices with combined finite size cores and free vortex structures, which is consistent

with the experimental observations of Moore and Adhye [79], and Langston et al. [71].

It is designed to satisfy both periodic and wall boundary conditions.

The stationary row inlet boundary conditions are described in Section 8.2. The

entrance velocity and stagnation temperature distributions result as the superposition of

the vortical flow onto a uniform flow with a radially linear temperature gradient. These

conditions are imposed using the standard 1-D boundary conditions approach. Then in

Section 8.3 the unsteady stator/rotor interface boundary conditions are discussed.

The results for both steady and unsteady secondary flow effects in the rotor are

discussed in Section 8.4. The unsteadiness is caused by the relative motion between the

stationary vane and the moving rotor, while the inlet and exit conditions are kept fixed

in time. As mentioned earlier, to understand the effects of the secondary flow, steady-

state and time-averaged results with vortex and temperature gradient are compared to

the flow results for uniform inlet conditions. This allows to quantify the secondary flow

effects in the rotor with respect to the strength of the inlet vortex and the spanwise
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Figure 8.2: Grid geometry and blade T for vortex-temperature interaction. Vane:
13 x 23 x (13) nodes, rotor: 57 x 23 x (13) nodes.
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Figure 8.3: Periodic vortices between parallel plates.

temperature variation. Then, the unsteady effects are assessed.

Finally, in Section 8.5, some general conclusions are drawn from this study.

8.1 Passage vortex model

As mentioned earlier, the generation of the passage vortices in the vane is not cal-

culated. Instead a model for these vortices is proposed using conformal mapping and

potential theory, see for instance [78, 91]. To ensure correct wall and periodic boundary

conditions the model starts by considering a row of periodic vortices, each of them of

strength r, separated by a horizontal distance P and placed midway between parallel

plates. This constitutes the physical (z = x'+iy') plane, see Fig. 8.3. Then, following

Milne-Thompson's procedure [78] for a single vortex between parallel planes, the ve-

locity field induced by an infinite row of vortices is found by using the transformation

=i e rz/H. This transformation maps the strip between the plates on the upper half of

the (C = +ir7) plane, see Fig. 8.4. The top wall (y' = H/2) is mapped into the segment
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Figure 8.4: Periodic and image vortices in transformed complex plane, ( = i er-/H.

( < 0, 77 = 0) whereas the bottom wall (y' = -H/2) corresponds to ( > 0, 27 = 0).

The vortices located in the physical plane at z = nP, n = 0, 1, 2,... correspond to
MLM

= i e H and are all located in the (q > 0) portion of the C plane. Thus, to impose the

wall tangency condition, image vortices of strength -r are now placed at = -i e ,

n = 1, 2,....

The complex potential of a line vortex located at the origin is defined as iF log C. By

superposition, the complex potential G(C) of all the vortices in the C plane is found by

summing the potential of all the individual vortices, i.e.

I+oO 0
G(C) = ir log(C-ie' ) - E log(C+ie' ) . (8.1)

n=-<x>n=- /

After some algebra and noticing that the complex potential F(z) in the z plane can be

written as

F(z) = F(z(()) = G(C), (8.2)
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the following expression is obtained.

F(z) = ir 3 log (tanh( (z-nP))).

The complex velocity w(z) in the physical plane is defined as

dzFW(z) = =z -- IV'.

Thus,

w(z) =iTj Z
from w t H _ sinh( (z -nP))'

from which the u' and v' velocity components can be found as

(8.3)

(8.4)

(8.5)

7 +00 sin( y') cosh(QM(x'- nP)) (8.6)
H --oo(sin(-y') cosh(Q(x'-nP)))2 + (cos(jy') sinh(r(x'-nP)))

7+0 - cos(gy') sinh(M(x'-nP))

n ,__oo (sin(jry') cosh(7(.'-nP)))2 + (cos( y') sinh(r (x'--nP)))2

This velocity field is now modified using Lamb's correction [70] in order to define

vortices with finite size cores, i.e.

U, = 1-f

V1 = 1 \ e /(

x Eq.(8.6),

x Eq.(8.7),

(8.8)

(8.9)

in which a is the vortex core radius and the subscript , denotes a velocity induced by

the vortices.

8.2 Inlet conditions

The stationary row consists of a truncated stator in which no blades are present, see

Figure 8.2. It models the aft part of an actual row extending from the trailing edge to
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the interface. The axis of rotation of the vortices is aligned with the vane inlet uniform

flow denoted u,, see Figure 8.5. The inlet velocity profile is found by superposing u(o,,

which is oriented at an angle a,, with respect to the x direction, on the vortical flow

described in the above section. Thus in a Cartesian coordinate system the inlet velocity

components are defined as

Uinl = uoo COS aco + u. sin a,

vini = u., sin a,, - uV cos a00, (8.10)

Winl = v -

For this particular application, the inlet boundary condition is implemented accord-

ing to the 1-D boundary condition theory, see Appendix D. It is briefly outlined here.

One wishes to study the effect of the vortical motion introduced as an inlet condition,

and the requirement that the inlet temperature varies linearly from the hub to the tip,

onto the downstream moving rotor. Hence, local values of the velocity and stagnation

temperature are implemented as inlet boundary conditions at the time level n + 1 in

the Lax-Wendroff algorithm.

(IinI)" = VinI,

(ae)l' = ao in ,

(aR)' = aR in,

(ht)+ = htinl. (8.11)

,a= u + +w2 , ae and az are defined in Section 2.3. This is implemented

using the same Newton-Raphson procedure as in Section D.1. However, instead of im-

posing average inlet entropy, average radial and tangential angles and average stagnation

temperature at the inlet, local values of the velocity profile as given by the passage vor-

tex model and the temperature profile are imposed. This is achieved by driving to zero
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the following four residuals.

R"= p~c(u - I;jIl),

2= pc" (u n- I"I sin(ae i,) sin(aRinl)),

R3= pc" C R -| I il cos(aRmnl)) ,

4= P"(h n - ht;in) (8.12)

The rest of the procedure is very similar to that given in Section D.1. Using the 1-D

characteristics theory, the changes in the incoming characteristic variables are obtained

by linearizing the residuals from the current time level through a one-step Newton-

Raphson procedure.

S n+1 R, n/ 1

R2 R2 j (Ri, R2 ,R 3 ,R 4 ) n 602

~-~ ? + ( (~~$,~ )= 0. (8.13)R3 R3 j(O1, 02, 03, #4) 63

\R4 R 4 1 \604

The values of the Jacobian matrix are found to be

0 0 0

C (R1, R2, R3, R4) 0 1 0 0 1814)
0 0 1 0

1 V W 1
\ y~T cE T 2 (1 + U)

Thus, the following changes in the incoming characteristics are found.

601 R,

= -1 R2  (8.15)
603 R 3

604 R4

The outgoing fifth characteristic variable is given by the Lax-Wendroff algorithm,

605 = 6 b5LW. (8.16)

The combined five characteristic changes calculated in physical space are then trans-
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formed into changes in the primitive variables, and hence in conservation variables. This

is done for all inlet nodes before the flow field can be updated. Notice that with this

procedure, the inlet stagnation temperature is imposed.

8.3 Unsteady stator/rotor interface

The algorithm developed for transferring information through the stator/rotor interface

while the rotor is moving is valid for equal pitches only. Moreover, the tangential as well

as the radial nodes distribution has to be the same on both sides of the interface. At

each time-step, the basic procedure uses the 1-D characteristics to update every stator

and every rotor node that belongs to the interface. The local 1-D characteristic changes

at the stator outflow and the rotor inflow are found as follows.

A01 -E2 0 0 0 1 Ps-Pr

A02 0 0 PE 0 0 3 - 2,-

A03  = 0 0 0 PIE 0 uO, -uOr -U , (8.17)

A44  0 p 0 0 1 UR-URr

Ao , 0 -pe 0 0 1 Ps -Pr

where the subscripts , and ,. represent stator- and rotor-relative quantities, respectively.

Because of the use of relative flow variables, the rotor wheel speed Uw = fOR has

to be introduced. Notice that in Equation (8.17) local primitive variables are used

instead of the flux-averaged ones of the steady stator/rotor interface boundary condition

(Section 5.5). According to the direction of propagation of the characteristics, the stator

outflow change is

(8.18)5 = -AO 5 = AE(U, -U,,it) - (Ps -Print),

while at the rotor inlet the changes are

601 = A4 1 = -E 2 (Psint -Pr) + (Ps int -Pr),

602 = A02 = AE(UOsint - 9r - ),
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643 = A3 = PE(URsint -UR,),

604 = #4= E(uxsint-uxr) + (Psint-Pr). (8.19)

The subscript ;mt represents an interpolated value. At a stator outflow node, the two

closest rotor-relative nodes are used to linearly interpolate primitive variable values

needed to calculate the changes. Similarly, for a rotor inflow node, the two closest

stator nodes are used. The outgoing characteristic changes are taken from the changes

calculated by the Lax-Wendroff algorithm. The combined five characteristic changes on

both sides of the interface are then converted back to primitive and finally conservative

variables before the flow field is updated.

Note that this procedure does not guarantee flux conservation across the interface.

However, in all the simulations presented in this thesis this has not posed a problem.

The maximum instantaneous error in mass flow across the interface is only about six

times greater than the corresponding error in a steady-state computation. Unsteady

convergence is reached when a periodic solution has been obtained. This typically takes

ten rotor-passage periods, which is comparable to the number of periods needed for

UNSFLO [34]1 to converge. This stator/rotor interface algorithm is also used in the

unsteady computation of Chapter 9.

8.4 Results

The 3-D linear partial-vane/rotor geometry used to investigate the effects of the vortex-

temperature secondary driven flow in a turbine stage is shown in Fig. 8.2. The rotor

geometry, made of T7 blades, is similar to the 3-D linear cascade tested in Section 6.2.

The 3-D mesh was generated by stacking along the span 13 of the planes shown in

Fig. 8.2. The solidity is 0.94 and the aspect ratio 0.5. In order to distinguish one

'UNSFLO is a 2-D solver for unsteady inviscid flows in turbomachinery, designed to ensure flux
conservation in both steady and unsteady modes.
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endwall from the other and to aid the discussion of the results, one endwall is referred

to as the hub and the other as the tip. It should be pointed out that this definition

is arbitrary, i.e. for the case examined here (untwisted blades, absence of Coriolis and

centrifugal effects), 'hub' can be replaced by 'tip' and conversely in all the figures. This

means that for an observer looking downstream the cascade with the rotor moving from

right to left the set up of the inlet conditions can be considered from two viewpoints:

a clockwise vortex (see Fig. 8.5) combined with higher temperature at the hub than at

the tip (see Fig. 8.6) or a counter-clockwise vortex with lower temperature at the hub

compared to the tip. The results are explained according to the former point of view.

Table 8.1 lists the flow parameters for three subsonic cases. Note that the Mach

numbers and angles represent tangentially (y direction) flux-averaged quantities. The

steady-state and time-averaged results of computations performed with inlet vortex

and radial temperature gradient are given in the first two columns. For comparison, the

third column lists the results of a computation with uniform inlet conditions, i.e. no

vortex and constant temperature. The ratio of uniform to vortex velocity was chosen in

accordance with the experimental observations of Moore and Adhye [79] and Langston et

al. [71]. The inlet temperature profile consists of a linear variation from hub to tip with

its lowest value at the tip. The midspan value matches the temperature of the uniform

flow. The inlet uniform Mach number, inflow angle and the rotor wheel Mach number

were chosen to achieve the design rotor-relative inflow Mach number and angle in the

absence of vortex and temperature variation. Since the uniform inlet conditions solution

represents a 2-D flow, any radial flow induced by the vortex-temperature disturbance is

considered a secondary flow.

The steady-state results are discussed first. The flow in the stator frame of reference

is similar to a swirling flow in a duct. As a result of the helical type shape of the

streamlines, the surfaces of constant stagnation temperature are gradually distorted

from the inlet to the interface, see Figures 8.6 and 8.7.

As discussed in Chapter 5, tangentially flux-averaged values are transferred through
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the steady-state stator/rotor interface. Thus, in the rotor frame of reference the vortex

is represented only in an average sense. For instance, the rotor-relative inflow stagnation

pressure, tangential angle and Mach number are plotted versus span in Figures 8.8, 8.9

and 8.10, respectively. The vortex-temperature disturbance produces a change up to

2.4% of the stagnation pressure, which represents 27.5% of the vane exit dynamic head

(based on a Mach number of 0.37). The variations in tangential angles from hub to

tip are very large (up to 200 relative to the uniform flow solution), which is a striking

result, considering the fact that the ratio of uniform flow to maximum vortex velocity

is almost 3. Hence, the vortex-temperature disturbance is severe. Notice however

that the rotor-relative midspan inflow angle is close to the value calculated in the case

of uniform conditions. Figure 8.9 indicates that the hot hub fluid is oriented more

towards the pressure side of the rotor, whereas the cold tip fluid moves towards the

suction side as it flows through the rotor. Thus, in general, one would expect to see

hot hub fluid moving across the channel and then up along the blade pressure side

and tip fluid cooling the blade suction side. This type of segregation effect is similar

to that observed in Chapter 7, though the resulting secondary flow is quite different.

Stagnation temperature contours on several blade-to-blade and hub-to-tip grid surfaces

are represented in Fig. 8.11 for different axial locations.

The introduction of the vortex and the radial temperature variation induces a non-

uniform stagnation pressure distribution in both the stator and the rotor frame of refer-

ence. The vortex core region located at midspan shows up as a deficit in total pressure,

see Figure 8.8. The radial temperature variation introduces a spanwise asymmetry in

the total pressure distribution. The higher density of the cold tip fluid contributes to

the increase of rotor-relative stagnation pressure at the tip compared to the hub. As

a consequence of this, a radial flow that was non-existent in the case of uniform inlet

conditions occurs in the rotor. As in Section 7.3, the results can be best understood

by utilizing the secondary flow theory and in particular the relations for the growth of

streamwise vorticity derived by Hawthorne [49] and Horlock et al. [69]. In Reference

[68] Lakshminarayana used those relations to derive an approximate method to calculate

the rotation of isothermal surfaces in a turbine nozzle and in a rotor.
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In the absence of body forces, the Helmholtz equation that governs the vorticity G,

= V x V, for an inviscid compressible flow is given by

D O LeG - 1-- -!) ( L- V - -vv ) x Vp, (8.20)
Dt p p p p

where D/Dt stands for the particular derivative. The first term on the right-hand

side of Equation (8.20) represents the tilting and the stretching of the vortex filaments.

The second term involving the density and pressure gradients arises in non-barotropic

situations. It represents the production of vorticity due to the moment of pressure forces

about the center of mass of a fluid particle. In this particular application both terms

are important, as discussed later on.

To explain the rotor-relative secondary flow it is useful to write down the steady-state

streamwise component of Equation (8.20) in generalized coordinates.

0 (L, 2wn 1 OT 8p

OsdpW pW+ p2W2T b"On

_ 2wn 149T
- L~ n I O Ta ( 8 .2 1 )
pWa pTa ab

Notice that for the 3-D spanwise linear partial-vane/rotor geometry tested here, the

wheel speed is uniform, hence the relative vorticity equals the absolute vorticity. Equa-

tion (8.21), taken from Reference [55] provides an expression for the development of

secondary vorticity along the relative streamline. Using intrinsic coordinates, the vor-

ticity is written as

O = &S, + Whn + Wb, (8.22)

where w,, wn and wb are the components of vorticity in the streamwise (.), princi-

pal normal (ft) and binormal (b) directions, respectively, see Figure 8.12. Using these

coordinates it can be shown that

O= W (8.23)

and

9W W
ob aw + -W (8.24)

on 0
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where o, is the radius of curvature of the streamline. Equation (8.21) can also be written

as a function of stagnation pressure variation only, [49, 55].

- (-w ) = 2 -pt (8.25)
as pW pptW2  iOb

As seen in Figure 8.5, the vane inlet vorticity is aligned with the freestream, i.e.

o, = 0, and is essentially concentrated at midspan. Notice the contrast with the case

of Chapter 7, where the vorticity in the stator frame is directed along the principal

normal. In the rotor frame of reference, the inlet vorticity can be decomposed into a

streamwise (w,) and a normal (w,) component, see Fig. 8.13. Then, as indicated by

Equation (8.21), the streamwise vorticity is intensified (or weakened) by two terms. 2

The first contribution arises from the turning of the inlet normal vorticity through the

rotor and is related to the classical Squire and Winter [102 expression for secondary

vorticity in a duct. The second contribution is due to the radial temperature gradient

which has been introduced without significantly affecting the pressure. Hence, the

last term of Equations (8.20) and (8.21) contributes to the generation of vorticity, and

secondary flow in particular.

However, as noticed by Hawthorne [49, 50, 51] and illustrated by Equation (8.25),

the essential quantity to be considered for secondary flow is the gradient in stagnation

pressure. This means that thermally driven secondary flows occur only when associated

by gradients in Mach number and entropy such that the stagnation pressure is not

constant.

