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Abstract

This thesis presents the conceptualization and development of a computational model
for describing three-dimensional non-linear disturbances associated with instability
and inlet distortion in multistage compressors. Specifically, the model is aimed at
simulating the non-linear aspects of short wavelength stall inception, part span stall
cells, and compressor response to three-dimensional inlet distortions. The computed
results demonstrated the first-of-a-kind capability for simulating short wavelength
stall inception in multistage compressors.

The adequacy of the model is demonstrated by its application to reproduce the
following phenomena: (1) response of a compressor to a square-wave total pressure
inlet distortion; (2) behavior of long wavelength small amplitude disturbances in
compressors; (3) short wavelength stall inception in a multistage compressor and the
occurrence of rotating stall inception on the negatively sloped portion of the compres-
sor characteristic; (4) progressive stalling behavior in the first stage in a mismatched
multistage compressor; (5) change of stall inception type (from modal to spike and
vice versa) due to IGV stagger angle variation, and "unique rotor tip incidence"
at these points where the compressor stalls through short wavelength disturbances.
The model has been applied to determine the parametric dependence of instability
inception behavior in terms of amplitude and spatial distribution of initial distur-
bance, and intra-blade-row gaps. It is found that reducing the inter-blade row gaps
suppresses the growth of short wavelength disturbances. It is also concluded from
these parametric investigations that each local component group (rotor and its two
adjacent stators) has its own instability point (i.e. conditions at which disturbances
are sustained) for short wavelength disturbances, with the instability point for the
compressor set by the most unstable component group.

For completeness, the methodology has been extended to describe finite ampli-
tude disturbances in high-speed compressors. Results are presented for the response
of a transonic compressor subjected to inlet distortions.
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Chapter 1

Introduction

1.1 Introduction

Compressor instability is a major limiting factor on gas turbine engine operating

range, performance, and reliability. The instability, either in a form known as rotating

stall or surge, occurs at an operating point with low mass flow and high pressure rise.

To avoid such instabilities, the compressor (and hence the engine) has to operate at

an operating point corresponding to lower pressure ratio so that an adequate stall

margin is maintained (Fig. 1.1). The stall margin can be considerably reduced in

operating environments for which the inlet conditions are non-uniform.

Recent experimental data [9, 60] have elucidated the importance of three-dimensional

and non-linear aspects of compressor flow instability behavior which are beyond the

scope of current flow models. The work described in this thesis constitutes a research

which addresses these aspects. The effort is focused first on developing a compu-

tational model to delineate compressor instabilities in multistage compressor under

uniform as well as non-uniform flow situations, followed by its preliminary applica-

tions to establish causal links between instability behavior and compressor design

characteristics.

In this chapter, phenomena associated with compressor instability, including

short wavelength stall inception in multistage compressors [9], are reviewed. This

is then followed by a review of the current modeling capability. The objectives and
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Figure 1.1: Compressor performance map and the effects of inlet distortions [57].

scope of the thesis are described, followed by a concise delineation of the contributions.

1.2 Overview of Compressor Instabilities

1.2.1 Types of compressor instability in axial compressors

Three types of instability behavior have been observed at compressor operating points

beyond the surge line (Fig. 1.2), which are progressive stall, 'abrupt' stall, and surge.

With progressive stall, there is a gradual deterioration of pressure rise. This

happens for example when a multistage compressor is operated at a speed below the

design speed. The flow field associated with this type of instability is illustrated in

Fig. 1.3(a) which shows several part-span stall cells rotating around the annulus. This

flow pattern usually occurs in one or several stages in a multistage compressor.

'Abrupt' stall shows a sudden drop of pressure rise at the compressor surge line,

with the formation of a full span stall cell (Fig. 1.3(b)). The stall cell has an axial
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extent that encompasses the whole compressor; this explains the large drop of pressure

rise (in contrast to the situation in the part-span stall cell pattern). To recover from

this type of stall pattern, the throttle has to be moved to a position corresponding

to a flow coefficient (or corrected mass flow) much larger than that at which the

compressor would stall upon throttle closing. This effect is usually referred to as

hysteresis, shown in Fig. 1.2(b).

Surge is a one-dimensional flow oscillation through the whole engine (Fig. 1.3(c)).

During an engine surge, a flame can often be seen at the intake and exhaust as the

combustion moves forward and backward from the combustor.

1.2.2 Onset of instability

Predicting the condition at which instability will occur in a compressor requires an

understanding of the flow processes leading to the onset of the instability. The phe-

nomena described in the previous subsection are the final forms of instability. And it

is important to distinguish the final form from the onset of instability. The transition

from initial disturbance to final stall or surge can usefully be divided into three stages

(1) inception; (2) development; and (3) final flow pattern. The inception stage is the

period when disturbances start to grow (flow becomes unstable). It defines the oper-

ating point and conditions for which instability occurs. In practice, the disturbances

will take a finite amount of time (ranging from a few to several hundred rotor revo-

lutions) to grow into final stall or surge, so that the inception stage can be viewed as

the early development of the unstable flow.

For some compressors, the inception stage consists of the linear growth (extending

up to several hundred rotor revolutions) of disturbances of infinitesimal amplitude,

while in others the inception stage only extends over one to two rotor revolutions

after its detection. The inception stage is the major focus of the instability modeling

and prediction.

The development stage, which includes all the processes after the inception stage

before the final flow pattern to be reached, is usually of less importance. It is often

the case that one final form of instability in one compressor could be the pre-stage of
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the final form in another compressor. For example, rotating stall might cause surge

in some compressors, as noted by Greitzer [26]:

The global (system) instability is a basically one-dimensional phenomenon,

involving on overall, annulus averaged, compressor performance curve. For

typical volumes, lengths, and throttle characteristics this must generally

be slightly positive sloped for system instability to occur. We have also

seen that the axisymmetric flow through a compressor can be unstable

to two- (or three-) dimensional infinitesimal disturbances, and that this

local instability marks the inception of rotating stall. However, the onset

of this rotating stall is very often associated with a precipitous drop in

the overall ("one-dimensional") pressure-rise mass-flow curve of compres-

sor performance. In other words, the inception of rotating stall can lead

to a situation where the instantaneous compressor operating point is on

a steeply positively sloped part of the characteristic, with a consequent

violation of the dynamic and/or the static instability criteria.

In this sense, part span stall could be the pre-stage of full span rotating stall. This

aspect will further be elaborated in Section 5.6.

1.2.3 Two Major Stall Inception Types

Two major inception types have been experimentally identified: modal waves, and

spikes. Modal waves are exponentially growing long wavelength (length scale compa-

rable to the annulus) small amplitude disturbances. The rotating speed of this type

of disturbance is in the range between 20% to 50% of rotor speed. Figure 1.4 shows

velocity traces during the transition process from small amplitude pre-stall waves

(modal waves) to the fully developed stall pattern. Modal waves penetrate the whole

compressor in the axial direction, so they can be detected by sensors at any locations

at the inlet, exit, or within the compressor. Usually, this type of stall inception oc-

curs at a point near the peak of the characteristic. This type of inception can be well

described by linear stability theory. The theory developed by Moore and Greitzer [51]
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Figure 1.4: Velocity traces of eight sensors on the annulus show a typical stall
inception through modal waves [45].

predicted the pre-stall modal wave before measurements were taken [49, 23].

The other inception mechanism is the growth of localized non-linear short wave-

length (with length scale of several blade pitches) disturbances [9], often referred to

as "spikes". This type of stall inception is referred to as "short wavelength stall in-

ception". Figure 1.5 shows velocity traces during a compressor stalling through short

wavelength disturbances. The inception starts as one or several spike-shaped finite

amplitude disturbances within the tip region of a particular stage. Usually, the dis-

turbance develops into a large full span stall cell within three to five rotor revolutions.

The initial rotating speed of this type of disturbances is around 70% of rotor speed,

substantially higher than that for the typical modal wave speed. No existing model

has been demonstrated to be capable of describing this type of phenomenon. The

lack of this capability motivates this research project.

26



00

C,,

0

:Stall cell speed: 7

No modal perturbations-'

5

3

2 Emerging stall cell

0. 5. 10. 15. 20. 25.

Time (rotor revolutions)

Figure 1.5: Velocity traces of eight sensors on the annulus show the compressor stall
inception through short wavelength disturbances (spikes) [9].

1.3 Experimental Observations on Short Wavelength

Stall Inception

The experimental observations associated with short wavelength stall inception are

summarized in this section.

1.3.1 Features of Short Wavelength Stall Inception

Short wavelength stall inception first was identified by Day [9], but it has since been

observed in many compressors [11, 17]. So far, the phenomena have only been roughly

defined in a descriptive manner. From experimental observations [9, 11, 17, 60], a

short wavelength type of stall inception is initiated by one or several disturbances

which are localized in the tip region of a specific stage in a multistage compressor. Its

circumferential width is about 2-3 blade pitches, with a high rotating speed (70% rotor

speed), as well as a high growth rate (it takes 3-5 rotor revolutions from emerging

of initial disturbance to forming a large stall cell) relative to the modal wave type of
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stall inception.

Day conjectured that the inception is initiated by blade passage events (analogous

to the argument offered by Emmons [15] and shown in Fig.1.6).

1.3.2 Experiments on Compressor Response to Rotating In-

let Distortions

Longley et al [44] investigated the effects of rotating inlet distortions on compressor

stability in several compressors, and found that there are two types of compressor

response (measured in terms of the stall margin vs. rotating speed of the distortion):

one shows a single resonance peak corresponding to a large decrement in stall margin

when inlet distortion is rotating at around 0.4 rotor speed in the direction of rotor
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rotation (Fig. 1.7(a)); the other shows two resonance peaks at 0.3 rotor speed as well

as at 0.75 rotor speed (Fig. 1.7(b)). The compressors which show one resonance peak

stall through modal waves while the other exhibit the spike type of stall inception.

Thus the respective characteristic response of the compressor corresponds to two types

of observed stall inception mechanisms which have different impact on stall margin

due to rotating inlet disturbances.

1.3.3 Relation Between Local Stall Cells in Mismatched Com-

pressor and Stall Inception through Short Wavelength

Scale Disturbances

An interesting experiment has been conducted on a mismatched four-stage low speed

compressor with the rotors in the latter three stages deliberately re-staggered away

from stall [60]. The type of stall inception of the compressor in a matched build (i.e.

four identical stage configuration) was spike type.

Measurements show that upon reducing the flow coefficient, the first stage still

stalls at about the same flow coefficient as in the matched build (Fig. 1.8). The

pressure rise then reduces gradually as the flow coefficient is decreased, similar to the

progressive stall characteristic shown in Fig. 1.2(a). The stall cells are localized to the

first stage. It is hypothesized that the influence of downstream stable stages limits

the extent of stall cell.

The extent of these stall cells has the same order as that of spikes associated

with the short wavelength stall inception. The rotational speed is the same as that of

spikes. The similarity between the local stall cells, which are in its equilibrium state,

and the spikes, which are in transition, indicates a link between the two phenomena.

Therefore, the resulting knowledge from examining these local stall cells can be of

utility in assessing the observations on short wavelength stall inception.
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1.3.4 Existence of Short Length Disturbances Prior to Stall

Point

Using a correlation method to analyze the measurements during the stall inception

of the GE compressor, Park [56] found that spike-shaped disturbances existed prior

to stall. He observed the short wavelength disturbances hundreds of rotor revolutions

before the actual stalling event occurs (Fig. 1.9). These disturbances were seen to form

and decay until stalling of the compressor takes place (Fig. 1.10 and Fig. 1.11). The

frequency of the forming-decaying activity increased as the instability was approached

through throttle closing.

One implication of his work is that the short wavelength stall inception can be

initiated by existing localized non-linear disturbances. This finding is not in accord

with linear theory, which is based on the growth of infinitesimal disturbances.

Park also sought the best sensor location for the detection of short wavelength

stall inception. He found that static pressure sensors at the first rotor exit showed the
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earliest and strongest signals. This observation suggests that the initial spike-shaped

disturbance assume the largest amplitude at the rotor exit.

1.3.5 An Investigation of the Conditions Under Which Short

Wavelength Stall Inception Occurs

From experimental observations, Camp and Day [4, 5] concluded that the spike-type

stall inception occurs at a "unique rotor tip incidence" (Fig. 1.12). They examined a

specific compressor with different JGV stagger angles and found that the stall points

line up on a constant rotor tip incidence line whenever the compressor shows spike

as its stall inception mechanism. The stall inception mechanism could be switched

between modal type and spike-type for the same rotor and stator but with different

IGV stagger. The overall trend is that when the first rotor is highly loaded (higher

pressure rise for the given flow coefficient), the compressor tends to show spike-type

inception, otherwise it shows the modal type of stall inception. These experiments

suggest that the first-stage rotor is the key component responsible for the spike-type

stall inception.
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Figure 1.13: A model for determining the stall inception type of a compressor [5].

Based on their observation, Camp and Day proposed a "unique rotor tip in-

cidence" as a short wavelength stall criterion (Fig. 1.13). When this incidence is

reached before the peak of the compressor characteristic, the compressor will stall

through short wavelength disturbances; otherwise the compressor will stall at the

peak pressure rise and show modal waves as its stall inception type.

1.3.6 A Summary of Short Wavelength Stall Inception

From experimental observations, one can conclude that short wavelength stall incep-

tion is an important type of stall inception. Based on the observations, an approx-

imate flow pattern around a short wavelength disturbance can be deduced. Figure

1.14 illustrates the shape of a short wavelength disturbance on the (x, r) plane, and

(x, 0) plane in the tip region and the resulting flow field associated with the presence

of the low flow region. The sketch illustrates several features that are essential for

any proposed flow model development:

1. Flow redistribution within the gap of the stage where the short wavelength

disturbance is initially located (the implication is that a lumped compressor

model cannot resolve this type of disturbances).
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2. Flow redistribution within a blade row. So the flow at the leading edge of a blade

passage can be significantly different from that in the rear part of the blade

passage. This implies that a description based on the actuator disk concept

cannot represent the flow field around such a short wavelength disturbance.

1.4 A Review of Current Modeling Capability

There are two central issues of rotating stall prediction: rotating speed and instability

point, but from the practical point of view, only the instability point is of real con-
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cern. Of engineering value is the ability to establish a causal link between instability

behavior and compressor design characteristic.

1.4.1 Stall Propagation Mechanism

The first rotating stall model was the analysis and physical description proposed by

Emmons [15] (see also Iura and Rannie [36].) Figure 1.6 shows the mechanism of stall

propagation. Due to the flow redistribution upstream of a stall cell, a high incidence

angle appears in the flow region ahead of the stall cell moving direction, while in the

flow region behind the stall cell, the incidence angle is reduced. Therefore, at one

side, flow redistribution causes the blades to stall, while at the other, blade loading

is reduced, so the blade will get out of stall. Although the sketch only shows one of

several possible stall propagation mechanisms, the idea is so intuitive that it is widely

accepted by both academic and industrial communities.

Cumpsty and Greitzer [7] used the balance between acceleration in the rotor,

stator, and upstream and downstream ducts to argue that the rotating speed of stall

cell is determined as the speed at which the unsteady inertial effects in rotors are

balanced by the unsteady inertial effects in stationary components. Their model

predicted well the measured speed of rotating stall cells. The results suggest that

although the flow redistribution idea is intuitive, the key mechanism for propagation

is due to the inertial effects in blade rows and ducts. Later, Longley [43] showed that

the flow redistribution effects do contribute to the rotating speed of stall cells.

1.4.2 Zero Slope of Characteristic as An Instability Criterion

The most well-known instability criterion, which states that the instability will occur

at the zero-slope point (peak) of the characteristic, was proposed by Dunham [14].

He found that at the zero slope of total-to-static pressure rise characteristic, the

compressor flow field is neutrally stable (i.e. disturbances do not decay).

A static stability argument for the criterion can be illustrated in Fig. 1.15. If a

compressor is operated in the negatively sloped region, for a small amplitude distur-
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bance superimposed on an axisymmetric flow field, the higher flow coefficient region

gets lower pressure rise (axial force), while the lower flow coefficient region gets higher

pressure rise. Therefore the flow in the higher flow rate region is decelerated and the

flow in the lower flow rate region accelerated, thus the disturbance is suppressed.

However, if a compressor is operated in the positively sloped region, a disturbance

will be amplified, leading to instability. One point to be noted in Dunham's model is

that it does not involve the rotating aspect of disturbances. This might indicate that

the key mechanism of instability is separated from the mechanism of rotation. It has

been shown by some later models [6, 55] that the rotating aspect of a stall cell alters

the instability point only slightly.

1.4.3 Moore-Greitzer Theory

Moore [50] modeled a compressor using a lumped compressor representation with

a postulated axisymmetric pressure rise characteristic. His model was able to pro-

duce the right trends of rotating speed of stall cells for different number of stages,

and also the zero-slope criterion of total-to-static pressure rise characteristic as the

neutral stability point. The model was subsequently extended to predict compressor

performance and instability with inlet distortions [35].

Although most of the work and development of Moore-Greitzer's model has been

for linear cases, the model itself is not limited to small amplitude disturbances. For ex-
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ample, an inlet distortion can be viewed as a stationary large amplitude disturbance.

Mathematically, general non-linear disturbances are very difficult to be treated an-

alytically; however modern CFD methods can be used to simulate the evolution of

any type of disturbances in the system. Longley [45] and Hendricks et al [32] used

this idea to simulate instability behavior in high-speed compressors. Escuret and

Garnier [17] extended the method to three-dimensional cases.

1.4.4 Three-dimensional and Non-linear Methods

Some rotating stall phenomena, like part-span stall and short wavelength stall in-

ception, are three-dimensional and non-linear in nature. Some early efforts [67] to

capture the former did not show much positive results mostly due to the lack of

computational resources. Recently, several CFD methods have been used to simulate

compressor instability [31, 34]. One advantage of these methods is that they can

relate the blade passage events to the instability. Hoying et al [34], based on the

computational results, found that the tip vortex movement could cause local flow

field breakdown which subsequently causes a stall cell in a single blade row. One

uncertainty of these calculations is that they are performed on a single rotor blade

row, since no data are available on short wavelength stall inception in a single rotor.

Although CFD can play a potential role for implementing computation to provide

information on instability behavior that is difficult to measure in a laboratory/test

rig, such simulations are still beyond the presently available computational resources

for multistage axial compressors.

