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Abstract

Constellations of hundreds of low-Earth orbiting small satellites are currently being
designed and built. Operators plan to provide data and media distribution services
as well as imaging and weather observations. As our society increases its dependence
on satellite services for communication and navigation, there is a growing need for ef-
ficient spacecraft systems monitoring and space situational awareness to avoid service
interruptions due to hazards such as space weather. Particularly for large constella-
tions, satellites need greater autonomy to improve responsivity and reduce the load
on human operators.

In this thesis, we present the development of algorithms that identify unusual be-
havior in satellite health telemetry. Once these events have been identified, we collect
and analyze them, along with assessing space weather observations and operational
environment factors. Our approach uses transient event detection and change-point
event detection techniques, statistically evaluating the telemetry stream compared
to a local norm. This approach allows us to apply our algorithms to any spacecraft
platform, since there is no reliance on satellite- or component-specific parameters,
and it does not require a priori knowledge about the data distribution.

We apply these techniques to individual telemetry data streams on geostationary
Earth orbit (GEO) communications satellites (ComSats), and consider the results,
a compiled list of unusual events for each satellite. Results include being able to
identify events that affect many telemetry streams at once, indicative of a spacecraft
system-level event. With data from multiple satellites, we can use these methods to
better determine whether external factors played a role. We compare event dates to
known operational activities and to known space weather events to assess the use of
event detection algorithms for spacecraft monitoring and for environmental sensing.

Thesis Supervisor: Kerri L. Cahoy
Title: Assistant Professor of Aeronautics and Astronautics
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Chapter 1

Introduction

The near-Earth space environment is hazardous: the ionizing radiation environment

and space weather events can lead to component degradation and failures (e.g. [9,

40, 77]), and space is becoming more populated, with new constellations of several

hundreds of small satellites planned over the next decade to provide communications

and navigation services upon which society has become increasingly reliant [127].

This drives a need for spacecraft to be able to quickly identify and react to hazards

as well a greater need for situational awareness. In addition, satellites need greater

autonomy to improve responsivity and reduce the load on human operators. The

goal of this work is to enable remote sensing of space environment, monitoring of

system performance, and identification of hazards using telemetry streams. In this

thesis, we present the development of algorithms that identify deviations in normal

satellite health monitoring telemetry to detect atypical behavior and assess the space

environment during events of interest. We use transient detection and change-point

detection techniques, which statistically evaluate telemetered values compared to a

local norm. The approach does not rely on satellite- or component-specific parameters

or knowledge of the underlying data generation distribution, supporting use on any

spacecraft platform.
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1.1 Motivation

Satellites are a growing industry and host critical systems and components that sup-

port our society's commercial, scientific, and defense sector infrastructures [52, 90,

110]. For example, satellites provide communications and media distribution, meteo-

rological information, global positioning and timing, reconnaissance, and intelligence

services. The reliability of Geostationary Earth Orbit (GEO) Communications Satel-

lites (ComSats) in particular is critical to many industries worldwide, such as for

organizations remotely operating offshore oil and gas drilling facilities, where reliable

connectivity is key for safety and efficiency [58]. GEO ComSats make up over 50%

of the satellties on orbit (with >600 ComSats reported on orbit in 2014), totaling

over $203B in revenue in 2014 1110]. The revenue is not in hardware sales, but in the

services they provide.

In addition, the increasing demand for and dependence on satellite services has

driven technological evolution of spacecraft components to be smaller, more power ef-

ficient, and more capable, using smaller feature-size electronics. However, the smaller

electronics are more complex and often more susceptible to radiation damage [56].

Given society's reliance on the services satellites provide, satellite failures and

other events that degrade performance can disrupt the business of modern life [112,

119]. The harsh space environment, especially the ionizing radiation environment and

space weather events, means that almost all satellites will suffer some unexpected or

unusual problems - often referred to as "anomalies" - during their lifetime. Anomalies

can cause harmful interference or interruptions in service, reduce spacecraft function-

ality, or cause complete spacecraft failure. Anomalies can be difficult to diagnose

and even more difficult to resolve, leading to an increased drain of operator and

manufacturer resources (time, money) in both the short and long term [85]. Quick

anomaly identification and resolution can mitigate effects of anomalies by reducing

interruptions, for example.

20



1.1.1 Space Environment Hazards

The key environments that must be considered when designing and operating space-

craft are: radiation, thermal, vacuum, micrometeoroid, and man-made (radiation and

debris). Thermal and vacuum environments can be accounted for the in the design of

the spacecraft and tested on the ground, and are fairly well understood near-Earth.

The radiation environment presents unique challenges due to the unpredictability

of large high-energy (and potentially long duration) events. Therefore, this thesis

focuses on ionizing radiation environments and space weather events. Future work

includes addressing all aspects of the space environment, particularly motivated by

more frequent spacecraft travel beyond near-Earth orbit.

The space radiation environment presents hazards to satellites and the services

they provide (internal and surface charging, displacement damage, accumulated dose

effects, etc.) causing many documented satellite anomalies (e.g., [9, 40, 44]). As an

example, Telstar 401, which was insured for approximately $200M, suffered a complete

loss in 1997 following a solar storm [135]. Particles from the Sun in the solar wind

and heavy charged particles from galactic sources are a constant bombardment to the

environment. Occasional high-energy Solar Particle Events (SPEs) create a mostly

unpredictable high-energy particle environment risk. These SPEs heavily influence

the location and densities, for example, of the trapped particle radiation environments

in Earth's magnetosphere.

The three principal sources of radiation to be considered are those emanating from

the Sun, trapped particles in Earth's magnetic field, and galactic cosmic radiation.

The Sun produces electromagnetic (EM) radiation, a constant stream of energized

plasma called the "solar wind", and solar energetic particles (SEPs) (protons, elec-

trons, heavier nuclei) that are 10s of MeV to GeV. These solar energetic particles

are bursty and intermittent, and are part of eruptive events. Explosive conversion

of magnetic energy to kinetic and radiative energy produces coronal mass ejections

(CMEs) and solar flares, respectively. Solar variability (-11 year cycle) drives the

strength and frequency of SPEs. In the near-Earth environment, energetic particles

21



are trapped in Earth's magnetic field, called the Van Allen Radiation belts. The

belts differ in energy distribution and particle type. While the belts provide pro-

tection from the direct effects of solar storms to regions inside the belts, they are

a hostile environment to satellites located in or passing through the belts, causing

documented satellite anomalies [53]. Galactic cosmic rays (GCRs) are high-energy

(up to 1014 MeV) particles accelerated to relativistic speeds from events such as su-

pernova explosions. GCRs occur out of phase with the solar cycle and spacecraft

are particularly susceptible in orbits crossing the polar regions (where the planetary

magnetic field lines are open to space). A more thorough description of the space

radiation environments is provided in Appendix A.

Space environment effects on satellites vary according to orbit, spacecraft local

time, stage of the 11-year solar cycle, and numerous other factors. Effects can range

from simple upsets, which may be easily recovered from, to total mission failure.

While reports of anomalies are spread throughout literature, it is often difficult to

determine the role of the space environment. The algorithms developed in this thesis

will help to determine which of these effects could be responsible for the anomaly or

failure.

Space Environment Effects

The key impacts on satellites due to space weather are: (1) surface charging, (2)

internal charging, (3) single event effects (SEEs) or single event upsets (SEUs), and (4)

total ionizing dose (TID) effects. Surface charging occurs due to a difference between

ambient electron and ion fluxes. Due to their mass difference, electrons are faster than

ions, making the ambient electron flux much higher than that of the ambient ions.

This leads to differential charging on the surfaces of spacecraft, resulting in possible

electrostatic discharges (ESDs). GEO and near-GEO satellites are most at risk due to

their movement in and out of the plasmasphere [53]. This can lead to anomalies such

as component failures, degradation of sensors and solar panels, and serious physical

damage to materials. For example, charging is particularly relevant and dangerous for

solar panels, causing a sustained arc, leading to solar array failure on the European

22



Space Agency (ESA) European Retrievable Carrier (EURECA) satellite in 1993, after

only one year of operation [41]. While EURECA operated in LEO, where charging is

not usually a concern, EURECA was made of high-strength carbon-fiber struts and

titanium nodal points joined together to form a framework of cubic elements. The

extended structure made the spacecraft more susceptible to differential charging. See

Figure 1-1 for an image of the arcing damage.

Figure 1-1: Damage to the solar array on the ESA EURECA mission due to a sus-

tained arcing event from surface charging. Image Source: Ferguson and Hillard (2003)
[41].