The rotor-relative stagnation pressure on both the suction and the pressure side

of the blade is plotted in Figures 8.14 and 8.15, respectively. Relative to the case of

uniform flow conditions, the blade stagnation pressure gradient is relevant because it

produces a pressure gradient which forces fluid of different stagnation temperatures to

move radially. From Figures 8.14 and 8.15 the following trends are obtained. On the

2In the stator frame, absolute velocity V and absolute stagnation pressure are implied in the above
equations.
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suction side OPt > 0 from the leading edge to the crown and then stays mostly constant.

On the suction side 2 ~ 0 from leading edge to midchord. Then, in the aft part of the

blade 2I < 0 from hub to midspan whereas OPt > 0 from midspan to tip. Consequently,

on the suction side midspan flow is expected to move towards the hub. On the pressure

side however, radial flow occurs mainly in the second part of the blade and consists of hot

hub fluid and cold tip fluid moving towards midspan. This is illustrated in Figures 8.16

and 8.17 for the suction and the pressure side of the blade, respectively.

From the midspan blade-to-blade pressure contours plotted in Figure 8.18 one can

infer that the pressure gradients are very small in magnitude in the first part of blade

pressure side and in the aft part of the suction side. Thus, the contribution of the

temperature-pressure term (of Eq. (8.21)) to the secondary flow is likely to be small

in these regions. Also, as a consequence of the velocity/vorticity triangle plotted in

Figure 8.13, where the absolute vorticity is aligned with the freestream, the rotor inlet

normal vorticity component is small and so the growth of secondary vorticity in the first

40 %, say, of the blade pressure side in small too. As seen in Figure 8.17 and compared

to the radial flow in the second part of the blade, the secondary flow is very weak in

this area (a factor 6 in the velocity magnitude).

The secondary radial flow on the blade is best represented by the streamlines, see

Figures 8.19 and 8.20. Secondary flow does affect both heat transfer and growth of

boundary-layer. For instance the surface contours of total temperature are important

in assessing the heat loads. Figure 8.21 indicates that large temperature gradients occur

at the root of the blade on the suction side. On the pressure side, see Fig. 8.22, the

temperature gradients are large in the aft portion of the blade at midspan and at the

trailing edge. Sharma and Graziani [95] analyzed the effect of endwall flow on the

blade suction surface midheight boundary-layer development in a turbine cascade. The

secondary flow vortex associated with the endwall flow generates cross-flow that drives

endwall gas towards midspan. In particular they showed that the penetration height

of the separation streamline can be used to estimate the cross-flow velocity profiles on

the blade surface. As the strength of the secondary vortex increases, the penetration

162



height of the separation line gets larger. This information is then used to assess the

influence of the secondary flow on the aerodynamics and heat transfer at midspan. For

instance, they showed that the cross-flow increases the thickness of the boundary-layer,

thus increasing the midheight losses, decreases the Reynolds shear stress, skin friction

and Stanton number.

The distortion of the isothermal surfaces, as seen in Fig. 8.11, can be explained from

the cross-flow pattern. Under the influence of the initial streamwise vorticity and high

incidence angle, hot hub fluid is gradually shifted across the channel from suction to

pressure side. It then moves up along the blade pressure side towards midspan. This

allows colder midspan-tip fluid to migrate down the blade suction side. In addition,

non-barotropic effects cause cold tip gas to also move towards midspan on the blade

pressure side. As the two streams converge they are deflected normal to the blade and

roll-up into a secondary vortex which is then convected down the rotor passage. Its

formation occurs in a region close to the trailing edge and is highlighted by the circular

stagnation temperature contours plotted in Fig. 8.11.

Another numerical simulation involving only the vortex but no stagnation temper-

ature variation was actually performed, see Figures 8.23 and 8.24. The results indicate

that the same secondary flow pattern occurs because the shape of the stagnation pres-

sure distribution is similar to the one of Figure 8.8. Because of the lack of non-barotropic

effect in the contribution of streamwise vorticity, the separation line on the pressure side

is moved above midspan, instead of below as in Figure 8.20. In this case, the magnitude

of the radial variation in rotor-relative inlet stagnation pressure is decreased. For a

combined vortex-temperature disturbance it represents a maximum of 48% of the rotor

inlet dynamic head (based on a Mach number of 0.28), which compares to 36% for the

vortex alone. Hence, the vortex is responsible for most of the rotor-relative secondary

flow.

Figure 8.25 is a 3-D representation of the vane/rotor blade passage with five near

wall streamtubes. The expansion of the streamtubes close to the stagnation point on
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the pressure side of the leading edge is clearly visible, as well as the rapid contraction as

they concentrate towards midspan and the flow accelerates. Notice that the merging of

the two streams does occur slightly below midspan. As mentioned earlier, the strengths

of the upper and lower half radial flows depends on the stagnation pressure distribution,

which is not symmetric about midspan. The 3-D views of Figures 8.26 and 8.27 represent

the rotor passage with hub and pressure side density and pressure contours, respectively.

Also represented on theses figures is a particular cutting plane which intersects a near

wall streamline. Hence, this plane is essentially normal to the primary flow direction.

The projection of tufts on the cutting plane allows to clearly visualize the secondary

flow vortex, see Figure 8.28.'

Another interesting feature to notice about this flow is that the spanwise mass flow

distribution is not uniform, see Figure 8.29. This means that the work output is non-

uniform along the span. At the inlet, tip streamtubes carry more mass flow than their

hub counterparts. This is a direct consequence of the choice for the sense of rotation

of the inlet vortex, its strength, and the radial temperature (density) distribution. At

the rotor exit, however, due to the mixing created by the secondary flow, the mass flow

distribution along the span is more uniform, see Fig. 8.30. The mixing is significant

since the spanwise variation in mass flow is reduced by a factor 2.

The flow around the leading edge of the rotor blade is interesting to analyze. Due to

the large difference in incidence angles from hub to tip, the stagnation line is skewed as

illustrated in Figures 8.17 and 8.20. The hub stagnation point is located farther back

on the pressure side than the tip stagnation region. Hence as the flow deflects round the

leading edge towards the suction side, and for a given rotor-relative stagnation pressure,

the pressure drop is expected to be larger in the hub region. This sets a radial pressure

gradient that forces a cross-flow to move from the tip to the hub, see Figures 8.16 and

8.17. Also, this radial flow is a consequence of the spanwise total pressure gradient at

the local stagnation point, see Figs 8.14 and 8.15.

3 Figures 8.19, 8.20, 8.25, 8.26, 8.27 and 8.28 were generated using VISUAL3 [40].
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The pressure distributions around the blade at hub, midspan and tip are plotted in

Figures 8.31, 8.32 and 8.33, respectively. On each figure four curves are drawn which

represent the steady-state, the time-averaged, the minimum unsteady and the maxi-

mum unsteady pressure, respectively. The difference between the maximum and the

minimum pressure for a given axial location highlights the importance of the unsteady

effects. Clearly these are small in this application4 . For instance, the maximum periodic

tangential force perturbation, with respect to the time-averaged solution, represents only

2%. Hence, the loading is not significantly affected. Another indication of the weakness

of the unsteady effects is that the steady-state pressure distribution matches almost

perfectly the time-averaged values.

The major difference between the steady and the unsteady vortex interaction is

that in the unsteady solution, the rate of rotation is transmitted across the vane/rotor

interface. One of the consequences is that the time-averaged stagnation temperature

contours will not match those of the steady-state flow, see Figures 8.11 and 8.34. The

difference between the two cases in terms of temperature distribution in the flow field is

small. However, in terms of magnitude the differences are more important. For instance

in Figure 8.35, the rotor-relative surface stagnation temperature is plotted at midspan

for the steady, time-averaged, minimum unsteady and maximum unsteady. Clearly

the steady-state solution tends to underestimate the level of temperature occurring

on the rotor blade. Differences between the magnitude of steady and time-averaged

temperatures may increase if the strength of the vortex is intensified 'sufficiently' or/and

if the flow becomes transonic and vortex/shock interactions occur.

'The reduced frequency of this case is about five times smaller than the reduced frequency of the
transonic flow treated in Chapter 9.

165



8.5 Conclusions and discussion

In this chapter, the secondary flow produced by a combined vortex-temperature distur-

bance introduced at the vane trailing edge upstream of a moving rotor row has been

analyzed. The strength of the disturbance, with a ratio of vane exit velocity to maxi-

mum vortex velocity of 2.8 and a spanwise temperature variation of 20% (with respect

to uniform flow conditions), is realistic, though the local features of the secondary flow

might be quite different due to the presence of a second vortex in an actual turbine

environment. The design of the rotor, with a turning of 1250 and untwisted blades is

typical of a high-turning, linear subsonic cascade. The generic configuration chosen here

allows the inlet conditions to be viewed 'in reverse' due to the arbitrary definition of the

hub and the tip endwall. From one viewpoint the inlet conditions consist in a clockwise

vortex combined with a decrease in temperature from hub to tip. The other viewpoint,

found by inverting hub and tip, represents a counter-clockwise inlet vortex combined

with an increase in temperature from hub to tip.

The rotor-relative radial mixing is driven by two basic mechanisms. The first mech-

anism is related to the steady-state axisymmetric streamwise vorticity, which produces

a secondary (radial) velocity. The second mechanism, due to the discrete vortex, en-

hances an unsteady radial velocity component. The comparison between the steady and

the time-averaged unsteady solution shows that the steady result captures the essential

features of the secondary flow with nearly identical blade pressure distributions. This

suggests that the first mechanism is more important, and that the steady-state sta-

tor/rotor interface tangential averaging procedure, by allowing for radial variations to

be accounted for, retains the streamwise vorticity introduced by the vortex. However,

differences appear in the blade temperature distributions. The steady solution underes-

timates the level of blade temperature, i.e. differences with the time-averaged solution

up to 2.5% the inlet stagnation value are recorded. This is not really significant since

it represents only 12% of the inlet radial temperature disturbance.

The unsteady pressure fluctuations are limited to 3% (peak-to-peak local variation)
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of the inlet stagnation pressure, which represents 60% of the rotor inlet dynamic head

(with an inlet Mach number of 0.28) a value which is comparable to the stagnation

pressure variation introduced by the vortex-temperature disturbance. These unsteady

fluctuations represent only 13% of the rotor pressure drop, which means that unsteadi-

ness is not significant. The maximum unsteady stagnation temperature fluctuation

(peak-to-peak value) reaches 11% of the inlet reference stagnation value, which also

corresponds to about half of the inlet disturbance.

By comparing the result with an inlet disturbance formed by the vortex but no

temperature variation and the flow with a combined vortex-temperature disturbance, it

is possible to separate the shear flow effects from the non-barotropic effects. The latter

ones account only for 25% of the stagnation pressure gradient, which indicates that it

is mainly the deficit in the stagnation pressure in the vortex core that is responsible for

the secondary flow.

In conclusion, the introduction of a combined velocity-thermal disturbance whose

strength represents about 50% of the rotor inlet dynamic head, produces a significant

secondary flow. The good agreement between the steady and time-averaged results in-

dicates that the steady-state solution captures most of the secondary flow features. Sur-

prisingly, the unsteadiness has only a small effect on the mean flow, with the steady-state

matching the pressure distribution, providing trends for the temperature distribution

but underestimating the local values.
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parameter steady time-averaged uniform

Ratio of inlet velocities (00 ) 2.8 2.8 00

Vortex core size 2a) ~.i~ 0.17 0.00

Ratio of inlet temperatures (T) 0.9 (linear) 0.9 (linear) 1.0 (cst)

Inlet freestream tangential angle 63.00 63.00 63.00

Inlet freestream Mach number 0.37 0.37 0.37
hub 76.10 76.10 63.00

Vane outlet tangential angle mid 61.90 61.80 63.00
tip 51.80 51.50 63.00

hub 0.37 0.37 0.37

Vane outlet Mach number mid 0.36 0.36 0.37
tip 0.40 0.40 0.37

hub 70.60 70.70 52.40

Rotor-relative inlet tangential angle mid 50.60 50.60 52.40
tip 38.30 37.90 52.40

hub -66.70 -66.70 -72.70
Rotor-relative outlet tangential angle mid -75.60 -75.70 -72.70

tip -69.60 -68.80 -72.70
hub 0.27 0.27 0.28

Rotor-relative inlet Mach number mid 0.27 0.27 0.28
tip 0.31 0.31 0.28

hub 0.75 0.75 0.74

Rotor-relative outlet Mach number mid 0.75 0.75 0.74
tip 0.77 0.78 0.74

hub 0.11 0.11 0.11

Rotor Mach number mid 0.11 0.11 0.11
tip 0.12 0.12 0.11

Ratio of specific heats - 1.4 1.4 1.4

Table 8.1: Flow parameters for vortex-temperature interaction in a 3-D linear subsonic
stage. The third column indicates results for steady uniform inlet conditions.
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Figure 8.6: Inlet stagnation temperature contours (T ini/Tt o).
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Figure 8.7: Vane exit stagnation temperature contours (T/Tt). Increments = 0.01.
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Figure 8.9: Rotor-relative inlet tangential angle.
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Figure 8.10: Rotor-relative inlet Mach number.

171

1.20

0.80

% span

0.40-

0.00
0.2

----------- ----------- L----------- ----------- --y- ----- -----------

---------- ------- --- ----------- - -----------t /

steady

_ time- averaged

4020



tip

hub inlet

leading edge

axial chord = 25%

axial chord = 50%

suction
side

axial chord = 70%

axial chord = 85%

0.90

trailing edge

axial chord = 117%

Figure 8.11: Steady-state rotor-relative stagnation temperature contours (Ti/T t) on
eight blade-to-blade mesh surfaces along the passage. Increments = 0.01.
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Figure 8.13: Velocity and vorticity triangles at vane/rotor interface (midspan region).
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Figure 8.14: Rotor-relative stagnation pressure contours (pt/pt ) on suction side and

periodic surfaces ahead of leading edge and downstream of trailing edge. Increments =

0.01.
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Figure 8.15: Rotor-relative stagnation pressure contours (pt/pt, ) on pressure side and

periodic surfaces ahead of leading edge and downstream of trailing edge. Increments =

0.01.
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Figure 8.16: Vortex-temperature disturbance: rotor-relative velocity vectors on suction

side and periodic surfaces ahead of leading edge and downstream of trailing edge.
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Figure 8.17: Vortex-temperature disturbance: rotor-relative velocity vectors on pressure

side and periodic surfaces ahead of leading edge and downstream of trailing edge.
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Figure 8.18: Rotor-relative pressure contours (p/pt,.) at midspan. Increments = 0.01.
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Figure 8.19: Streamlines on rotor suction side.
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Figure 8.20: Streamlines on rotor pressure side.
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Figure 8.21: Rotor-relative stagnation temperature contours (Ti/T x) on suction side

and periodic surfaces ahead of leading edge and downstream of trailing edge. Increments

= 0.01.
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Figure 8.22: Rotor-relative stagnation temperature contours (Ti/T o) on pressure side

and periodic surfaces ahead of leading edge and downstream of trailing edge. Increments

- 0.01.
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Figure 8.23: Vortex alone: rotor-relative velocity vectors on suction side and periodic

surfaces ahead of leading edge and downstream of trailing edge.
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Figure 8.24: Vortex alone: rotor-relative velocity vectors on pressure side and periodic

surfaces ahead of leading edge and downstream of trailing edge.
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Figure 8.25: Five near-blade streamtubes with blade and hub mesh.
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Figure 8.26: Density on hub, blade pressure side and cutting plane normal to streamline.
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Figure 8.27: Pressure on hub, blade pressure side and cutting plane normal to stream-

line.
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Figure 8.28: Tufts projected on cutting plane normal to streamline of Figures 8.26 
and 8.27. 
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Figure 8.29: Rotor inlet mass flow distribution along span. 
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Figure 8.30: Outlet mass flow distribution along span.
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Figure 8.31: Rotor-relative pressure around the blade root.
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Chapter 9

Analysis of steady, unsteady and time-averaged

flow fields in a turbine stage with strong shock

interaction.

In this chapter, the present method is applied to investigate both the steady and

unsteady flow fields occurring in a highly loaded transonic first turbine stage. In addition

a comparison is made between the steady and the time-averaged result. Of particular

importance in this study is the correct capturing of the motion of the shocks that is

produced by the impact of the oblique shock wave extending from the stator trailing edge

off the downstream rotor. Considering the fact that turbine blading design is usually

based upon steady-state flow analysis (streamline curvature for instance), it is important

to assess the variations from steady-state due to non-linear unsteady processes as well

as their influence on the time-averaged solution.