There is another class of methods that uses both modeling and CFD technique

to model the flow in a compression system. These methods could handle three-

dimensional nonlinear flow phenomena in a practical manner and require reason-

able amount of computational resources. These methods have been demonstrated

to be able to compute steady three-dimensional inlet distortion cases [3], long wave-

length disturbances in a three-dimensional compressor [17] and disturbances in two-

dimensional high-speed compressors [32]. Conceptually this type of model is able

to handle non-linear three-dimensional disturbances (e.g. spikes) in a compressor,
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however no effort/calculations have been made to demonstrate this.

In summary, current modeling capability has been successful for the modal type

disturbances, but no model describes the spike type of stall inception. The desire to

understand the short wavelength disturbances in a compression system and the lack

of the capability to model these types of three-dimensional non-linear disturbances

in a compressor motivate the current research project.

1.5 Scope of the thesis

The goals of the research project are:

* to develop a methodology for describing unsteady three-dimensional distur-

bances associated with flow instability phenomena in a compression system;

* to assess the methodology for predicting both linear long wavelength and non-

linear short wavelength disturbances;

* to assess the effects of design parameters on the type of stall inception and the

instability point.

* to demonstrate the usability of the methodology for high-speed compressors in

situations with general type of inlet distortions.

Some specific questions of engineering interest are:

1. What is the simplest model capable of describing the short wavelength distur-

bances?

2. What are the key design characteristics which affect the instability point and

its inception type?

3. When does a compressor exhibit short wavelength stall inception?

4. What are the capabilities of the developed methodology?
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The thesis is organized as follows: Chapter 2 presents the development of the

computational model; Chapter 3 presents an assessment of the model against known

results; Chapter 4 describes a limited parametric study to reveal the impact of some

relevant design parameters; Chapter 5 discusses the implication of the results; Chapter

6 extends the model to high-speed compressors with inlet distortions; Chapter 7

presents a summary and conclusions. The Appendix describes a way of developing

a body force representation for blade-rows based on experimental measurements for

high-speed compressors.

1.6 Contributions

The key contributions of the present thesis are:

1. A well assessed three-dimensional non-linear compressor model has been devel-

oped. The model includes a major improvement upon other three-dimensional

compressor models, which is that the flow redistribution within blade rows is

properly addressed. The model has been demonstrated to be capable of simu-

lating rotating stall initiated by short wavelength disturbances. To the author's

knowledge, this is the first-of-a-kind capability that has been demonstrated

by a model. The methodology also has been used to model flow field in a

high-speed compressor with distorted inlet stagnation pressure and tempera-

ture distortions. The methodology has the potential of describing a wide vari-

ety of disturbances in compressors, including part-span stall, three-dimensional

dynamic inlet distortions, non-uniformity caused by downstream components,

non-uniform loading around the annulus (e.g. due to non-uniform tip clearances,

or imperfection due to manufacturing).

2. Key features of the stall inception process through short wavelength distur-

bances have been reproduced by the model. Parametric studies have been con-

ducted to explore the mechanism of this type of stall inception. Several findings

are deduced from the computed results:
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* The growth of finite amplitude short wavelength disturbances (length scale

of several blade pitches) can be sufficiently modeled by a smeared-out (in-

finite number of blades assumption) model. The ingredients of the model

are three-dimensional, non-linear, and row by row representation of com-

pressor response to finite amplitude disturbances.

o Localized disturbances of sufficient amplitude are required to initiate the

short wavelength route to rotating stall. In other words, the phenomena

are essentially non-linear.

o The computations show instability occurring on the negatively sloped part

of the overall compressor characteristic, in agreement with experimental

measurements. This is in direct contrast to the predictions of the modal

type of analyses in which the instability will occur at the peak of the

characteristic.

o Closing the rotor-stator gaps around the rotor in which short wavelength

disturbances occur suppresses the growth of these, thereby improving com-

pressor stability.

3. A concept, component group, is deduced from the computation results. The

growth or decay of short wavelength disturbances in a rotor is determined by

the design characteristics of the isolated component group consisting of the rotor

and its neighboring stators. The concept is deduced from the computed results

based on the model. The component group concept is then used to explain

why the short wavelength stall inception often starts in the first rotor. This

is because the component group (IGV-rotor-stator, or rotor-stator) involving

the first rotor is quite different from the component group (stator-rotor-stator)

in the rest of the compressor even though each stage has exactly the same

geometry and similar flow field. Therefore the first rotor has less (or none)

stabilizing influence from its upstream component. Each component group in

a compressor has its own instability point, and thus the point at which stall

occurs (i.e. propagating asymmetrical disturbances do not decay) via the short
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wavelength route is set by the most unstable component group where large

amplitude disturbances are present.

4. The methodology has been extended to model non-linear three-dimensional dis-

turbances in high-speed compressors. Preliminary results show that the model is

able to represent the compressor response to non-linear unsteady disturbances.
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Chapter 2

Development of A Computational

Model

A non-linear three-dimensional computational model will be developed in this chapter.

The model is aimed at simulating three-dimensional finite amplitude disturbances

such as inlet distortions, short wavelength stall inception processes, and part-span

stall cells, which are encountered by compressors. In the model development, the short

wavelength stall inception process is considered as a focus (and a major application)

of the model.

2.1 General consideration of the model

2.1.1 Desired Model Features

Based on observations of short wavelength stall inception, it was decided to develop

a model which could describe the general three-dimensional non-linear, short and

long wavelength disturbances in a multistage compressor on a quantitative level. The

model should at the very least include the following:

1. A non-linear three-dimensional flow field which includes

* flow redistribution between blade rows;
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e flow redistribution in each blade;

2. The response of blade rows to general three-dimensional non-linear disturbances;

2.1.2 Simplifications of the Model

To make the model practicable in terms of currently available computational re-

sources, (i.e. to avoid the need to resolve the flow structure in each individual blade

passage), the following simplifications are made.

1. Infinite number of blades assumption. There are two considerations that should

be noted: (i) the phenomena of smallest length scale under consideration has a

length scale of several blade pitches, so that the present assumption is marginal

in being adequate to capture the key physics of these disturbances; (ii) the

resolution of flow field in every blade passage is not computationally feasible

with currently available computational resources. The adequacy will thus be

assessed and justified a posteriori.

2. A local pressure rise characteristic in every small portion of a blade passage can

be defined. This aspect of the model is different from the other two-dimensional

and three-dimensional models [50, 45, 17], which assume that blade row (com-

pressor) performance is essentially set by the inlet conditions. It is essential for

a blade row to respond in a local manner, since flow redistribution is expected

within a blade row. This treatment is consistent with the infinite number of

blades assumption, and is thus good for a blade passage of high solidity.

The model is first developed for incompressible flow, and then extended to compress-

ible flow situations in Chapter 6.

2.1.3 Preliminary Justification of The Infinite Number of

Blade Assumption

The infinite number of blades assumption (which appears marginal for determining

flow behavior associated with spikes) is also supported by the following observations:
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Figure 2.1: The localized disturbance around a rotor blade row. The
the disturbance can be affected by the downstream stator.

decay rate of

(1) the shape of a spike is relatively stable (it does not vary as it moves at a speed

different from the blade speed); (2) its rotating speed is within the range that could

be estimated using the inertia balance involving fluid in rotor, stator, and duct.

The General Electric E3 compressor (Silkowski,1992) is taken as an example to

estimate the rotating speed of a spike using the inertia balance concept. Experimen-

tal observations indicate that the disturbance is located in a rotor blade row. The

amplitude of the disturbance in the rotor is roughly constant, and decays in both

the upstream and downstream regions (as shown in Fig. 2.1). The dominant circum-

ferential wave number, ncir, is 20, since the width of a spike is about 1/20 annulus

and the behavior of one local stall cell and several (up to twelve) cells are similar.

The dominant radial wave number, nrad, is estimated as one. Following Hynes &

Greitzer [35], the inertia of rotor, A, can be calculated using

A = b./r cos 2 7

for the GE E3 compressor, as 0.23. The inertia of fluid in the blade free region can
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be estimated using
1

and that in the downstream stator can be estimated using

1 1

Cos -Y 7rnrad

The flow inertia for the blade-free region of the GE compressor is 0.036, and that for

a stator is 0.069. The rotating speed of this disturbance can now be estimated using

A
Pupstream + Idownstream + Wrotor

The blade-free downstream case gives a rotating speed of 0.76 rotor speed, and the

zero rotor-stator gap case gives a rotating speed of 0.69. Both values are reasonably

close to the measured value of 0.71.

The flow in each infinitesimal blade passage can be reasonably assumed to be

axisymmetric, and the effects of a blade row can be modeled by a body force field [46,

33]. It might be helpful to look at the current level of modeling by comparing it

with other types of modeling. Figure 2.2 illustrates models with different levels of

complexity. The removal of the blade passage event makes the model of practical

value in terms of implementation, while inclusion of the three-dimensionality enables

the model to deal with three-dimensional disturbances.

The rest of the chapter is devoted to discussing detailed modeling issues which

include (1) governing equations for each component in a compression system; (2)

body force formulation for a blade row; (3) implementation of the model for short

wavelength disturbances.

2.2 Modeling of A Compression System

A compression system, as illustrated in Fig. 2.3, consists of an inlet duct, an exit duct,

blade rows, gaps between blade rows, a plenum, and a throttle. Each component will
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a) Three-dimensional N-S solver
Pro: able to solve flow structure within and
outside of blade passage, therefore to link
rotating stall with blade passage events,
Con: need of demanding computational
power makes the method impractical based
on present computational resources.

b) Three-dimensional locally axisymmetric Eul
solver with body force, the current model.
Pro: able to solve flow structure which is
larger than blade pitch; computationally
feasible;
Con: cannot link blade passage events to stal
inception;

c) Two-dimensional actuator duct
Pro: model can be formulated into an
eigenvalue problem
Con: two-dimensional flow only

d)Two-dimensional actuator disk theory
(Moore & Greitzer model)
Pro: adequate to describe two-dimensional
long wavelength disturbances, able to be
formulated into an eigenvalue problem
Con: two-dimensional incompressible only

Figure 2.2: The comparison of the complexity of the current model (b) with other
models.
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Figure 2.3: Illustration of a compression system and the blade row modeling

be described in the following.

2.2.1 Flow in Ducts

Flow in the inlet duct, exit duct, and gaps is described by the unsteady three-

dimensional incompressible inviscid Euler equations. The conservative form of the
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set of governing equation can be written as

0 rV V0

a rV, a rV2+rP/p a V V
at rV a Ox rVCVI V02 + p/p

rV,. r V. VV
r V, rVx V, VO Vr

rV 0

a rVxV, 0 (2.1)
Or rVoV, VVr

rVr+ rP/p F/p

2.2.2 Flow in Blade-rows

Since the number of blades is infinite (or the length scale of flow events is much larger

than a blade pitch), the flow at each circumferential position (or at each infinitesimal

blade passage) can be regarded as axisymmetric flow in a coordinate frame fixed to

the blade row. The pressure rise and flow turning due to blades can thus be simulated

by a body force field. Due to presence of the blades, the flow fields between any two

blade passages can be different, therefore a three-dimensional flow field in a blade

row can be composed of an infinite number of axisymmetric flow fields. The idea is

illustrated in Fig. 2.3. The governing equations in the absolute frame can be written

as the following form:
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a a
at ao

0

r VX

r V0

r V

+

rV,

rV2 + rP/p

rVV

rVV,

a
+ 0

rV,

rVVr

rVV,

rV2 + rP/p

0

VoV + Fo

V2 + P/p+Fr

(2.2)

where

(F , Fo, Fr) = F(V(x, 0, r), x, r)

The equation set is derived through the following steps:

(2.3)

1. Transform Equation 2.1 into the blade row relative frame (i.e., the rotating

frame for the rotor) using

aa stationary

(2.4)= (b - a d
at ao blade row

2. Remove all 0/a6 terms in the equation set;

3. Tranform the equation back to the stationary frame using

a blade row

a + a )at a stationary
(2.5)

The first two steps are to obtain the axisymmetric flow equation set in the frame

which fixed on the blade row. The equation set is then transformed to the stationary

frame.
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The operator 0/Ot + Q a/a in Eq. 2.2 is the result of the transformation of 1/t

from the relative frame to the stationary frame. The Q D/&6 represents the effects

of a flow field which moves with the rotor and is viewed from the stationary frame.

In the momentum equations, the corresponding terms are referred to as the inertia

terms [50, 51, 35]. A significant feature of the current body force representation

(Eq. 2.3) is that it is a function of local flow properties. This is essential to model

short wavelength disturbances in compressors where flow redistribution occurs in a

blade row in the presence of these disturbances. The details on the formulation of

this type of body force is presented in a separate section in this chapter.

2.2.3 Plenum and Throttle

Following the treatment by Greitzer for a one-dimensional model (Greitzer, 1975),

the fluid in the plenum is considered as uniform and isentropic. The dynamics of the

plenum can be described by the following equation

dP y P
d = tP 7P (mC -mt) (2.6)
dt P Vienum

where me is the mass flow rate from the compressor and mt the mass flow rate through

the throttle, and Vpenum the volume of the plenum.

The throttle pressure drop is given as

P - Pambjent =Kt02 (2.7)
pU

2

Since the plenum has little effect on the early development of short wavelength

disturbances, the plenum volume can be set to zero and it is done so here. Thus the

governing equation for plenum and throttle becomes

Pexit - Pambient = K t2 (2.8)
pU

2

where Pexit is the static pressure at the exit of the computation domain.
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2.3 Construction of A Force Field Within Blade

Rows

The requirements on the body force field are

" in steady axisymmetric condition, the body force should be capable of repro-

ducing the required pressure rise and flow turning;

" the body force should be capable of responding to the flow disturbances for

both the steady situations (e.g. inlet distortions) and unsteady flow situations.

The body force field is formulated from the following given the compressor char-

acteristics.

" Pressure rise characteristic T (<, r) in each blade row;

* Exit relative flow angle 03exit(r);

" Blade metal angle (or nominal angle along which the flow is expected to follow)

distribution # xmeta(, r)

Sometimes not all of the required data are available, and thus some extrapolation is

inevitable.

It should be noted that the way of constructing a body force field is not unique,

nor is the body force itself for the given requirements and available data. The princi-

ples of construction of a body force field will be illustrated through a real compressor

which is used as a test bed by the model.

The available data of the GE compressor are listed in the following:

" Compressor configuration and its geometry (end walls, blade rows, etc.).

* Blade row inlet and exit metal angles (or nominal flow angles) which will be

used to form the body force which turns the flow.

" Stage total-to-static pressure rise.
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0.5 rotor charc rotor charc
at mid-span at tip

0.4. rotor charc
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0.3 -

measured stage
0.2- specified unstable characteristic

"-. portion of stage
characteristic
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stator loss
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Figure 2.4: The characteristics of the rotor and stator of the first stage are con-
structed. Only the right-to-the-peak portion of the stage characteristic is measured.

* Exit flow angle profiles at several operating points.

From the input data, the body force can be formulated through the following

steps:

Step 1: Formulation of the full range of blade row character-

istics

The goal of this step is to determine the total-to-total pressure rise characteristics for

each blade row in the whole operating range. More precisely, we are looking for the

pressure rise characteristics in the following form:

fr= at a r)

for each blade row.
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Ptl Pt2 Pt3
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U

Figure 2.5: Notations of total, static pressure, and velocity at the rotor inlet, rotor-
stator gap, and stator exit.

The measured pressure rise characteristic is total-to-static pressure rise charac-

teristic on the stable side. First, a total-to-static pressure rise characteristic in the

whole flow range will be constructed. The pressure rise at zero flow coefficient is

determined following Day's measured data in low speed rigs [8], and the reverse flow

characteristic is a steep straight line where the associated slope is determined from

the model of Koff and Greitzer [39]. Connecting the zero-flow-coefficient point and

stall point gives the stage pressure rise characteristic in the whole flow coefficient

range.

The blade row characteristic can be obtained by assuming a stator loss character-

istic. Near the design operating point, the loss is small (could be roughly estimated

from compressor efficiency). It is reasonable to state that the total-to-total pressure

loss of the stator at zero-flow-coefficient is 0.5. This can be obtained through the

following argument. Near zero flow coefficient point, the static pressures at the rotor

inlet, rotor-stator gap, and the stator exit (Fig. 2.5) are the same, since the flow in

the rotor and stator is at rest. The velocity at the rotor inlet and stator is zero, and

the velocity in the gap is the wheel speed of the rotor. Thus we have:

Ps1 = Ps2 Ps3

and

V1 =V3 =0
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V2 =U

The notations used here are illustrated in Fig. 2.5. Therefore, the total-to-total

pressure rise across the stage, rotor and stator are

Pt - Ptl
pU 2

and
Pt2 - Pt .

pU2

Pt3 - Pt2 05U2  = -0.5P U2

The above argument is based on two-dimensional steady flow analysis. The small

pressure rise produced by a real compressor at zero-flow-coefficient has to be at-

tributed to the unsteadiness and three-dimensionality of the real flow. Connecting

the loss at design flow coefficient and loss at zero flow coefficient gives the whole range

of stator loss characteristic. The rotor total-to-total pressure rise is the sum of the

stage pressure rise and stator loss.

So far, the overall total-to-total pressure rise characteristics of the rotor and

stator have been obtained. The final sub-step is to find the radial variation of the

pressure rise. The measurements from the GE four-stage compressor show that the

axial velocity profile is kept roughly uniform up to near the stall point. This fact

will be used to estimate the radial variation in the static pressure profile using the

simple radial equilibrium equation. And the total pressure rise profile along the radial

direction can be calculated from the static pressure profile and the velocity profile.

At the design point, the flow is assumed to be near a free-vortex pattern, so the total

pressure rise characteristics for different radial positions approximately go into one

point. The pressure rise at other operating points is estimated using interpolation or

extrapolation based on the mean pressure rise characteristic and the radial variation

at the design point and a point near the peak.

57



Step 2: Determination of a streamline pattern through a blade

row

This step is required so that flow equations can be applied along streamlines. During

this step, the continuity is the only guideline that can be used. For the GE compressor,

which is a high hub-to-tip ratio compressor, it is assumed that all streamlines are

approximately in the axial direction in the full flow range, since measurements show

that the velocity profiles are kept roughly uniform up to a point near stall. This

approximation will be used in the next step to formulate the body force for the GE

compressor.