Internal (or bulk) charging occurs when high-energy particles (e.g., MeV electrons)

penetrate satellite shielding materials and deposit charge on internal spacecraft com-

ponents. For a typical spacecraft wall with a thickness of 100 mils (2.54 mm) of

aluminum, electrons need energies in the range 0.5 - 5 MeV to penetrate, and protons

need energies of 10 - 100 MeV (see Figure 1-2 from Garrett and Whittlesey (2012)

[48]). If the component's resistivity is high, the rate of charge build up can overcome

the leakage rate property of the material. The induced electric field may then exceed

the breakdown threshold for the material, causing electrostatic discharges (ESDs) in

the material [9. 40, 44, 148]. Lohmeyer et al. (2015) found that the accumulated

electric field over the 14 and 21 days leading up to 26 SSPA anomalies on eight GEO

23



ComSats was high enough to cause the dielectric material in the coaxial cable between

the amplifiers to cause breakdown, possibly causing the amplifier failures [78].

mil metric

100,000 -r gT T Tr --T I T- r T 1 I
.Al <-1 m

10.000 (g/cm )
-- e-mi <~O 1 m

C: <~10 ---- p-m
o 1000

.0 A-0 <~10 mm

E ~100

0 <-O 1 mm

Q0.1

0.1

0.01 _________ 'II LI

0.01 0.1 1 10 100 1000

Energy (MeV)

Figure 1-2: Electron (solid) and proton (dashed) penetration depth in aluminum for

a range of energies (0.01 to 1000 MeV). For 100 mils (2.54 mm) of aluminum, protons

must have energies above roughly 1 MeV and electrons must have energies above

roughly 20 MeV. Image source: Garrett and Whittlesey (2012) [481.

Single event effects (SEEs) occur when high-energy particles (>50 MeV), coming

from Galactic Cosmic Rays (GCRs) and SPEs, penetrate spacecraft shielding and

strikes an electronic device in such as way that the component is affected. Effects

can range from simple device tripping to component latch-up or failure. Often, these

effects are "bit, flips," undesired changes in the logic state of the device. SPEs can

also cause increased noise in photonics, total radiation dose problems, power panel

damage, and single event upsets [9, 48].

Finally, Total Ionizing Dose (TID) is a result of long-term radiation absorption

and can lead to undesirable effects. The total accumulated dose depends on orbit

altitude, orientation, and time. The integrated particle energy spectrum (fluence as a

function of particle energy) is used to compute the TID. Satellites encounter different

annual doses based on the orbit altitude and the thickness of shielding (see Figure 1-3

24
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and Figure 1-4, respectively). As TID increases, material and component degradation

increases, leading to reduced functionality and greater susceptibility to failure. There

is also evidence that dose rate affects the TID; enhanced effects are seen with lower

dose rates ("enhanced low dose rate sensitivity," ELDRS) (see Chen et al. (2010) and

references therein [29]).

I
Annual doses (Si) in circular equatorial orbits
computed with SHIELDOSE and AEBMAX, APBMAX models
4 mm spherical aluminium shielding.

4/
10000

Orbit altitude (km) ti
Geostationary

Figure 1-3: Annual dose in rads(Si) as a function of orbital altitude. Contributions
are provided from the AE8 AP8 models for protons and electrons through 4 mm

spherical aluminum shielding. Image Source: Daly et al. (1996) [321.

I
We also note that radiation in space may also originate from man-made sources,

such as the 1962 Starfish Prime detonation, which generated a temporary artificial

radiation belt, crippling or disabling at least six satellites [24, 551.
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Figure 1-4: Annual dose as a function of aluminum shielding thickness in GEO. This
plot was generated using the AE8/AP8 models at solar minimum for the year 2016
for a satellite in geostationary Earth orbit. (For reference, 2.54 mm is equivalent to
100 inils for Aluminum.)

1.1.2 Satellite Industry Trends

The near-Earth space environment is becoming more populated, with hundreds of

new satellites put in orbit each year. The Satellite Industry Association reports

that there are 1261 operational satellites in Earth orbit as of December 31, 2014,

totaling S203B in the satellite industry revenue ($322.7B in global space industry),

a 4% global growth from 2013 [110]. The population increase means satellites are in

closer proximity, leading potentially to increased threats in contested orbits such as in

GEO. And, the Low Earth Orbit (LEO) environment is about to become much more

populated with the recent push by several industry groups to put large (hundreds)

of satellites in LEO (e.g., OneWeb, LeoSat, SpaceX [43]). The increased number of

26
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satellites leads to a need for greater autonomy (operator resources for many hundreds

of satellites at once would be enormous), so new operational procedures are necessary.

This ties into the National Aeronautics and Space Administration's (NASA) and

others' long term goal of going to Mars and beyond [90, 1221. The longer mission

lifetimes mean greater reliability is needed. Communications with the ground will

become less frequent (or less timely) as the distance increases, meaning those satellites

need greater independence from ground monitoring and interaction. In addition, the

environments encountered by the satellites are potentially hazardous, and certainly

unknown. Therefore, the ability of a satellite to identify and diagnose anomalies

on-board and to be able to identify environmental hazards is growing increasingly

important. The ability to infer certain environmental dangers (with minimal impact

on already constrained size, weight, and power) allows for faster anomaly resolution

and can inform on-board decision-making.

1.2 State of the Art

This thesis contributes to three main fields: (1) space environment monitoring, (2)

spacecraft fault detection and diagnosis, and (3) space situational awareness. For

each of the fields, we have examined the state of the art and the research gap that

this thesis addresses.

1.2.1 Space Environment Monitoring

One factor contributing to the difficulty of detecting and diagnosing anomalies is the

lack of knowledge about the environment local to the spacecraft. It is very chal-

lenging to know the root-cause of an anomaly without knowing the space radiation

environment experienced by the satellite. While there are several extraordinarily

capable spacecraft devoted to space environment monitoring (Geostationary Oper-

ational Environmental Satellites (GOES), Advanced Composition Explorer (ACE),

Solar and Heliophysics Observatory (SOHO), Van Allen Probes, etc.), these space-

craft are sparsely distributed [92, 96], unable to represent many of the environments
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experienced by satellites.

The environment variability is on scales much larger than the current density

of space weather monitoring satellites. For example, in GEO, the Geostationary

Operational Environmental Satellites spacecraft provide space weather monitoring

(in addition to the primary task of Earth observations and monitoring), which the

GEO ComSat community relies on for measurements of the environment in the orbit.

The current locations of GOES-East (GOES 13) and GOES-West (GOES-15) are 750

West and 135' West longitude, respectively [91]. Coronal mass ejections can range in

speeds from 100 km/s to over 3000 km/s. If a GEO ComSat is located at 00 longitude,

and the time of day is local noon (i.e., 0' longitude would approximately be the first

impact of a Coronal Mass Ejection (CME)), for example, the CME can impact the

GEO ComSat over a minute (~109 seconds) before either GOES satellite detects it.

For satellites beyond GEO, there is little to no near-real-time information about the

local space environment.

Some spacecraft are equipped with radiation detectors, most commonly a dosime-

ter. Dosimeters measure the TID absorbed by an internal test mass (typically silicon).

The device measures the energy absorbed from electrons, protons, and gamma rays,

which provides an estimate of the dose absorbed by other electronic devices on the

spacecraft.1 Typical dosimeters are p-FETs or MOSFETs under different amounts of

shielding [20].

There is a big effort to move towards smaller radiation detectors to reduce the size,

weight, and power (SWaP) demands on the spacecraft. For example, the Teledyne

Microelectronics Technologies UDOS001-C microdosimeter, pictured in Figure 1-5,

recently flown on the Aerospace Corporation's AeroCube-6 [47], has dimensions of

only 1.4" by 1.0" by 0.040" and has a mass of only 20 grams [128].

However, dosimeters are not capable (in general) of discriminating between parti-

cle types or their spectra. Different types and energies of particles can have different

'A dosimeter does not measure incident energy directly! A dosimeter measures the amount of
energy absorbed in a silicon detector due to the energy loss of the particle as it passes through
the detector volume. The energy loss is well-characterized in lab tests on the ground for different
particles and spectra and through different materials.
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Figure 1-5: Teledyne microdosimter flown on AeroCube-6. Image Source: Teledyne

Microelectronic Technologies [128].

effects on spacecraft (e.g., [22, 53]). While efforts have been made to reduce the size,

mass, and power of particle-discriminating detectors, state of the art that has flown

is still large enough to impact spacecraft design. For example, the ESA Energetic

Particle Telescope (EPT) on the Proba-V satellite launched in 2013 is advertised as

the smallest particle discriminator to fly and has overall dimensions of 210 mm by

162 mm by 128 mm, with a total mass of 4.6 kg and peak power draw of 6 W [103].