In the last fifteen years several numerical analyses of unsteady stator/rotor interac-

tions have been performed. For instance, in two dimensions Erdos et al. [22] were among

the first to propose a numerical method for solving periodic inviscid and compressible

flow in a stage using an algorithm to treat unequal pitches. In 1986 Fourmaux [27]

presented a 2-D simulation of Euler flow in a compressor stage with unequal numbers of

stator and rotor blades. Lewis et al. [72] for subsonic flow and Giles [33] for transonic

flow presented quasi-three-dimensional turbine stator/rotor calculations using the Euler

equations. In 1985 Koya and Kotake [64] extended Erdos' work to three dimensions.
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Navier-Stokes solutions of unsteady subsonic stator/rotor interactions were published

by Jorgenson and Chima [60], and Rai [86] for two-dimensional flow, and Rai [87] and

and Chen [12] for three-dimensional flow. In these subsonic flow studies, the maximum

unsteady pressure fluctuations represent less than 5% of the inlet stagnation pressure1.

As seen later in this chapter, the unsteady static pressure envelope for transonic flow is

one order of magnitude larger.

The steady-state results are discussed in Appendix E. The configuration of the

transonic first turbine stage is shown in Figures 9.1 and 9.2. It is similar to the stage

shown in Figures 7.2 and 7.3 which was used to assess the effects of non-uniform inlet

temperature, see Chapter 7. The difference lies in the scaling of the rotor blading.

Indeed, the unsteady stator/rotor interface boundary condition used here is designed

for equal stator and rotor pitches. Thus, a scaling of the rotor blades by a factor 61/36

with respect to the real turbine stage is required. This has been done while keeping the

annulus (hub and tip walls) unchanged and in particular the channel height and the

axial location of the rotor leading edge have not been altered. The procedure of scaling

a row of blades such that the stator/rotor pitch ratio is 1:1 or some simple ratio such as

2:3 or 3:4 is quite common, see for instance References [22, 64, 87, 72], because it greatly

simplifies the handling of the periodic boundary conditions. Since this is not the main

thrust of this chapter, the effects of scaling, with respect to the original configuration,

are discussed in Appendix E together with the steady-state flow features occurring in

the stage.

In Section 9.1, the unsteady shock motion occurring in the stage is discussed. In

particular, the impact of the upstream stator oblique shock on the downstream rotor

suction surface which produces reflected waves on both the adjacent rotor and on the

upstream stator is presented. Then, in Section 9.2 a comparison between the steady

and the time-averaged result is presented, together with an analysis of the differences

between the two cases. Finally, a brief discussion of some of the consequences of the

unsteadiness followed by some conclusions are presented in Section 9.3.

'This represents about 50% of the stator inlet dynamic head.
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9.1 Unsteady shock motion

The unsteady computation took 12 blade-passing periods to converge to a periodic

solution, using 400 iterations/period. Figure 9.3 displays the pressure history for two

particular rotor nodes during the last two periods.

In the axial flow turbine stage considered here, the unsteady stator/rotor shock

interaction is principally a two-dimensional process driven by the oblique shock leaving

the stator trailing edge which impacts on the moving rotor blade. Although shock

surfaces interact, unsteady pressure contours at a representative radius in the axial-

tangential plane are considered first. Figure 9.4 shows pressure contours at a constant

radius R = Rmid for the unsteady stator/rotor interaction at eight intervals during one

blade-passing period. The contour plots are defined for a given non-dimensional time

t = const, where t varies from t = 0, the beginning of the period, to t = 1, the end

of the period, which also corresponds to t = 0 by periodicity. Notice that although a

very simple interface algorithm using characteristics theory has been used, the unsteady

pressure contours match well across the stator/rotor boundary.

At the beginning of the period at t = 0, the oblique shock extending downstream

from the stator trailing edge has hit the crown of the rotor suction surface. At t = 0.125

the location of impingement has moved forward towards the leading edge as the rotor

blade moves upward. A weak reflection is visible. At t = 0.25 the reflected wave is still

growing and the reflection point continues to move closer to the rotor leading edge. At

t = 0.375 the same process continues. However, in addition the portion of the reflected

wave which moves towards the pressure surface of the adjacent rotor has now reflected

a second time and is moving back towards the original rotor. This phenomenon is not

clearly visible on the pressure contours, but can better be seen and analyzed using

VISUAL3 [40]. Using the gray-scale animation option of this visualization package, it is

possible to see the motions of both the primary reflection and the secondary reflection

on the adjacent rotor pressure side. At t = 0.5 the primary shock wave reflection has

reached the rotor leading edge and the secondary reflected wave has crossed back to
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the original rotor. It has sufficiently intensified that it is now visible on the pressure

contours.

At t = 0.625 the stator oblique shock no longer impacts on the rotor. At the same

time the primary reflected wave has left the rotor and is propagating upstream towards

the stator suction surface. The direction of propagation of the moving primary reflected

wave is indicated in Figure 9.5, which represents a schematic of velocity triangles for a

moving and a stationary shock. The velocity of a very weak shock is defined as the sum

of the gas local convection velocity, plus a velocity of magnitude c, the speed of sound,

normal to the shock. Also at t = 0.625 the secondary reflected shock has strengthened

further and moved upstream. It actually appears to have moved upstream, but since

the flow on the rotor suction surface is supersonic it does not permit disturbances to

move upstream. Thus the upstream motion of the shock surface is achieved by the

pressure wave moving upstream through the subsonic flow near the pressure surface of

the adjacent rotor, and then moving across the channel towards the original rotor. As

the pressure wave moves into the higher Mach number flow region, the strength of the

shock increases. The dynamics of the primary oblique shock which has left the rotoi-

can be understood using the simplified shock motion theory illustrated in Figure 9.5.

It is a good approximation to assume that the straight part of the oblique shock is a

stationary shock in the stator frame of reference, and so propagates along the shock

front with the speed VVT2- 0. This velocity tends to increase the length of the straight

portion of the shock from t = 0.625 to t = 0.875 until it refracts with the secondary

reflected shock.

At t = 0.75 the primary reflected shock has just struck the suction side of the

upstream stator in a region close to the trailing edge. The secondary reflected shock

wave is still moving upstream towards the crown of the rotor.

At t = 0.875 the primary oblique shock has almost regained its maximum strength.

The primary reflected shock is reflecting from the upstream stator suction surface and

moves back to the adjacent rotor. This reflection is also visible at t = 0, but then
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disappears as it strikes the rotor leading edge at t = 0.125. However this effect is

recorded in the history of the rotor leading edge pressure in Figure 9.3. In addition,

this figure clearly illustrates the impact of the stator oblique shock on the rotor leading

edge at t = 0 and t = 1.

This unsteady shock interaction is similar in nature to the result presented by Giles

[33] in a 2-D time-accurate numerical simulation which included quasi-three-dimensional

source terms. However, some differences appear in the timing of the events because

Giles' computation was performed on the actual configuration with a stator-to-rotor

pitch ratio equal to 1.69.

Some 3-D effects can be extracted from the unsteady pressure and the unsteady

Mach number distributions on the rotor suction surface shown in Figures 9.6 and 9.7,

respectively. At t = 0 the impact of the stator oblique shock surface is clearly visible

and extends along the entire span of the rotor suction side. Also some dispersion is

visible. Notice that at the hub and the tip wall the shock strikes normally in order to

satisfy the flow tangency condition and that the strength is higher at the root than at

midspan. At t = 0.25 the reflection has moved upstream closer to the leading edge, and

at t = 0.5 the primary oblique shock strikes the rotor leading edge. In addition, the

secondary reflection off the neighboring rotor has come back across the channel and is

visible at x/L ~ 70% from midspan to the tip. At the root, the reflected wave has not

yet crossed back to the original rotor. At t = 0.75 the entire span is under the influence

of the secondary reflected shock which has strengthened and moved upstream.

Figure 9.8 shows the instantaneous tufts distribution on the rotor suction for one

blade-passing period. A secondary flow is visible in the aft part of the blade that

drives fluid from hub towards midspan. Reverse flow occurs behind the secondary

reflected wave as it moves forward towards the leading edge and strengthens. However,

recirculation occurs only partially during the cycle.

Figure 9.9 is a schematic of the 3-D shock structure at t = 0.625. The stage is seen
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from the hub (not drawn) towards the tip. The labels point out the different shock

waves; i.e. A) and B) the stator and rotor trailing edge oblique shocks, respectively; C)

the primary reflection moving upstream and D) the secondary reflection moving across

the channel from the adjacent rotor pressure side. The shock surfaces are not much

skewed from hub to tip, which suggests that the shock interaction is essentially a 2-D

process. Not represented in this figure is the strength of the different shocks. At this

particular time, the strength of the primary reflection is fairly uniform in the spanwise

direction, wihle the secondary reflected wave is stronger at the tip than at the hub.

Also, shocks A) C) and D) are one order of magnitude stronger than the rotor trailing

edge shock B).

L.e. rotor midspan
hub rotor inlet/periodic
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Figure 9.3: Pressure history for the last two periods.
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Figure 9.4: Unsteady pressure contours at R = Rmid.
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Figure 9.4 (contd.).
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Figure 9.4 (contd.).
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Figure 9.4 (contcd.).
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199

co binet

C

moving



t = 0.250 t = 0.500

tip

i.e.

hub

4-

t.e.

t = 0.0 t = 0.750

Figure 9.6: Unsteady pressure contours on rotor suction side.
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Figure 9.7: Unsteady Mach number contours on rotor suction side.
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Figure 9.9: Schematic of shock structure at t = 0.625.
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9.2 Comparison of steady and time-averaged results

The material presented in this section provides an opportunity to compare the steady-

state solution with the time-averaged result. The flow conditions for the steady-state

and the time-averaged computation are listed in Table 9.1. The Mach and angle values

represent average quantities calculated by the flux-averaging procedure described in

Section 5.5.

The stator static pressure and Mach number distributions around the blade root

are given in Figures 9.10 and 9.11, respectively. The corresponding results at midspan

and tip sections are shown in Figures 9.12, 9.13, 9.14 and 9.15. Also shown in these

figures are the maximum and minimum unsteady pressures and Mach numbers on both

the suction and the pressure sides. These maxima and minima values were extracted

from eight unsteady snapshots during the final blade-passing period. Because the flow

is choked at the throat, and since the stator inlet conditions are steady, no unsteadiness

is present upstream of that area and so the mass flow is the same in both cases. Notice

that the time-averaged solution almost matches the steady-state result over the entire

stator span.

The rotor blade pressure and Mach number distributions are presented in Fig-

ures 9.16, 9.17, 9.18, 9.19, 9.20 and 9.21. Here the unsteadiness is much more intense,

especially on the suction side of the blade due to the unsteady shock motion and shock

reflection described in the previous section. At the hub, the steady-state shock located

at the front part of the suction side is intensified during a portion of the period, which

results in a Mach number as high as 2.1. Also, for certain axial locations on the rotor

suction side near the leading edge, the peak-to-peak pressure variation accounts for up

to 60% of the (stator) inlet stagnation pressure. It is surprising to notice that although

the variations in pressure and Mach number are large, the time-averaged solution is

similar to the steady-state result over all but the root section of the blade. However,

on the suction side lower Mach numbers are generally observed in the time-averaged

solution compared to the steady-state result, which can be explained by higher entropy
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and rotor-relative stagnation pressure losses occurring during the unsteady flow process.

It should be pointed out that the time-averaged solutions presented in this chapter

(and also Chapter 8) were computed during the blade-passing period from all the time-

steps, i.e. it is a true discrete representation of the following integral.

~(x, y, z) = j op(x, y, z, t)dt, (9.1)

with () representing a quantity that has been time-averaged over a period T. On the

other hand, the minimum and maximum unsteady values at a certain location were

sorted out from eight stored instantaneous solutions, i.e. every 50 time-steps, during

the last blade-passing period. This is why a certain amount of discreteness in those

quantities is present in the plots of Figures 9.16 through 9.21, in particular.

As described in the previous section, there is a rotor-relative unsteady secondary

flow driving hub fluid towards midspan on the aft portion of the suction surface. In

the rotor frame of reference, Crocco's equation relating the thermodynamics and fluid

kinematics of an inviscid, compressible flow is

at

where W, I and S represent the relative velocity vector, rothalpy and specific entropy,

respectively and W is the absolute vorticity vector. Equation (9.2) has an important

physical interpretation. It shows that when a flow field has gradients of rothalpy (stag-

nation enthalpy in the absolute frame of reference) and/or entropy it is likely to be

rotational 2 . In this application, the rothalpy is almost constant at the rotor inlet. How-

ever, as indicated in Figure 9.22 for the rotor suction surface, the entropy production

during the unsteady shock motion and symbolized in the time-averaged solution is al-

most one order of magnitude larger than in the steady-state result. As a consequence

of the strong shocks occurring at the rotor root, the entropy gradients are very large in

this area. As mentioned earlier, the primary reflection of the stator oblique shock off

2 Except for the case where VI = TVS, which, for transonic flow does not occur. For example, for
steady-state flow the rothalpy is constant along a streamline, but not the entropy due to the shock
losses.
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the rotor suction surface is stronger at the root than at midspan. This also means that

the secondary reflection off the adjacent rotor which then moves back towards the orig-

inal rotor is stronger. The resulting strength of the upstream moving shock is therefore

larger at the hub. It seems that the vorticity production is large enough to generate a

secondary flow during the entire blade-passing period, see Figure 9.23.

Using secondary flow theory , it is possible to be precise in the explanation for

the cross-flow seen in Fig. 9.23. For instance, in the work of Smith [100], Hawthorne

[48, 50, 51], Laksnhminarayana and Horlock [69], and Johnson [59], the equation for the

generation of a streamwise component w, of vorticity is derived. For incompressible

inviscid flow this equation has the following form.

, 2 1 + 1(
OS pW pW2 a V W A(93

curvature rotation

Equation (9.3), is written in intrinsic coordinates where S, f, b represent the unit vectors

in the direction of relative streamline, inward of principal normal and in the binormal

direction, respectively. a is the principal radius of curvature of the relative streamline

and pt is the rotary stagnation pressure defined in Eq. (7.24). In the above equation,

two terms contribute to the generation of streamwise vorticity, one due to the curvature

of the streamline with radius u, and one due to the rotation Q around the z axis. These

contributions are due to the gradients of rotary stagnation pressure in the binormal and

axial directions, respectively.

As seen in Figure 9.17, the Mach number and hence velocity field behind the shocks

occuring on the rotor suction side is smaller than in the steady-state case. Thus, as-

suming locally incompressible flow streamwise vorticity can be generated if a gradient

of rotary stagnation pressure exist in the direction of the axis of rotation. In Figure 9.24

the steady and time-averaged rotary stagnation pressure on the rotor suction surface

are compared. In the steady-state calculation p* is almost constant over the entire blade

except behind the hub shock. In the time-averaged solution however, gradients of rotary

stagnation pressure show up not only near the location of the steady-state shock but
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over the entire near-hub suction surface. Hence, the comparison clearly shows that a

strong axial pt gradient exists in the time-averaged solution which, when dot-producted

with the rotation vector, produces a positive component of streamwise vorticity. This

tends to develop a radially outward component of velocity.

It is interesting to notice that the rotor-relative secondary flow creates a slight block-

age of the annulus passage. This becomes apparent when comparing the spanwise mass

flow distributions at the rotor inlet for the steady and the time-averaged solution, see

Figure 9.25. In order to compensate for the lack of mass flow at the lower radii, an

increased amount of fluid streams through the rotor from midspan to the tip.

207



1.00-

0.68

P/Pt i.1

0.36-

0.04
-0 .20 0.20 0.60 1.

----------- L---------- - -------- --------- L------- -------------

-------- --------- --------------------- ---- --- --------

% axial chord

Figure 9.10: Steady and unsteady stator blade pressure at the hub.
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Figure 9.11: Steady and unsteady stator blade Mach number distribution at the hub.
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Figure 9.12: Steady and unsteady stator blade pressure at midspan.
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Figure 9.13: Steady and unsteady stator blade Mach number distribution at midspan.
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Figure 9.14: Steady and unsteady stator blade pressure at the tip.
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Figure 9.15: Steady and unsteady stator blade Mach number distribution at the tip.
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Figure 9.16: Steady and unsteady rotor blade pressure at the hub.
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Figure 9.17: Steady and unsteady rotor blade Mach number distribution at the hub.
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Figure 9.18: Steady and unsteady rotor blade pressure at midspan.
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Figure 9.19: Steady and unsteady rotor blade Mach number distribution at midspan.
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Figure 9.20: Steady and unsteady rotor blade pressure at the tip.
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Figure 9.21: Steady and unsteady rotor blade Mach number distribution at the tip.
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Figure 9.22: Entropy contours on rotor suction side: a) steady-state and b) time-
averaged.
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Figure 9.24: Rotary stagnation pressure (p*/ptj,,a) contours on rotor suction side: a)

steady-state and b) time-averaged. Increments = 0.01.
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Figure 9.25: Spanwise mass flow distribution at the rotor inlet.
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9.3 Consequences and conclusions

The unsteady non-dimensional torque acting on the stator and the rotor during one

blade-passing period is shown in Figures 9.26 and 9.27, respectively. The distribution is

found from eight intermediate unsteady solutions that were stored during the computa-

tion. Also, represented on those figures is the corresponding steady and time-averaged

torques. On the stator, there is a 6% peak-to-peak variation in torque, despite the

fact that the pressure field is steady on all but a small portion of the suction (and also

pressure) side near the trailing edge. The variation is essentially caused by the primary

rotor-reflected shock moving upstream and striking the stator suction side. The strong

unsteady shock motion described earlier causes the rotor torque to vary 66% peak-to-

peak. Notice that in the 2-D simulation [33] the unsteady stator lift has a peak-to-peak

variation of 6%, which compares well to the 3-D case. However, as opposed to the 66%,

'only' 40% peak-to-peak variation in lift is experienced by the rotor in the 2-D case.