Step 3: Determination of body force along each stream line

The goal of this step is to transform the pressure rise across a blade row to a body

force field which can be used in the computational model.

It is reasonable to set Fr to zero, since the blade span is roughly in the radial

direction.

The blade row characteristic is described by two pieces of information: the total

pressure rise and the flow turning. It is therefore desirable to have two pieces of body

force which can produce two pieces of blade row characteristic separately. In other

words, the body force can conveniently be split into two parts:

F = Fp + Fturning (2.9)

Such a formulation is possible because the streamlines in the meridional plane are all

parallel and in the axial direction (for the GE compressor). The following will show

that it is possible to have an axial body force which only produces total pressure rise

and the rest of the body force turns the flow.

The total pressure rise rate along the axial direction can be written as

dP _ dP dV+ dVo
dx dx dx dx
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Since V is constant (to satisfy the continuity condition), the above expression can

be written as

dP _ dP dV
dx dx dx

dP -dV
=- -+tanpVdx dx

Applying the momentum equations give the following equations:

1 dP
F1 =

p dx

Fo= 1dVo (2.10)
p dx

One can now define
_1 dPi

F -,X = (2.11)
p dx

Equation 2.11 states that only an axial body force is needed to produce total pressure

change. Since Fpt,o = 0, Fp, thus does not cause any flow turning. The remaining

part of body force only produces flow turning, and can be written as

Fturning,x = - tan 3 F

Fturning,o = F0

Indeed, the above part of body force is normal to the flow direction, therefore it will

not affect total pressure. The total body force can now be expressed as

Fx = Fpt,x + Fturning,x

F0 = Fturning,o (2.12)

Fr = 0

The advantage of using this kind of formulation is that two parts of the body

force directly correspond to the available measurements, pressure rise characteristic

and turning.

The details of calculating the each piece of body force from the given blade row
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edge edge

Figure 2.6: The C, distribution from leading edge to trailing edge.

characteristics will be described as follows. F,,, must satisfy the following equation:

Itrailing edge

Apt = p leading edge Fpt,,dx (2.13)

The Fpt,, distribution from leading edge to trailing edge can be obtained by assuming

a distribution function Cx(x) which satisfies

trailing edge

fx laigeg Cx(x)dx = APt (2.14)
J leading edge

where fx is only a function of <$ and r (i.e. F, pt = fxC(x)). The Cx(x) used in

the GE compressor is shown in Fig. 2.6. The shape of Cx is chosen for the following

computational reason: Cx becomes zero at the leading edge and trailing edge, so

that the pressure rise at the leading edge and trailing edge has a smooth transition

between blade region and blade-free region, therefore numerical oscillation is greatly

reduced around these edges.

It is reasonable to assume a detect-correct type of formulation for Fturning which

would continuously act to enforce the flow to be tangential to the blade metal angle

(or a nominal flow angle).

Fturning,o, = COp(tan3metal - tan 0) V (2.15)

where CO is a constant that will be calibrated to give a measured exit flow angle at the
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Figure 2.7: Computed V7 profiles compared reasonably well with measured V pro-
files at design and near stall flow coefficient.
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design point. Once Fturning,O is obtained, Fturning,x can be determined from the fact

that Fturning is orthogonal to V. This type of body force worked reasonably well for

the GE compressor. Fig. 2.7 shows the measured and computed tangential velocity

profiles at the design and near stall flow coefficients of the GE compressor using the

body force just described. The results show that the formulation can give not only

the right flow angle at design point through calibration, but also a correct trend at

an off-design point.

The procedure includes several assumptions. For example, a streamline pattern

has to be assumed, and then the body force is calculated based on the assumed

streamline. It is expected that the streamlines produced by the body force field will

be different from those assumed. In some cases (like the high hub-to-tip ratio GE

compressor) the difference is minimal; however, the difference could be quite large

for a low hub-to-tip ratio fan since flow redistribution within a blade row can be

considerable. In that case, the body force has to be modified based on the computed

streamline pattern.

2.4 Implementation of the Model for Simulating

the Short Wavelength Stall Inception

There are three issues to be discussed in this section.

" initial disturbances

" determination of stall point

" determination of stall inception type

These issues are unique for calculating a compressor instability point which is a key

application of the model. These issues are discussed one by one next.
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Figure 2.8: Experimental evidence of tip-spikes prior to the development of stall at
time=O. The pressure traces, from sensors at different circumferential positions at
the first rotor exit, are shifted relative to first trace so that disturbances traveling at
71% of rotor speed line up vertically. Guide lines identify propagating spikes. [56]
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Figure 2.9: Axial body force impulse used to generate spike-shaped disturbances.
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2.4.1 Disturbances

Any instabilities have to be initiated from background disturbances which would

normally be absent in computations; therefore disturbances have to be part of the

input to the computational model. It has been shown that large amplitude short

length scale disturbances do exist in a compressor prior to stall [56], in addition to

small amplitude, long wavelength disturbances. Therefore, both types of disturbances

are used in the simulations. Long wavelength disturbances, extending through the

whole compressor, are imposed as an initial condition. Their amplitudes are always

less than 1% of the mean velocity. In the simulations performed later, this type of

disturbance can be used to determine the long wavelength modal type stall point.

Short wave length flow disturbances are generated by imposing an axial force

impulse in the tip region of a selected blade row. The shape of a typical force impulse

is shown in Fig. 2.9, and the force impulse lasts for 0.1 rotor revolutions (the only

consideration in choosing this value is it has to be much smaller than the time scale

of stall inception.) This type of disturbances is used to excite short wavelength

instability. For the baseline case, the amplitude of force impulse is equivalent to a

30% loss in the pressure rise within the local blade passage. The chosen value is

rather arbitrary, and the effects of the amplitude will be examined in the parametric

studies in Chapter 4.

2.4.2 Determination of The Stall Point

Once a disturbance is imposed on a steady flow field, its evolution determines if

the compressor's flow field is stable. If the disturbance decays, then the flow in

a compressor is stable, and a similar simulation at a lower flow coefficient will be

performed. The stall point is determined by repeating the above simulation until a

disturbance does not decay.

During each simulation, the throttle is fixed. Continuous changing of throttle is

avoided because any numerically acceptable throttle change rate is much faster than

that used in experiments.
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Figure 2.10: Computed 4traces when a compressor stalls through short wavelength
disturbances.

2.4.3 Determination of The Stall Inception Type

The question to be answered is whether short wavelength stall inception can be dis-

tinguished from long wavelength stall inception. For the GE four-stage compressor,

the two types of stall inception can be recognized by observing the development of

disturbances.

Figure 2.10 shows a typical short wavelength stall inception process from a simu-

lation. The spike-shaped disturbance is sustained and augmented after it is inserted,

and then triggers a long wavelength stall cell. Figure 2.11 shows that the spectrum is

flat at the beginning, and lasts for about one rotor revolution before the low harmonic

contents take over.

In contrast, a modal-stall compressor (the GE compressor with its IGV stagger

angle increased by 20 degrees) does not show short wavelength stall inception even

if a spike-shaped disturbance is inserted. As shown in Fig. 2.12, a spike-shaped

disturbance is suppressed almost immediately after it is inserted, and the compressor

stalls through the long wavelength disturbances. The spectrum of disturbances, shown
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Figure 2.11: Evolution of Fourier coefficients of computed V shows a spike-shaped
disturbance is sustained by the system, and causes the compressor to stall afterwards.
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Figure 2.12: Computed V, traces when a compressor stalls through long wavelength
disturbances.
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Figure 2.13: Evolution of Fourier coefficients of computed V shows a spike-shaped
disturbance is suppressed after it is inserted into the system. The compressor stalls
afterwards through long wavelength disturbances.

in Fig 2.13, shows that the flat spectrum disappears immediately after the force

impulse stops. The q traces (Fig. 2.12) and spectrum (Fig 2.13) do not show a

typical modal stall inception which can be explained as a consequence of the nonlinear

nature of the initial disturbance. The modal stall type is calculated by imposing a

long wavelength disturbance into the compressor. As shown in Fig. 2.14, a clearly

exponential growth of the first harmonic Fourier coefficient can be seen. The modal

type of this compressor is confirmed by the observation that the compressor stalls at

almost the same flow coefficient for either imposing spike-shaped disturbances or long

wavelength of disturbances.

Therefore, the spike-shaped short wavelength disturbance can be used to deter-

mine the type of stall inception mechanism, as well as the stall flow coefficient of

a compressor. In the rest of the thesis, the type of stall inception and stall flow

coefficient is determined by observing the evolution of an inserted spike-shaped dis-

turbance.
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Figure 2.14: The compressor which does not support short wavelength disturbances
shows a clear modal wave evolution of first harmonic.

2.5 Numerical method

The solution procedure for the governing equations for the compressor model is based

on a standard finite volume for spatial discretization and the multi-stage Runge-Kutta

method for time integration [38]. In order to use time marching for incompressible

flow, a pseudo-compressible technique is used. The technique adds a 1 term into

the mass conservation equation. The constant c is referred to as pseudo-speed of

sound. To reflect the incompressible nature of the current problem, the pseudo-speed

of sound, c, is kept at least ten times larger than the mean flow coefficient 0, so that

the pressure wave speed is ten times more than the vortical disturbance propagation

speed. In all the numerical experiments that have been implemented in this thesis,

the influence of c on the computed results is negligible when c is taken to be larger

than 10#.

The flows within blade row and duct regions are compatible with one another

in the computational domain. This will be elucidated in the following. Figure 2.15
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Figure 2.15: Illustration of fluxes evaluation around a cell in the blade row region

shows the fluxes through a computational cell in the blade row region. The role of

blades is to block (or force) the fluxes through the constant 0 face (in the shadowed

area). More specifically, if the cell is in a stator blade row, there is no flux through

that face, and if the cell is in a rotor blade row, the flux is evaluated using Q -LU.

The term can be viewed as the mass and momentum that are forced into the cell by

the moving blades. The fluxes on other faces can be evaluated in the way used by

Jameson [38]. The interface between blade row region and duct region is the constant

r (or r = f(x)) face; the fluxes on that face can be evaluated by the same method as

is for the three-dimensional flow region. Thus coupling the two types of flow region

will not cause any incompatibility problem.

The inlet and exit boundary conditions are standard one-dimensional linearized

boundary conditions [19]. The exit static pressure of the computational domain is

updated every iteration using the plenum-throttle equation.
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2.6 Summary

A non-linear three-dimensional computational flow model for an axial compressor has

been presented. The model emphasizes the three-dimensional unsteady response of

blade row to general three-dimensional non-linear flow disturbances.

The implementation of stall simulation is discussed. It is found that a spike-

shaped disturbance is necessary to initiate a short wavelength stall inception. Ex-

perimental observations show that this type of disturbances do exist prior to stall.

Simulations also show that imposing a spike-shaped disturbance can be used to iden-

tify the types of stall inception by observing its development.
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Chapter 3

Model Assessment

This chapter is focused on assessing the capability of the model developed in the pre-

vious chapter. The assessment consists of applying the model to the flow situations,

which have either analytical solutions or experimental measurements. Specifically,

the following flow situations are considered.

(1) Flow in a compressor with two-dimensional inlet distortion. Due to the re-

sponse of the compressor to the inlet distortion, the distorted inlet flow is redistributed

in the upstream duct. The response of a compressor to an inlet distortion is an ideal

situation to assess the ability of the model to describe response of a compressor to

finite amplitude disturbances. While the imposed distorted flow is steady, part of

the response of the compressor associated with the rotor blade rows (which would

perceive an unsteady flow in the rotor reference frame) would be unsteady. Thus this

also provides an opportunity to assess the unsteady aspects of the model.

(2) Behavior of two-dimensional small amplitude disturbances in a compressor

(linearized stability analysis of compressor response to two-dimensional infinitesimal

disturbances): The phase speed and growth rate of this type of disturbances can be

calculated by a linear analysis [35]. The model gives results that agree with the linear

analysis for small amplitude disturbances.

(3) Behavior of a small amplitude first harmonic disturbance in a three-dimensional

compressor (Linearized stability analysis of compressor response to three-dimensional

infinitesimal disturbances): This example shows that the model can also produce an
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equivalent behavior of a modal wave calculated using a three-dimensional actuator

disk model [24].

(4) Short wavelength stall inception in a GE four-stage compressor: It will be

shown that the model captures key features of the inception process and its subsequent

development.

(5) Short wavelength local stall cells in a mismatched compressor: The situation

consists of a "progressive" stall region, where the spike-shaped local stall cells are

localized in the first stage and in an equilibrium state, therefore the example provides

an opportunity to assess the model quantitatively and on a rigorous basis.

(6) "Unique rotor tip incidence" for short wavelength stall inception and switch

of stall inception types: The recent experimental result of Camp and Day [5] shows

that a compressor stalls through short wavelength disturbances at a "unique rotor

tip incidence", and that the stall inception can switch from short wavelength type to

the long wavelength type as the rotor loading is reduced.

3.1 Two-Dimensional Steady Flow Field with Inlet

Distortion

The model is used to calculate the steady flow field around a compressor with an inlet

distortion, and the result is compared with the theoretical model of Hynes and Gre-

itzer [35]. A large inlet distortion can be considered as a finite amplitude disturbance,

thus the example assesses the ability of the model to simulate the behavior of finite

amplitude disturbance in a compression system. An inlet distortion calculation is a

good preliminary case to assess a compressor model because (1) it is non-linear due to

the large amplitude disturbance involved, (2) it involves flow unsteadiness since the

steady inlet distortion is unsteady when viewed from the frame of rotor blade rows,

(3) it is relatively easy to conduct a quantitative comparison since it is steady in the

stationary frame.

The compressor used in this case is a two-dimensional compressor (i.e. a com-
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Figure 3.1: The total-to-static pressure rise characteristic used in Section 3.1 and
Section 3.2.

pressor with a hub-to-tip ratio of near unity so that the blade span is zero) with a

180 0-sector square wave total pressure distortion at a far upstream location. The

pressure rise characteristic, shown in Fig. 3.1, is taken from Hynes and Greitzer's

paper [35]. The total inertia parameter, M, is 2.0, and the rotor inertia parameter, A,

is 1.0.

The current model is slightly modified to fit the hypothetical case. Specifically,

only one cell is used in the radial direction, and the compressor is lumped and rep-

resented by one locally axisymmetric flow region with a body force field. The inlet

distortion is represented by a specified total pressure distribution at a far upstream

inlet boundary. The figure of merit is the q profile at the compressor inlet face at a

specific flow coefficient. The flow field, more specifically the contraction of the dis-

torted flow region near the compressor front face, is illustrated by the total pressure

contours (Fig.3.3) which are equivalent to streamlines in the upstream region of the

compressor.

The # profile is plotted in Fig. 3.2. There is an excellent match between the

analytical result and computed result. The computed result shows that most of the
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Figure 3.2: V distribution at compressor inlet face. The solid line
the computational model, and the dash line the analytical model.

350

is computed by

flow redistribution occurs near the compressor inlet. As shown in Fig. 3.4, the 4

profile at the compressor inlet is noticeably different than the # profile at the location

just one cell (0.0016 radius or about 0.2 rotor chord) upstream of the rotor leading

edge. The rapid change is associated with high decay rate in the high harmonic

content of the response produced by the compressor.

The above computed behavior of the flow field can be used to explain the mea-

surements in a real situation [59]. Figure 3.5 shows the measured # profile in front

of the SGV (Servo Guide Vane which is used to suppress pre-stall waves) of a three-

stage compressor (Fig. 3.6). The SGV has a long chord and large blade pitch, so high

harmonic content decays within the SGV region.
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Figure 3.3: Flow redistribution is shown using P contours. The plot shows the low
Pt region contracts when it reaches the compressor inlet face.

Table 3.1: A comparison between computed and theoretic growth rates and phase
speeds of the first circumferential mode.

Growth rate Phase speed
Computational model -0.26 0.27

Theoretic model -0.26 0.27

3.2 Two-Dimensional Modal Wave

We next examine small amplitude disturbances in a two-dimensional compressor. The

compressor is the same as the one taken from reference [35]. At each operating point,

each mode has a growth rate and a phase speed predicted using the Moore-Greitzer

analysis. The computation is set up in the same way as in the previous section. At

a select operating point, a small amplitude first harmonic axial velocity disturbance

is inserted into the system at t=O. The evolution of the harmonic determines its

growth rate and phase speed, which are the key figures of merit in the comparison.

The results from analysis and computation are listed in Table 3.1. The agreement is

excellent.
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Figure 3.4: V distributions near the compressor inlet show strong flow redistribu-
tion.

3.3 Three-Dimensional Modal Wave

In this section, the growth rate and phase speed of a linear wave is calculated by

the computational method and an analytical method. The analytical method, which

was developed by Gordon [24], uses an actuator disk to represent a compressor. The

stability calculation involves the solution of an eigenvalue problem formulated by

subjecting the compressor steady flow to an infinitesimal flow disturbance (i.e., it

is essentially the three-dimensional equivalent of the Moore-Greitzer model). The

computational method is implemented by imposing a small amplitude first harmonic

disturbance into the system. The growth rate and phase speed are obtained from the

computed evolution of the disturbance. The compressor is similar to a single stage

fan with a hub-to-tip ratio of 0.43. The pressure rise is one third of the previous

compressor, its rotor inertia is 0.25, and total inertia 0.5. Table 3.2 shows the com-

parisons between the results calculated by computation and by analysis. The results
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Table 3.2: A comparison of growth rate and phase speed computed using the com-
putational model and analytical model.

Growth rate Phase speed
Computational model -0.11 0.1

Analytic model -0.1 0.1

are again in good agreement. The phase speed (0.1 rotor speed) is relatively low for

this compressor because this is a single stage compressor so that the rotor inertia,

which drives the rotation of disturbances, is relatively small.

So far, the results show that the computational model for stall inception is equiv-

alent to linearized eigenvalue analyses for small amplitude disturbances. However, the

computational method shows little advantage in those situations where linearized sta-

bility analysis is applicable. The strength of the model lies in its ability to compute

three-dimensional non-linear disturbances, and this aspect will next be demonstrated.