The MIT STAR Lab (in collaboration with the Nuclear Science and Engineering

department) is developing a particle spectrometer (called "Sparrow") with the goal of

achieving full heavy-ion spectroscopy in a compact, lightweight, and low-cost pack-

age. The approach is a scintillator-based pulse shape discrimination, leveraging key

innovations in solid plastic scintillators (cheaper, lighter), solid state photomultiplier

detectors (replacing large, heavy, photomultiplier tubes for read of scintillation light),

and fast analog to digital converters equipped with microcontrollers for digital read-

out and processing of analog signals. This device is in preliminary testing, with the

goal of an on-orbit flight demonstration in ~2018.

However, just because the local space environment is known does not mean the

effects on the individual components or the spacecraft overall are known. This thesis

aims to develop algorithms that can detect the local environment on-board the space-

craft directly from monitoring the spacecraft component telemetry. This allows for

detection of environments that directly impact components. Dosimeters and particle
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spectrometers are designed for detection of specific energies and particle types. Mon-

itoring telemetry allows for detection of hazards that are currently not known (i.e.,

those for which there are not specific detectors designed). Ideally, on-board detectors

could supplement the algorithms, providing validation for events detected in certain

instances and assisting with diagnosis.

1.2.2 Fault Detection Techniques

Fault Detection and Diagnosis (FDD) techniques for currently operational spacecraft

are limited and rely mostly on simple "thresholding" methods at the component-level,

and polling schemes at the system-level [87, 136]. Longer mission durations (evolving

component performance) and reduced dependence on ground control drive the need

for updated FDD techniques.

On the component-level, simple limit checking methods, often called "threshold-

ing" or "out of limits," are used. Numerical limits are set on the upper and lower

acceptable values for a particular component. Current thresholding techniques have

evolved to include hard and soft limits (for example, failures and warnings, respec-

tively) and thresholds that are applicable for different situations (or operational

modes), called "rule-based" methods. However, component performance may change

over time, making certain thresholds no longer applicable. This would likely be the

case for the SSPA shown in Figure 1-6, where the hypothetical hard thresholds for

the first three years of telemetry may have been set at 0.45 and 0.65 for the power

amplifier. The performance of the component changed drastically around January

2009, making those hypothetical limits obsolete. In addition, expert knowledge is

necessary to decide what the thresholds are for each and every spacecraft component

in the first place. The values must be coded specifically for the component.

On the system-level, polling (or voting) schemes are currently used on spacecraft.

These methods include "consecutive occurrence counters" and "persistence filters"

[87, 129]. They also include rule-based methods, using "if-then" rules encoded by

system experts.

Innovative fault detection methods are currently being developed for aerospace
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Figure 1-6: Example of the telemetry from a nominally performing power amplifier.

The plot demonstrates how changing component performance may render thresholds

obsolete after several years on orbit.

applications, but are not yet employed on active spacecraft. Model-based methods,

using analytical models, compute residuals between measured and estimated val-

ues. There are several aerospace models for this method and current work focuses

on developing better dynamical models of systems and components 154, 81]. ESA's

SMART-FDIR study in 2003 used the GOCE2 satellite simulation environment for

validation purposes [51]. For detection, no training data was used. Their methods rely

on fuzzy inductive reasoning, using a model-based framework. The system behavioral

model is decided using possibilistic logic theory, meaning that the behavioral model

represents the system knowledge about causal dependencies between inputs and out-

puts, and are represented by logical formulation. Perhaps the closest to spacecraft

flight-ready is the work by Meitinger and Shulte (2009), using a cognitive automation

approach, which mimics human cognition (goal-oriented, rational thinkers). Goal di-

rected planning is implemented while considering the current situation. The approach

was implemented on a successful UAV flight experiment [83]. However, there are still

challenges with this method, since lots of a priori knowledge (environment models,

models of every subsystem, etc.) is required, increasing the system complexity.

2 GOCE: Gravity Field and Steady-State Ocean Circulation Explorer, ESA, 2009-2013.
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1.2.3 Space Situational Awareness

Space situational awareness (SSA) is often just thought of as space surveillance, debris

tracking, and conjunction assessment, but the definition includes much more. SSA

includes intelligence on the capabilities and intent of unfamiliar spacecraft, space

surveillance, reconnaissance, environmental monitoring (including space weather),

and satellite command and control.

The Joint Services' definition of Space Situational Awareness (SSA) from Joint

Publication 3-14 (2013) states:

"[SSA] is the requisite current and predictive knowledge of the

space environment and the OE3 upon which space operations

depend. SSA involves characterizing, as completely as necessary, the

space capabilities operating within the terrestrial environment and the

space domain. SSA is dependent on integration space surveillance,

collection, and processing; environmental monitoring, processing

and analysis; status of US and cooperative satellite systems;

collection of US and multinational space readiness; and analysis of

the space domain."

One of the key functional capabilities the Joint Services describe is Threat Warning

and Assessment (TW&A), which involves being about to know the space weather

environment, and the ability to predict and differentiate between potential or actual

attacks, space weather effects, and space system anomalies, as well as provide timely

friendly force status [60].

In ESA's SSA program, the three main areas are (1) surveying and tracking of

objects in earth orbit, (2) monitoring space weather, and (3) watching for near Earth

objects [38]. As an example of the focus on space weather monitoring, the space

weather segment of the ESA SSA Programme took over Proba-2, an observatory

with primary instruments for solar monitoring.

Massachusetts Institute of Technology (MIT) Lincoln Laboratory (LL) is actively

3 operational environment
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developing techniques for improvement of SSA. MIT LL agrees with statements that

they cannot maintain persistent surveillance on all space catalog objects [1]. They

examine non-cooperative GEO monitoring, in which space analysts have no informa-

tion about the satellite station keeping and maneuvers. The space surveillance data

provide the only method to determine orbital status. Detailed in a recent publication

called "Decision Support in SSA," MIT LL is using Bayesian networks to combine

signature metric information from space surveillance sensors, which allows for MIT

LL to detect satellite status changes and produce automated alerts [11.

1.2.4 "Spacecraft as a Sensor"

There have been many efforts to use the "spacecraft as a sensor," most notably by

the Aerospace Corporation in El Segundo, CA, starting in 1997. Bowman and De-

Sieno (2012) patented their work on the subject, called "Detecting, Classifying, and

Tracking Abnormal Data in a Data Stream". They have developed neural network-

based methods (see Section 2.3.4 for a more detailed description of fault detection

algorithms). The method is able to adapt to the dataset, but relies on historically

labeled training data [23]. Training data instances must be classified as anomalous

or nominal. Called "supervised learning," using labeled training data has advantages.

It allows for encoding information about basic trends and allowable values.

However, this thesis work aims to detect anomalous events without the use of

training data due to the lack of availability or applicability of training data. Often,

there is not an identical (or similar) mission for reference training data, making labeled

training data nearly impossible to obtain. Operational environments and procedures

make the performance degradation unpredictable. The satellite performance and

degradation is not well-characterized, meaning that training data from a previous

"identical" mission is likely not applicable. Additionally, the labeled training data

can prevent the detection of events that have not been "seen" before. However, these

methods could supplement this thesis work following a period of time on orbit.
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1.3 Research Goals and Impacts

Given the harsh space environment, impacting spacecraft performance and lifetime,

and projected existence of large 'onstellations, on-board software algorithms must

be able to detect anomalies in individual telemetry feeds and intelligently synthesize

system-wide data about the performance of its individual parts to provide a spacecraft

health state estimation that can help autonomous systems decide what actions, if

any, to take [90]. For a fully autonomous system - a system with the ability to act

independently of human control (no ground communication) - all on-board decision-

making must be derived from spacecraft telemetry and predetermined information

stored on-board.

Current fault management strategies, broadly called Fault Detection Isolation and

Recovery (FDIR) systems, are typically implemented with both an on-board compo-

nent and a ground segment [87, 136]. Existing operational strategies for telemetry

typically examine only individual streams using what is known as "thresholding," by

which the spacecraft On-Board Computer (OBC) may alert operators and/or shut

down a component or change operations when that component's telemetry feed shows

data that exceeds or drops below pre-defined upper or lower bounds of acceptable val-

ues. Although thresholding may detect anomalies, anomaly detection alone cannot

ensure prolonged operational capacity. The traditional approach, if certain thresholds

are breached, is to "safe mode" the spacecraft, in which all non-essential systems are

powered off [129]. However, safe mode is only a viable option when there are systems

(or humans) on the ground that are able to identify and resolve the issue(s) leading to

the safe mode, and can then command the spacecraft to resume nominal operations.

An autonomous on-board software solution is needed, particularly for large con-

stellations or spacecraft at great distances from their operators. Therefore, efforts

to move towards an autonomous on-board software solution are highly desirable [90].