Indeed, in the 3-D simulation larger unsteady variations occur at the tip and especially

at the root compared to midspan.

There are several consequences associated with the unsteady shock motion and hence

unsteady torque. These are discussed in Reference [33]. Experimental work has been

done in order to predict the effects of shock waves passing on a turbine rotor blade, see

for instance References [93, 58, 18]. It has been observed that the shock striking the rotor

suction surface does cause a temporary boundary-layer separation. These separation

bubbles convect downstream along the blade surface and subsequently collapse into

turbulent flow which increases the heat transfer rate and the viscous losses. Also,

the unsteady shock reflections produce an adiabatic compression of the boundary-layer

which in turn gives rise to transients in the heat transfer. Other consequences involve

structural excitations and amplified vortex shedding at the blunt trailing edge leading to

increased base losses. In addition, associated with the unsteady torque there must be an

unsteady vortex sheet shed at the trailing edge, whose energy is eventually dissipated,

thus contributing to increase the overall losses.
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However, an important conclusion from these results is that in many aspects the

the steady-state results are extremely close to the time-averaged values. For instance,

the maximum variation in the blade static pressure' between the steady-state and the

time-averaged solution is less than 4% of the stator inlet stagnation pressure, a value 15

times smaller than the maximum local unsteady fluctuation (peak-to-peak value). The

agreement is even better for integral values such as the axial torque, with a difference

less than 0.5% of the time-averaged value.

The results presented by Jorgenson [60] and Chen [12] for subsonic flow indicate that

the effect of changing the periodicity, i.e. ratio of stator-to-rotor pitch, on the time-

averaged solution is small. For instance, in Ref. [60] less than one percent difference is

observed in the time-averaged rotor lift for a change in stator-to-rotor pitch ratio from

1:1 to 2:3, although the magnitude of the unsteady lift (envelope) increases from 4% to

20% of the time-averaged value. The comparison between the present 3-D shock inter-

action with the 2-D simulation of Giles [33] indicates that the rotor blade experiences

similar shock reflections, although the difference in pitch ratios shows up in the pat-

tern of the unsteady lift during the blade-passing period. This suggests that although

the time-averaged solution is affected by the blades pitch ratio, the match between the

time-averaged and the steady-state solution is not dependent from the stator-to-rotor

pitch ratio.

3 The maximum discrepancy between the two solutions is located at the rotor root on the suction
side.
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Figure 9.26: Unsteady stator torque.

0.4T
time

0.8T

Figure 9.27: Unsteady rotor torque.
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parameter steady time-averaged
hub 0.00 0.00

Stator inlet tangential angle mid 0.00 0.00
tip 0.00 0.00

hub 72.10 72.60
Stator outlet tangential angle mid 74.80 74.60

tip 73.90 73.80
hub 51.30 53.40

Rotor-relative inlet tangential angle mid 50.20 51.00
tip 40.60 41.10

hub -57.10 -60.60
Rotor-relative outlet tangential angle mid -67.80 -67.00

tip -76.30 -76.80
hub 0.15 0.15

Stator inlet Mach number mid 0.13 0.13
tip 0.13 0.13

hub 1.37 1.33
Stator outlet Mach number mid 1.25 1.24

tip 1.19 1.18
hub 0.69 0.67

Rotor-relative inlet Mach number mid 0.52 0.52
tip 0.44 0.44

hub 1.00 0.99
Rotor-relative outlet Mach number mid 0.96 0.97

tip 0.95 0.93
hub 0.76 0.73

Rotor Mach number mid 0.81 0.79
tip 0.86 0.84

Rotor wheel speed 0.097 0.097
\Ctini /Lhub )

Stator axial torque ((T2 3 ) -1.6926 -1.6812
(cT;nLh,,b

Rotor axial torque (( T, 3 1.7678 1.7579
\ (ptct);naLh,,b

Ratio of specific heats -y 1.27 1.27

Table 9.1: Steady and time-averaged flow parameters for scaled transonic turbine stage.
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Chapter 10

Concluding Remarks

If winning is not important, why count points? Lt. Worf, Star Trek the Next Gen-

eration.

A summary of the thesis is presented in Section 10.1, followed in Sections 10.2

and 10.3 by the major contributions and essential conclusions, respectively. Finally

some extensions and recommendations for future research are discussed in Section 10.4.

10.1 Summary

This thesis has presented a numerical method for solving the equations of motion of a

3-D, inviscid, compressible steady and/or unsteady flow within an axial turbine stage:

The material has been divided into two distinct parts. The numerical methodology

is described in the first part, which includes both the discretization procedure and

the handling of the boundary conditions. In particular, the main endeavor has been

put towards the development of novel quasi-3-D non-reflecting boundary conditions for

steady-state inviscid flow fields. In the second part of the work, the numerical method is

applied to three major cases involving subsonic and transonic flow with inlet distortions.

The governing Euler equations are solved in conservation form which allows for the

correct representation of the Rankine-Hugoniot shock jump relations. The numerical
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methodology uses a node-based, explicit Ni-Lax-Wendroff discretization scheme imple-

mented on an unstructured grid composed of hexahedral cells. Relative flow variables

attached to each individual blade row are used. The mesh itself is generated in a struc-

tured fashion by iteratively solving a 3-D Poisson system, in which the source terms are

automatically evaluated in order to provide a control of the cell size and skewness at the

blade boundary. The Euler algorithm presented here requires the addition of a fourth-

difference numerical smoothing in order to prevent unwanted high frequency oscillations

in the solution. The formulation of this smoothing, which exploits the advantages of

a pseudo-Laplacian, and its accuracy were discussed. The shocks are captured using a

non-linear second-difference operator acting on the state vector. For the cases presented

in this study, a CPU time of the order of 385 x 10-6 seconds/iteration/grid point was

required on a Stardent GS-2000 in vector mode.

A significant portion of the thesis, i.e. Chapter 5, Appendix D and Section 8.3, is

devoted to the analysis and the implementation of the inlet, outlet and stator/rotor in-

terface boundary conditions. In particular, a theory for the construction of steady-state

quasi-3-D non-reflecting boundary conditions was introduced and applied to the Euler

equations. Eigenmode solutions of the linearized equations which vary sinusoidally in

the pitchwise direction were derived according to Fourier analysis. These were then used

to obtain linear relationships between the steady-state perturbations in density, velocity

and pressure at inflow and outflow.boundaries which produce no incoming modes. The

treatment of the interface plane between a stator and a rotor was also presented. For

steady-state flow, a circumferential stream-thrust flux-averaging technique is used to

conserve mass, momentum and energy across the mixing plane. The coupling between

this technique and the non-reflecting boundary condition formulation was discussed. To

illustrate the benefit of the non-reflecting boundary conditions, solutions using the novel

formulation were presented and compared to the solutions obtained using the standard

1-D boundary condition approach. This was done for several 3-D cases including a

transonic flow in a vane, a transonic stator/rotor combination and a 3-D linear subsonic

cascade flow. The effect of placing the boundaries at different axial locations was also

discussed. For unsteady flow, i.e. time-accurate calculations of stator/rotor flow fields,
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a simple interface model based upon the 1-D characteristics theory was presented.

The validation of the code as a research tool for internal, steady and time-accurate

fluid flow problems was accomplished by comparing the numerical solution with analyt-

ical and experimental data, by evaluating errors in stagnation properties (for subsonic

uniform inlet conditions) and by assessing the errors in mass flow, angular momentum

and axial torque.

Three cases directly related to flow phenomena occurring in a typical transonic first

turbine stage were examined. The first, discussed in Chapter 7, concerned the steady-

state secondary flow occurring in a rotor due to a spanwise non-uniform stage inlet

stagnation temperature distribution. A comparison was made between the resulting

flow field and the solution obtained with uniform inlet conditions. The analysis showed

that rotor-relative secondary flow occurred as a consequence of both rotor-relative radial

total pressure and inlet angle distributions. The results were also explained in terms of

rotor inlet streamwise vorticity distribution. In addition, the analysis showed that the

stator flow field was also affected by the introduction of the total temperature variation.

The second case involved the combined effects of a velocity shear flow and a spanwise

temperature gradient on a rotor flow field (Chapter 8). The inlet vortical disturbance

was modelled using potential theory. Steady as well as unsteady results were presented

and discussed in terms of rotor-relative stagnation temperature, stagnation pressure and

static pressure distributions. The features of the rotor flow field, and in particular the

mechanisms for creating the radial flow, were discussed using secondary flow theory.

The final case, presented in Chapter 9, consisted of an analysis of steady, unsteady

and time-averaged flow fields occurring in a typical highly loaded transonic first turbine

stage. The sequencing of the unsteady events and in particular the unsteady shock

motion was explained. Compared to the steady-state result, a rotor-relative secondary

flow was observed during the unsteady process as well as in the time-averaged solution.

The analysis also focussed on comparing the steady to the time-averaged solution for

224



both the stator and the rotor flow field. Unsteady deviations from the time-averaged

result were assessed. The analysis concluded by addressing some of the consequences of

the strong unsteady shock motion in terms of blade loading, boundary-layer behavior

and heat transfer.

10.2 Contributions

One of the most significant contribution of this thesis to CFD is the introduction of the

quasi-3-D non-reflecting boundary conditions discussed from a theoretical point of view

in Chapter 5. A fundamental approximation is that radial effects are accounted for in

the average mode only. With this procedure, the computations can be performed on

truncated domains where the inlet and outlet boundaries can be located close to the

blades. Also, this procedure can be used in conjunction with the flux-averaging tech-

nique for transferring information across the stator/rotor interface in a manner that

conserves fluxes of mass, momentum and energy and avoids spurious reflections. From

a practical point of view, this means that there is no need for 'human' intervention at

the interface in order to match the stator and the rotor flow field. The results presented

indicate that they are extremely effective in a typical industrial turbomachinery envi-

ronment, even in the presence of shock waves crossing the boundaries. In particular,

the second-order non-linear errors together with the error due to the uncoupling of the

radial and tangential variations are much smaller than the ones introduced in the so-

lution using the standard one-dimensional approach. Relative to the 1-D formulation,

the increase in computational cost using the quasi-3-D technique is negligible. Also

from a CFD point of view, the unsteady results presented here suggest that the use of a

simple 1-D characteristics-based, linear interpolation procedure at a sliding stator/rotor

interface is good enough for engineering applications.

The time-marching, cell-vertex, discretization procedure described in Chapter 3 does

not represent by itself a significant contribution. In fact, the Ni-Lax-Wendroff algorithm
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is rather widely used nowadays, though the formulation presented here may differ from

others in specific details such as the arrangement and definition of the (volume/time-

step) ratio and the discretization of the second-order source terms. It is the combination

of this algorithm with the second- and fourth-difference numerical smoothing, imple-

mented on an unstructured grid that, to the author's knowledge, represents an original

contribution. In particular, the fourth-difference smoothing extended to 3-D from an

original idea of Holmes and Connell [54] is very efficient in not corrupting linear func-

tions on an irregular grid even with cells' aspect ratios well above 10.

10.3 Conclusions

From the application point of view, there are several conclusions that can be drawn

from the three cases presented in Chapters 7, 8 and 9. One conclusion is that in many

aspects, especially in the static pressure distribution, the steady-state flow solution

agrees extremely well with the time-averaged result. It is believed that such good

agreement between the two solutions is greatly due to the use of the non-reflecting

boundary conditions in the steady-state calculation of the stator/rotor interface. By

avoiding spurious reflections and by providing a relieving effect for the flow to account for

the presence of the leading and the trailing edge of neighboring blades, these steady-state

conditions represent, to a good approximation, the time-averaged physical phenomena.

For subsonic flow, the results of Chapter 8 indicate that the introduction of an inlet

distortion combining a temperature gradient and a vortical velocity field of realistic

strengths leads to unsteady fluctuations of similar magnitude. The steady and time-

averaged solutions match extremely well in terms of static pressure distribution, hence

loading, but not in terms of stagnation temperature distribution, for which the steady

solution provides only trends. The vorticity introduced by the vortical disturbance is

larger than that produced by the temperature gradient and contributes more to the

generation of the secondary flow.
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For steady-state transonic flow fields, the results of Chapter 7 indicate that the in-

troduction of an inlet spanwise temperature distortion of realistic shape and strength

leads to strong secondary flow in the rotor frame of reference, created from variations

in the rotor-relative stagnation or rotary stagnation pressure. This results in a redis-

tribution of the temperature with concentrated regions of high stagnation temperature

gradients on the rotor blade pressure surface. Also, because of the transonic nature of

the flow, the secondary flow can trigger the formation of shocks.

The robustness of the method was demonstrated through the computation of the

unsteady transonic flow field of Chapter 9, where the unsteady fluctuations can be one

order of magnitude larger than the subsonic ones. Due to the impact of the stator

trailing edge shock wave off the downstream rotor, a strong unsteady shock motion in

the stage was captured as part of the solution. The unsteady shock interaction includes

a primary reflection off the rotor suction surface and a secondary reflection off the

adjacent rotor pressure side. The primary reflection moves back towards the upstream

stator striking it on the suction side close to the trailing edge. In addition, the secondary

reflection crosses back towards the original rotor and intensifies into a strong shock. As

a consequence of the unsteady interaction, a secondary radial flow from hub towards

midspan is created and is strong enough to be present in the time-averaged solution.

This secondary flow creates a slight flow blockage at the lower radii (hub), which is

compensated by an increase in mass flow through the outer rotor radii streamtubes.

Although the time-sequencing of the events are different, the motion of the shocks are

consistent with the quasi-3-D numerical simulation of Giles [33]. On the rotor root

suction surface, the level of unsteadiness in static pressure reached a peak-to-peak value

of about 60% of the inlet stagnation pressure. In general, the level of unsteadiness was

higher on the rotor suction side than on the pressure side, and also at the hub and

tip compared to midspan. It is believed that, for the generic stator/rotor configuration

chosen here, realistic levels of unsteadiness have been computed.

Regarding periodic unsteady effects, the following observations are inferred from this

study. The time-accurate inviscid computations provide an estimate for the peak values
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in the blade passage, in particular for the static pressure and the stagnation tempera-

ture which are two important quantities for work output, boundary-layer behavior and

heat transfer. Typically for transonic flow, where the unsteady fluctuations in pressure

are one order of magnitude larger than for subsonic flow, the unsteady static pressure

envelope can exceed the level of the time-averaged local value. The unsteady stagnation

temperature fluctuations are less than 25% of the time-averaged local value. Also for

transonic flow, the unsteady interaction creates overall higher entropy losses than for

steady-state flow, resulting in a different time-averaged distribution of Mach number.

For the case examined here, the 3-D unsteady transonic stator/rotor interaction re-

sults in a periodic shock-induced secondary flow that is not present in the steady-state

solution.

10.4 Recommendations for future work

Unless the unsteady interface boundary condition formulation is extended to handle

non-equal numbers of stator and rotor blades, it is difficult to assess the influence of the

scaled rotor during the unsteady process. This effect should be investigated, especially

in the case of a non-uniform inlet stagnation temperature distribution combining both

radial and tangential variations, i.e. different conditions per blade-passage.

The quasi-3-D non-reflecting boundary conditions should be extended to incompress-

ible flow computations. The system of equations governing the motion of an incom-

pressible flow is of the elliptic type, in which pressure waves propagate at infinite speed.

However, the use of Chorin's artificial compressibility method [13, 11] which intro-

duces a time-dependent pressure term in the continuity equation1 results in a system

of hyperbolic-type equations of motion very similar in nature to the actual Euler equa-

tions with waves of finite speed. Thus, the non-reflecting boundary condition procedure

developed in this thesis could be applied to this modified system.

'The solution of the modified system is only physically meaningful for steady-state.