3.4 Simulation of Stall Inception of A General Elec-

tric Four-Stage Compressor, Matched Build

The short wavelength stall inception will be simulated in this section. The example

presented represents a first-of-a-kind results on short wavelength stall phenomena

in a multi-stage compressor. A General Electric four-stage compressor [71], which

consistently shows short wavelength stall inception in the experiments, was chosen as

a test case for the computational model. Design parameters of the compressor are

listed in Table 3.3. The compressor consists of four identical stages with an IGV at

the front.

In the computation, the compressor is represented by individual blade rows and

gaps. The computation domain thus includes one IGV, four rotors, four stators, eight

gaps, inlet and exit ducts, as shown in Fig. 3.7.

256 cells are used in the circumferential direction to ensure that a typical short

wavelength disturbance is sufficiently resolved (by 10-14 cells). There are nine cells in
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Table 3.3: The design parameters of General Electric four-stage compressor.

IGV Rotor Stator
Number of blades 110 54 74

Axial chord (in mean radius) 0.10 0.086 0.10
Stagger angle (degrees) 10 50 40
Solidity at middle span 1.4 1.16 1.43

Hub-to-tip ratio 0.85 0.85 0.85

the radial direction, and over 200 in the axial direction. The overall number of cells

is over half a million. The details of the mesh in the computational domain are listed

in Table 3.4. Although the number of cells along the span appears relatively small, it

is selected due to the following three reasons: (1) it yields a reasonable aspect ratio

of cells on the (0, r) plane, (2) it is enough to resolve the first two radial harmonics

which should be sufficient for a part-span low velocity region at either tip or hub, (3)

the use of much finer mesh (although it is useful to study grid independence of the

results) would require an unreasonable amount of computational resources.

A formal grid independence study was not performed due to the limitation of the

available computational resources. Calculations were performed for the same com-

pressor with half the number of cells in circumferential direction. The phenomena are

qualitatively comparable to the results using the final mesh. The mesh is considered

sufficient based on the following reasons: (1) the results compared well with exper-

imental observations, (2) the number of cells used to resolve the phenomena (short

wavelength disturbances) is more than ten in all three dimensions.

The body force fields of rotor and stator are formed from the specified charac-

teristics (Fig. 3.8), and nominal blade angle. The portion of the characteristic to the

right of the peak is taken from the experimental measurements. The unstable portion

(to the left of the peak) of the characteristic is specified based on the curve shape

used in the two-dimensional compressor modeling [50, 35]. The details of the body

force formulation have been discussed in Chapter 2.

Two types of initial disturbance are used in the simulation. One is a small

amplitude long wavelength disturbance, the other a spike-shaped axial force impulse
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Table 3.4: The computational mesh distribution used in the simulation of the GE
four-stage compressor.

Total number of cells in axial direction 230
57 cells in the inlet duct
10 cells in the IGV
10 cells in the IGV-R1 gap
10 cells in each rotor
10 cells in each stator
4 cells in each rotor-stator gap
45 cells in the exit duct

Number of cells in the spanwise direction 9
Number of cells in the circumferential direction 256
Total number of cells 529,920

(see Fig. 2.9) that lasts for 0.1 rotor revolutions and has a magnitude corresponding

to a loss in 30% of pressure rise of one blade passage in the tip region of the first

rotor blade row.

The figures of merit for the model are the type of stall inception, the rotational

speed of disturbance, and the transition time from the initiation of the disturbance

to the formation of a large stall cell.

The simulation shows that the short wavelength stall inception can be initiated

by a spike-shaped disturbance. The flow coefficient traces (Fig. 3.10), taken from

the tip region of first rotor inlet, show that the disturbance is sustained, and the

disturbance leads to compressor stall subsequently. The overall inception is similar

to the measurements (Fig. 3.9). The spectrum of computed 0 in the tip region of

the first rotor inlet shows the same process (Fig. 3.11), during which the nearly flat

Fourier coefficient distribution is sustained and followed by a subsequent growth of

lower harmonic contents.

The different nature of the stall inception initiated by two types of disturbance

is further confirmed by plotting the stall points on the characteristic (Fig. 3.12). The

short wavelength stall inception occurs at a higher flow coefficient point where the

slope is clearly negative, while the modal type stall inception occurs at a lower flow

coefficient which is very close to the peak of the characteristic.
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Figure 3.7: A scaled schematic of the GE compressor represented by nine blade
rows and eight gaps.

Table 3.5: Comparison between computation and measurement

Measurement Computation
Stall Inception Mechanism Spike Spike
Rotating Speed of Spike 70-73% 83%
Rotating Speed of Large Stall Cell 45% 20%
Transition Time about 3 revs about 2.7 rev

A quantitative comparison shows that the stall inception initiated by spike-

shaped disturbance has an initial disturbance rotating speed of 83% of rotor speed,

and a transition time of about three rotor revolutions. These compare reasonably

well with the experimental observation. Comparison with experimental observation

is given in Table 3.5. The rotational speed of the stall cell drops as a large two-

dimensional stall cell emerges. The computed rotational speed of the final large stall

cell is about 20% which is less than half of the measured value of 45% rotor speed.

The cause of the difference is not clear. It is suspected that the blade row charac-

teristics at very low flow coefficient region (near zero flow coefficient) used in the

computational have a large error. Since the flow coefficient within a large stall cell

is around zero. However, inaccurate blade row characteristics are not expected to

change the phenomena related to short wavelength stall inception. The effects of the

shape of unstable part of blade row characteristics will be examined in Chapter 4.

Although the computation captures the overall features of short wavelength stall

inception, the evolution towards a large stall cell is different from the experimental ob-
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Figure 3.8: Stage characteristic of GE compressor.

servations. The simulation shows that a long wavelength disturbance trails the short

wavelength disturbance, and becomes dominant after one to two rotor revolutions.

Along with the growth of the long wavelength disturbance, the initially dominant

spike-shaped disturbance dies out. The cause of this fast emerging long wavelength

disturbance can be found through examining the disturbance development at differ-

ent blade rows (Fig. 3.13). It appears that a long wavelength disturbance that is

triggered by the short wavelength disturbance at the front stage, starts to grow in

stage three after it attains a threshold amplitude. Since the long wavelength only

appears in certain axial locations, it must have a three-dimensional structure. At be-

tween t=2.25 to 2.5 rotor revolutions, the non-linear three-dimensional disturbance

(Fig. 3.13) located around the third stage develops rapidly in all directions, and within

one rotor revolution it becomes a large two-dimensional stall cell. At this stage, it

is difficult to assess the simulated results against the experimental data which now

show a somewhat ambiguous behavior. The measured velocity traces indicate that

the short wavelength disturbance leads the long wavelength, but it does not leave the

long wavelength disturbance, instead, it becomes part of the final stall cell.
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Figure 3.11: Evolution of first harmonic of V at tip of the first rotor inlet for small
amplitude long wave length disturbance.
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Figure 3.14: The computed tip < traces from the rotor exit show the evolution of a
spike-shaped disturbance. The compressor is a single-stage configuration of the GE
compressor.

Since no data were taken from the rear stages in the experiment, and the data

taken from the first stage cannot indicate any early development of three-dimensional

long wavelength disturbances in the rear stages (due to a high decay rate in the

upstream direction), it is unknown whether there is a long wavelength disturbance

development prior to that of the first stage. In the simulation, the separation of

the spike-shaped disturbance from an emerging long wavelength disturbance might

be explained due to the relatively large differences between the rotating speed of

spike-shaped disturbance (83%) and the rotating speed of long wavelength distur-

bance (about 20%). In the real compressor, the separation might not have happened

before a large stall cell forms, because the difference of rotating speed between initial

disturbance (70-73%) and final long wavelength disturbance (45%) is smaller.

The difference in the development of short wavelength disturbance during the

emerging of large stall cell can be viewed only as a different route to the final stall

cell. The nature of the instability is still due to the initial growth of short wavelength

disturbances. The statement is supported by a numerical simulation for a single stage
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configuration for the same stage in the GE compressor. The velocity traces are shown

in Fig. 3.14, in which a spike-shaped disturbance clearly grows into a large stall cell.

The different routes to the emergence of the large stall cell for the same stall inception

mechanism will be further discussed in Chapter 5.

3.5 The GE Four-Stage Compressor, Mismatched

Build

The experiment reported by Silkowski [60] shows that the growth of short wavelength

disturbances can be prevented from developing into a full-span stall cell by mismatch-

ing the compressor. The compressor could operate without substantial deterioration

in pressure rise, while one or several spike-shaped stall cells exist in the first stage.

Each local stall cell could be viewed as a certain stage of a short wavelength dis-

turbance during the evolution of compressor stall. This provides an opportunity to

examine the behavior of short wavelength disturbances, since the flow situation is

now stabilized in an equilibrium state.

The computational model was used to implement a simulation that reproduced

the experimental observation, and the assessment of computed results against mea-

sured results can be on a quantitative basis. The case is ideal for assessing the current

model since (1) the existence of an equilibrium state of the local stall cell pattern

makes it possible to compare the structure of a spike-shaped stall cell between the

results from the computation and measurements; (2) the progressive stalling charac-

teristic provides an opportunity to assess the overall effects of local stall cells on the

pressure rise characteristics.

The General Electric E3 four-stage low-speed compressor, which has the same

configuration and blading as the compressor in the previous section, was mismatched

by re-staggering the rotors in stages two to four, so that the rear three stages have a

lower peak pressure rise flow coefficient than does the first stage. Therefore, within

a certain flow coefficient range, the first stage can operate in 'stall' while the rear
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stage one characteristics for the GE mis-
progressive stall, which deviates from the

stages are still well in their stable region. In this flow coefficient range, the first stage

exhibits a gradual decrease in pressure rise with decreasing flow coefficient with no

observable hysteresis (Fig. 1.8). This type of characteristic is often referred to as

progressive stall. The number of local stall cells can vary according to the overall

flow coefficient (or throttle opening). Each individual stall cell is characterized by

its width (in terms of blade pitch) and the rotating speed, and these characteristics

constitute the figure of merit in the assessment.

The setup of the computation is essentially the same as the case in the matched

compressor situation (section 3.4). A spike-shaped disturbance (through a spike-

shaped forcing lasting 0.1 rotor revolutions) is imposed in the tip region of the

first rotor at a frequency of one per rotor revolution. Continuous inserting of the

spike-shaped disturbance provides a source for local stall cells to be developed and

sustained. The number of local cells sustained by the system depends on throttle

position within the progressive stall region.
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The features captured by the computational model are compared against those

from experimental observation and are described below:

1. The progressiveness of the pressure rise characteristic is well captured by the

model, as shown in Fig. 3.15. There is no hysteresis and the characteristic of the

first stage is invariant with respect to the direction of the throttle movement.

The number of stall cells varies according to the throttle position. The number

of stall cells is observed in experiments to vary from one to twelve depending

on the throttle position, while the computation has simulated a variation of one

to fifteen for different throttle positions.

2. The size of a local stall cell is reflected in the # trace. The computed width

of a local stall cell, which is indicated by the q trace at the first rotor inlet at

the tip (Fig. 3.17) matches the measured width of a local stall cell (Fig. 3.16).

The size of a computed stall cell is nearly fixed for different throttle positions,

in agreement with the measurements.

3. The computed rotating speed of local stall cells (83% of rotor speed) is also

comparable to the measured value of about 70%

A summary of the comparison is given in Table 3.6.

Another observation is that the first stage stalls at nearly the same flow coefficient

for both matched and mismatched arrangements. This suggests that the instability

behavior in the first stage is the same for both the matched and mismatched com-

pressors, and the presence of the downstream stages does not affect the instability of

local events (i.e. when the length scale of the local stall cell does not extend beyond

the physical confine of the first stage) in the first stage.

It is concluded that the model captures key experimental observations of the dis-

turbances/local stall cells in the first stage of the GE mismatched compressor. The

model captured not only the overall behavior of the stalling characteristic, but also

the shape of individual local stall cells. The implication is that the behavior of short

wavelength stall cells is not related to the discreteness of individual blade and detailed
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flow structure in blade passages, even though the sources of initial disturbances are

related to the blade passage events. In other words, the behavior, hence the develop-

ment, of the short wavelength disturbances is determined by the system instead of a

particular blade passage.

It is worthwhile to examine the flow structure around a local stall cell, which

might explain some aspects of the behaviors of short wavelength disturbances. The

three-dimensional flow structure of a local stall cell is shown in Figure 3.18. The plot

reveals that the amplitude increases in the axial direction in the rotor, and decreases

in the stator. The cell structure suggests the followings:

1. It is the rotor which is the most unstable component, while the stator exercises

a stabilizing influence (since the disturbance amplitude decreases in the stator).

The different roles played by the rotor and stator suggest that the size of a local

stall cell is determined by the combined effects of the rotor and stator. For

the single rotor configuration, a localized stall cell does not receive stabilizing

influence from other components, so that the size will keep growing until it

reaches the mass flow balance between the pressure rise produced by the rotor

and the pressure drop of the throttle. Therefore it is expected that the stalling

behavior of a single rotor configuration will be significantly different from that

of a stage (or a multi-stage compressor).

2. The disturbance reaches its maximum amplitude in the rotor-stator gap. This

observation is consistent with the conclusion made by Park [56] who found that

the best sensor location for the detection of short wavelength stall inception is

at the tip region of the rotor exit.

3. The downstream re-staggered stages have little effect on the instability of the

first stage because the downstream blade rows see a highly damped disturbance.

The following two observations bear on the relation between the progressive stall

characteristic and the varying number of localized stall cells.

1. The flow coefficient in the unstalled portion of the annulus is constant for differ-

ent overall flow coefficients (before the local stall cells have filled up the whole
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Figure 3.17: Computed velocity trace showing a localized stall cell.
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Table 3.6: Summary of the comparison between computation and measurement

Measurement Computation
width of spike 2-3 pitches, 54 blades in rotor 1/20 annulus
rotating speed 70-73% 83%
progressive characteristic yes yes
Number of stall cells 1-12 1-15

0.5
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0.0

4r
x

Figure 3.18: Computed flow coefficient contours of a localized stall cell

stage of the GE mismatched configuration. A tangential extent equal
pitches is shown.

in
to

the first
6 blade
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annulus).

2. The size (measured by flow coefficient deficit) of each local stall cell is nearly

constant.

Then, the number of stall cells is

Ncel = 'Ounstal - (3.1)

where the #unstall is the flow coefficient in the unstalled portion of the first rotor; A0

the overall flow coefficient deficit caused by a localized stall cell. A local stall cell in

the first stage can also cause a finite decrease of pressure rise, AT. For a mismatched

compressor with many stable stages, the flow coefficient is mostly determined by the

stable stages. Therefore, the number of local stall cells is set by the throttle position.

AT due to a spike (local stall cell) is large enough to make room (flow coefficient drop)

for another spike in the stage, the compressor could show a sudden drop of pressure

rise with many local stall cells in a local stage. The large number of stall cells might

then cause sufficient pressure drop, and consequently sufficient flow coefficient drop

to put the whole compressor into rotating stall.

The number of stall cells can be estimated based on the above discussion. The

pressure rise of the compressor with N local stall cells can be expressed as

T= Itt, stage 2-4 + Ott, stage 1 (#unstall) - NceiIAT (3.2)

Substituting for Nceu gives

T= Itt, stage 2-4 + Ott, stage 1(qunstall) - -( unstal - #) (3.3)

q, flow coefficient, can be estimated by equating T to the pressure drop across the

throttle, 1/2 Kt q 2 , and then solving the equation for #. Once # is solved, the number

of stall cell could be calculated using Eq. 3.1. Fig. 3.19 shows the number of local stall

cells calculated by Eq. 3.1 and Eq. 3.3, and also the results from the computation.
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Figure 3.19: A simple analysis gives a good trend of the number of local stall cells
in the mismatched GE four-stage compressor.

The trend is well captured by the analysis. As the number of stall cells reaches a

certain value (which is ten in this case), the trend of measurement deviates from the

original direction. This is due to the fact that the unstalled flow coefficient, Ounstall,

in the first rotor could not be held as a constant; since the annulus is filled with

local stall cells. Thus the assumptions (the flow coefficient in the unst alled part is a

constant value) in the analysis break down as the number of local stall cell becomes

large.

The analysis shows the relation between progressive stall characteristic and local

stall cells. The gradual decrease of pressure rise is due to increase of number of local

stall cells.
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3.6 Effects of IGV stagger on Stalling Behavior in

the First Rotor

The assessment of the impact of IGV stagger on compressor stalling behavior is

motivated by the recent experimental observation of "unique rotor tip incidence" as a

spike stall criterion [5]. Camp and Day found that when the IGV stagger angle on a

four-stage compressor was reduced by 50,100, 15*, and 200 (the corresponding loading

on the first rotor went up), the compressor showed spikes as its stall inception type.

However, when the IGV stagger angle increased (so the loading on the first rotor

decresed), the stall inception switched to a modal type. The most interesting result

from their observations is that the rotor tip incidence has a constant value of zero

when the compressor showed short wavelength stall inception (Fig. 3.20). Since the

rotor incidence angle can be a measure of loading at rotor tip, the unique rotor tip

incidence is equivalent to the "unique rotor tip loading".

A similar set of simulations was performed based on the GE compressor for a set

of different IGV stagger angles. Since different compressors are compared here, the

following two features are the figures of merit of this comparison.

1. The type of stall inception switches when the loading (IGV stagger) of the first

rotor changes.

2. A unique rotor tip incidence exists at which the compressor shows stall through

short length scale disturbances.

Since the available characteristic of the compressor is for the design IGV stagger

angle, the characteristics at other IGV staggers have to be estimated. The way used

to estimate the characteristics for different IGV stagger angles (or different inlet flow

angles) consists of the following steps:

1. A mean-line method was calibrated to give a correct characteristic at the peak

for the design IGV stagger.

2. The calibrated mean-line method was used to calculate the characteristics for
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different inlet flow angles (corresponding to different IGV stagger angles). The

peaks of these characteristics are recorded.

3. The characteristics were obtained by shifting the measured characteristic to

match the peaks obtained from the previous step.

The procedure is not intended to be rigorous since the mean-line method is also

based on correlation, however it takes advantages of the available measured charac-

teristics and the existing correlation method. Figure 3.21 shows the characteristics

obtained using the procedure for different IGV staggers.