The algorithms must be able to adapt: information about "normal performance" for

a spacecraft component may evolve as a mission progresses. For example, the NASA

Asteroid Redirect Mission (ARM) has complicated and distinct mission phases in hos-
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tile environments, to which OBCs must be aware and adapt [49]. Systems therefore

must be able to acclimate to new mission scenarios and events, and they must rely on

the information they have (telemetry) to do so. Future extensions of the algorithms

developed in this thesis will use machine-learning techniques to evolve the definition

of normal performance.

The need to leverage on-board information to learn about the spacecraft health

and the environment has led some in the space community to work to develop tools to

use the spacecraft itself as a means of detecting potentially hazardous environmental

events or potential problems with a system or component. The "spacecraft as a

sensor" concept has been explored by the Aerospace Corporation [23] and others

(e.g., [45, 59]). The technique these groups have used relies on neural networks.

These methods require knowledge of specific components (such as training datasets

for neural networks and categories for classification algorithms) or prior knowledge of

the system performance (such as the underlying distribution or data patterns). These

technologies thus are not designed to adapt to unforeseen events or circumstances.

They also are not generalizable to more than the individual spacecraft bus for which

they are designed. Unlike current "spacecraft as a sensor" methods, our approach

currently does not make assumptions about the underlying distributions and does

not impose any component- or satellite-specific parameters or thresholds.

The algorithms can be used on past mission telemetry as well to gather informa-

tion about the environment, in order to inform future missions. For example, NASA's

Juno mission does not carry any space weather detection instruments. However, if

environment information can be gathered from the Juno telemetry, valuable knowl-

edge about the Jovian environment can be used for the Europa mission and other

future Jovian missions.

The path forward, building upon the algorithms in this thesis, will move the

algorithms into real-time operation, incorporating machine learning techniques. This

will allow for longer mission durations by providing greater reliability in response to

external environment hazards and adaptability to an evolving mission. In addition,

the algorithms enable greater sustainability and risk reduction when integrated with
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FDIR systems. This thesis presents the approach and results for the algorithms.

In summary, this thesis has developed algorithms that detect atypical events

in spacecraft telemetry, identifying deviations from normal, and avoiding

component- or satellite-specific conditioning. The goal of this work is to en-

able remote sensing of space environment, monitoring of system perfor-

mance, and identification of hazards using telemetry streams.

1.4 Thesis Organization

This thesis is organized as follows: Chapter 1 provides an introduction for the the-

sis, laying the groundwork and background for the research. Section 1.1 presents

the detailed motivation for the study, including the space environment hazards and

anomalies due to the environment. Section 1.1 also discusses satellite industry trends

towards increased numbers of satellites and longer duration missions. Section 1.2

details the current state of the art for space weather monitoring on satellites (both

dedicated and detectors), fault detection techniques, and previous related work by the

Aerospace Corporation. Chapter 2 outlines the overall approach to event detection

using satellite telemetry. Section 2.3 goes into extensive detail on the characteristics

of the telemetry and of the desired detection algorithms, including the challenges

that need to be addressed when using a telemetry dataset. We present an overview

of fault detection applications and algorithms in other domains. Chapter 3 describes

the datasets used for the analysis. The telemetry data are acquired from GEO Com-

Sat operators and the space weather products are provided by National Oceanic

and Atmospheric Administration (from the Geostationary Operational Environmen-

tal Satellites (GOES) and the Advanced Composition Explorer (ACE)), the World

Data Center for Geomagnetism in Kyoto, and the World Data Center in Brussels.

Chapter 4 contains the algorithm analyses and results. The transient and change-

point detection algorithms are described with examples. The findings are reported

for individual telemetry streams, components, and at the spacecraft system level. We

highlight findings such as maneuver detection and eclipse entrance/exit. Chapter 4
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concludes with a discussion of algorithm sensitivity to tunable parameters and the

computational requirements levied by the algorithms. Chapter 5 summarizes the

key findings, identifying primary assumptions and vulnerabilities. We conclude with

follow-on work for doctoral research and future applications and use cases.
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Chapter 2

Approach

2.1 Overview of Approach

Spacecraft telemetry provides the only source of health information available from

a spacecraft, and thus the only indications of a problem. 1 Telemetry, or "measure-

ment at a distance," comes from downlinking electrical signals proportional to the

quantity being measured [108, 141]. Spacecraft telemetry originates from sensors and

monitors from each subsystem, the payload (if applicable), and from the attitude

control system. This work focuses on housekeeping data (sometimes called engineer-

ing parameter data or state of health (SOH) data), which is monitored to check the

health and operating status of on-board components in subsystems. Housekeeping

telemetry can be in the form of an operational or redundancy On/Off statuses, sam-

pled temperature, current, or pressure measurements, or deployment of mechanisms,

for example [42]. The telemetry used in this study is from GEO ComSats and is

described in further detail in Section 2.2 and Chapter 3. Monitoring each telemetry

stream individually provides the "pulse" of a component or of a subsystem.

Relying solely on telemetry, the general approach taken in this work for fault

detection for spacecraft health monitoring and environmental sensing is to examine

satellite housekeeping telemetry and identify unusual events. Algorithms are used to

'Direct observation could show health information, such as loss of control, but direction observa-
tion is often not feasible and cannot identify many spacecraft issues, such as loss of communications
or power.
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identify deviations from what is locally normal in the telemetry. Anomaly detection

algorithms have been developed in many domains, such as in finance and medicine.

The approach taken in this work uses transient detection and change-point detection

techniques, and statistically evaluates the telemetry stream compared to a local norm

(see Sections 2.3 and 2.4). This approach allows for application of the algorithms to

any spacecraft platform, since there is no reliance on satellite- or component-specific

parameters, and it does not require a priori knowledge of the data distribution.

For a modern, large communications satellite, there are typically many 1000s of

telemetry streams. 2 The algorithms are applied to individual telemetry data streams

on a GEO ComSat, and a compiled list of unusual events for each satellite is found. By

leveraging a large amount of sensor telemetry, the aggregate dataset, after analysis,

enables a spacecraft health state estimation of the entire system, allowing for detection

of system-level events and environment-level events. Detected events are compared

with known operational activities and with known space weather events to validate

the use of event detection algorithms for spacecraft monitoring and for environmental

sensing.

2.2 Telemetry from GEO ComSat Operators

GEO ComSat telemetry is evaluated in this analysis for two primary reasons: Com-

Sats provide critical services, requiring high reliability that can be helped by fault

detection algorithms and an understanding of hazardous space environments, and

ComSats have many decades of telemetry, providing a long baseline to evaluate and

a large quantity of data.

GEO ComSats make up over 50% of the satellites currently in Earth orbit (38%

commercial communications, 14% government communications) with greater than

600 satellites as of December 31, 2014 [110]. While the annual revenue of these satel-

lites totals over $203B [110] and the average communications satellite costs $250M

on average to build, launch, and insure [127], the fundamental value is in the services

2Personal communications with Intelsat operators (August 2014).

40



these satellites provide. GEO satellite observations are used to actively monitor ter-

restrial and space weather, agricultural development, natural hazards (such as wildfire

growth), and geological evolution. GEO ComSats also provide communication glob-

ally (including to remote locations), reconnaissance and intelligence communications,

and emergency response services, making the satellites a critical asset to defense

agencies [1451. Interruptions to these services (or failures in these systems) could

significantly impact society [94].

ComSats are mature technology with over a half of century of heritage. The

first communications satellite was Echo 1 in 1960, and the first GEO ComSat was

Syncom 3 in 1964 by Hughes.3 The design lifetime for a modern ComSat is 10

to 15 years, with many satellites operated beyond this nominal lifetime for return

on investment reasons, with increasing interest and development in technologies to

extend satellite lifetime [14]. The long mission durations of the satellites, which span

the temporal variations in the space environment (mostly importantly, the 11-year

solar cycle), and thousands of housekeeping telemetry streams provide a long baseline

of telemetry. In addition, operators, such as Intelsat and Inmarsat, operate tens of

ComSats simultaneously, adding to the already large dataset. However, the massive

amounts of telemetry generated are typically archived by operators and only analyzed

in the event of an unexplained issue. Partnering with GEO ComSat operators who

maintain these telemetry archives allows for scientific and statistical assessment of

events, trends, and relationships to known space and operational environments.