228



The source term of Equation (2.1) could be modified to include the effects of mass

injection due to cooling, friction forces and heat addition. As shown in this work,

3-D steady and/or unsteady stator/rotor interactions can produce significant secondary

flows (sometimes reverse flow) which may hamper the use of the current boundary-layer

solvers if used in conjunction with an inviscid solver. Hence, the simulation of viscous

effects through distributed body forces seems to be a promising area of research which

would lead to an intermediate technique between a fully inviscid method such as the one

proposed in this thesis and a coupled boundary-layer/inviscid one. This could be done

at little extra computational cost compared to a 3-D boundary-layer/inviscid coupling

for instance. A good starting point for this is to examine the method proposed by

Denton [16].
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Appendix A

Three-Dimensional Mesh Generation Technique

for Euler Flows in Axial Turbines

In the process of numerical fluid dynamics analysis, the generation of efficient com-

putational grids is generally required for the discrete solution of the governing flow

equations. The mesh generation technique is a critical element for supporting the flow

simulation, especially in three dimensions, since most of the discretization schemes cur-

rently in use are affected (either through numerical convergence and/or by the quality

of the results) by the construction of the grid.

This report describes the three-dimensional (3-D) mesh generation technique used

in connection to UNSFLO, a program developed for solving inviscid unsteady flows in a

stator/rotor configuration. Specifically, a discrete approximation of Ni's type [81] of the

Euler equations is performed at each of the nodal points defined by the mesh. The two-

dimensional (2-D) version of this code has been developed by Giles [33], whereas Saxer

extended it to 3-D steady flows [92]. For that type of flow solver two main numerical

constraints should be considered in the mesh generation process, namely

* cell volumes as uniform as possible to ensure no severe CFL restrictions, and

almost equal resolution everywhere in the flow field. This latter feature is desirable

for unsteady calculations since the moving wakes can have large gradients in almost

any part of the flow domain, and

e a definition of a sufficiently smooth mesh at the inlet and outlet in order to avoid
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wakes distortions from one row of blades to the other.

A useful user "constraint" would be

* Few, but well defined parameters to control the mesh (spacing and clustering for

instance), especially on the blade surface.

In recent years, different approaches have been used to generate grid systems for arbi-

trary two and three-dimensional flow regions, including conformal mapping, algebraic

methods and partial differential equation (PDE) solutions [45]. In particular, one pos-

sible technique which satisfies the above mentioned criteria is to generate a boundary-

conforming mesh, of H-H type, by solving a set of elliptic PDE. This procedure, first

developed by Thompson [108], has been chosen in this work since it has the nice property

of generating continuous and smooth meshes and since it has been successfully applied

to several 3-D geometries, see for instance [106], [98] and [101]. Algebraic methods

such as Eriksson's transfinite interpolation [23] have also been proven to be efficient in

a number of three-dimensional applications. However, this kind of technique requires

a certain amount of ingenuity to produce a nice smooth mesh with properly ordered

points, especially for highly curved geometries.

Section A.1 describes the theoretical aspect of the elliptic mesh generation technique.

Section A.2 deals with the numerical implementation of this method applied to industrial

data.
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A.1 Elliptic grid generation method

A.1.1 Governing equations

In the boundary-conforming procedure, the strategy consists of mapping the three-

dimensional physical domain of Cartesian coordinates (z, y, z) onto a cubic computa-

tional domain of coordinates ( ,7,r). The first step in defining the transformation is

to specify Dirichlet and/or Neumann conditions on the limiting surfaces of the physical

region; those boundaries being represented by = const, 77 = const and r = const in

the computational domain. In the elliptic partial differential method, the distribution

of the interior grid points is then governed by the following Poisson system

Gx + G + = P(. , 7, 7)

77x+7YY+7 = Q(6,m77r)

re=+ ry + rz = R(6, 'r) (A.1)

where P, Q and R are source terms that can be selected to control the mesh points

distribution. Since it is much easier to solve a system of PDE on the uniformly spaced

grid of the computational domain, it is useful to transform system (A.1) on to the

computational space. This is achieved by interchanging the roles of the dependent

( ,77,-r) and independent (X, y, z) variables in Eqs. (A.1). This yields an elliptic system

of quasi-linear equations that can be written in the vector form [98]

a1 1(iet+<fi) + a22(ion+1ff') + a3 s(#r +A4r) + 2(aI2F+a1afg-+a 2 3 io) = 0, (A.2)

where r= (z, y, z) is the position vector,

3

ai =E A.j Anm
7n=1
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and Ami is the cofactor of the (*, i) element in the following matrix

M~ W Y 7 Y
1

-

M= ygyy

[Z Z7 Zr]

The forcing functions k, b and A serve to control the interior mesh points distribution,

J2p J2Q 2 R

all a2 2  a33

where

J = O(x,y, z) = det( 4, fiF7)

Given a proper choice of the source terms P, Q and R, this transformation defines a

one-to-one correspondence between the two spaces.

A.1.2 Problem specification

In the present method the meshes used for stator/rotor interactions are generated sep-

arately, then patched together. Each patch, composed of hexahedral cells, is represen-

tative of a single row of an axial turbine and, by using periodic boundary conditions

at the pitch, can be reduced to one blade to blade control volume. This domain is

composed of solid body surfaces (blade, hub and tip walls) and fluid surfaces (periodic

and inlet/outlet surfaces). Since the mesh has to be developed for an Euler calculation

the tip leakage can be neglected and, in the ( ,i7,r) space, the region appears as a single

block. For a rotor row of H-H mesh type the corresponding physical and computational

domains are represented in Figures A.1 and A.2, respectively. The surface = 0 is

chosen as the inlet boundary and the surface = 1 corresponds to the outlet bound-

ary. The surface 7 = 0 defines the suction side together with the lower periodic surface

stretching upstream from the leading edge line and downstream from the trailing edge

line. The boundary 77 = 1 corresponds to the pressure side together with the upper

periodic surfaces, which are the same as the lower periodic ones but displaced by one
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Figure A.1: Rotor interblade control volume in physical space (80 x 30
fluid boundary surfaces (inlet/outlet/periodic) have been removed.

pitch angle. The surface r = 0 defines the hub wall, whereas r = 1 1

wall.

blade
suction

x 35 nodes). The

represents the tip

A.1.3 Mesh control

Previous work

Usually, the non-homogeneous source terms are used for the stretching of coordinate

lines toward other coordinate lines, whereas the grid spacing distribution is specified by

the boundary coordinates. The forcing terms P, Q and R in Eqs. (A.1) improve the
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Figure A.2: Computational space resulting from the H-H mapping of the rotor control

volume. (i.e. and t.e. refer to the leading and the trailing edges, respectively.)

flexibility of the method, but their choice is not a trivial task.

In 3-D, one method consists of choosing exponential functions for <, '5 and A which

include appropriate "tuning" parameters [98]. However, a more rational way to control

the mesh propagation using exponential functions for the inhomogeneous terms has

been proposed by Sorenson and Steger [101], [103]. Their method, valid in 2-D and 3-D,

allows the user to have some control of the mesh cell size and skewness at a boundary

by including in the source terms a normal grid spacing parameter and the orthogonality

condition at the considered boundary. A different approach has been suggested by

Thomas [106]. In Thomas' 3-D method, the grid control parameters are defined in terms

of Dirichlet type boundary values. Then, the forcing functions are interpolated linearly

into the interior to obtain a continuous representation. By including these parameters

in the solution of the elliptic system, this method constitutes an indirect interpolation

mechanism (whereas algebraic methods generally use direct interpolation procedures)

for projecting the boundary mesh surfaces into the interior of the region. Giles' [30] grid

control is based on algebraic manipulations directly on the computational grid, which
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is no longer uniform. His PDE system is of Laplace's type (source terms set to zero)

instead of Poisson's type but has not yet been extended to 3-D.

As opposed to a viscous calculation, a mesh for an inviscid computation does not

necessarily require to be (nearly) orthogonal at the body. Specifying orthogonality at

boundaries may induce highly skewed cells in the rest of the flow domain, especially in

the case of small blade pitch combined with highly cambered airfoils. This decreases the

accuracy of numbers of discretization algorithms. However, some kind of grid clustering

technique is needed, especially around the leading edge. By considering these aspects

and the mesh properties defined in the introduction, the grid control is based on the

following premises:

" Define mixed boundary conditions on the different limiting surfaces instead of the

usual Dirichlet conditions on every boundary.

" Use one or combine the following two options.

1. Solve system (A.2) with the forcing terms set to zero. Then, redistribute the

nodes along each blade to blade or periodic to periodic surfaces such that a

relatively uniform grid is obtained.

2. Solve system (A.2) with the forcing terms evaluated according to the theory

described in the next section. This allows the user to control the mesh cell

size and the skewness at the blade surface.

Present approach

In the present application the inhomogeneous terms P, Q and R control grid spacing

and skewness for mesh cells adjacent to the blade surface only. This is achieved by

controlling the orthogonality of the grid lines intersecting the surfaces 77 = 0 and r7 = 1

(less the part defining the periodic surfaces ahead and downstream of the leading and the

trailing edges, respectively), and by regulating the volume of the cells connected to the
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blade. This approach follows the work of Sorenson and Steger [101] and is summarized

here. Consider for instance the suction side of the blade which is part of 77 = 0, then,

according to [101] the forcing terms are chosen to be

P( 7, r) = -(, r) exp-""

Q(,n, r) = r) exp

R( , = 7r(, r) exp-"n (A.3)

where the exponential factors cause the control to relax with distance from the boundary

7 = 0 and the positive constants a, b, c influence the rate of decay of the boundary

control.

The points on the blade surface are specified by the user, i.e. the , -r points dis-

tribution on n = 0 is known and can be used to set the orthogonality condition of the

grid lines intersecting the 7 = 0 boundary surface. This condition is represented by the

following two vector dot products,

r, - rC = 0 (A.4)

r# -rr = 0 (A.5)

Relations (A.4) and (A.5) express the fact that the unit vectors in the 7 and directions

and in the 77 and -r directions be mutually normal. The control of the cell size at 77 = 0 is

achieved by regulating the cell "height" S, which is the distance along a line of increasing

7. Consequently, the specification of AS/An at 7 = 0 allows the user to control the

volume of the blade surface cells. Expressed in differential form the third boundary

control equation is

r -*r = - (A.6)

The numerical procedure described in the Section A.2.7 requires that Equations (A.4),

(A.5) and (A.6) be solved for the derivatives with respect to 7 at the blade surface,
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giving

((A 12/A 32) 2 + (A 22 /A 32 ) 2 + 1)1/2

= A22zn
A 32

zX1= A12 ?7 (A.7)
A 32

Since f is specified on the blade, the surface control equations expressed by Equa-

tions (A.4), (A.5) and (A.6) or by the system (A.7) provide three additional relations

that can be used to determine the unknowns values of P, Q and 1R and hence P, Q and

R in the entire field. The boundary control equations are solved simultaneously with

the interior mesh generation equations given by system (A.2) using an iterative solution

procedure described in Section A.2.7.

A.2 Numerical procedure

A.2.1 Mesh generation path

The numerical generation of the mesh is based upon the following steps.

" Set the user input parameters.

" Process the industrial data, i.e. blade sections (2-D profiles), upper and lower

annulus walls, in order to create a structure suitable for numerical grid generation.

" Define the root and the tip parts of the blade by intersecting the blade cuts and

the lower and upper annulus walls, respectively.

" Define the blade surface by bicubic spline.
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e Define the periodic surfaces ahead and downstream of the leading and trailing

edge lines, respectively.

e Define the inlet and outlet mesh surfaces.

e Generate the interior mesh points by solving iteratively a Poisson's type PDE

system; the hub and tip walls grid points distribution are included in this process

by defining Neumann type conditions on these surfaces.

e If needed, redistribute nodes to obtain a uniform grid.

@ Plot and store the computed mesh.

The relevant stages of this procedure are described in the next sections.

A.2.2 User parameters

The user has access to the following parameters to define the mesh:

9 IL, JL, KL: number of points in the , q7, r directions, respectively.

* CHINL, CHOUT: grid lengths (measured in axial chords) upstream and down-

stream of the leading and the trailing edges, respectively.

9 SGINL, SGOUT: slopes of the periodic lines (at the root of the blade) extend-

ing from the leading and the trailing edges to the inlet and the outlet surfaces,

respectively. (Measured in x - y plane, see Section A.2.3).

e SLEP, SLES: grid spacing parameters for points distribution around the blade

(see Section A.2.3). Typical range of values 0.005 - 0.015.

9 AP, AS: positive constants influencing the rate of decay of the blade surface

control source terms, see Section A.2.7. Typical value 0.5.
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A.2.3 Input data processing

Data supplied by industry generally need to be altered to a form suitable for numerical

treatment. For instance, curve and/or surface splines provide the necessary smoothness

and flexibility (in terms of number of points and spacing) to the geometry. In this work,

the input data for a stator or rotor geometry are of the following form:

" Two sets of points for the upper and lower annulus walls, each of them of the type

R = R(z), where x lies along the axis of rotation and r is the radius.

" N blade sections at N radii along the span. The value of N depends on the blade

twisting, typically N = 3. Each blade cut is represented in local 2-D Cartesian

coordinates (X, y) by a discrete number of points. Specifically the 2-D profile is

defined by a suction side and a pressure side set of points, which are connected

by circles at the leading and trailing edges.

" Number of blades, trailing edge location expressed in the annulus frame of refer-

ence, leading and trailing edge circle centers and radii.

An example is shown in Figure A.3.

The first step in smoothing the geometry is to define each of the 2-D blade cuts as

a closed curve. Once a sharp trailing edge has been defined, a standard cubic spline

interpolation is used to parameterize each profile. This allows a continuous curvature

around the blade section, except at the trailing edge. The total number of points along

q = 0, which includes the suction side, is IL. For a periodic geometry of H-H type

this value has to equal the number of points along q = 1 (containing the pressure side).

Then, the number of points (ILB) around each 2-D blade is defined as

ILB = 2 IL (1 - - -)
C C

where cil and ct are the lengths between the leading edge to the inlet and the trailing

edge to the outlet, respectively. cij and ct are functions of the input parameters
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Figure A.3: Typical stator row data: a) Upper and lower annulus walls with 3 blade sec-
tions (solid lines). At local Rma,, and R,,i,, the dashed lines represent two extrapolated
blade sections. b) Mean height blade profie with leading and trailing edge circles.

(CHINL, SGINL) and (CHOUT, SGOUT), respectively. c is the distance from the

inlet to the outlet surface. The axial location of the inlet (outlet) surface is assumed to

be constant over the height of the channel.

The mesh points distribution along each blade curve is specified by a continuous

collocation function u(i), which is found by connecting at the leading edge two 2nd

degree polynomials. This procedure allows only two free parameters (SLEP, SLES),

which are the slopes of the collocation function on the pressure and suction side part of

the leading edge, respectively, see Figure A.4.

In the examples presented in this appendix, the axial location of the trailing edge

line (connecting the trailing edges of the blade sections) is constant over the height of

the channel. However, this is not assumed to be true in general. The lower and upper

annulus walls are simply fitted by natural cubic splines.
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Figure A.4: Collocation function for mesh points distribution around the blade. u:
normalized curvilinear coordinate, i: number of points. Free parameters: slopes SLEP

and SLES on the pressure and suction part of the leading edge, respectively.

A.2.4 Blade root and blade tip construction

At this stage, the blade surface is not smooth but composed of a bunch of 2-D profiles,

some of them cutting the annulus walls, see Figure A.3 (solid lines). The root (tip) of

the blade is defined by intersecting the 2-D cuts with the lower (upper) annulus walls.

In practice, it may be necessary to define a profile at R = Rmi, (on the lower wall)

and at R = Rma, (on the upper wall) in order to perform these interpolations, see

Figure A.3 (dashed lines). If these extra proffles are required, then N, the total number

of profiles, is adjusted accordingly. In that case, Rmin and Rma, are the maximum and

minimum radii locally defined from the inlet to the outlet surface. The new sections are

linearly extrapolated from the two nearest provided blade cuts. Then, at each i location

(1 < i < ILB) around the profile, a cubic spline of the form z = x(R) and y = y(R)

interpolates the N points along the span corresponding to the N blade cuts.

Finally, the trace of the blade on the hub (tip) wall is constructed by intersecting

the lower (upper) wall spline with each of these spanwise fitting curves. This procedure,

schematically represented in Figures A.5 and A.6, is allowed since every 2-D profile is
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Figure A.5: Blade - annulus walls intersecting map. Subscript nt stands for the inter-
polated root (tip) coordinates. AX = 0.5(Told - znew).

described by the same number of points. Note that the spanwise cubic splines are used

only to intersect the hub and the tip walls.

A.2.5 Blade surface definition

Bicubic spline fundamentals

The method for defining the blade as a parametric smooth surface is based on a frame-

work built up of two intersecting families of curves. The u-curves run around the blade,

whereas the w-curves extend along the span from the (newly defined) root to the tip.