Once the pressure rise characteristics for different IGV staggers are obtained,

simulations were performed to determine the stall points and their types. The forcing

impulses in these simulations were kept at the same value as before (section 3.4 and

3.5).

Figure 3.21 shows the stall points, their inception types, and their corresponding

rotor tip incidences for different IGV stagger angles. The trends are similar to the

experimental observation, which is shown in Figure 3.20. First, the stall inception

switches from spike to modal as the IGV stagger angle is increased (so the first rotor

is unloaded). For the high IGV stagger situations, which correspond to low rotor

loading, the stall inception type is of the long wavelength type. For the low IGV

stagger situations, where the rotor is highly loaded, the stall inception type is of

spike type. The most remarkable feature is that the first rotor tip incidence at which

spike stalling occurs remain is -3.5'. Therefore two key features were well captured

by the model.

One additional observation is that all the modal stall points line up vertically.

This is because these stall points are determined by the downstream stages; therefore

the stall flow coefficient is fixed by the downstream stages.
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Figure 3.20: First stage characteristics with the stall point and inception type
indicated for different IGV staggers. Measured by Camp and Day [11].
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3.7 Summary

The assessment presented in this chapter demonstrated the adequacy of the model

for capturing the stalling behavior associated with short wavelength disturbances in

a multistage compressor. The key results in this chapter are

1. The model gave an accurate description for the behavior of long wavelength

disturbances in multistage compressors.

2. The model captured the key observations associated with short wavelength

stalling behavior in a multistage compressor.

Therefore, the smeared-out body force representation is sufficient to describe stalling

behavior of both short and long wavelength types. The model is now ready to be

used to explore the parametric dependence of stall inception in terms of some design

parameters. This will be presented in the next chapter.
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Chapter 4

Parametric Studies of the Short

Length Scale Stall Inception

The parametric studies considered in this chapter address the following two issues.

The sensitivity of the model to input parameters There are two inputs od which

we don't have a quantitative knowledge so far. One is the initial disturbance

(amplitude, location, etc). The other is the blade row performance characteris-

tic to the left of the peak. The sensitivity of these parameters will be examined

in this chapter.

The effects of design parameters on short wave length stall inception It was

decided to focus on blade row gaps only. This parameter is the one that does

not require redesign of a blade row. Other parameters (e.g. hub-to-tip ra-

tio, blade radial loading profile, etc.) would require the implementation of the

model in conjunction with other design tools, like stream-line-curvature, full

three-dimensional code, etc. since the body force for the modified blade row has

to be generated through these tools.

To clarify the first issue, the following four parameters will be investigated.

1. Type of disturbances. Three types of initial disturbance are studied: small

amplitude disturbance, spike-shaped disturbance at tip, and spike-shaped dis-

turbance at hub.
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2. Amplitude of disturbances. The stall point and its type will be calculated for

different amplitude of initial forcing. The amplitude effects elucidate the non-

linearity of short wavelength stall inception. A specific question to be answered

is whether the amplitude threshold of short wavelength stall inception exists.

3. Axial location of disturbances. The simulation is performed for the case that

the initial disturbance is inserted in a rear stage, to identify the most unstable

blade row in a multi-stage compressor.

4. Left side axisymmetric pressure rise characteristic. The unstable portion of the

characteristic cannot be measured, and has not been well calculated. Several

simulations are performed for varying axisymmetric pressure rise characteristic

to the left of the peak.

The second issue, the impact of gaps on instability behavior, is addressed through

varying three intra-blade-row gaps: IGV-R1, Ri-S1, and S1-R2 gaps. These gaps

reflect the degree of coupling between blade rows, and thus are important design

parameters.

4.1 Type of Disturbance

It has been shown that small amplitude long wavelength disturbances lead to modal

stall inception, while spike-shaped forcing in the tip region leads to short wavelength

stall inception. It is reasonable to ask what will happen if the spike-shaped forcing is

located in the hub region. This relates to the question of why spikes usually emerge

in the tip region.

A simulation was performed in which the spike-shaped force field was located in

the hub region (referred to as hub-spike). The result, along with the result of inserting

a disturbance in the tip region (referred as tip-spike), is presented in Fig. 4.1 in which

the modal stall point is used as a reference stall point. The decrease in the stall
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Figure 4.1: Changes in stall point and inception type for different type of inposed
disturbances.

margin is defined by the following equation.

= stall - Omodal stall (4.1)
Omodal stall

The results show that for the same amount of forcing, the tip-spike forcing leads

to short wavelength stall inception at a higher flow coefficient, while the hub-spike

forcing leads to long wavelength stall inception at a flow coefficient near the modal

stall point. The conclusion is that the short wavelength disturbances are better

supported by the tip region of this compressor than that by the hub.

The different effects of forcing at the tip and hub are related to the local radial

equilibrium and will be further explored in Chapter 5.

4.2 Amplitude of disturbance

It has been shown that the short wavelength stall inception has to be initiated by

a spike-shaped disturbance. Experimental observations also show that this type of

disturbance exists prior to stall. However, it is hard to extract the source of these

localized disturbances and the amplitude of the source, since the nature of these
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Figure 4.2: Effects of initial spike forcing amplitude on stall point and inception
type.

disturbances has not been identified yet. Because the amplitude used in the baseline

simulation is somewhat arbitrary, it is necessary to examine the effects of the forcing

impulse amplitude on stalling behavior.

The simulations are performed for different forcing strengths at the same location

near the tip. The results are plotted in Figure 4.2. The amplitude is normalized by

the forcing amplitude used in Chapter 3. For small amplitude forcing, the instability

point goes to the modal stall point. There is a transition region where the instability

point is sensitive to the forcing amplitude. The transition region corresponds to one

with a 20% to 60% (the value of the baseline is 30%) loss on one rotor blade passage

pressure rise capability for 0.1 rotor revolutions. It is reasonable to say that typical

blade passage events (e.g. tip vortex) cause part of a blade passage to lose it pressure

rise capability, therefore these events are expected to have significant impact on the

instability point. When forcing amplitude increases further, the forcing seems to

saturate the system, and the stalling flow coefficient is not sensitive to these very

large forcing amplitudes.

The set of simulations shows that an amplitude threshold exists for instability

through short wavelength disturbances to occur, and therefore this type of stall in-
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Figure 4.3: Effects of disturbance amplitude. A large amplitude disturbance could
cause blade row stall when the overall flow coefficient is in negative sloped region.

ception is nonlinear in nature.

Fig. 4.3 illustrates how a large amplitude disturbance could induce stall at a

higher flow coefficient (point to the right of the peak pressure rise point). A small

amplitude disturbance can only access a small portion of characteristic; therefore the

slope determines the instability. If a disturbance has large amplitude, then a large

portion of characteristic could be accessed by the disturbance, so that a large portion

of characteristic would play an aggregate role on the instability of the disturbance.

As shown in Fig. 4.3, the low flow coefficient region has a lower pressure rise, and the

compressor could stall even when the overall flow coefficient is still in the negatively

sloped region.

Using the compressor characteristic in Fig. 4.3, we can explain why a spike-

shaped forcing cannot increase the stalling flow coefficient further after it reaches a

certain amplitude. The resulting disturbance amplitude in velocity is produced by

the combined effects of the disturbance forcing and the body force that responds to

the velocity disturbance. For the duration that a large forcing is imposed on a rotor,
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Figure 4.4: Changes in stall point and inception type with location of initial spike.

a velocity deficit is created with increasing magnitude. At the same time, the blade

row begins to respond to the velocity deficit. When the flow deficit is large enough so

that local flow reversal occurs, the blade row responds to the reverse flow with a steep

increase in the magnitude of the forward force (Fig. 4.3), which would offset almost

any increasing of imposed forcing. In other words, the amplitude of disturbance

created by an imposed forcing is limited by the steep pressure rise characteristic in

the reverse flow region, so the flow in the compressor will not respond to further

increase in imposed forcing.

4.3 Axial location

For all these previous simulations, the forcing that initiates the disturbances is always

located in the first rotor. However, all the four stages are identical. This raises a

question whether a spike can emerge from another rotor if the forcing is applied to

that rotor. It is thus of interest to examine the situations for which the forcing is

inserted in the tip region of a rear stage.

A simulation is performed for the situation where the forcing is applied to the

third rotor. The stall point is near the modal stall point and the inception type is
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of long wavelength, although the stage performance and the forcing are the same as

those for the first rotor, and the V profile at the third rotor inlet is similar to that of

the first rotor. This does not support the argument by Camp and Day [5] who argued

that the reason why spikes usually emerge in the first stage is because the first rotor

has a higher loading than the others. The issue will be further explored in the latter

part of the chapter.

4.4 Rotor Characteristic to the Left of the Peak

Pressure Rise

The instability associated with short wavelength disturbances is non-linear. As illus-

trated in Fig. 4.3, a large portion of the characteristic participates in the instability

process. Further, little knowledge is available for estimating the unstable portion of

the characteristic. It is thus necessary to examine the effects of a variation in the

portion of the characteristic to the left of the peak pressure rise.

Five rotor characteristics, shown in Figure 4.5, were used to calculate the progres-

sive stall region for the GE mismatched compressor. Characteristic (I) is the baseline

that has been used in the previous chapter. Characteristic (II) to (V) all have the

same stage characteristic and stable portion of rotor characteristic. Characteristic

(II) has a flat portion at very low flow coefficient, and its other portion is essentially

the same as the baseline. The simulation yields similar results for Characteristic (I)

and (II), especially, their stall points are almost indistinguishable. This indicates

that the characteristic in the very low flow coefficient region does not affect the short

wavelength disturbance. That is understandable since the disturbance does not reach

that far into the region where flow coefficient is below 0.1.

Characteristic (III) extends the fitted stable portion to the zero-slope point. The

results show that the stalling flow coefficient of Characteristic (III) is noticeably lower

than that of (I)'s, and indicates that the characteristic around the peak has significant

impact on the instability. The stall point and its progressive stall characteristic are
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also the closest to the measured data among the five chosen characteristics.

Reducing the pressure rise in the unstable portion, Characteristic (V), increases

the stall flow coefficient, and makes the progressive stall characteristic steeper. It

is proposed that the progressiveness of stall characteristic might disappear (become

vertical) if the unstable portion of the characteristic were lower than Characteristic

(V).

Characteristic (IV) is nearly flat for the flow coefficient less than the peak point.

In this case, a part span stall cell can be sustained only when the flow coefficient

is in the positively sloped region in which modal waves would have grown if the

downstream stages were not presented. This case indicates that a rotor with a flat

characteristic to the left of the peak does not support short wavelength disturbances.

These results show that the unstable portion of the characteristic does impact the

instability point of short wavelength disturbances, and that the performance near the

peak appears to have the largest impact. Within a wide range, the difference in the

characteristic to the left of the peak does not change the nature of short wavelength

stall inception. The unstable portion of the characteristic that is generated based on

current (though limited) knowledge can thus be used to study the parametric trends

of short wavelength stall inception.

4.5 Intra-Blade-Row Gap

Since the short wavelength disturbance has a high decay rate in the axial direction,

the intra-blade-row gap, which is considered small for long wavelength disturbance

(Dunham, 1964), becomes large for short wavelength disturbances. It is thus likely

that the gap size has a strong impact on the stall inception through short wavelength

events. Effects of three gaps, IGV-R1 gap, Ri-Si gap, and S1-R2 gap, (Figure 3.7),

were examined. The calculations are based on the GE four-stage compressor, matched

build, with different intra-blade row gaps, and the forcing imposed on the first rotor

is kept the same as the forcing used in Chapter 3. The results on the stability point

and its type are shown in Fig. 4.7.
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Figure 4.7: Effects of IGV-Ri, R1-S1, and S1-R2 gap lengths on stall point and

inception type.

Increasing of the R1-S1 gap destabilizes the short wavelength disturbances, while

decreasing of the gap stabilizes the short wavelength disturbances. Further decreasing

the gap can switch the stability type from short wavelength disturbance to long

wavelength disturbance. Varying the IGV-R1 gap shows a similar trend as that of

the R1-S1 gap. However, increasing the S1-R2 gap shows no visible effect on the stall

point and its inception type.

These trends can be explained by the three-dimensional structure of a local stall

cell (Fig. 3.18). The maximum amplitude of a local stall cell occurs at the first rotor

exit (i.e. the R1-S1 gap region); it is thus not surprising that the size of the R1-S1

gap has the strongest impact on the instability point and behavior. The size of the

S1-R2 gap has minimal impact as disturbances are expected to be damped there.

The above results suggest that the instability caused by short wavelength distur-

bances be determined by a component group that includes a rotor and its neighboring

stators. From the component group argument, it is expected that any change of blade

rows and gaps in the component group could change the instability of the component
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group. The "component group" concept does not give a direct stall criterion, but it is

useful to point out the relevant components which directly affect the growth or decay

of short length scale disturbances.

4.6 Summary

The influence of several parameters on instability inception has been examined in this

chapter. The computed results show that:

1. A spike-shaped disturbance with an amplitude above a threshold is necessary

to initiate the short wavelength stall inception. Above the threshold, the value

of the initial disturbance does not change the type of inception, however it does

change the instability point.

2. A spike-shaped disturbance in the tip region is better sustained by the system

than one at the hub.

3. Within a wide range, the unstable portion of characteristic does not change the

nature of stall inception, although it can change the instability point.

4. Closing the rotor-stator gap and IGV-rotor gap suppress short wavelength dis-

turbances in the first rotor.

To enable accurate prediction of the instability point using the model, the fol-

lowing inputs have to be available.

o An adequate description of the unstable portion of characteristic

* The typical disturbance type and amplitude.

Such information is not generally available. Without such information, the primary

benefit of the model can be viewed as producing an understanding of the controlling

trends of the parameters that affect the stall inception through short wavelength

disturbances.
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The results from assessing the influence of the gaps reveal the importance of

the blade row coupling in the instability of short wavelength disturbances. From

the observation, a "component group" concept is proposed, which states that the

instability for short wavelength disturbances is determined by a component group

that includes a rotor and its neighboring stators.
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Chapter 5

Additional Physical Aspects of

Short Wavelength Stall Inception

The following topics will be addressed in this chapter: (1) clarification of some physical

aspects which are not modeled in the calculations, (2) Physical mechanisms associated

with short wavelength stall inception are discussed, (3) possible routes to formation

of rotating stall cell, and (4) a hypothesis of the link between design flow coefficient

and stall inception type based on the observation of the compressor stalling data in

public domain.

Some specific questions are:

1. Does swirl sensitivity change the nature of stalling behavior?

2. What is the physical origin of the spike-shaped disturbances?

3. Why do short wavelength disturbances tend to localize in the tip region?

4. Is flow three-dimensionality needed to sustain short wavelength disturbances?

5. What constitutes the simplest model for an adequate description of short wave-

length disturbance?

The first section clarifies the effects of swirl sensitivity which is not modeled in

the calculation. Section 2 discusses possible physical origins of the imposed spike-

shaped disturbances. Section 3 explains the importance of three-dimensionality to
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the growth of short length scale disturbances. Section 4 presents arguments to show

that the model constitutes the simplest model needed for an adequate description of

the short wavelength disturbances. The final two sections propose two hypotheses:

(1) there are several routes of rotating stall development after a localized disturbance

starts to grow; and (2) compressors with low flow coefficient design tends to stall

through localized short length scale disturbances.

5.1 Effects of Swirl Sensitivity

Swirl sensitivity, which is neglected in the simulations for the GE compressor, refers

to blade row characteristics being influenced by change of inlet swirl angle. It does

not appear to change the nature of the phenomena in the GE compressor. A way to

assess effects of neglecting swirl sensitivity is to examine the pressure rise across a

blade row with and without swirl sensitivity around a spike-shaped local stall cell in

the GE mismatched compressor.

Figure 5.1 shows the flow coefficient distribution and the flow angle distribution

at the inlet to the first rotor where localized stall cells are sustained. The disturbance

(a localized stall cell) has the strongest amplitude in the tip region; thus if swirl has

any impact, it would be in the tip region (Fig. 5.2). A pressure rise characteristic in

terms of flow coefficient can be translated into pressure rise vs. relative flow angle of

the rotor. The pressure rise due to the inlet flow coefficient can be estimated based

on the inlet # (swirl is removed) or the inlet # and flow angle #. The results in

Fig. 5.3(a) show the comparison between the pressure rise calculated based on the

inlet # and that based on the inlet # and 0 around a local stall cell. The shapes of

the pressure rise distributions are similar, and the error of total pressure rise deficit

of the local stall cell caused by ignoring the inlet swirl is about 10% of the total

pressure rise deficit caused by the spike-shaped stall cell. The total pressure rise

deficit measures the force which sustains a disturbance. It is therefore concluded that

the swirl sensitivity will not change the nature of the stalling behavior seen in the

GE compressor.
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Figure 5.1: Flow coefficient and flow angle distribution at the inlet of the first rotor.
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Figure 5.2: Flow coefficient and flow angle distributions at tip of the first rotor inlet.
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a) Pressure rise rise across the rotor with and without swirl sensitivity
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Figure 5.3: (a) Effects of inlet swirl on the pressure rise; (b) Effects of inlet swirl
on the relative flow angle.
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The reason that the inlet swirl has relatively less effects on the rotor loading can

be explained by examining the relative flow angle distribution at the rotor inlet, given

by
U - V tan/3

tan /relative =

Fig. 5.3(b) shows the relative flow angle distributions calculated using the above

equation with a / using actual value and with zero (ignoring the swirl sensitivity).

The relative flow angle in the rotor inlet is not sensitive to the inlet swirl, due to the

compressor's low stalling flow coefficient, because tan 3 relative is more sensitive to the

denominator (Vx) than the numerator (U - V tan /) which is dominated by U.

5.2 On the sources of the forcing impulses

The imposed disturbance through forcing is an important part of the model in the

sense that a short wavelength stall inception has to be initiated by a finite amplitude

spike-shaped disturbance. However, as the forcing is an input during the simulations,

its magnitude is somewhat arbitrary. To estimate the appropriate magnitude of the

forcing, it is useful to look at its physical origin.

The source of initial disturbance is viewed as the consequence of blade passage

events, for example tip vortex behavior. Hoying et al [34] performed isolated rotor

simulations at stall which suggested that the motion of the tip vortex in and out of

a rotor passage was responsible for producing spike-shaped disturbances. It would

seem that discrete blade passage events are the likely sources for short length scale

disturbances. If so, then its magnitude would be a fraction of the total blade force of

the blade passage.