2.3 Developing Algorithms to Detect Unusual Be-

havior and Events

Telemetry is a time-series dataset, where data is obtained from observations collected

sequentially over time. The term "event" is used this thesis to describe atypical or

unusual behavior or anomalies in the telemetry. "Anomaly" will be used interchange-

ably with the term "event," though an anomaly is a type of event. Anomalous events
3 The "Syncom" (synchronous communications satellite) program was started by NASA in 1961.
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could correspond to critical and unwanted component performance, leading to the

need for anomaly detection techniques. Event detection, in the context of this thesis,

also includes novelty detection, which aims to detect previously unobserved events or

trends in the data [79, 80]. Anomaly detection for time-series data is a commonly ex-

plored domain with many survey studies, such as "Anomaly Detection: A Survey" by

V. Chandola et al. (2009), "Mining Time Series Data" by C. Ratanamahatana et al.

(2005), and "Time Series Data Mining" by P. Esling and C. Agon (2012). Interested

readers may find more detailed information and references in [27, 37, 104].

This section focuses on characteristics of the GEO ComSat telemetry dataset,

a summary of the desired algorithm traits, and relevant techniques developed for

anomaly and feature detection in other domains. A discussion of the advantages,

disadvantages, and assumptions is provided for the selected techniques.

2.3.1 Telemetry and Algorithm Characteristics

Characteristics of Telemetry Dataset The telemetry dataset is sequential data,

meaning that the data instances are related to each other and are linearly-ordered

(e.g., time-series data), real-valued variables. The data are univariate: each teleme-

try stream is a measurement of one sensor or component (only one attribute). For

example, a telemetry stream is a sequential set of current measurements from a high-

powered amplifier.

Types of Anomalies The types of anomalies that can appear in time-series data

are point anomalies and contextual anomalies. Point anomalies are when individual

data instances can be considered anomalous with respect to the rest of the data.

This is the most mature and well-explored area of anomaly detection. Thresholding

techniques can often suffice for point anomaly detection. Point anomalies for sequence

data, where data instances are related, can often appear as a set, or as collective

anomalies [125, 139], constituting a more difficult detection problem.

Contextual anomalies occur if a data instance is only anomalous in a certain

context, but perhaps not otherwise. Intime-series data, 'time' is a contextual at-
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tribute that is used to determine the context (or neighborhood) for that data instance

[109, 140]. Context is important because component performance may change over

time, due to damage or degradation. As another example, a satellite temperature

measurement of 50 degrees Celsius may be allowable during certain times of the mis-

sion, but may be contextually anomalous during eclipse periods, when the spacecraft

is not directly irradiated by the sun. However, applying a context is not always

simple, making it challenging to develop and use such techniques.

Data Labels: Level of Supervision Labeled training data (dataset where data

instances are labeled normal or anomalous) is difficult or impossible to obtain. In the

case of satellite telemetry, every mission is unique. Even if a satellite is designed and

built as part of a fleet of identical satellites from one manufacturer, the operational

demands and spacecraft environment will be different, making labeled training data

inaccurate or non-existent. Therefore, event detection for the dataset of interest

is necessarily unsupervised, meaning that techniques do not require training data.

Techniques in this category make the implicit assumption that normal data instances

are far more frequent than anomalous ones; if this assumption is not true, then the

technique may suffer from a high false alarm rate [27].

Anomaly detection for spacecraft telemetry could be, in part, semisupervised.

Semisupervised techniques assume the training data has labeled instances only for the

normal class. Semisupervised techniques could be used after a period of spacecraft

operation, building up the training database and a model for the class corresponding

to normal behavior, and the model could then be used to identify anomalies in the

new data [45].

Output of Detection Algorithms The desired output of an anomaly detection

technique for telemetry is an 'event score,' indicative of the degree to which a data in-

stance is anomalous. Scoring allows for a list of ranked anomalies. The user can choose

to select the top detection(s) or use a cutoff threshold to select the anomalies. Thus,

scoring allows for domain-specific thresholds to select the most relevant anomalies.
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Scoring can include preferential weighting, given expert knowledge about the system.

For example, for space environment monitoring, certain telemetry streams may be

more sensitive to the radiation environment, so their anomaly scores may be given a

larger weight than those that are less sensitive.

Algorithm Complexity Due to the size of the dataset (discussed in more detail

in Chapter 3), the computational complexity (time, on-board storage, and processing

capability) of the detection algorithms is a key consideration. Complexity of the

algorithms will greatly affect whether online (or near real-time) adaptive and dynamic

algorithms can be used, or if the events will be detected retrospectively in batch

algorithms [37]. For online applications, algorithms that are termed autocannibalistic

[72], meaning the algorithm is able to dynamically delete parts of itself to make room

for new data, offer mitigations to the on-board storage constraints. With regards to

processing capabilities, Bhargava et al. (2003) have shown that sending measurements

to a central processor is likely energy inefficient and lacks scalability for high volume

data streams [16]. Algorithms employed at the component- or subsystem-level may

provide a computational savings.

Summary of Key Desired Algorithm Traits Given the aforementioned teleme-

try characteristics in this section and the algorithm requirements described in Sec-

tion 1.2, the key algorithm traits can be summarized. The algorithm must be able to

detect anomalous data instances. The algorithm must also be able to detect contex-

tually anomalous data points, and therefore must be adaptive to a changing notion

of normal in time. The algorithms must not (and can not) rely on training or labeled

data, as none exists in most spacecraft applications. The algorithm must have a scor-

ing technique that produces a measure of "how anomalous" an event is in the context.

This allows for ranking of events. Lastly, the algorithm should not levy heavy com-

putational requirements (time, on-board storage, and processing capability) on the

spacecraft system.
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2.3.2 Challenges in Time-Series Anomaly Detection

There are many challenges associated with time-series anomaly detection. Most no-

tably, defining a "normal" region or time period in the series that encompasses all

"normal" behavior is difficult. The boundary between normal and anomalous is often

not well-defined. As mentioned in Section 1.2, normal behavior can evolve, i.e. a cur-

rent notion of normal behavior might not be sufficiently representative in the future.

And, current anomalous behavior may be normal in the future, leading for the need

to detect contextual anomalies in time-series. As will be described in Section 2.3.4,

many algorithms operate supervised or semi-supervised. However, the availability of

labeled data for training (and for algorithm validation) of models used by anomaly

detection techniques is a major issue. Lastly, noise in the data is often difficult to

identify and distinguish and to remove from the signal.

A key challenge is that it is difficult to apply techniques in one domain to another;

the exact notion of an anomaly is often different in different application domains. Due

to the multitude of challenges in anomaly detection, most existing anomaly techniques

solve a specific formulation of the problem [27].

2.3.3 Fault Detection Algorithms in Other Domains: Appli-

cations

Fault and anomaly detection is prevalent in many domains, such as in public health,

manufacturing, and finance. Applications of anomaly detection that are similar or

relevant to the spacecraft telemetry event detection problem include intrusion de-

tection, fraud detection, medical and public health anomaly detection, and sensor

networks [27]. The following sections give a brief overview of the applications listed

and the existing detection techniques and challenges.

Intrusion Detection Intrusion detection in a system (typically a computer system)

refers to detection of malicious activity, such as break-ins and other forms of abuse

[100]. A key challenge, which is echoed in telemetry event detection, is the large
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volume of data. The data are usually streaming (and sequential), and may require

online analysis. Therefore, techniques must be computationally efficient. While the

false alarm rate for a technique may be low, the sheer size of the data will magnify

the false alarms, which may be a consideration given the time and financial burden

of a reaction by spacecraft operators to an alarm. For intrusion detection, in contrast

to spacecraft anomaly detection, labeled data for normal is usually available, so semi-

supervised techniques can be used (in addition to unsupervised techniques).

Techniques for host-based intrusion detection systems4 rely on detection of anoma-

lous subsequences (collection anomalies) of the traces (system calls). While all traces

belong to the same alphabet, it is the co-occurrence of events that is the key factor

in differentiating between normal and anomalous behavior [27]. Techniques are based

on subsequence matching and ordering: model the sequence data, or compute the

similarity between sequences. The four types of algorithms that are commonly used

are statistical profiling using histograms, mixture of models, neural networks, sup-

port vector machines, and rule-based systems. Section 2.3.4 compares relevant fault

detection techniques, including a brief description of each technique.

Techniques for intrusion detection could be used in the spacecraft telemetry event

detection if specific patterns are associated with certain events or anomalies. For

example, if a component failure is always preempted with a hyperbolic uptick in the

telemetry, followed by a slow decline, these patterns could be identified and reported

using models and rule-based systems. However, .a model of the normal behavior must

be known. In addition, these techniques do not address point anomalies.

Fraud Detection Fraud detection generally refers to criminal activities occurring

in commercial organizations such as in banks, credit card companies, cell phone com-

panies, the stock market, etc. Activity monitoring is the general approach to fraud

detection, where the usage profile of a customer is maintained, for example, and

the profiles are monitored for any deviations [39]. This application is analogous to

monitoring component profiles in spacecraft telemetry, examining for any deviations.