It is assumed that 0 < u, w < 1 and u = u(X, y, z), w = w(x, y, z). Clearly the blade

surface may be represented by the vector s(u, w) = f( , 0, r) and r((, 1, -r) for 6 varying

from the leading edge to the trailing edge and r from the root to the tip. The network of

curves divides the surface into an assembly of topologically rectangular patches, each of

which has as its boundaries two u-curves and two w-curves, defined by wk W < Wk+1

and u; : u < ui+1 . To provide the necessary flexibility and smoothness to the geometry

each patch boundary is chosen to be one span of a cubic spline. Then the patch surface
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Figure A.6: Schematic of the blade root/tip construction.

may be represented by a bicubic of the form

3 3 U - /wn I - Wk j'n

s(u,w) = E 1: bm," ( ) h ) (A.8)
m=0 n=k

where gi = ui+l - ui and hk = wk+1 - wlk. This type of surface representation is known

as the Ferguson bicubic formula. It can be shown [24] that the coefficients bm,n are

linear combinations of position and derivative vectors at the patch corners, i.e. of the

following matrix

s~uiek) Ui, Wk+l) s(Ui-> Wk) SeM>w +1

. s(ui+1, Wk) Sjui+1, wk+1) (w ui+1 , Wk) (Ui+1 ,Wk+1)

s(Ui, Wk) s(Ui,>Wk+1) u(Ui, Wk) s~(Ui, W1,1)-

Se~ui+1 , Wk) fu(ui+1, Wk+1) .s,(ui+1, Wk) 'U (Ui+1, Wk+1) .

The vectors Se(ui, wk) and * (ui, Wk) are proportional to the tangent vectors to the

parametric curves u = const and w = const at the patch boundary points (i, k). The

cross-derivative vector SgW is called the "twist" vector.
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For now on, the shorthand notation g(Ui, Wk) = Ek, '(Ui, Wk) = Sik etc. is adopted.

Note that a patch completely defined in terms of the vectors S, S , 4 and E at its

four corners is called a tensor-product (or Cartesian product) patch. Since the blade is

regarded as a composite surface, there must be some constraints on the elements of Q
in order to achieve the curvature continuity over the entire blade. Here the positions

of the patch corners (Sik, Si+1k, ik+l Si+1k+1, 1 < i < ILB, 1 < k < N) are known

at the outset from the framework based on the root, the tip and the inbetween blade

sections. When first derivatives are matched in both direction and magnitude at the

data points, the u-curves will have second derivative continuity if the tangent vectors

Su,ik are calculated from the system of recurrent equations

Su,i-k + i + Su,i+lk = 3( ik - 'i-1k), i = 2, ... ,ILB - 1. (A.9)

Similarly, the w-curves will have second-order continuity if

Sw,ik-1 + 4 Sw,ik + 8 w,ik+1 = 3('ik+l - Sik-1), k = 2, .. , N - 1. (A.1O)

At this point, the relations (A.9) and (A.10) simply express the requirements for two

composite curves to be piecewise cubic with continuous first and second derivatives at

the data points. However, from an implementation point of view, the systems (A.9)

and (A.10) are generally written in terms of recurrent relations involving the second

derivatives instead of the first ones, see for instance [85]. The extra conditions to be

met for second-order continuity of 4,' across all the w-boundaries of the blade composite

surface can be summarized as

Suw,i-lk + i + + = SW - Suj-k), i = 2, ... ,ILB - 1. (A.11)

Here the gradients 4W on the right-hand side may be considered known from Eq. (A.10).

Alternatively, continuity of 4' in the w-direction over the entire blade may be achieved

by satisfying the analogous equation

swu,ik-1 + 4 swu,ik + Swu,ik+1 = 3( 5 
,ik+1 - 'u,ik-1), k = 2, ... , N - 1, (A.12)

where the gradients EU are known from Eq. (A.9).
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Since the formulation of the tensor-product patch assumes that s-, = s (at patch

corners) and that cross-boundary gradients are specified in terms of Se, S, and .e, also

at patch corners, it can be shown [24] that the solutions st, of Eq. (A.11) are going

to be the same as the solutions S., of Eq. (A.12). Consequently, overall second-order

continuity is attainable.

Note that the entire surface is uniquely determined in terms of

" the points sik (1 < i < ILB, 1 < k < N),

" the tangent vectors Su,ik along the w-boundaries (i = 1, ILB, 1 < k < N) and

sw,ik along the u-boundaries (1 < i K ILB, k = 1, N) of the composite surface as

a whole, and

* the twist vectors s at its corners (i = 1, ILB, k = 1, N), which are taken to

be zero.

Bicubic spline implementation

The numerical procedure to implement the bicubic spline differs slightly from the the-

ory in the sense that it is based on a sequence of one-dimensional splines. Since ILB

represents the number of points around the blade and KLB = KL the number of

points along the span, a table of ILB x KLB functional values of the form (A.8) is to

be interpolated through the bicubic spline. This is accomplished by performing KLB

one-dimensional splines across the rows of the table, followed by ILB additional one-

dimensional splines down the newly created columnns. Subroutines of reference [85] are

used in this procedure. First ILB splines over N points (corresponding to the root,

the tip and the inbetween blade sections) are constructed. Then ILB spline evalua-

tions are performed at KLB linearly distributed spanwise locations. Each of these new

sets of data are used to construct KLB splines over ILB points around the blade. Fi-

nally KLB spline evaluations performed over the blade points distribution complete
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Figure A.7: Stator mesh, 80 x 30 x 30 nodes. Pressure and periodic surfaces (side view).

the bicubic interpolation. For this last process, the points are distributed around

the blade according to the same type of collocation function as the one described in

Section A.2.3 (2nd degree polynomial points distribution). Examples are given in Fig-

ures A.7 and A.8, where ILB = 115, KLB = 30 for the stator, and ILB = 93,

KLB = 35 for the rotor.

A.2.6 Periodic and inlet/outlet mesh surfaces

The upstream (downstream) part of the periodic mesh surface at y = 0 is constructed

in three steps, namely

* The x value is found by linear interpolation between the axial locations of the

inlet (outlet) surface and the leading edge (trailing edge).

* The radial component r corresponding to each axial location is also defined by

linear interpolation, between the hub and tip wall radii.

* The third component (y or 9) is defined such that

d

-- = 0 ( = 0 1, y.=.,...<..<..
.. .... ...
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Figure A.8: Rotor mesh, 80 x 30 x 35 nodes. Suction and periodic surfaces (side view).

The last condition is introduced in order to match the boundary conditions at the hub

and the tip walls in the solution of the Poisson equations (see Section A.2.7). The

periodic mesh surface at y = 1 is defined by a one pitch angle rotation of the surface

S= 0. Examples of periodic mesh surfaces are shown in Figures A.7 and A.8.

As for the periodic surfaces, the radial component of the inlet and outlet mesh

surface (( = 0, 1, 0 < 17 < 1), is defined linearly from the hub to the tip. Then, since

the inlet (outlet) axial location is specified at the outset, only one condition remains to

be set for a unique definition of these surfaces. It is chosen to be

dO
-- =0, = 0,1, 0 < 1< 1, O < < 1.

......R. ....
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Figure A.9: Stator mesh, 80 x 30 x 30 nodes. Front view of the inlet and the outlet

surfaces. See Figures A.3 and A.7 for corresponding geometry.

The above relation together with the condition that the same (not necessarily linear')

radial interpolation function holds for 0 < q 1 yields a uniform and smooth mesh at

the inlet and the outlet, see Figure A.9.

A.2.7 Poisson solver and hub/tip mesh points distribution

In the present study an iterative procedure of Successive Line Over Relaxation (SOR)

is used to solve Equations (A.2), see [3] for instance.

The (x, y, z) coordinates are known at the boundaries ( = 0, 1 (inlet/outlet surfaces)

and q/ = 0,1 (periodic, suction and pressure surfaces). The boundary conditions on -r =

0,1 corresponding to the hub and the tip walls are specified in the iterative procedure

as follows

'The radial points distribution function as well as the points distribution function around the blade
may be easily replaced in the code since these two functions depend only on one parameter.
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* The axial component x is defined such that x, = 0.

* The y coordinate results from the condition -o = 0.

" The z value is found by using the wall spline R = R(x) and the relation z =

R2 _ y2 (the mesh being defined in the first quadrant).

The part of 7 = 0, 1 corresponding to the points distribution on the blade surface is

used to calculate the boundary source terms P, Q and R.

Each iteration consists of two distinct parts. In the first part the values of P, Q

and R are updated using the (x, y, z) coordinates of the initial solution or the values

of the previous iteration. Specifically, the derivatives in Eqs. (A.7) together with finite

difference approximations for the first and second partial derivatives of r with respect

to , 7, -r are substituted into Eqs. (A.2) which are solved for P, Q and R at the

boundaries 77 = 0, 1. Note that in this part the user may specify OS/O on the blade

surface. Non central differences using the current interior mesh solution are used for

evaluating second partial derivatives on the blade surface in the q direction. Hence, for

each 17 = 0, 1 node on the blade Eqs. (A.2) provide three relations which can be solved

for the three unknowns P, Q and A to give[Q ] M J aiir + a22r,,, + a339,-r + 2(al 2ri7 + ai13f,- + a23 r 7 )] (A- 13)

To avoid highly skewed cells in the control volume mid-passage of high turning turbine

cascades, it is actually preferable not to impose the orthogonality conditions (A.4)

and (A.5) on the entire blade surface. In the present application the surface control

system of Equations (A.7) (orthogonality and spacing) is applied on the entire pressure

side, but only from the leading edge to the crown on the suction side. Then, from the

suction side crown to the trailing edge just the cell size control Equation (A.6) is used.

The discrete version of (aS/8) in Eq. (A.6) is currently defined as

ASak = fiAk , fik = min(i = 1, ... , IL - 1, k = 1, ... , KL - 1).
JL - 1
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ASik is actually implemented as an array, so it may vary along the blade and can easily

be set by the user to some particular values. As already noticed by Steger [103] the

corrections of the source terms from one iteration to another may be quite large so that

under-relaxation of the order of 1% is used to update P, Q and R.

In the second part of the each iteration step the source terms P, Q and R for the

whole field are evaluated using the relations (A.3). Then, the new values of (x, y, z)

are calculated everywhere in the interior domain according to the line SOR iterative

scheme using Thomas' algorithm [3]. Examples of stator and rotor row meshes using

this procedure are given in Figures A.10 and A.11. The CPU time needed on a Microvax

station II is O(10-3) sec./iteration/mesh point.

As mentioned in Section A.1.3, a computationally less expensive procedure, but valid

only to generate a uniform mesh, is to calculate a few SOR iterations with the source

terms set to zero, and then redistribute the grid points from blade to blade or periodic

to periodic surface. This is achieved according to

'new = +old - aJt old +1 - oldi), j =1, .. , JL -1,

where the subscripts old and new refer to the mesh before and after redistribution. a, is

a redistribution factor defined by

a = L - , LU= LJ, j = 1,..., JL - 1,a3  ~ - L U 3  T LJ_ ,Li+1-LiJL-1

where L3 is the measures the length along an r7 line from j = 1 to j. The above

redistribution relations hold for i = 2, ... , IL - 1 and k = 1, ... , KL. This redistribution

procedure destroys the smoothness of the mesh and does not allow for any direct control

of the grid lines along the boundary surfaces.
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Figure A.10: Stator mesh, 80 x 30 x 30 nodes. a) Quasi top view of the mean height
surface k = 15. b) Front view of the leading edge interblade surface. See Figures A.3,
A.7 and A.9 for corresponding geometry.
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Figure A.11: Rotor mesh, 80 x 30 x 35 nodes. a) Quasi top view of the mean height
surface k = 17. b) Front view of the leading edge interblade surface. See Figure A.8 for

corresponding geometry.
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Appendix B

Cell Volume and Face Area

The derivation of the cell volume and the projected surface areas of the cell faces is

presented in this appendix.

The volume of an hexahedral cell can be decomposed into five constituent tetrahedra.

For instance, with reference to Fig. B.1, the volume V1 236 of the tetrahedron defined by

the corner nodes 1, 2, 3,6 is given by

Xi y1 z1  1

1 2 Y2 z2 1
V1236 (B.1)

6 X 3 Y3 z3  1

X6 Y6 Z6  1.

Thus, the volume of the cell is defined as

V = V1 236 + V3867 + V1685 + V3816 + V13 84. (B.2)

The edges of a cell face are straight lines. Thus, the area of the face is given by the

half cross-product of its line diagonals. The following projected areas, S= (Sa, Sy, S2)

can be derived for the six faces defining the cell, see Figure B.1.

1
(SX)i = I((y3 -y6 )( 7 - z2 ) - (y7 -y2)(z 3 -z 6 ))2

1
(SY)1 = - - (zZ 7 -z 2 )(X 3 -X 6 ))2
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Figure B.1: Hexahedral cell is formed by five tetrahedra.
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X 6)(Y7Y-y2) - (X 7 -X 2)(y 3 -y 6 ))

= ((y8-y1 )(z4 -z5) - (y4 -ys)(z 8-z))

1 ((z8-z)(X 4 -X 5) - (z4 -z5 )(X8-X))

1 ((X8-X1 )(y4 -y5 ) - (X 4 -X 5 )(y 8 -y 1 ))2

1
1 ((y7-y4)(Xz 3-z8) - (y3 -y8)(Xz 7-z 4))

2
1 ((z 7 -z 4 )( 3 -Ys) - (za-zsX)(Y7- 4))

= ((zx - 4 )(y3 -y8 ) - (3-z y 4)

1
1 ((y6-y)(zs-z 2 ) - (y5-y 2)(ze6-z))2

1
1((Z6 -zl)(X -X2) -(ZS -Z2)(X6 - Tl))

1 ((- 6- )(y -y2) - (X 5-X 2)(y6-Y1 ))2

1 ((Yp-Ys)(Z8-Z6) -(YS-Y6)(Z'r-Z5))

1
=2 ((z'r-zs)(Xs-X6) - (z8-z6 )(X 7 -X5))

1
= ((X 7 -X 5 )(y8 -y 6 ) - (X8-X6)(y7 -y5))2

1
= ((y3 -y 1 )(z2 - z4 ) -2 (Y2 - y4)(z3 - zI))

(SV) 6  = ((Z3 - Zl)(X2 X4) - (z2 -z4)(X3 - Xl))

(Sz)6 = ((X3 - Xl)(Y2 Y4) - (X2 -X 4 )(y3 -y1 )).

With these definitions, all the cell faces surface vectors are pointing outward.
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Appendix C

Stability Analysis

The stability analysis of the Ni-Lax-Wendroff method is performed on the Euler

equations written in primitive variables and computational coordinates, and is valid for

a 3-D skewed mesh. Section C.1 describes the transformation from conservative variables

in Cartesian space to conservative variables in computational coordinates leading to the

so-called weak conservation law form of the Euler equations. Then the Euler equations

are written in primitive variables in Section C.2. Finally, the stability criterion is derived

from the primitive form in Section C.3.

C.A 3-D Euler equations in conservative variables and

computational coordinates

In the absolute frame of reference the Euler equations expressed in conservative form

and Cartesian coordinates are

OU OF 9G OH
--- + - + +- =O, (C.1)

Bt 82 ByOz
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where

p Pu ) pw

Pu pu2 +p puv puw

U p , F puz ,G= pV 2+p , H= pVw (C.2)

Pw Puw pvw pw2 +p

pet, puht pvht pwht j

The pressure p, and stagnation enthalpy ht, are related to the density p, velocity com-

ponents (u, v, w), and stagnation energy per unit mass et by the following two equations

which assume a perfect gas with a constant specific heat ratio 7.

p= (7-1)Pet - (u2+v2+w2) (C.3)

ht = et + . (C.4)

The transformation from Cartesian (X, y, z) to computational (-, , r) coordinates is

accomplished using the chain rule derivative. Thus,

OU OF OF OF OG OG OG OH OH 8H
- + +--5 +-q+---5+,-r +x- ++--(+ 7G+ +77 = 0, (C.5)

where the subscripts indicate partial derivatives. The Jacobian J of the transformation

from the physical space to the computational space is written as

J = Xg(ynZT - y-rz7) -77(yz- - yTz ) + X-r(y4Z, - yrze). (C.6)

The metrics are

YZ7 - YT x7Zr - Z7y- TXT 77

J ' J , 2-

yt,- y1-zt e - ZT z y - XTZ ygl

YZ , W Y -, 7h = , (C.7)

yTz7 T - - Z_ x zn - zz -Z - yXg7
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The following three relations are easy to demonstrate.

(zxznz- x,-z-0)

(X?7y-r - XTy 7 )

Using the

dinates as

7(ywz1.-yzr Z)

( z- xz7zz)

(ze, - Xrwy)

7(Y6 Zn - yzg Z

-(X0yn - X7ye)

0,

0,

0.