Park [56] analyzed the data taken by (1) pressure transducers at the casing of

the first stage rotor exit, (2) hot-wire anemometers in the tip region of the first stage

rotor exit, (3) pressure transducers at the casing of the first stage rotor inlet, and

(4) hot-wire anemometers in the tip region of the first stage rotor inlet. He found

that the pressure transducer in the tip region of the first rotor exit exhibited short

wavelength disturbances earlier than other locations. This seems to indicate that

116



the blade passage event first occurs (or reaches a measurable amplitude sooner) at

the rear part of a blade passage. Postprocessing of numerical simulations have been

focused on the flow at the leading edge, and it will be interesting to examine the flow

field from the leading edge to trailing edge obtained from N-S simulation.

5.3 Three-dimensionality in the short wavelength

stall inception

The purpose of this section is to explain why a three-dimensional model is essential

to describe short wavelength stall inception. Two additional physical aspects are

included in the current model that are not captured by the two-dimensional analysis.

The first is an additional length scale in the spanwise direction, so that the flow

disturbances could grow and decay spatially at a faster rate in the blade-free regions

as well as in blade row regions, relative to two-dimensional motion. Introducing

an additional spanwise length scale reduces the coupling between blade rows, and

disturbances can exist locally (around a blade row). A locally unstable blade row,

usually a rotor row, could thus stall earlier than the compressor as a whole, so the

compressor could stall (through the non-linear mechanism described earlier) in the

negatively sloped region of its characteristic. The second is the centrifugal effect (i.e.

V1 0/r term in the radial momentum equation) on the localization of spike-shaped

disturbances in the tip region.

The following two cases are designed to clarify the role of three-dimensionality in

the stalling process. In the first case all the radial variation in the governing equation

set is removed, and the compressor is represented by multiple rectilinear cascades.

The flow in that case is three-dimensional but without the centrifugal effect (VO2/r).

The second case is that of a two-dimensional compressor.
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5.3.1 Rotating Stall Inception in a Compressor Represented

by Multi-rectilinear-cascades

In this case, the governing equations are Euler equations in Cartesian coordinates.

The blade rows are represented by rectilinear cascades (Fig. 5.4). Periodic boundary

conditions are imposed at the ends of the computational domain in the tangential

direction. A compressor using multi-rectilinear-cascade representation does not have

any bias in its spanwise direction, therefore the 'hub' and 'tip' have the same response

to disturbances. The stall point and its type are indicated in Fig. 5.5, along with the

stall points initiated by hub-forcing and tip-forcing (see Chapter 4). The stalling

flow coefficient calculated using multi-rectilinear-cascade representation is located

roughly half way between the stall points caused by tip-forcing and hub-forcing in

the compressor based on blade row by blade row representation presented in Chapter

4. The stall inception type is of long wavelength type.

The multi-rectilinear-cascade representation removes centrifugal effect term, V0/r,

in the spanwise (radial) direction. For a high hub-to-tip ratio compressor, like the

GE compressor, the geometry variation along the radius is small and can be ignored.

The results thus imply that the centrifugal force causes a bias of the system towards

sustaining short wavelength disturbances in the tip region. This explains why the GE

compressor always picks up localized disturbances in the tip region.

The multi-rectilinear-cascade representation gives the stalling flow coefficient

2.5% higher than that of modal stall point. The next case, two-dimensional rep-

resentation of the GE four-stage compressor, will show that finite amplitude localized

disturbances are suppressed by the system, and the two-dimensional system stall

through modal waves. Therefore the 2.5% increase of stalling flow coefficient is due

to the additional length scale in the radial direction.
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Blade rows

Periodic boundary
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Figure 5.4: An illustration of the multi-rectilinear-cascade representation of a mul-
tistage compressor.
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Figure 5.5: The stall point and its inception type of the multi-cascade compressor
along with the stall points and their types with hub-forcing and tip-forcing in the GE
compressor.

119

6

4a.)

a.)

I

0

r
0

x
\L" ?

2 F



5.3.2 Rotating stall inception in a compressor represented

by multiple two-dimensional cascades

The compressor representation was further reduced to remove the spanwise dimen-

sion. With this simplification, the GE compressor constitutes nine individual two-

dimensional blade rows (or cascades). The spike-shaped forcing has the same shape

and amplitude as the forcing in the tip region in the three-dimensional simulations.

In the three-dimensional simulation, the forcing is localized in the tip region. The

overall effects (on total pressure rise and mass flow of the compressor) of the forcing

used in the two-dimensional calculation is more than three times larger than in the

three-dimensional calculation.

The computed stall point is indicated in Fig. 5.6, and the stall inception type

is modal. Also plotted in the same figure are the stall points initiated by small

amplitude disturbances and spike-shaped forcing using the three-dimensional model.

The results show that a two-dimensional representation of a compressor stalls through

modal waves near the peak of the pressure rise characteristic. Thus short wavelength

disturbances cannot be sustained in a two-dimensional system. This again shows the

necessity of a three-dimensional model for describing short wavelength stall inception.

It is deduced from the results of the above two cases that: (1) the compressor

could stall at the negatively sloped region mostly due to the decoupling of the blade

rows, so that a short-length-scale finite-amplitude disturbance could stall a blade row

earlier (i.e. at a higher flow coefficient) than would the entire compressor; and (2) the

centrifugal effect term, V0/r, biases the short wavelength disturbance to localize in

the -tip region.
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5.4 Minimum Requirements in A Compressor Model

for Short Wavelength Disturbances

The key ingredients of the model are

1. three-dimensionality, which includes

(a) blade-row by blade-row representation of compressor

(b) three-dimensional flow in both blade-free regions and blade rows (com-

posed of infinite number of locally axisymmetric flow fields)

(c) body force in each blade row region which responds to local simultaneous

flow conditions

2. non-linearity of the model, which includes non-linear flow and blade-row non-

linear response to the flow

3. spike-shaped forcing impulses as the initiation of short wavelength disturbance.

This type of model constitutes the simplest form that can yield a proper descrip-

tion of short wavelength disturbance in a compressor. This statement is deduced from

the following.

1. Experimental observations which have been reviewed in Section 1.3 indicate

that short wavelength stall inception is initiated by blade passage events, local

to the tip region of a specific blade row.

2. The non-linearity and three-dimensionality of short wavelength stall inception

are shown through the following results:

" the existence of a threshold value of transient forcing below which a com-

pressor does not show short wavelength stall inception (see Section 4.2)

" the effects of the transient forcing location (see Section 4.1, 4.3)

" the inability to reproduce short wavelength stall inception using a two-

dimensional model (see Section 5.3)
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Figure 5.7: There are four component groups in the GE four-stage compressor.

3. Short wavelength stall inception could not be modeled if any of these ingredients

were absent.

5.5 Component Group and Its Implications

The concept of "component group" was introduced while assessing the effect of the

gap on instability of short length scale disturbances. A component group consists

of a rotor and its adjacent stators. It is found that the growth of short wavelength

disturbances is determined by the component group where these disturbances ap-

peared. The criterion of instability of a component group is (1) the existence of short

length scale disturbances, and (2) the sustenance of the disturbances by the compo-

nent group. There are multiple component groups in a multi-stage compressor (like

the GE compressor shown in Fig. 5.7). The stall point of the entire compressor due

to short wavelength disturbances is set by a component group which has the highest

stall flow coefficient.

In the GE compressor, the simulations show that the rotor is the most unstable

component in a component group, while its neighboring stators have stabilizing effects

on the short wavelength disturbances. The growth rate of a disturbance is determined

by all these blade rows, and the gaps set the degree of coupling among them.

The most significant effect is that increasing the gap destabilizes the system, a

phenomenon which is consistent with observations by Day [12]. This observation can

be used to explain why spikes usually emerge in the first stage. For most multi-stage
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compressors, the front component group is usually different from other component

groups due to (1) the absence of an IGV before the rotor, or (2) the relatively large

gap between IGV and first rotor (like the GE compressor), and (3) the fact that the

IGV is always lightly loaded. Thus the stabilizing influence from the upstream of the

first rotor is relatively weak or absent.

Some deductions from the component group argument on the design are (1) the

front stage should have a more stable design (has a relatively low peak flow coefficient);

(2) since rotors are usually more unstable than stators, when the operating range of

a compressor is limited by the stall point due to short wavelength disturbances, the

rotor in the component group should be the first target to be redesigned.

The component group concept does not contradict the "unique rotor tip inci-

dence" as a criterion of short wavelength stall. The component group concept implies

that the "unique rotor tip incidence" constitutes a short wavelength stall criterion for

a component group. Any changes of characteristics (for instance, gaps, blade stagger)

of the component group will alter the value of the "unique rotor tip incidence."

As the type and flow coefficient for compressor instability is sensitive to the

intra-blade row gaps, it is not appropriate to intentionally increase these gaps for

fitting instrumentation [18], especially when the experiment is used to identify the

stall inception types.

5.6 Routes to rotating stall

In this section, several routes of stall development subsequent to the initial growth of a

short wavelength disturbance are conjectured based on the available observations and

numerical simulations. It is argued that there could be more than one possible route

for a short wavelength disturbance to evolve, and this could be due to a difference

in the flow coefficient between the short wavelength disturbance stall point and the

modal wave stall point. Several possible routes are proposed in the following.

1. A short wavelength disturbance could grow and develop into a large stall cell

or surge, like a typical spike-type stall inception (Fig. 1.5). The numerical
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Figure 5.10: Casing static pressure traces at the first stage rotor inlet during the
transition from twelve local stall cells to a single stall cell. GE compressor, mis-
matched build [563.

simulation for the single stage configuration of the GE compressor shows this

route to the final single stall cell pattern. This should happen when the stall

point for short wavelength disturbances is close to the stall point of the entire

compressor, so that the other components in the system do not have much

stabilizing effect on the disturbance. Usually, a single stage (except a fan that

has a large rotor-stator gap) compressor takes this route to the final rotating

stall.

2. A short wavelength disturbance could also cause several or many stall cells

to form before a large stall cell is developed. The "Front-end start-up stall"

(Fig. 5.8) and "high frequency stall" (Fig. 5.9) [11] might be classified into this

type of route. The cause could be the fact that a component group becomes

unstable at a flow coefficient where the overall compressor can operate in stable

operation, so that each short wavelength disturbance cannot grow into a large
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stall cell. However, with the number of small stall cells increasing, the reduction

in overall flow coefficient, and a large disturbance, which is superimposed on

small stall cells, can cause the formation of a large stall cell. The scenario is

due to the mismatch in stalling points between of a local component group and

of the entire compressor. The argument is supported by the similar stalling

scenario between the "high frequency stall" (Fig. 5.9) [11] and the mismatched

build of the GE compressor (Fig. 5.10) [56].

3. The front spike-shaped disturbance could also trigger the long length scale non-

linear three-dimensional disturbance in downstream stages, as is the case in the

numerical simulation. In the numerical simulation, the disturbance (mostly its

vortical part) in the front stage is transmitted to the downstream stages, and

causes the downstream stages to go into rotating stall. There is no measurement

to support this route, which is, however, a possible one.

To summarize, the routes of stall cell development could vary in different com-

pressor as well as at different operating points for one compressor. This is because an

additional spanwise length scale is introduced into the system, so that the localized

disturbances could grow regardless of the operating condition of the overall compres-

sor. The available experimental observations seem to support the above conjectures.

5.7 Effect of design flow coefficient

The hypothesis that a compressor with low stalling flow coefficient tends to stall

through short wavelength disturbances is presented in this section based on experi-

mental observations and a simple analysis.

Experimental data presented in [9, 11] appears to indicate that modern compres-

sors tend to show short wavelength stall inception. An overall design feature of a

modern compressor is that it tends to have a lower design flow coefficient. Day [8]

showed that the stalling characteristic (Fig. 5.11) was related to its design flow coef-

ficient. He found that compressors with high design flow coefficient show typical stall
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Figure 5.11: Effects of design flow coefficient on the compressor stall characteristic
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characteristic with large hysteresis, while compressors with low design flow coefficient

show progressive stalling characteristics with little hysteresis but with a multiple stall

cell pattern. The phenomena Day described for the compressors with low design flow

coefficient are similar to the results of the GE mismatched compressor [60]. One

might interpret Day's experimental observation as showing that a compressor with

low design flow coefficient tends to be mismatched (even though the geometry of each

stage is exactly the same). Here the term "mismatch" is measured by the difference

in stalling point among component groups and the entire compressor. When a local

component group stalls at a higher flow coefficient than the overall compressor does,

the stall inception type is expected to be of short wavelength.

In the following, arguments are put forth to show that for a compressor with low

design flow coefficient, a rotor would reach the positively sloped region at a higher

flow coefficient than a stage does, thus the rotor is more unstable than the stage

(and the compressor); therefore the component group could stall earlier than the

entire compressor. The stall inception initiated in a local component group is of the

short wavelength type. Although the argument is based on the slope of pressure

rise characteristics and the stalling point of a component group cannot be solely

determined by the slope, the trend of variation of the slope should reflect the change

of instability point.

The argument can be formulated by examining dx't,, rotor/d# of the rotor at the

peak of the stage characteristic (i.e. d'I's, stage/ d!) = 0). To evaluate the slope of the

rotor characteristic, some design parameters have to be assumed. The sole purpose of

these curves is to illustrate the trend however, and the exact values of these parameters

are not critical to the argument.

The notation of velocity triangles of a stage is illustrated in Fig.5.12. I assume

that the stage characteristic reaches the peak at a critical diffusion factor (D, = 0.65

will be used to give numerical results) for both rotor and stator, then the exit flow

angle can be calculated from the definition of diffusion factor. The stage pressure rise
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can be written as

Ps 3 - Pt I o 2
#t 2 1-#tan O2 - tan,3 1 - L, - L, - -

aU t2 cos 3

and the rotor pressure rise as

1(4 ( 1
Tts, rotor= ''ts + Ls + ( 2  

-2 (0s2#
1 + tan2 32) + 2tan32 - 1)

where Lr and Ls are the respective loss in the rotor and stator. At the peak of the

stage characteristic where dit,/d# = 0, the slope of the rotor characteristic is

d ts, rotor dL
d# do$

1 , + dtanO 2'f+#( 2 -1+tan32)+(#tanO2+1) +
co23d

tan 02 (5.3)

The stage characteristic, Eq. 5.1, at the peak (where d's/d# = 0) gives

d(q#tan') dLr dLS
+ + d = -Ltan2-

d#P d# dWI
tan #31 - c

cos2 J33

I can express the three terms in the left-hand side as

d(# tan ')
do

dLr
d
dL8

= n1J

= n2J (5.5)

d#

nI, in2 , and n3 must satisfy the following relation.

ni +n2+n 3 = 1

and

J = -tan 02- tan3 1 -
cos2 03

n1 J, n2J, and n3J represent the fraction of the loss in stage pressure rise due to the

rotor deviation, the losses in rotor and stator respectively. The d4'Pt, rotor/d# at the
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Table 5.1: A list of compressors, their stall flow coefficients, and stall inception
types.

No. Description Stall flow coefficient Stall inception type
1 GE four-stage compressor [60] 0.39 spike
2 Deverson 1.2% tip clearance [49] 0.39 spike
3 Deverson 3.0% tip clearance [49] 0.42 modal
4 C106 1.2% tip clearance [9] 0.4 spike
5 Longley [42] 0.49 modal
6 MIT three-stage [30] 0.47 modal
7 MIT one-stage [54] 0.45 modal
8 GE compressor A [44] 0.46 modal
9 GE compressor B [44] 0.56 modal

10 GE compressor D [44] 0.44 spike

peak versus peak flow coefficient can be plotted in Fig. 5.13 including only one of

the three factors, and a combination of all three effects. Figure 5.13 shows that the

slope of rotor characteristic increases with decreasing peak flow coefficient (so is the

design flow coefficient if the stall margin is kept the same). The trend can be stated

as follows: the rotor tends to reach the peak of its characteristic prior to that of the

stage for a low flow coefficient design. This might explain the relationship between

design flow coefficient and stall inception type.

The argument is also supported by the observation that all spike compressors (in

the public domain) have their stalling flow coefficients below 0.45 (mostly around 0.4)

as shown in Fig. 5.14 and listed in Table 5.1. The number two and three compressors

are the same compressor (Deverson) with different tip clearances. The one with tight

tip clearance stalls at a lower flow coefficient through spike type, the one with loose

tip clearance stalls through long wavelength disturbances at a higher flow coefficient.
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Figure 5.14: The stalling flow coefficient and stall inception type of ten compressors.
The compressor and flow coefficient are listed in Table 5.1. The data show that
compressors with low stall flow coefficient stall through short wavelength type.

5.8 Summary

Some additional physical aspects of the model are discussed in this chapter. First

of all, the swirl sensitivity, which was ignored in the simulations, is shown to have

relatively small effects on short wavelength stall inception in the GE compressor.

The physical origin of the transient forcing is then discussed and related to the tip

vortex behavior observed from a Navier-Stokes simulation for a multi-blade passage

situation.

The three-dimensional aspects of the model are further explored in Section 5.3.

It is argued that the additional length scale in the spanwise direction de-couples

blade rows so that one blade row (usually a rotor) could stall earlier than the entire

compressor. The centrifugal effect term, V0 /r, appears to make the short wavelength

stall inception more sustainable in the tip region than in the hub region, and this can

explain why spikes tend to be localized in the tip region. Based on the observations

in experiments and numerical simulations, a model with the elements employed by
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the current treatment is the simplest one which can be used to calculate the short

wavelength stalling process.

The component group, which is deduced in Chapter 4, is further discussed and

its implications are deduced.

Finally, two hypotheses are put forth: (1) the development of short wavelength

disturbances could proceed through several different routes, depending upon the de-

gree of mismatch between component groups and an entire compressor; and (2) a

compressor with low flow coefficient design (which most modern compressors are)

tends to stall through the short wavelength type.
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Chapter 6

Computational Flow Model for

High-Speed Compressors

A computational model for high-speed compressors will be described in the present

chapter. It is a direct extension of the computational model for low speed compressors

described in Chapter 2.