4Intrusion detection is typically divided into "Host-Based" and "Network" systems [33].
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Applications in credit card and insurance fraud are typically done by comparing

individuals to their own usage ("by-owner"), or compared to a profile they fall in ("by-

operation"). Contextual anomalies can then be detected by the user as the context

for "by-owner," or often the geographic location as the context for "by-operation."

Techniques in this field are typically supervised, or semi-supervised, relying on labeled

normal data, making them unsuitable for the context of this thesis. Techniques

include neural networks, rule-based systems, and clustering.

Medical and Public Health Anomaly Detection In the time-series domain,

the medical and public health community is interested in anomaly detection in health

monitoring sensor outputs, such as electrocardiograms (ECGs) and electroencephalo-

grams (EEGs) [301. Most techniques are aimed at point anomaly detection and rely

on labeled training data from healthy patients, adopting a semi-supervised approach.

The key examples are parametric statistical modeling, neural networks, Bayesian net-

works, rule-based systems, and nearest neighbor based techniques. Collective anomaly

detection techniques have also been applied [74].

Industrial Damage The industrial damage domain is segmented into two parts for

detection: defects in mechanical components (system health management) and de-

fects in the physical structures. For detecting defects in components, the data in this

domain is typically temporal, so time-series algorithms have been applied [12, 63, 64].

The anomalies occur mostly because of an observation in a specific context (contex-

tual anomalies) or as an anomalous sequence of observations (collective anomalies).

Normally, a semi-supervised approach is used because components without defects are

readily available, though unsupervised techniques are also used for unexpected com-

ponent performance and degradation. Anomalies are often required to be detected

in real-time as preventive measures are often required to be taken as soon as the

anomaly occurs. Techniques include parametric statistical modeling, non-parametric

statistical modeling, neural networks, spectral, and rule-based systems.

For detecting defects in physical structures, the data collected also has a temporal
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aspect. Since the application is typically for a structure, the models learned are

static over time. The techniques are similar to novelty or change-point detection, and

include statistical profiling using histograms, parametric statistical modeling, mixture

of models, and neural networks.

Sensor Networks The sensor network application is an interesting challenge be-

cause anomaly detection can either mean that one or more sensors are faulty, or then

are detecting events (such as intrusion). Algorithms detect sensor faults, or intru-

sions, or both. This application is analogous to the collective spacecraft telemetry

system. An anomalous telemetry stream could be from the sensor (e.g., a pressure

gauge) rather than the component (e.g., propellant tank). Or, the event detected

could be from both the sensor and the component.

Another challenge with sensor networks (that is also present in telemetry net-

works) is sensor noise: algorithms need to be able to distinguish between interesting

anomalies and unwanted noise and/or missing values. This is particularly relevant

in spacecraft telemetry (if algorithms are run on the ground) because of the long

and complicated transmission path from the satellite to the ground. Discussed in

Section 1.2, "online" anomaly detection is desired in order to identify and react to

hazards in real-time. For these reasons, anomaly detection methods that consider

the entire spacecraft network must be lightweight. Techniques considered in the sen-

sor network domain are Bayesian networks, rule-based systems, parametric statistical

modeling, nearest neighbor-based, and spectral techniques.

2.3.4 Fault Detection Algorithms in Other Domains: Tech-

niques

The following section highlights common techniques for anomaly detection in time-

series data and for the applications mentioned in Section 2.3.3. The discussion is

limited to contexts that may apply or be useful to the spacecraft telemetry domain,

with its associated characteristics (discussed in Section 2.3.1). Readers interested in

general time-series anomaly detection are directed to surveys, such as "Time-Series
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Data Mining" by Esling and Argon (2012), for more detailed information [37].

Classification-based Anomaly Detection Techniques In classification-based

anomaly detection techniques, such as neural networks, Bayesian networks, support

vector machines (SVMs), and rule-based, classification is used to learn a model (clas-

sifier) from a set of data instances (training) and then classify a set of test instances

into one of the classes using the learned model (testing) [34, 126]. The different tech-

niques in the classification-based set differ in their approach to learning the model

from the data. In most cases, the algorithms are designed for semi-supervised or

supervised learning for learning the model of the data, making this class of algo-

rithms unsuitable for this thesis. In addition, while the testing phase can be fast,

the computational complexity of learning the initial model can often be constraining.

For example, SVMs involve quadratic optimization. In addition, the results of the

techniques generally are the assignment of a label to each data instance, not giving

a meaningful anomaly score. Some techniques that obtain a probabilistic prediction

score from the output of a classifier (i.e., rule-based), can be used to partly address

the scoring issue [101].

For unsupervised learning with anomaly scoring, rule-based classification tech-

niques are the most viable and use association rule mining for one-class anomaly

detection [5]. The rules that capture normal behavior are learned using algorithms

such as the Ripper rule or decision trees [69, 88]. If the test instance is not covered

by any rule, it is considered anomalous. Support thresholds can be used to prune out

rules with low support. Each rule has an associated confidence value that is propor-

tional to the ratio between the number of training instances correctly classified by

the rule and the total number of training instances. The confidence value can then

be used to assign an anomaly score: the inverse of the confidence associated with

the best rule is the anomaly score for a given test instance. In addition, training of

decision trees is typically fast [62], making rule-based techniques a possible choice for

spacecraft telemetry event detection. The key drawback is that these techniques are

for one-class anomaly detection, meaning the instances can only have one label.
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Nearest Neighbor-based Anomaly Detection Techniques The basic assump-

tion for nearest neighbor techniques is that normal data instances occur in dense

neighborhoods, while anomalies occur far from their closest neighbors. While anomaly

scoring is generally simple (the data instance's distance, often Euclidean, to kth near-

est neighbor or the relative density of each instance), the challenge with these types

of techniques is that the performance is highly dependent on the choice of distance or

similarity measure. This technique can operate unsupervised, but if data has normal

instances that do not have enough close neighbors, or if data has anomalies with

enough close neighbors, the technique fails to label the instances correctly. This,

coupled with the performance challenges and the computational complexity (0(N2 )),

makes the nearest neighbor-based techniques undesirable for spacecraft telemetry

event detection.

Clustering-based Anomaly Detection Techniques Clustering-based techniques

are used to group similar data instances into clusters. The typical scoring metric is

the data instance's distance from the closest cluster centroid (cluster-based local out-

lier factor (CBLOF), for example). While similar to nearest neighbor techniques,

clustering-based techniques evaluate each data instance with respect to the cluster

to which it belongs (nearest-neighbor techniques analyze each instance with respect

to its local neighborhood). The basic technique relies on a clustering algorithm to

cluster the data, and then the distance to closest centroid is computed [117]. Thresh-

olds can be set on distance or density of clusters to declare anomalous data instances.

A key challenge is the computational complexity (typically quadratic) and high per-

formance dependency on the effectiveness of the clustering algorithms. Effectiveness

can be improved through semi-supervised clustering [13]. Clustering algorithms are

not optimized to find anomalies, and there are also issues if anomalies form clusters

themselves.

Statistical Anomaly Detection Techniques Statistical Anomaly Detection Tech-

niques have been used for many decades and, like classification techniques, have a
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wide range of applications and variants of algorithms. The underlying principle of

any statistical anomaly detection technique is: "An anomaly is an observation which

is suspected of being partially or wholly irrelevant because it is not generated by the

stochastic model assumed" [8]. The key assumption is that normal data instances

occur in high probability regions of a stochastic model, while anomalies occur in the

low probability regions of the stochastic model. In general, statistical techniques fit

a statistical model (usually for normal behavior) to the given data and then apply

a statistical inference test to determine if an unseen instance belongs to this model

or not. Instances with low probability are declared anomalous. There are two cat-

egories of statistical techniques: parametric and nonparametric, both of which are

good candidates for use on spacecraft telemetry event identification.

Parametric techniques make the assumption that the normal data are gener-

ated by a parametric distribution. There are three main types of parametric tech-

niques: Gaussian-model based, regression model-based, and mixture of parametric

distributions-based. Gaussian model-based techniques are most commonly used and

the most heavily explored, including simple outlier detection (e.g., >3 sigma from

distribution mean 1116]), Box Plot Rule, Grubb's Test, Student's T-Test, and Chi-

Squared Statistics. The parameters are known or are estimated using Maximum

Likelihood Estimates (MLEs), for example. The anomaly score is the inverse proba-

bility density function or the test statistic from a statistical hypothesis test. While

the performance is dependent on the choice of test statistic, the computational com-

plexity is typically linear in data size. Regression model-based techniques have a

regression model fitted to the data, and then, for each test instance, the residual for

the test instance is used to determine the anomaly score. These are popular tech-

niques when training data is available, but caution must be taken, as the presence of

anomalies in training data can influence the regression parameters, reducing the ac-

curacy of the results. Robust regression approaches have been developed to mitigate

anomaly-induced inaccuracies in the model generation, such as in the commonly used

Autoregressive Integrated Moving Average (ARIMA) models [17, 28]. These tech-

niques have been explored in detail for time-series data by Abraham and Box (1979)
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and Abraham and Chaung (1989) [2, 3]. For mixtures of parametric distributions-

based techniques, there are two subcategories based on the modeling method: model

instances and anomalies as separate parametric distributions, or model only the nor-

mal instances as a mixture of parametric distributions.