(C.8)

above relations the Euler equations are rewritten in computational coor-

OU +F' OG' +H'

Jit + + 7 + -

- F (y7 - yrZ) - ( - yZ) - -

=0

- G ( z-z - xzz) ( - (xzzz) - xz-zr

=0

- H (zny- - 2,y7) - (-Tyr - Xrwy)

=0

are the contravariant fluxes defined as

- (zay - zny)1 = 0. (C.9)

-(y~zT -yz4)F

(y4z, - y,,z4)F

+

(X-nZ~ - Xz)

(X Z, - X1.Z )G

(X4Z?7 - XlnZ )G

+

+

(X 7y. - xry,)H,
(xzy- - x7yg)H,

(xy, - x,,y )H.

Moreover let

r, = u(ynz-,.-yrz7) - v(XazT -x z1) + W(XfnY-,-0-TYf),

r2 = -u(y z,-yrz ) + v(Xcz-z-x1.z) - W(Xayr-X Y),

r3 = u(yz, -yI7z4) - v(X4zz, -Xzz) + w(Xzy4--XI7y4).

Using the above definitions it follows that

U OF' OG' OH'
Jt + + +O=+,0
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pr1

priu + p(ynzr -yTzf)

pr1 v - p(X7 Zz- Xr z17)

pr1w + p(x ny7 - X1ryn )

r1 (pE + p)
/

I
pr2

pr2u - p(yg zr-yrzg)

pr2v + P(xCZ,-rXZ)

pr2W - P(x C r -XrY )

r2(pE + p)

/
pr3

pr3u + p(y z7 -y,z )

pr3V - p(Xezz - X77Z)

pr3w + p(Xy1 - Xy7R)

r3(pE + p)
/

(C.13)

C.2 3-D Euler equations in primitive variables and com-

putational coordinates

The continuity equation of System (C.13) is

(pri) - (P2) -

P-r, - O2 - r P
= T7 7

a(pr3)

-O
+ r + 3

Or, + Or2 + r3

(z -yr z)

Ou
Tr (Y? ZT -yr zT)

T7(y Z -OY7Z)r

Ov 8w

Ov o9w
+ (ZzZz) - ( - y

v O0
( x z z) + (g, ne.
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where

I
P

Pu

Pv

Pw

/

kpE
I

Op
Jt

where

(C.14)

(C.15)



The time derivative of the u component in the momentum equation is written as

Jp = J (pu) - UL
at O tat

(C.16)

The time derivatives of the two terms on the right-hand side of Equation (C.16) are

replaced by their spatial derivatives using Equations (C.13) and (C.14), respectively.

Hence, Eq. (C.16) becomes

au O9U
=-PrI -Pr2 T7

au ap ap opJ
-pr -(ylz-y~zl)+ (\yz) (goyz)

- - ( 7 )

(C.17)

The y and z components for the conservation of momentum are found in a similar way.

av av - - v +p ap Op

J t= -p -p -p + (Xzzr-xrz) - T7(ez.-xrze)+ (ez-Zg).

(C.18)

-
pr -W(7YT7) p(O _T

aT r p 8p
ap

(C.19)

The time derivative of Equation (C.3) is

1 2)P1 (U2 +V2+W2) t= J
Jt-(pE ) - pv

t VF

Again, the right-hand side time derivative terms are replaced by spatial derivatives

using Equations (C.13), (C.14) (C.17), (C.18) and (C.19). Thus, the energy equation

becomes

ap
at

ap
86

ap
2-- -a',

ap
73--a-i- - 7p + + 8

Oq 07)
(C.21)

Finally, the Euler equations in primitive form and in computational coordinates are

U+ J-1 AaU+ B8UWu _(OU 07 + U, 0 where UP =
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Ou
Jp-t

Ow
Jp- =

aw
-pri V -

aw
pr2

1 ap
J7-1 at

(C.20)

I'
p

U

V

W

, (C.22)

aw
- PW .t -



r,

0

r,

0

0

0

0

r2

0

0

0

0

P(X-nZ Z) P( 0nyT-zXy7)

0 0

0

0

p(x zr - Xzo)

0

r 2

0

-p(x~zr - X-zz)

0

r1

7p(-XIy - Xry, )

0

0

r2

-7P(X4Yi - -Ty4)

p(XXy, - X,7y)

0

0 ro 0

0 0 r

7pfyWz -y77Zg) -- fP(Xg T7-XZ ) -YP(Xgy,-X7yg)

0

((y7zr - Yr z 1)

- (X7Z - X Zz)

I(077yr - O-ry')
r1

I

0

- -(yz 1  -yr zg)

-(xg Z- - X-r zd)

- 1(zgy, - Xryg)
r2

0

7p(y7z-r - yTz-)

-p(ywz-r - -rz )

r2

0

0

- fp(y zr -yr z )

P(ykZ -Y) r

r 3

I

C.3 Stability criterion

The discretization following Ni's method gives

Un+1 =UP, AtI./tLe (ApLr i~+i-ie~+Ini6r U2n+

12
At2 (ApLpa6g + Bpp6,?7 + Cpspg6.)2 U,,

where the operators 6 and it are defined by

6(); = (UP)i+}jk - (UP)i-.ijk, 6 (Up)ijk = (UP)ij+}k - (U)jjLk,

r(Up)ijk = (U)ijk+} - (UP)ijk-_,
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I

I 0

(Y4 Z77 - Y77Zt)

- (X Zgn - ze)

-(1y 77 -X 7 y )

r3

r13

0

0

0

0

(C.23)
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1
= ((UP)i+ik + (Up)LIk),

1
-((UP)ijk+L + (U) 1).222

y7(U,);ij = -((UP)ij+t +

(C.24)

Stability analysis is performed upon the linearized discretized equations and considers

wave-like solutions of the form UPn = Unei(iVk1+tk2+kVk3), where 'b1 , 12 , 'b3 are the wave

numbers in the three computational directions ( , r, r). The amplification matrix is

G(1, Ik2, 03) = I - 2i cos cos -cos M + 2At 2 M2 ,
2 2 2

(C.25)

M = A sin cos
2 2

cos +B sin cos cos +C sin Cos Cos 2
2 2 2 2 2 2 2

Let

D = At (sA + s2B +sS3 C)

s = (sin cos cos +
V2 2 2

(cos1 V2 s cosi )2(CS2 2MT o 2) +(cos lcos sin ' 3 )2
'2 02 sm2

sin ki cos Cos 3
s ,

cos sin cos cos 'I cos - sin
S2 , S3

S S

Then noticing that s2 + s2 + s2 = 1, the amplification matrix G can be written as

Gi 3 
s2 2 2.

G(4', 4'2, 4's) =1-2i s cos -i- cos cost D -2 ~2D. (C.27)

If AD is an eigenvalue of D, the corresponding eigenvector is also an eigenvector of G

with an associated eigenvalue

AG = 1 - 2i s coscos cosAD - 2S 2AD 2.
-2 2 2

(C.28)

If AD is real and IADI < 1, then

2 i_ 42 2

< 1 - 4s2 1

_- 22 - cos -

-2 cos- 2

cos - cos I

Cos cos 2)
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(C.26)

|AG1 2

(UP)ij-_ ),



= 1 - 4s2 2D sin

<1

. o22
sin -

2
cos + 'Pi 2 ._?P__

Cos - si
2 2

Thus the condition AD 1 is sufficient (but may be not necessary) for stability. Let

r = risi + r2S2 + r3S3

a = (yez-, -y,-z7)si - (yez,- -yrzg)s 2 + (y e ZY-y-ze)s3

b = -(Xzz-xz,-z-)s1 + (Xzezr-XrZ)S2 - (XeZ -X1 7zg)sS3

d = (X7yr - Xye)Si - (XeYr - XrYe)S 2 + (X y77-Xt7ye)s3

(C.29)

(C.30)

(C.31)

(C.32)

With these definitions, the matrix D becomes

/
r pa pb pd 0

0 r 0 0 a/p

0 0 r 0 b/p

0 0 0 r d/p

7pa 7pb -ypd r
/

(C.33)

The eigenvalues of D are

At
7, r, rr + e/a2 +b 2 +d 2 , r - C/a2+b2+d2), (C.34)

where c is the speed of sound, c = 7tp/p. A conservative estimate for the maximum

eigenvalue is

ADme r ( r2+ + c a2+b2+d2),

where the value of r has been maximized by r + ri + r since s

a sufficient criterion for stability is

At <
72+.2+7.2

(C.35)

+s2 +s2 = 1. Thus

J
(C.36)

From the implementation point of view, it turns out that the Jacobian represents
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the volume of the cell and all quantities in Eq. (C.36) are cell-averaged defined. Hence,

the time-step is defined locally on a cell-by-cell basis. For steady-state calculations,

local time-steps are used to accelerate the convergence, i.e.

J
Atmax = CFL , (C.37)

1i2+f:23 + E 2 + b2 +d 2

where CFL is a 'safety' factor typically taken to be 0.9.

For unsteady calculations, the uniform global time-step is defined as

At = min (Atmax)all cells (C.38)

The volume/time-step ratio associated with a grid node surrounded by its eight

neighboring cells is defined by

(V 8 cellsV

nod = -- (C.39)At )od -g A
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Appendix D

Implementation of the Non-Reflecting

Boundary Conditions

The numerical implementation of the quasi-3-D non-reflecting boundary conditions

presented in Chapter 5 is described in this appendix. This implementation procedure

is an extension of the one used for 2-D steady-state flows in Reference [34].

The boundary conditions are implemented at the point in the overall numerical

scheme at which the Lax-Wendroff algorithm has distributed changes 6U to all of the

nodes, including nodes on the boundaries, but the nodal values have not yet been

updated. The characteristic variables are used to define the changes in the boundary

values from the time level n to the time level n + 1. In doing so, the characteristics

are defined in terms of perturbations to the average inflow or outflow field at the time

level n. The one-dimensional characteristic variables are related to the perturbations in

the primitive variables according to Equations (5.5) and (5.6). For the changes SU, the

transformation from conservation variables to primitive variables is given by Eq. (3.16).

At an inflow and an outflow boundary node, the changes in the outgoing characteris-

tics are obtained from the changes distributed by the Lax-Wendroff algorithm according

to the direction of propagation of the characteristic waves. Assuming the axial Mach

number is subsonic, the only exiting mode at an inflow is the upstream running pressure

wave. Thus, only the change in the fifth characteristic variable is extrapolated from the
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flow field according to

6p

eou

( 6 q5 )Lw= 0 -p 0 0 1) 6V (D.1)

6)LW

At an outflow, the first four characteristic variables representing the linearized entropy,

the two vorticity and the downstream running pressure waves are outgoing and so are

obtained from the interior flow field.

I //
6 \

,60 -e2 0 0 0 1
bu

6 2  0 0 pE 00 j 6 . (D.2)

#30 00 'LW .SPE 6W
\ 0 4 L W \ 0 P E 0 0 1

Indeed, the Lax-Wendroff algorithm should accurately model the outgoing charac-

teristic waves, and thus correctly distribute the changes associated with those modes.

However, for incoming modes, the Lax-Wendroff changes in the incoming characteris-

tic variables are discarded, since these are the changes which are to be defined by the

user-specified average flow quantities and the non-reflecting theory. This is discussed

in Sections D.1 and D.2 for inflows and in Sections D.3 and D.4 for outflows. Once the

changes for ingoing and outgoing waves have all been specified, the combined changes

in the five characteristic variables at the boundary nodes can be converted back into

changes in the primitive variables according to

bp 0 0 1 641

6u 0 0 0 1 -1

45 = 0 - 0 0 0 1 . (D.3)
PC

6W0 0 .L 0 0 4

4P0 0 0 .1 .1 b5
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These can then easily be transformed into changes in the conservation variables using

the following relation and the entire flow field can be updated.

6p 1 0 0 0 0 6p

S6(pu) jP 0 0 0 6u

6(pv) = 0 P 0 0 6v (D.4)

8(pw) f 0 0 1  0 6w

6(pE) 2 + 2 +?-4 2 R2 ) pi p1 p 1

D.1 Subsonic inflow

As explained in Chapter 5, for a given radius, the changes in the incoming characteristic

variables at each point along the circumferential direction on the inflow boundary is split

into two components. The first part represents an average change along the boundary,

which is defined to achieve certain physical quantities. The second part is due to the

harmonic variations in the characteristic variables along the boundary, which is designed

to achieve non-reflecting boundary conditions. These are then added to the average

changes to give the global changes.

The average characteristic changes in the incoming four characteristics are calculated

from the requirement that the average entropy, radial and tangential flow angles, and

stagnation enthalpy have the values specified by the user at the inlet, see Equations (5.9).

An equivalent specification of the average inlet conditions is to drive to zero the following

four residuals.

R pe= P-(uF - sin(ao in) sin( aRin)),

= p-" (uF - I cos(aRini)),

R = (D.5)
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UOF, URF and KPI are the tangential, the radial and the absolute value of the average

flow velocity. The inlet tangential and radial flow angles aeini and aRin are defined

in Section 2.3 and the remaining quantities in Section 5.3. Notice that in defining

Ry and Rn the flux-averaged values of the velocities have been used, see Section 5.5.

The required average changes in the incoming characteristic variables are obtained by

linearizing the residuals from the current time level, and by using a one-step Newton-

Raphson procedure.

Dropping the

I

R1 R1 (
R2 R2 O(RI, R 2 ,R 3 ,R 4 ) n 602

~3R + = 
9Oi01010) 10 0. (D.6) R3  R3  'f dI' 4'2, 43,4#4) E543

R4 4 \54

n, the Jacobian matrix is obtained as the product of two other matrices.

a(R1, R 2, R 3, R 4 ) _ 3(Ri, R2, R 3, R 4 ) ((p, i, 3, u, p)
= 0(41,42, 03,44) 0(pi;, 0,ui, P) a(01, 2,0 3, 4)'()

where

~1

a(R1, 2 , R3, R14)

0 (A, , ;V, I ,5I )

-02

0

0

E2-

0

-p tan(aeinl)

tan(agi.1) cosTC-T-.i

I 1

0

0

0

0

0

0

0

0
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and

0

PE

0

Pu0

0

0

PE

PLR

1

0

0

-yIy-

,J(D.8)

\0

0

0

1

0

1

-1

0

0

1
2

(D.9)
O(O1, 02, 03, 04)'
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Thus,

1 0 0 0

O(Ri, R 2,R 3 ,R 4) _ 0 1 0 -t 2cze'"a

19(011, 02, 03, 04) 0 0 1 1-D.0
2 cos(aGinf) tan(CtRini)

In forming the Jacobian matrix several terms which are proportional to the residuals

have been neglected since these are zero in the converged limit. The elements Jj,1 of

the inverted Jacobian matrix denoted J-1 are found according to

J (-1)=cdet(Jcl) 1,. 4, C = 1,... 4 (D.11)
det(J)

where the determinant det(Jei) is formed by crossing the 11h line and the cth column of

J. Thus, the following average changes in the incoming characteristics are found.t6#)1 (R1

62 _-J- 1  R 2  (D.12)
603 R3

6045)4 R4 )

The local changes in the characteristic variables at each circumferential point on

the inflow due to the variation in the characteristic variables along the boundary are

found as follows. Firstly, a discrete Fourier transform of the outgoing characteristic 05

is performed which enables the steady-state amplitude of the Fourier transform of the

desired incoming characteristics to be calculated according to Eqs. (5.56). The fifth

characteristic variable is evaluated at each point, and its discrete Fourier transform is

calculated for a range of values of k from -N/2 +1 to +N/2 -1, where N is the number

of nodes in the circumferential direction, including the periodic node only once.

0.sk = NZ 4j exp N k. (D.13)
3=1

According to the quasi-3-D non-reflecting boundary condition theory presented in Sec-

tion 5.4.5, the steady-state amplitude of the Fourier transform of the second character-
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istic is

'k2ks - _ 5k, (D.14)

where

,3 = i sign(k) V2 -(f 2 + 2 ) ,( 2 + 2 ) <2. (D.15)

The steady-state amplitude of the local second incoming characteristic in the physical

domain is recovered using the inverse discrete Fourier transform

N/ 2-1

= E2k. ep ( N . (D.16)
k=-N/2+1

Because terms corresponding to k form complex conjugate pairs, this expression can

be rewritten as

(N/2-i

02j,= 2R N2 2ks exp i2jk) (D.17)
k=1

reducing the amount of computational required. Since the characteristic variables are

defined as perturbations from the current average state, the Fourier components $2k,

and 05ks are zero for k = 0.

For each node j along the boundary, the ideal (in a 2-D sense) steady-state correction

to the local second characteristic variable is the difference between the correct steady-

state value and the current value.

642js = 02js - 02j. (D.18)

Since the harmonics of the incoming third characteristic variable are zero, the cor-

rection to the local third characteristic variable is simply

603Is = 03is - 43i = -43j. (D.19)

As mentioned in [34] by Giles, a straightforward implementation of the non-reflecting
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boundary condition theory would result in a flow field which to first-order would have

uniform entropy and stagnation enthalpy at each radius. However, the neglected second-

order effects would introduce variations in entropy and total enthalpy. The standard

implementation of the 1-D boundary conditions can be found in References [29] and [74].