The model will be aimed at computing the response of compressor to flow distor-

tion and its instability phenomena under general distorted flow conditions as well as

uniform flow condition. As in the low speed compressor model, the high-speed model

is developed to describe the non-linear three-dimensional unsteady disturbances in

multi-stage compressors. The methodology used to construct the model for high-

speed compressors is the same as that described in Chapter 2, which emphasizes the

response of a blade row to unsteady three-dimensional non-uniform flow but ignores

the detailed flow structure in each individual blade passage.

Compressibility of flow introduces the following additional effects:

1. the loading distribution on each stage in the compressor depends on the rotor

speed;

2. phenomena unique to high-speed compressors (e.g. choking, and shock wave)

can change the behavior of the system;

3. behavior of acoustic waves need to be considered in the prediction of compressor

135



instability;

4. blade rows and ducts also act to increase the effective flow capacity of the

plenum of a compression system.

In summary, introduction of the flow compressibility increases the complexity of the

system.

The objective of this chapter is to demonstrate the methodology rather than to

examine specific stability issues in compressors. Thus compressor response to inlet

distortions will be presented as numerical examples to illustrate the capability of the

model to describe three-dimensional disturbances and blade-row response.

The development of the model, the basic flow equations, and the formulation of

body force are first described. Selected numerical examples on compressor response to

inlet distortions are then presented as a demonstration of the capability of the model.

The chapter is arranged as follows. Section 1 describes the governing equations in

blade row regions and blade-free regions; Section 2 discusses the formulation of body

force in blade regions; Section 3 shows computational results for a single stage tran-

sonic compressor with inlet total pressure and total temperature distortions; Section

4 gives a summary of the results.

6.1 Governing Equations

The flow in ducts and intra-blade-row gaps is described by the three-dimensional

unsteady Euler equations for mass, momentum, and energy conservation:
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In the blade row region, the assumption of infinite number of blades implies that

the flow is locally axisymmetric in the blade row reference frame. The equations for

blade rows can be derived in exactly the same way as that for the low speed model

as presented in Section2.2. The final form of the equations are
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where F., FO, F, 4 are the body force and heat source terms. The units of these terms

are force or heat release per unit volume.

If there is no additional heat source in the fluid, the energy transfer between

fluid and outside is through the blade force; therefore the source term in the energy

equation is the work done by the rotor blade row. The above statement can be

expressed as

F -V +t =FoQr

where Q is the rotating speed of the lade row, and FO the net tangential body force.

The formulation of body force terms will be discussed in the next section.

6.2 Formulation of Body Force

The general exposition on the concept of body force representation of blade row

can be found in the reference by Marble [46]. The current formulation focuses on

those aspects that represent the response to unsteady three-dimensional flow, the key

feature in the flow situations of interest here. The key idea here is to let body force

field respond to local flow properties instantaneously. The body force formulation

(i.e. the way body force responds to local flow properties) is determined based on

steady flow field. This type of body force formulation has been shown to be adequate

for simulation of stall inception through short wavelength disturbances (see Chapter

3 and 4).

6.2.1 A Form of Body Force for Representing a Blade Pas-

sage

The force normal to the blade surface is associated with the blade pressure difference

between pressure side and suction side; while the force parallel to the blade surface

is associated with the viscous shear.

A key aspect of the formulation is to express the body force as a function of local

flow properties. This assumed functional dependence on local flow properties has
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Figure 6.1: The flow in a blade passage is modeled locally as a flow in a straight
channel.

been shown to be adequate for simulating flow instability in low speed compressors.

To elucidate the functional dependency of body force on local flow properties, it is

useful to examine flow in a straight channel which is, in a first order approximation,

similar to flow in a blade passage. A sector of a blade passage is considered as a

straight channel, and the flow properties at a particular location are indicated in

Fig. 6.1. The force can generally be expressed as

hF
hF = f(M, A0, Re)

pV
2

where V, M, A,3, and Re are local values, and h is the local spacing of the blade

passage (Fig. 6.1). Since the Re effects are relatively small if Re is sufficiently high,

therefore an adequate form of the body force is

hF
pV = f(M, A#) (6.3)

Following the analysis of Marble [46], it is useful to split the body force into two

parts: one normal to the relative flow direction annotated as F", the other, annotated

as Fp, parallel to the flow direction in the relative frame. An advantage of splitting

the body force representation into these two parts is that each part can be formulated

on its own physical basis. Thus F, would represent the effects of pressure difference

between the pressure surface and suction surface, enabling work exchange between
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Figure 6.2: The body force due to pressure gradient in a staggered channel. The
velocity is along the blade passage; and the pressure gradient is also in the blade
passage direction. The pressure gradient has a component in the circumferential
direction, so it creates the pressure difference (P3-Pi) across the blade.
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blade row and fluid. The body force parallel to the flow, Fp, is due to the viscous

shear stress. This part of the body force produces losses as well as adds work into

the fluid. The functional dependence of the body force can now be written as

hF A
-- } = fn(M, z\/)pV2
U = f (M, A)3) (6.4)
pV

2

The body force formulation thus is reduced to the task of determining fn, and fp
at every spatial point in each blade row.

It is realized that the pressure gradient in a staggered channel could also produce

pressure difference across the blade, as shown in Fig. 6.2. The cause is that the

pressure gradient in a blade passage is, to a first order of approximation, in the

direction of blade passage. The pressure gradient in a staggered blade passage is

different from the axisymmetric assumption which assumes that the pressure (and

other flow properties) gradient is in the direction of the meridional plane. The force

term which corresponds to the local pressure gradient is

l ap
Fn = x-sin a (6.5)

6.2.2 A Proposed Body Force Formulation

The purpose of developing this formulation is to enable the model to be applied to

situations where detailed measurements are not available.

Body force responding to local deviation

The part of the body force which represents the blade response to the discrepancy

between blade metal angle and flow direction, is formulated here. The flow in a blade

passage is locally modeled as flow in a straight channel, as shown in Fig. 6.1. rq and

6 are the axes in the local blade channel direction and the direction normal to the

local blade channel respectively. The body force normal to the flow direction, , is
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formulated as follows.

The i-momentum equation can be written as

V27"V = Fn,

Therefore, the normal to blade passage component of the normal body force has the

following form

h

In the above expression, h is preferred to the blade chord since h can be defined

locally. Using the functional form of Eq. 6.4, the Fn, can be expressed as

Fn, = Kn,7(A#, M) - 7
h

(6.6)

An undesirable difficulty associated with above formulation is when A,3 reaches 900

Fn,77= Fn, tan(A#) = Kn, (A, M)

which has a finite value. This cannot be right since Fn,, must be zero in this situation.

To overcome this, the formulation is modified to:

Fn= Kh(AO, M) V
h

(6.7)

The above form is nearly equivalent to the original form when AO is small since

F., = cos A#Fn

and it will be zero if V becomes zero.

Upon applying the above formulation in a blade passage where the local blade

passage (a straight channel) is along the local blade metal angle,a (see Fig. 6.3), we
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Figure 6.3: The flow in a blade passage in (x, 0) plane.

have
Fnx = F, sin(a + AO) (6.8)

Fn,o = -F, cos(a + AO)

These can further be rewritten as

=K,(LA3, M) V0
F"'" = K )h V (V cos a + Vo sin a)(Vo cos a - V sin a)

(6.9)

Fn,o = hK(Af3,M) V (V cos a + Vo sin a)(Vo cos a - V sin a)
h

Body force: viscous effect

The body force associated with viscous shear is against the flow direction, and can

thus be written as

.F - -K(A)3, M) V V
K,(A,3, M)

FO = ~ M VVO (6.10)

F - Kp(A/, M) VVrPr h
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The resultant force is the vector sum of all these terms in Eq. 6.10, Eq. 6.11, and

Eq. 6.5.

The functionality of the above formulation is essentially the same as that de-

scribed in Section 6.2.1, and provides a convenient way to correlate coefficients against

measurements or CFD computations. To demonstrate the methodology, the coeffi-

cients have been correlated based on Rotor 35 geometry at the mid-span and tip

location, using loss and deviation data from a standard reference [41]. The resultant

K and Kp are

K,= 4.2 - 3.3 * a

K= 0.04

6.3 Numerical Examples: Compressor Response

to Inlet Distortions

Numerical simulations were performed based on Stage 35 [58]. Stage 35 is a single

stage transonic compressor designed by NASA Lewis Research Center in the late

70's [58]. The compressor features low aspect ratio rotor and stator blades, a high

design pressure ratio of 1.82. The design parameters are listed in Table 6.1.

The first example is the compressor response to a square-wave total pressure

distortion far upstream. Some of the computed results will be compared against

measurements. In the second case, a total temperature non-uniformity is imposed

at the location far upstream of Stage 35. The results of the two examples are to

show that the model yields an adequate description of a compressor response with

finite amplitude distortions. The third case is an abrupt square-wave total pressure

distortion far upstream of Stage 35. This case will demonstrate the capability of the

model for simulating finite amplitude unsteady disturbances in a compression system.

The computational domain is shown in Fig. 6.4. Near the exit, the flow path

is modified to relieve the numerical difficulty associated with the reverse flow at the

hub-wall due to the curvature effects. The locations where the results are plotted and
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inlet exit downstream

Figure 6.4: The computational domain (solid line) is based on the real geometry
except for the exit region denoted by dash line. Flow variables taken at the four
indicated locations are used for comparison between measurements and computed
results.

Table 6.1: Some design parameters of Stage 35.

measured are indicated in the same figure. The computational mesh size is 142(axial)

by 200(circumferential) by 10(radial) cells, shown in Fig. 6.5.

The performance map, shown in Fig. 6.6, is computed using the body force

formulation developed in the previous section with coefficients K" and Kp in Eq. 6.10

and Eq. 6.11. On an overall basis, the computed results (Fig. 6.6) agree with the

measured performance map (Fig. 6.7) in the region away from the surge line. Along

each speedline, the highest mass flow point corresponds to the choking point, which

is in agreement with the measured value. The pressure rise is slightly higher than the

measured value near the design flow coefficient. This is expected, as the endwall flow

effects are not accounted for in the model. The computed performance at the low flow

region deviates from the measurements since the body force has not been calibrated in

that region. For the same reason, the present work will only confine to demonstrating

the utility of the model for assessing compressor response to distortions.
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Number of rotor blades 36
Rotor rotating speed 1800 rad/sec
Rotor aspect ratio 1.19
Hub-to-tip ratio at rotor inlet 0.7
Solidity of rotor 1.29 at tip

1.77 at hub
Number of stator blades 46
Stator aspect ratio 1.26
Solidity of stator 1.3 at the tip

1.5 at the hub

upstream



rotor

Mesh in the meridional plane
around Stage35 Mesh at inlet face

Figure 6.5: The computational mesh around the rotor and stator. The leading edges
and trailing edges are indicated by thick lines.

The relative Mach number distribution in the rotor at 100% speed is shown in

Fig. 6.8. The Mach number around the leading edge exhibits shock-like distribution.

Since there are only 13 cells along the axial direction in the rotor, it is difficult to

tell whether there is a shock at the leading edge from Mach number contours. The

existence of a shock becomes evident when the relative flow angle distribution and

static pressure distribution at .the tip are plotted. As shown in Fig. 6.9, the static

pressure and entropy go up sharply (within first three points), while the relative flow

angle remains relatively unchanged in that region. The importance of capturing shock

is that shock is the main mechanism of producing pressure rise and loss in a transonic

blade row. The static distribution at the rotor tip shows that the entire pressure

rise and half of the entropy rise in the blade passage occurs around the leading edge.

The computed loss coefficient of the rotor is shown in Fig. 6.10, and is in agreement

with the experimental data. The computed deviation also matches the measurement

(Fig. 6.11).

In summary, the methodology with the proposed body force representation of

blade row appears to give a fairly good description of the compressor map and the

associated flow field.
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Figure 6.6: The computed compressor performance map of Stage 35.
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Figure 6.7: The measured compressor performance map of Stage 35 [58]; the filled
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Figure 6.8: Computed Mach number distribution in the rotor. The compressor is
operated at 100% design rotational speed and mass flow rate of 20.2 kg/sec. The
model captures a shock at the leading edge.
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149

CI

0 0 0 0 0 0 0000 ~

shock 0

0

0

0 0

S 0 0 0 0 0

0

0
0

- 0 0 0 0 0 0 000 0

0 0

. I I

00000

.. 40

20

0

M 70

60

0.0
P4 50



1.0

0.2
Loss coefficient

Computed
0 Measured

0.3
in the rotor

Figure 6.10: The
at 100% rotational

1.0

computed
speed and

0.8 k

0.61-

0.4 -

0.2

00
0

and
20.2

2

measured [58] loss coefficient
kg/sec mass flow rate.

C
o M

0

0

00

0

4 6 8
Deviation, in degrees

profiles of Rotor 35

10 12

Figure 6.11: The computed and measured [58] deviations of Rotor
rotational speed and 20.2 kg/sec mass flow rate.

35 at 100%

150

0

0

0

0

0

0

0

0

0

0.81-

0.6 -

0.4

0.1 0.4

omputed
easured -

C

0.2-

0.01
0



6.3.1 Stage 35 Compressor Response to a Steady Total Pres-

sure Distortion

In this section, computed results of Stage 35 response to inlet distortion are presented

and compared with available measurements. At the far upstream location, the total

pressure distortion is a 1200 square-wave with a total pressure deficit of one dynamic

head, i.e.
Pspoiled Punspoiled = 1.0

PV2

The total and static pressure distributions at the upstream location (noted in

Fig. 6.4) and static pressure distribution at the specified downstream location are

plotted in Fig. 6.12. As shown in the figure, the results are in agreement with the

measurements. The non-uniform static pressure at the downstream location of Stage

35 is a result of the downstream diffuser (Spakovszky et al [65]). The computed

velocity distribution at the specified upstream location also matches the measurement

(Fig. 6.13). The good agreement between computed and measured flow field has the

implication that the computed results can be used to further examine the flow field

in the compressor.

One significant feature of distorted flow field in the compressor is the result-

ing flow redistribution associated with distortion-compressor coupling. As shown

in Fig. 6.15, the flow coefficient distribution at the compressor front face has been

significantly altered from that at the upstream location of the compressor. The non-

uniformity of flow coefficient has been attenuated by the compressor. The reason for

this type of redistribution is that in the low flow coefficient region the compressor

has a higher pressure rise than the compressor in the high flow coefficient region.

Besides the reduction of the flow coefficient non-uniformity at the compressor inlet,

the shape of the flow coefficient distribution has also been shifted in phase. An in-

teresting observation is that the direction of the shift predicted by an actuator disk

theory of Hynes and Greitzer [35] is opposite to the direction computed using the

current model (shown in Fig. 6.16). The shift in flow coefficient profile at the com-

pressor inlet face in Hynes and Greitzer's model is due to the rotation of the rotor
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which transports momentum in the direction of rotor rotation. In the current model,

the effects of transporting momentum by the rotor is outweighed by the change in

inlet flow angle caused by the flow redistribution, as illustrated in Fig. 6.17. Hynes

and Greitzer [35] assume that there is an IGV in front of the rotor, therefore flow

angle is set by the IGV exit angle; however Stage 35 does not have an IGV and is a

single stage compressor (which implies that rotor rotation effects are relative small),

therefore the effects of inlet flow angle change become the dominant mechanism for

phase shifting of the flow coefficient profile at the inlet of Stage 35. Thus one may

expect that the response of a single stage compressor will be similar to the behavior

of Stage 35, while a multi-stage compressor would response in a manner similar to

that described by Hynes and Greitzer [35].

The velocity distributions from far upstream to the compressor exit are plotted

in Fig. 6.14. The flow is approximately two-dimensional with three-dimensional flow

feature (i.e. radial non-uniformity) near the edges of the square-wave. The total

pressure distribution (Fig. 6.18) and total temperature distribution (Fig. 6.19) at

the compressor exit show that both the total pressure and total temperature are

significantly non-uniform even though the distortion at the inlet is a purely total

pressure distortion.

Figure 6.20 shows the local operating points at different circumferential positions

on the compressor map. It is found that the spoiled sector and the unspoiled sector of

the compressor do not operate along the same speedline. The mass flow range around

the annulus is larger than the flow range from maximum (choked) to stalling mass

flow for the compressor operated at the same speed. The fairly large spread in the

computed compressor operating points around the compressor annulus indicates that

the compressor is not operating in a manner described by the "compressor in parallel"

model. This is because a significant flow angle variation (shown in Fig. 6.21) is induced

by the flow redistribution at the rotor inlet as being illustrated in Fig. 6.17; and the

induced inlet flow angle deviates the compressor performance from the compressor

performance map.

Another effect of the inlet distortion is the resulting non-uniform blade loading
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on the blades around the annulus. Figure. 6.22 shows the computed rotor blade force

distribution along the circumferential direction. The force variation is more than 40%

of the mean value. This information is useful for structural designers for estimating

the blade structure integrity under inlet distortions.

To summarize, this example demonstrates the utility of the method for calculating

finite amplitude disturbance.
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The computed and measured [65] total and static pressure at the
upstream and downstream locations of Stage 35.
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Figure 6.13: The computed and measured [65] flow coefficient at the upstream
location of Stage 35.
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Figure 6.14: The computed axial velocity distributions at the upstream location,
rotor inlet, rotor exit, and stator exit. The 1200 low Pt sector is imposed far upstream.
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Figure 6.15: Computed flow coefficient distributions at the upstream location and
the rotor inlet.
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Figure 6.16: Computed axial velocity distribution at the rotor inlet of Stage 35
versus velocity distribution at the rotor inlet of the compressor in Hynes and Gre-
itzer [35].
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Figure 6.17: The loading on the front rotor is changed due to the induced swirl at
the compressor inlet.
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Figure 6.18: The computed total pressure distributions at the exit of the compressor
with total pressure distortion upstream.
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Figure 6.19: The computed total temperature distributions at the exit of the com-
pressor with total pressure distortion upstream.
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Figure 6.20: The local operating point around the annulus of Stage 35 subjected to
a far upstream square wave total pressure distortion.
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Stage35 with a total pressure distortion upstream.
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Figure 6.22: The distributions of the aerodynamic force on blades along the annulus.