Nonparametric techniques do not assume knowledge of the underlying distribu-

tion. The model structure is not defined a priori, but is instead determined from

the data, typically making fewer assumptions about the data, such as smoothness of

density, when compared to parametric techniques. Histogram-based (or frequency-

or counting-based) techniques are the simplest and most common. A histogram is

used to maintain a profile of the normal data. These techniques are popular in the

intrusion detection community [33, 35, 36] and fraud detection 139], since the behavior

of the data is governed by certain profiles (user or system) that can be efficiently cap-

tured using the histogram model. For the univariate case, there are two basic steps:

building a histogram based on the different values taken by the feature (either in the

training data or data to date), and then each test instance is checked to see if it falls

in one of the bins of the histogram. The performance is impacted by the choice of bin

size: if the bins are small, there could be a high false alarm rate. If bins are large,

there could be a high false-positive rate. In general, the complexity is linear. Kernel

function-based techniques involve using kernel functions to approximate the density

(Parzen windows estimation [98], for example). This type of technique is similar

to parametric methods, but a density estimation technique is used. The computa-

tional complexity (quadratic in terms of data size) is the key issue with kernel-based

techniques.

If the assumptions about the underlying distribution hold true, the statistical

techniques provide a powerful and capable tool for detecting anomalies, providing a

statistically justifiable solution for anomaly detection. A key strength of the statistical

techniques is that the anomaly score is provided by the statistical technique, offering a

meaningful anomaly score. The score is associated with a confidence interval, which

can be used as additional information while making a decision regarding any test

instance. The challenge is choosing the best statistic for the hypothesis testing, as it
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is often not straightforward. But, the computational complexity is linear, in general.

For these reasons, statistical techniques are chosen as the basis for the spacecraft

detection algorithms. Nonparametric techniques are explored. And, even though the

distribution is unknown, if the distribution estimation step is robust to anomalies in

data, parametric statistical techniques can operate in an unsupervised setting without

any need for labeled training data, and so are also considered.

Information Theoretic Anomaly Detection Techniques Information theo-

retic techniques analyze the information content of a data set using different measures,

relying on the assumption that anomalies in data induce irregularities in the infor-

mation content of the data set. The techniques can operate unsupervised and do not

rely on knowledge of an underlying distribution. Computational complexity is a chal-

lenge (often exponential), though approximations of the techniques allow for linear

computational complexity. However, it is difficult to associate an anomaly score with

a test instance, and the performance is highly dependent on the choice of information

theoretic measure. For these reasons, information theoretic techniques are not a good

choice for spacecraft telemetry event detection.

Spectral Anomaly Detection Techniques Spectral techniques try to find an

approximation of the data using a combination of attributes that capture the bulk of

the variability in the data [27]. The idea is that the data can be embedded into lower

dimensional subspaces in which normal instances and anomalies appear significantly

different. The basic technique involves determining subspaces (embeddings, projec-

tions) in which the anomalous instances can be easily identified. Principal Component

Analysis (PCA) is the basis for several of the techniques, which projects the data into

a lower dimensional subspace [61, 97]. Scoring is based on the data instance's dis-

tance from the principal components, performed in the same way as the statistical

techniques, but in a smaller subspace. However, the computational complexity is

often quadratic. In addition, spectral techniques are only useful if the normal and

anomalous data instances are separable in the lower dimensional embedding of the
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data.

2.4 Approach to Identifying Unusual Events for the

Spacecraft System

Component-level Unusual events in spacecraft system are identified in an incre-

mental approach, increasing the number of telemetry streams considered at each

phase. First, the detection algorithms are applied to each individual telemetry stream,

identifying events in single telemetry streams. This allows for identification of events

at the component-level and component-level monitoring. Then, the events detected

from all telemetry streams of a certain type or subsystem are examined, such as all of

the thermistors on-board, or all of the components in the propulsion system. Similar

performance might be expected from components of the same type, or in the same

sub-system, so directly comparing and compiling the events from that component

type may yield an event that affects the subsystem-level.

System-level The next level of abstraction is at the system-level: the detection

of events from the telemetry streams for many subsystems (or the entire spacecraft

system) are considered. The intersection of the events may be indicative of an external

(environmental) or internal (spacecraft-level) event, having an effect on the spacecraft

system. This step allows for system-level monitoring and anomaly detection. A block

diagram of system-level detection is given in Figure 2-1. Event scoring from different

components or different systems must be considered, however, since some components

are likely more sensitive to certain environments or system-level events than others.

On the positive side, this event scoring also allows for expert domain knowledge to

be included through special weighting of event scores.

Environment-level For datasets containing many satellites, the intersection of

system-level events from multiple satellites provides the opportunity to detect envi-

ronmental events (natural or man-made space environment events that could affect a
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Figure 2-1:
level.

Approach for telemetry event detection algorithms applied on system-

local environment). The detection of environmental events depends on the location

of the satellites and the spatial and temporal frequency of the environmental events

to be detected.
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Chapter 3

Data

3.1 Data Acquired

3.1.1 GEO ComSat Telemetry

The GEO ComSat telemetry used in this thesis is from MIT partnerships with two

commercial operators: Intelsat and Inmarsat, two of the world's leading providers

of global telecommunications. Both organizations operate tens of GEO ComSats

and have been operating their fleets of GEO ComSats for several decades. Intelsat

and Inmarsat are leading the way for scientific research using telemetry by allowing

MIT to have access to the data. They also provide invaluable guidance for data

interpretation. A summary of the acquired telemetry can be found in Table 3.1.

Intelsat

In 2014, we partnered with Intelsat, a D.C.-based telecommunications company, oper-

ating with decades of experience, starting in 1965 [58]. We have analyzed over 20 years

of archived telemetry from 22 satellites from four fleets (different manufacturers). We

acquired current and temperature telemetry from Solid-State Power Amplifiers (SS-

PAs) and Traveling Wave Tube Amplifiers (TWTAs), solar panel current, total bus

power, and shunt loads, and magnetometer measurements, totaling over 0.5 TB of

data. We also have Single Event Upset (SEU) lists from four satellites.
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Figure 3-1: Intelsat 30 satellite during testing at Space Systems/Loral in Palo Alto,
CA. Image Credit: Space Systems ,Loral [121].

Inmarsat

For this research, we also partnered in 2011 with Inmarsat, a UK-based telecommuni-

cations company, operating fleets of GEO ComSats since 1979 [57]. We have analyzed

over 22 years of archived telemetry from 10 satellites from three fleets (different man-

ufacturers). The data acquired includes SSPA current and temperature telemetry,

solar array power and total bus loads, and anomaly and SEU lists.

W. Lohmeyer conducted a thorough analysis of 16 satellites from two Inmarsat

fleets [75, 76]. Since 1996, the satellites have experienced twenty-six SSPA anomalies.

SSPAs are key components in satellite communication systems, used to amplify the

uplink signal received by the satellite from the ground (which is degraded due to

path loss, etc.) before retransmitting the downlink signals for the ground users. A

thorough analysis of the timing of SSPA anomalies with respect to the environment

can be found in Lohmeyer et al. 2012 and 2015 [77, 78].
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Figure 3-2: Artist's conception of Inmarsat's Global Xpress satellite. Image Credit:
Inmarsat [57].

3.1.2 Space Weather Data

Space weather datasets are selected from multiple sources based on the relevant haz-

ards in GEO discussed in Section 1.1.1. This analysis uses energetic particle data

from GOES, geomagnetic storm indices from the WDC for Geomagnetism in Kyoto,

sunspot daily averages from the World Data Center in Brussels, and solar wind data

from ACE. For all datasets, we collect data over the entire span of the GEO ComSat

telemetry (from 1991 to 2015), except the data from ACE, which became operational

in 1998.