To avoid this, the steady-state corrections to the local first and fourth characteristic vari-

ables are obtained from the conditions that the local entropy and stagnation enthalpy

should match the average values. This is achieved by the same Newton-Raphson pro-

cedure used earlier to obtain the average changes. This time, the residuals are given by

perturbations from the average entropy and stagnation enthalpy values.

Ri = p(Sj - 9), (D.20)

R4j = 5(htj - h). (D.21)

Thus the Newton-Raphson equation becomes

(+ 1 0 0 0 0. (D.22)

The solution is given by

6 41,s = -R1

'P4j = - + , + ---5b 2 5, --j -+ + R43). (D.23)

Now that the local changes in the characteristic variables have been established,

these are added to the average changes, and multiplied by an under-relaxation factor,

62= C(642 + 1602j,)

603j = a(6 3 + 60323s)
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64= -(6 4 + 6 04js)

The change in the outgoing fifth characteristic variable is given by the Lax-Wendroff

algorithm,

45j = 6 453 LW. (D.25)

The combined five characteristic changes calculated in physical space are then trans-

formed into changes in the primitive variables, and hence in conservation variables.

This is done for all nodes along the circumferential direction of the boundary, i.e.

j = 1,..., N. This procedure is then repeated for another radius until all radii have

been treated and the flow field can be updated.

D.2 Supersonic inflow

The boundary conditions for a supersonic inflow,

mented similarly to the subsonic inflow case. The

parameter #, which is

but still axially subsonic, are imple-

difference lies in the definition of the

/3 = -sign(V) (' 2 +;V 2 ) _ 2 , (jj2+;V2 ) > E2. (D.26)

For this case, it is not necessary to perform the discrete Fourier transforms since # is

now independent of the Fourier mode k. Hence, the correct steady-state values for the

local incoming second characteristic are given by

02j = +-- 5s, j = 1, ... , N
c+;U

(D.27)

The remainder of the boundary condition treatment is exactly the same as for sub-

sonic inflow.
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D.3 Subsonic outflow

The implementation of the non-reflecting boundary conditions at outflow is easier than

at inflow because only one characteristic needs to be set. As for the inlet this is done

in two parts.

The first part allows the user to specify an average exit pressure at a certain radius.

p"htl =p (D.28)

Using the residual Rn = pn- P and linearizing from the current time level gives

R + O Sq = 0. (D.29)

As mentioned in Section 5.3, the first four characteristics for a subsonic outflow represent

outgoing waves, so only the fifth characteristic variable representing the upstream run-

ning pressure wave needs to be set. The derivative of pressure with respect to variations

in the fifth characteristic is

op - (D.30)
005 2'

and so the equation for the average change in the fifth characteristic variable is

60s = -2(pF - pot). (D.31)

PF is the current flow field flux-averaged pressure, and peu is given by the radial equi-

librium relation

___= P- , (D.32)
OR R

together with the specification of pt. at some particular radius. Notice that radial

equilibrium of the flow is not required, but this condition usually represents a good

physical assumption outside the blade row.

The second part consists of calculating the local changes. This is accomplished by

first evaluating the outgoing local second and fourth characteristic variables, and then
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calculating their discrete Fourier transforms.

1 N 7rk
02k E 2 exp ) (D.33)

3=1 N

1 N i27rjk)
04k N A 0j exp N .(D.34)

j=1

According to Section 5.4.5, the correct steady-state amplitude of the Fourier transform

of the incoming fifth characteristic variable is

Iska (,& ) 42k - 4k. (D.35)

Using the simplification due to the complex conjugate pairs allows the non-reflecting

steady-state values for the incoming fifth characteristic variables to be rewritten as

N/2-1

05j, = 2R #s exp \N ) j. (D.36)
Ik=1N

The ideal local change is then

64s5, = 5,js - )5j, j = 1, ... , N (D.37)

where 05j is the current flow field value of the characteristic amplitude. As before, the

global change in the incoming characteristics is formed by summing the average change

to the local change and under-relaxing it to ensure well-posedness.

6 0) 5j = o(64)s + 605j.). (D.38)

The changes in the outgoing remaining four characteristics are again taken from the

Lax-Wendroff algorithm.

6#2j = 602LW

4523 = 602jLW
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604i = 6 44LW

As for the inflow boundary condition, the above procedure is repeated for all radii

before updating the flow field.

D.4 Supersonic outflow

The supersonic outflow boundary condition (but still axially subsonic) is identical to

the subsonic outflow condition, except for the definition of P which is

# = -sign(;v) (52+2) 2 , (92 +f-2 ) > E2. (D.40)

Since 1 is again independent of the Fourier mode k, the computation can be simplified

by not performing the discrete Fourier transforms of the second and fourth characteristic

variables. The steady-state values for the amplitude of the incoming fifth characteristic

variables is given by

#s P = - 2, 

The remainder of the

sonic outflow.

(D.41)- (~~~)q54js.

boundary condition treatment is exactly the same as for sub-

D.5 Stator/rotor interface

To a large extend the steady-state stator/rotor interface boundary conditions formu-

lation has been discussed in Section 5.5. Both the stator and the rotor flow fields are

calculated simultaneously but with boundary conditions implemented to couple the two

domains together.
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As mentioned in Section 5.5, the objectives of the steady stator/rotor interface treat-

ment is to conserve fluxes of mass momentum and energy according to the definition

given by Eqs. (5.60) and (5.61). Their discrete counterparts are

P(Uj) = F(UF), (D.42)

and

1N N

P = F F(U), (D.43)
3=1 3=1

where N is the number of nodes in the circumferential direction, the periodic node taken

into account only once.

At each radius along the span, the average characteristic changes at the stator out-

flow and the rotor inflow are set to eliminate the characteristic jumps defined by Equa-

tion (5.66). Assuming that the stator is upstream of the rotor, the stator outflow

characteristic change is

605 = -aAO4, (D.44)

while at the rotor inlet the average changes are

61= uAqf 1

602 = UA02

603 = 47A0 3

6 04 = OTAq 4 . (D.45)

Again the under-relaxation parameter a is introduced to ensure well-posedness and

convergence. Now that the average characteristic changes have been calculated for both

sides of the interface, the local changes are treated exactly in the same manner as for

inflow and outflow boundary. Also the outgoing characteristic changes are taken from

the Lax-Wendroff algorithm.

In the case of non-equal number of nodes along the span a simple algorithm for
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transferring flux-averaged quantities from one row to another has been developed. The

tangential nodes distribution on either side of the interface does not matter because

for steady-state calculations only circumferentially averaged quantities are interpolated

across the mixing plane. The interpolation procedure is divided into two similar parts.

One part consists of interpolating flux-averaged quantities from the stator frame to the

rotor frame, while the other does just the opposite. The stator to rotor interpolation

scheme is sketched in Figure D.1. A rotor relative flux-averaged quantity is linearly

interpolated from the two radially closest stator nodes.

The rotor interpolated fluxes, subscripted ,., are given by the following formulae.

- AR (R + ARr (Rs\P+

F1, = ( 'R)(Rs )p- + (1- )( R)

3 +(1 3 (D.46)
ARa R- ARs R+

AR, R- AR,)(R,)p+

AR R- AR R
P~ =(AR, R, AR, Rr
-A R- +- AR3 R+.

F = (AR)( p -+( 1  ARr)(R)+
PR R- AR3  R+_

With reference to Figure D.1, the meaning of AR,., AR,, R,., R+ and R- are self-

explanatory. The reason for introducing radius dependency in Eqs. (D.46) is that for-

mally one wishes to balance the integrated fluxes across the interface, i.e.

IRh FRdR = J F,RdR. (D.47)
JRuub Rh~b

Note that when converting the interpolated flux-averaged values into primitive values

needed for the non-reflecting part of the boundary condition, the rotor wheel speed has

to be added to the tangential velocity.

Stator-relative interpolated fluxes are calculated using the same procedure as above.

Once this is accomplished for all radii on both sides of the interface, the interpolated
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stator rotor

R+

AR,

R,-

AR,

Rr

X

Figure D.1: Interpolation procedure for spanwise non-equal number of nodes at sta-
tor/rotor interface. The circled area is enlarged on the right.

flux-averaged values are plugged into Equation (5.66) to calculate the characteristic

jumps, and the remainder of the boundary condition treatment is exactly the same as

for inflow and outflow.

Finally note that this interpolation procedure is second-order accurate and thus

consistent with the interior scheme.
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Appendix E

Steady-State Transonic Results and Effect of

Rotor Scaling

The features of the steady-state transonic flow in the turbine stage represented in

Figures 7.2 and 7.3 are discussed in this appendix. In addition, the effects of an axial

and a tangential direction scaling of the rotor geometry in order to get a stator-to-

rotor pitch ratio equal to 1 are assessed with respect to the original configuration of 36

stators and 61 rotors. The steady-state results presented in this chapter were computed

by using uniform inlet conditions and by imposing a radial equilibrium of the pressure

at the rotor exit.

The pressure fields at the hub and at midspan for the actual configuration are shown

in Figures 7.8 and 7.9, respectively, and ought to be compared to the pressure contours

of Figures E.1 and E.2 for the scaled geometry. The tip pressure contours for the scaled

version are displayed in Figure E.3. The flow parameters can be compared from Ta-

bles 7.1 ('cold' case column) and 9.1. Some of the flow features are identical, for instance

both flows are choked at the stator throat and have trailing edge shocks. However, as

discussed later on significant differences appear in the rotor flow field. Notice that in

these steady-state results the flux-averaged pressure matches at the stator/rotor inter-

face, while the local values are allowed to evolve to values which are consistent with the

existence of an infinite annular duct upstream and downstream, see Chapter 5.

Figures E.1, E.2 and E.3 display the steady-state pressure field at the hub, at a
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constant radius close to midheight and at the tip, respectively. The stator outlet and

part of the rotor outflows are supersonic, producing weak oblique shocks at the trailing

edges, which can be seen in Figures E.1, E.2 and E.3.

Figure E.4 is a schematic representing the variation of the streamtube height ob-

tained from the streamline curvature analysis and used to design the 3-D turbine stage.

The streamtube thickness decreases linearly through the stator and then increases lin-

early from the rotor leading edge to the trailing edge, while it is constant upstream,

downstream and between the blade rows.

From the conservation of mass for a one-dimensional flow and using perfect gas

relations, the mass flow rh, stagnation temperature Tt, stagnation pressure pt and area

S are related to the Mach number M by the following equation.

= D(7,t M), (E.1)
S Pt

where

D(-, M) = M (E.2)

RT*9 (1 + MQ 2(1k 2)

Rg represents the gas constant.

Equation (E.1) which represents the corrected flow per unit area can be used, to-

gether with Figure E.4, to explain some of the flow features occurring in the stage.

Given rh, Tt and pt, the area ratio between the inlet and the choked throat (denoted

*)is

So D(y,1)>1-- =) > 1.(E.3)
S* D(-y, Min)

From this it follows that the decrease of the streamtube height through the stator

together with the contraction of the blade-to-blade passage, decreases the inlet Mach

number by increasing the ratio of the inlet area to the throat area. Hence, a large

pressure drop and a high exit Mach number are expected in the stator row, see Figs. E.1,
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E.2, E.3 and E.5. Similarly, the large increase in the streamtube thickness through the

rotor produces the large rotor-relative inflow Mach number, and the high Mach numbers

along almost the entire suction surface, see Fig. E.6.

A cusp has been used to close the finite thickness trailing edge of both the stator and

the rotor blade. This produces sharp pressure rises at the trailing edges, see Figs. E.7

and E.8. On the stator suction side, the drop in pressure and rise in Mach number at

x/L ~ 0.75 is due to the supersonic expansion wave leaving the trailing edge on the

pressure side.

One important consequence of scaling the rotor geometry is to increase the effective

throat area. Indeed in the scaled configuration, as seen in Figure 9.1 and sketched in

Fig. E.4, the rotor trailing edge is located farther down the annulus, where the height

is constant. For equal mass flows in the real and the scaled geometry, the rotor-relative

stagnation temperature and stagnation pressure are related by

(Tt)scaled (PT),eal (S*)scaled > (E.)
(Tt),eal (pt)scaled (S*)rea >

This leads to a lower rotor-relative stagnation pressure in the computation of the scaled

configuration. For instance at the rotor inlet,

((Pt)real - (Pt)scaled)rotorinimidspan ~ 0.024. (E.5)
Pt in

In particular, the stator/rotor interface pressure is decreased. This means that relative

to the flow in the real geometry, higher stator exit velocities and Mach numbers occur.

Figures E.7 and E.5 show the pressure and the Mach number distribution around the

stator blade at midspan for the two configurations, respectively. Note that the two

solutions coincide ahead of the choked throat because the upstream conditions are the

same. The flow behavior after the throat towards the stator exit is similar for the two

configurations. However, the reduced exit pressure in the scaled version produces higher

Mach numbers.

Then, by subtracting the rotor wheel speed, higher angles and Mach numbers arise
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at the rotor inlet, see Figs. E.9 and E.10. Notice however, that the tangential angle and

Mach number distributions are similar in shape for the two cases.

The combined effects of higher rotor-relative inflow angle and Mach number produce

a shock at the root of the scaled blade that is not present otherwise, see Figures 7.8,

E.1, E.11 and E.12. Relative to the real geometry calculation, the blade pressure distri-

butions of the scaled version are 'shifted' to a lower value, see Figs. E.12, E.8 and E.13

which results in a lower lift. For instance the power delivered is reduced by approxi-

mately 4%. The corresponding Mach number distributions for the real and the scaled

rotor are given in Figures E.11, E.6 and E.14. Notice that almost the entire rotor

suction surface is supersonic due to the high inflow Mach number. Also a significant

difference appears between the two flows at the rotor root. At about 50% chord the

scaled configuration bends back to a constant radius. The curvature of the streamlines

results in 'circular' type pressure contours in this area, see Figure E.15. This effect does

not occur in the actual configuration, since in that case the bending occurs after the

trailing edge.

At the rotor tip, a weak oblique shock is present at x/L 0.70 in both the real

and scaled configurations. This corresponds to the impingement on the suction surface

of the oblique shock leaving the trailing edge on the pressure side. In the computation

of the scaled rotor, a very low level of numerical smoothing was used, i.e. v4 = 0.002,

whereas v4 was set to 0.005 in the calculation of the actual geometry. This causes the

strength of the trailing edge shocks to be different.

Notice that because of the imposition of the same exit pressure in both cases, the

reduced rotor-relative stagnation pressure in the scaled geometry implies lower Mach

numbers at the rotor exit.

The design of the transonic first turbine stage of Figure 7.2, with an increase of

the rotor frontal area of 20% from the leading to the trailing edge (reference down-

stream cross-section), is fairly general for an axial flow first turbine stage. Hence, the
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conclusions from the scaling study apply to a whole class of engines, and provide an

upper limit for the magnitude of the changes to be expected for turbines with less

three- dimensionality. Compared to the original configuration the scaling of the rotor

geometry produces flow changes that are decomposed into an average and local changes.

The average effects are linked to the alteration of the throat area, which for a given mass

flow and exit pressure modifies the average rotor inlet and outlet flow conditions such

as Mach number and angles (in the present study the rotor-relative inlet incidence is in-

creased by 20). In a steady-state calculation, circumferentially-averaged flow conditions

are imposed at the boundaries of the domain, with the stator-to-rotor pitch ratio and

the blade number affecting the solution through the blockage factor. However, the axial

and circumferential directions scaling, by forcing a stator-to-rotor pitch ratio of 1, does

not necessarily guaranty the same blockage effect. Consequently, the scaling should also

include the radial direction in a manner that keeps the same throat area. By producing

pressure variations up to 75% of the rotor inlet dynamic head relative to the original

flow (this is three times more than the average change in the rotor inlet stagnation pres-

sure) the local alterations of the geometry can have significant consequences, especially

if shock waves are involved.
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Figure E.1: Steady-state pressure contours at the hub (scaled rotor).
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Figure E.2: Steady-state pressure contours at radius R = Rmzd (scaled rotor).
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Figure E.3: Steady-state pressure contours at the tip (scaled rotor).
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Figure E.4: Schematic of streamtube height for scaled and real turbine stage.
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Figure E.5: Stator blade Mach number at midspan.
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Figure E.6: Rotor blade Mach number at midspan.
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Figure E.7: Stator blade pressure at midspan.
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Figure E.8: Rotor blade pressure at midspan.
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Figure E.9: Rotor-relative inlet angles.
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Figure E.10: Rotor-relative inlet Mach number distribution.
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Figure E.11: Rotor blade Mach number at the hub.
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Figure E.12: Rotor blade pressure at the hub.
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Figure E.13: Rotor blade pressure at the tip.
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Figure E.14: Rotor blade Mach number at the tip.
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Figure E.15: Rotor blade suction side pressure: a) real and b) scaled.
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