6.3.2 Stage 35 Compressor Response to Total Temperature

Distortion

In this case, a 1200 square-wave total temperature distortion is imposed far upstream

of Stage 35. The total temperature ratio (Tt,distorted/Tt,undistorted) is 1.47, or the tem-

perature distortion coefficient, (Ttmax - Tt,mean)/Tt,mean, is 0.16. The temperature

non-uniformity can also be measured by (Tt,distorted - Tt,undistorted)/0.5ULeaw, which

gives 2.5. The spoiled (higher T) sector is operated at 70% corrected speed.

The axial velocity distributions from far upstream to downstream of the compres-

sor, shown in Fig. 6.23, reveal the flow redistribution in the compressor. Figure 6.24

shows the change of axial velocity profile from the upstream location to the compres-

sor front face. The flow in high total temperature region is not accelerated as does

the flow in low total temperature region. The high total temperature region is thus

expanded as the flow approaches the compressor. The compressors-in-parallel model

can again be used to qualitatively explain this. The portion of the compressor with

high total temperature inlet flow has to operate at an operating point in the low mass
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flow region, and the other portion at an operating point of high mass flow, so that

the static pressure at the exit is approximately uniform. Therefore, the distorted flow

region has to be decelerated, and this leads to the expansion of distorted flow region

to satisfy the continuity. Due to the flow redistribution, the swirl is induced at the

edges of distorted and undistorted flow. The velocity distributions at the rotor exit

and stator exit can be explained by the loading variation caused by the induced swirl.

The total temperature distribution at the exit (Fig. 6.25) is consistent with the above

explanation. The low total temperature region is reduced at the rotor exit. At the

compressor exit, a total pressure non-uniformity is produced by the compressor.

The local operating points on the annulus are plotted in Fig. 6.27. In this case,

the "parallel compressor" model appears to be a good approximation (comparing with

the case of total pressure distortion). The flow angle variation at the rotor inlet,

shown in Fig. 6.28, is about 20% of the variation for the total pressure distortion case

(Fig. 6.21); this explains why the "parallel compressor" model is a good approximation

for this case.

The distribution of the aerodynamic force on blades (Fig. 6.29) shows a substan-

tial variation caused by the total temperature distortion.
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Figure 6.23: The computed axial velocity distributions far upstream, at the rotor
inlet, rotor exit, and stator exit. A square wave total temperature is imposed far
upstream of the compressor.
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Figure 6.24: The computed flow coefficient distributions upstream and at rotor inlet
for Stage 35 with inlet Tt distortion.
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Figure 6.25: The computed total pressure and total pressure distributions at the
exit of the compressor with a total temperature distortion upstream.
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Figure 6.26: The computed total pressure distributions at the exit of the compressor
with a total temperature distortion upstream.
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Figure 6.27: The local operating point around the annulus of Stage 35 subjected to
a far upstream square wave total temperature distortion.
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Figure 6.28: The flow angle distribution at the mid-span of the rotor inlet for Stage
35 with a total temperature distortion upstream.
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Figure 6.29: The distributions of the aerodynamic force on blades around the an-
nulus.

6.4 Stage 35 response to an abrupt total pressure

distortion

A feature of the present model is its ability to simulate the unsteady response of a

compressor to non-linear disturbances. To demonstrate this, the response of Stage 35

to an abrupt total pressure inlet distortion is computed. A total pressure distortion,

which is the same as that in Section 6.3.1, was imposed at the upstream boundary at

time = 0.

The mass flow and static pressure computed at the upstream station, the com-

pressor inlet, compressor exit, and downstream are plotted in Fig. 6.30 and Fig. 6.31.

The results clearly show that the pressure wave (expansion wave) propagating down-

stream. The reduction of mass flow sweeps through the system following the pressure

wave. After the first sweep of the pressure wave, the mass flow at the upstream lo-

cation drops 1.1kg/sec which is about 50% more than the drop in mass flow as the

final steady state is reached. The mass flow in blade row region settles to the value of
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the final steady state almost instantaneously; this is due to the presence of the com-

pressor which operates in the negatively sloped region, so the one-dimensional mode

is suppressed by the compressor. The mass flow at the upstream location increases

as the reflected pressure wave from the compressor reaches the upstream location at

time = 0.6 revs. Fig. 6.32 shows the flow coefficient profiles at four time instants.

At time = 0.33 revs, when the pressure wave reaches the compressor inlet, the flow

coefficient is fairly uniform. The flow coefficient at the rotor inlet begins to deform

as the low Pt flow reaches the compressor inlet at time = 0.78 revs. The flow pattern

at the compressor inlet is roughly established at time = 1.17 revs, only 0.39 revs

after the low Pt flow reaches the compressor. The difference between flow coefficient

profiles at time = 1.17 revs and equilibrium state (time = infinite) is minimal. So the

flow pattern around a compressor is established almost instantaneously for an abrupt

inlet distortion.

The results indicate that a steady model is valid for estimating the performance of

a compressor with transient inlet distortions. This statement is valid for a compressor

operated near its design point, since all the unsteady disturbances are highly damped

by the compressor. It is expected that the phenomena can be substantially different

when a compressor is operated near its stall point.
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Figure 6.30: The computed mean mass flow traces at the upstream location, com-
pressor inlet, compressor exit, and downstream location. An abrupt inlet Pt distortion
is imposed into the system at time = 0 revs.
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Figure 6.31: The computed mean static pressure traces at the upstream location,
compressor inlet, compressor exit, and downstream location. An abrupt inlet Pt
distortion is imposed into the system at time = 0 revs.
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Figure 6.32: The computed flow coefficient profiles at the mid-span of the compres-
sor inlet at four time instants. An abrupt inlet Pt distortion is imposed at the far
upstream location at time = 0 revs.
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6.5 Summary

1. The methodology developed for low speed compressor is also applicable to high-

speed compressor. A new body force formulation has been developed, and is

able to capture two unique features associated with high-speed flow: choking

and shock waves. The methodology has been shown to be capable of calculating

the behavior of compressor response to finite amplitude unsteady disturbances.

2. Computed results for total pressure and temperature distortions show that the

use of a simple body force representation gives an adequate description of the

flow redistribution in a compressor and the transmission of distortions through

the compressor.

3. The response of a compressor to an abrupt Pt inlet distortion was calculated.

The results show that the flow pattern around the compressor was established

quickly (within 0.4 rotor revolutions after the low Pt flow reaches compressor

inlet) when the compressor is operated near its design point. Thus the steady

solution for inlet distortion can be used to calculate the flow field and per-

formance of a compressor with transient distorted inlet conditions when the

compressor is operated away from its stall point.

4. The results indicate that a compressor under a total temperature inlet distortion

can be well described by the "parallel compressor" model, while a compressor

with total pressure distortions can only be qualitatively described by the "par-

allel compressor" model.

5. At compressor exit, both the total temperature and total pressure non-uniformity

are significant even though the inlet distortion is merely a non-uniform Pt or a

non-uniform T.

6. The aerodynamic force on blades along the annulus is computed. It is found

that inlet distortion could cause large variation (in the range of 40% of the mean

value) of force on blades along the annulus.
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Chapter 7

Summary and Conclusions, and

Future work

This work is aimed at developing a capability to predict instability onset in multistage

compressors with or without inlet distortions. To accomplish this, a computational

model has been developed and demonstrated to be capable of describing short wave-

length stall inception in a multi-stage compressor. The methodology has further

been extended to model high-speed compressor, where it was used to calculate the

response of a transonic compressor to different types of inlet distortion. The work

will be summarized in this chapter. Several conclusions can be deduced from the

computed results presented in this thesis.

7.1 Summary

The thesis presents a complete modeling development process that involves analyz-

ing the experimental observations, conceptualization and development of an adequate

physical flow model, followed by its application to seek out specific controlling pa-

rameters on short wavelength stalling behavior.

The review presented in Chapter 1 has shown that (1) the rotating stall incep-

tion, e.g. short wavelength stall inception, is essentially three-dimensional in many

compressors; (2) the short wavelength stall inception, which is initiated by local dis-
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turbances, is not just set by local flow condition of one particular blade passage; (3)

the rotating speed of short wavelength disturbances can be estimated by the pressure

balance (or inertia) method. No available method has the capability of describing the

short wavelength stall inception, except a full Navier-Stokes simulation. The goal of

the work is therefore to develop a method for describing the rotating stall inceptions

in multi-stage compressors.

The computational method (Chapter 2) describes three-dimensional non-linear

disturbances in a multi-stage compressor. The key elements of the model are: (1) the

row-by-row description of a compressor; (2) the unsteady three-dimensional flow in

blade-free regions, and locally axisymmetric flow with body force field in blade row

regions; and (3) body force response to the local flow conditions.

It is found that a spike-shaped disturbance (local to the tip region of rotor blade

row) is needed to initiate and distinguish the stall inception type of a compressor.

The experimental observations also show the existence of this type of localized dis-

turbances prior to stall.

In Chapter 3, the adequacy of the model is assessed by its ability to reproduce

the following key features of short wavelength stall inception: (1) relatively high

rotating speed, (2) relatively high growth rate, (3) progressive characteristic of stage

one in a mismatched configuration of the GE four-stage compressor, (4) the size of

the localized stall cell in the mismatched configuration, and (5) the unique rotor

tip incidence at the stall point where rotating stall is initiated by short wavelength

disturbances.

The following parameters are examined in Chapter 4: (1) initial disturbance

type: long wavelength and localized disturbances, (2) radial position of localized

disturbances, (3) axial location of initial disturbances, (4) amplitude of initial distur-

bance, (5) shape of unstable side of characteristic, and (6) effects of inter-blade row

gap. The parametric study leads to the following conclusions: (1) the spike-shaped

disturbances localized in the tip region of the first stage rotor are the disturbances

that initiate the short wavelength stall inception; (2) the amplitude of the distur-

bance has to be above a threshold value to initiate a short wavelength stall inception;
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and (3) reducing the gap around the first stage rotor suppresses short length scale

disturbances, while other gaps have no visible effects on the compressor stability.

Additional physical aspects of the results and the model are discussed in Chapter

5. Neglecting the sensitivity of compressor performance to inlet swirl was shown not

to change the nature of localized disturbances. Also the source of the initial spike-

shaped disturbance could be a result of the tip-vortex behavior. Three-dimensional

aspects, more specifically, the additional length scale in the spanwise direction and the

centrifugal effect term, V0/r, and the presence of the finite amplitude disturbances

are needed to initiate a short wavelength stall inception in the tip region of a rotor

blade row at an operating point in the negatively sloped region of the pressure rise

characteristic. The concept of component group and its implication are discussed.

Finally, two hypotheses were put forth: (1) there are several routes through which

short length scale disturbances could develop into final one large stall cell; (2) a simple

analysis is presented to argue that a compressor with low flow coefficient design tends

to stall through spike type.

The method is extended to calculate flow disturbances in high-speed compressors.

A general form of a body force to represent blade row is given. Based on that general

form, a simple body force formulation is derived and used for calculating compressor

response to inlet distortions.

7.2 Conclusions

The following conclusions have been deduced from computed results based on the

applications of the model:

1. A computational model has been developed for describing general nonlinear

three-dimensional disturbances in multistage compressors.

2. The necessary ingredients of the model to simulate short wavelength stall incep-

tion entail an unsteady three-dimensional, nonlinear, row by row representation

of compressor response to finite amplitude disturbances. The short length scale
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stalling process can not be described if any one of these is missing.

3. Localized disturbances of sufficient amplitude (large enough to effect zero pres-

sure rise in the tip) are required to initiate the short wavelength route to rotating

stall.

4. The behavior (growth rate, rotating speed, and the shape) of short length scale

disturbances can be adequately described without blade discreteness once such

a disturbance is imposed onto the system.

5. The computations show instability occurring on the negatively sloped part of

the overall compressor characteristic, in agreement with experimental measure-

ments. This is in direct contrast to results based on two-dimensional modal type

of analyses in which the instability will occur at the peak of the characteristic.

6. The growth or decay of small length scale disturbances in a rotor is determined

by the design characteristics of the isolated component group consisting of the

rotor and its adjoining stators.

7. The point at which stall occurs (i.e. propagating asymmetrical disturbances do

not decay) via the short wavelength route is set by the most unstable component

group where large amplitude spike disturbances are present.

8. Closing the rotor-stator gaps within the most unstable component group sup-

presses the growth of short wavelength disturbances, thereby improving com-

pressor stability.

7.3 Recommendations for Future Work

Two central issues of short wavelength stall inception are: (1) predicting the com-

pressor stability, and (2) strategies for improving the compressor stability margin.

The following work might significantly improve our knowledge of this phenomenon,

and the design method for an engine with enhanced stability properties.
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1. Incorporating the compressor model developed in this thesis into the existing de-

sign tools would provide a viable design method for predicting stall margin. The

current method requires substantial amount of input data to describe body force

over a large operating range. The body force can be obtained based on other

currently available tools (Streamline Curvature calculation, three-dimensional

N-S calculation). Building a standard interface between the current model and

the Streamline-Curvature or blade passage simulation will represent a substan-

tial advancement of the method in terms of usability.

2. Further study of the controlling parameters on rotating stall initiated by short

length scale disturbances would be fruitful. The study would identify these

important parameters which have strong impact on the growth of short length

scale disturbances, therefore it would provide design guidelines for a compressor

which is more tolerant to short length scale disturbances. Some possible control-

ling parameters are radial loading distribution, axial chord, loading distribution

between rotor and stator.

3. Further investigation of the physical origin(s) of the initial disturbances. This

would complete the current knowledge of all pieces of the stalling process initi-

ated by short length scale disturbances.

4. It seems of interest to examine the effects of casing treatment as well as tip

blowing or suction on short wavelength stall inception. Since the tip region is

most sensitive to short length scale disturbances, any modification of the flow

structure in the tip region might have significant impact on short wavelength

stall inception.

A strength of the model is that the compressor is naturally coupled with unsteady

three-dimensional flow, so that the model could be used to investigate the interactions

between compressor and other components. Some of these are:

1. Interaction between intake and compressor with inlet distortions (including

transient inlet distortions), and its impact on the performance and stability
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margin.

2. The behavior of inlet vortex in an intake and engine, and its impact on the

performance and stall margin.

3. The hot gas ingestion into an engine, and its impact on the stability margin.

4. The model can be a component in a engine (or even a aircraft) system to model

the dynamic behavior of a whole engine under various real situations.
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Appendix A

A Procedure of Formulating the

Body Force

The body force formulation includes the following two steps: (1) determination of

a body force field from a given flow field in a blade row; (2) obtaining a set of

manageable expressions of the body force field based on sufficient number of body

force fields determined applying the method in the previous step for sufficient number

of different operating points.

I will first describe a procedure for determining the body force field which will

produce a axisymmetric flow field which is the same as that of the pitch-wise average

of a given three-dimensional flow field. The procedure is applied to compute the body

forces for different operating points; then the body force expression for each spatial

point can be deduced from these body forces for different operating conditions.
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A.1 Determination of the body force from a three-

dimensional flow in a blade passage

A three-dimensional flow field, which can be obtained from either CFD computation

or experimental measurement, is expressed as

V(x, 0, r) , Vo(x, 0, r) , V,(x, 0, r) , T(x, 0, r) , P(x, 0, r) , p(x, 0, r),..

An axisymmetric flow field can be obtained through pitch-wise stream-thrust average

of the flow field. Physically, the stream-thrust average assumes the flow is mixed

out locally, so this kind of average is consistent to the body force idea. After the

pitch-wise average, the flow field can be expressed as

V (x, r) , Vo (x, r) , V (x, r) , T (x , r) , P (x, r) , p (x , r),..

The momentum equations with body

row can be written as the following:

rpV2 + rp
& I
9 jr pVVo

rpVV, I+'

rpVV,

rpVoV

rpV2 + rp

force terms for the steady flow in a blade

rp(Fnx + F)

-pVoV, + rp(Fno + Fp0o)

pV2 + p + rp(Fnr + Fpr)

(A.1)

The force terms in the above equations are

1 Ps
-sin or

p &x

(A.2)

where Vri is the relative velocity. Effectively, formulating of the body force is equiv-

alent to finding fn and f, as functions of the local flow conditions.
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Integrating Eq. A.1 on a control volume gives

r pV + rp rpVV,

rpVVo i + rpVoV i d(617)

rpVVj rpV2 +rp j

rp(F.. + FP.)

-pVoV,+ rp(F + FO) d1 (A.3)

pV2+ p+r p(Fn, + Fpr)

where IF is the control volume, 61 the surface of the control volume, i and ? unit

vectors in the axial and radial directions. If the control volume is a small mesh cell,

the value of the right hand side of the Eq. A.3 can be evaluated assuming the flow

properties in the mesh cell to be approximately uniform. Then the above equation

set becomes

rpVf2+ rp rpVV,

fr( rpVVo + rpVoV i )d(3F)

rpVV, rpV 2 + rp

rp(Fn. + Fp.)

Vr -pVVr + rp(Fno + FpO) (A.4)

p V02+ p + r p(Fn, + Fp,.)

where V is the volume of the control volume. F2, F, and F can be computed using

the above equation set; and their components normal and parallel to the relative

velocity can be calculated. Finally, fn and f, can be calculated using their definition

in Eq. A.2.
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A.2 Deducing ft and fp as Functions of Local Flow

Properties

In the previous section, fn and f, at each mesh cell can be calculated for a given

three-dimensional flow field. I label these fn and f, as

fn,(j,k) , fp,(j,k)

where (j, k) is the index of a mesh cell (Fig. A.1). A

f, and f, is to express them as polynomials, such as

fn,(j,k) = CnO,(j,k) + Cnl,(j,k) 3 + C2,(j,k)/3 2 + Cn

fp,(j,k) = CpO,(j,k) + Cpl,(j,k) 3 + Cp2,(j,k),3 2 + C1

simple way of formulating these

3,(,k)M + Cn4,(j,k) M2

3,(j,k)M + Cp4,(j,k) M2 (A.5)

where Cno, ... Cp4, are coefficients to be determined. If a sufficient number of fn and

f, have been computed for different operating points using the method described in

the previous section, then C can be determined to have the best fit for these fn and

fp.
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,' fn(j-1,k) fn(j,k) fn(j+1,k)

fp(j-1,k) fp(j,k) fp(j+1,k)

~ %fn(j,k-1)

fp(j,k-1) -'

Figure A.1: The f,, and f, are defined on each cell of the pre-generated mesh.
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