Energetic Particle Data

GOES is operated by the United States' National Environmental Satellite Data and

Information Service (NESDIS), providing Earth severe storm tracking and meteo-

rological data. In addition, GOES supports space weather forecasting (see NOAA

Space Weather Prediction Center (SWPC), using the Solar X-ray Imager (SXI) and

the Space Environment Monitor (SEM), which provides continuous' measurements

'Complete GOES outages are rare since there are typically three operational satellites making
measurements on orbit at any time [921, though sensor saturation during large storms can affect
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Table 3.1: Summary of telemetry acquired and analyzed from Intelsat and Inmarsat.

Intelsat Inmarsat

Headquarters Washington, D.C. United Kingdom
Number of Satellites 21 10

Number of Bus Types 4 3
Time Range 1996-2015 1991-2012

Years of Data 20 22
Telemetry Obtained TWTA and SSPA current SSPA current and

and temperature temperature telemetry;
telemetry; solar panel solar panel current, total

current, total bus power, bus power; anomaly and
shunt loads; SEU list

magnetometer
measurements

Telemetry Resolution Hourly, minutely, minor Hourly
frame (<1 minute)

Data Quantity >0.5 TB >500 MB

of the energetic particle and magnetic environments in GEO. In operation since the

mid-1970s, the GOES satellites have been a primary source for public, military, and

commercial space weather warnings [19, 120].

The SEM consists of three magnetometers, an X-ray/extreme ultraviolet sensor

(XRS/EUV), and an energetic particle sensor/high-energy proton and alpha detec-

tor (EPS/HEPAD). This analysis uses data from the EPS/HEPAD, which measures

the energetic particle flux.2 Specifically, the instrument consists of two energetic

proton, electron and alpha detectors (EPEADs), a magnetospheric proton detector

(MAGPD), a magnetospheric electron detector (MAGED), and a HEPAD [19]. We

use the GOES EPS 2 MeV electron flux channel data (five-second resolution). Ad-

ditionally, we use the GOES EPS P4 proton flux channel, which measures protons

between 15-40 MeV [19, 120]. We have collected data that spans the entirety of

the ComSat telemetry (from 1996 to 2015), which can be obtained from the NOAA

National Geophysical Data Center [93].

availability.
2 Flux is the number of particles through a unit area per unit time. Units: particles-cm- 2s-'sr-1 .
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Geomagnetic Indices

The Geomagnetic Equatorial Dst Data Service is hosted by the WDC for Geomag-

netism3 in Kyoto, Japan [146]. Several types of geomagnetic indices (Dst, Kp, Ap)

are calculated at the center that are then verified and archived for public access. This

database was used for acquiring values of Level 2 Dst and Kp for the length of the

ComSat telemetry for determining dates for severe geomagnetic space weather events

between 1991 and 2015.

Solar Environment

For the solar environment information, we use daily sunspot numbers from the World

Data Center Royal Observatory of Belgium in Brussels [147] to compare events with

the strength of the solar cycle (for which the sunspot number is a proxy, as described

in Section 1.1.1 and Appendix A. The data is collected from a network of observing

stations. Three terms, g, s, K, are used to calculate the relative International4 sunspot

number R = K(10g + s) [31]. The observing stations record the number of sunspot

groups g and the number of distinct spots s. The scale factor K allows for differences

in the observing station's equipment and conditions.

The ACE satellite makes measurements of the solar wind, including the speed,

density, temperature and composition. The ACE Real-Time Solar Wind System

(RTSW) consists of four instruments: Energetic Ion and Electrons (EPAM), Magnetic

Field Vectors (MAG), High Energy Particle Fluxes (SIS), and Solar Wind Ions. We

predominately examine measurements of the solar wind speeds from the Solar Wind

Electron, Proton, and Alpha Monitor (SWEPAM). The solar wind speeds also provide

evidence for magnetopause compression. If the solar wind speeds, and therefore

pressure, are high (600-800 km/s) then the magnetopause is likely to compress, placing

GEO ComSats outside of the magnetosphere where they are unshielded from the harsh

3 The Data Analysis Center for Geomagnetism and Space Magnetism is a part of the World Data
Center for Geomagnetism and consists of the Data Center and the University of Kyoto's Graduate
School of Science.

4 The International Sunspot Number is similar to the Zurich relative sunspot number, originated
by Rudolph Wolf in 1848 [144].
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space weather environment [4].

The ACE satellite has provided operational data since January 1998 and is located

at the first Lagrange point (Li), approximately 1.5 million km from the Earth, always

observing local dayside. A benefit of the ACE satellite's stationary location is that

in combination with the solar wind speeds, one can calculate the time at which the

solar wind carrying energetic particles should impact Earth [92].

3.1.3 Satellite Anomaly Data

In addition to space environment measurements, we also examined dates and types

of reported satellite anomalies in or near GEO at the same time as events detected in

the spacecraft telemetry. Unfortunately, while there is much interest in the creation

and maintenance of a robust, centralized repository of satellite anomalies, it does not

yet exist [46, 95] due to sociopolitical and economic norms and motivations of the

industry's constituents [26]. There exists a handful of anomaly lists maintained by

individuals that were used in this analysis.

Starting in 1983, Dr. Joe Allen began collecting and maintaining the largest

publicly available database of satellite anomalies at the Solar-Terrestrial Physics Di-

vision of the National Oceanic and Atmospheric Administration (NOAA) National

Geophysical Data Center (NDGC). The database, which is no longer active - with

contributions slowing down in 1990 and eventually ceasing (last updates posted in

December 1993) following Allen's retirement - contains over 5,000 entries5 [6, 7].

Satellite News Digest (SND), an industry website, collects information and anal-

yses about satellites, cataloging information for a variety of purposes [68]. SND's

assembled information is largely available to industry members through a subscrip-

tion, which allows access to SND's anomaly records, which are maintained by Peter

C. Klanowski, a Germany-based freelance writer. Since 1994 (with an English ver-

sion starting in 1997), SND has maintained an archive of publically available satellite

failure information.' Klanowski admits that the database is sparse and likely does

5 Data can be found at the NOAA GDGC: http://www.ngdc.noaa.gov/stp/satellite/anomaly/doc/anomalies.txt
6 SND satellite anomaly records can be found here: http://www.sat-nd.com/failures/
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not contain many of the anomalies that are likely to have occurred.

3.2 Acquired GEO ComSat Telemetry: Examples

and Challenges

The GEO ComSat data is a time-series of measurements from sensors and instrumen-

tation on-board the spacecraft. Each measurement is time-tagged and transmitted

to the ground for analysis. This section displays selected examples of the acquired

GEO ComSat telemetry, which illustrates some of the challenges with this dataset,

such as the choice and availability of telemetry resolution, missing data, and noise,

are considered in Section 3.2.2.

3.2.1 Examples

A plot of a nominally performing SSPA from Inmarsat can be found in Figure 3-3.

A plot of thermistor telemetry from the same amplifier can be found in Figure 3-4.

The time resolution for both Figures is hourly and had no reported anomalies (SEUs,

etc.). In Figures 3-5 and 3-6, current telemetry from an Intelsat SSPA is plotted with

two different resolutions, hourly and minutely, to demonstrate the noise difference

with sampling choice.

In general, telemetry resolution (or the time between samples) depends strongly

on the phase of the mission and what is being measured. For example, propulsion

tank pressures may need to be sampled at a higher frequency during maneuvers,

while the payload On/Off status transmitted less frequently during a maneuver may

be satisfactory. The frequency of telemetry sampling and the number of parame-

ters telemetered impacts the required bandwidth (driven primarily by data rate and

choice of modulation scheme), compression, formatting, storage, etc. [141]. There-

fore, slower sampling (more time between measurements) is chosen when possible over

faster sampling rates. For housekeeping data (the focus of this thesis), infrequent in-

tervals of typically 30s to 2 minutes, up to 1 hour, are usually sufficient [42]. The

63



0.9

E 0.8-

0.6

0.5064

0.-4 ay-200616-Nov-2006 07-Jun-2007 24ODec-2O7 11-Jul-2008 27 Jan 2009 15-Au OO-20 0 6-Mar-2010 19 Sep-2010 07-Apr-2011 24-O-201 1
Time

Figure 3-3: Nominally performing solid-state power amplifier from an Inmarsat satel-

lite.

GEO ComSat telemetry acquired has hourly, minutely, and minor frame (sub-minute)

sampling.

3.2.2 Challenges

The key challenges associated with the GEO ComSat telemetry are the acquisition

and management of the telemetry, and the noise in and resolution of the telemetry.

Data Acquisition and Management

Access to space weather data as well as satellite telemetry has been identified as the

first step to understanding to what extent space weather is related to the root cause

of anomalies [94]. However, access to space weather and satellite telemetry is often

challenging, especially in the case of satellite telemetry, and often impossible to get

both sets of data for the same time period. Both datasets are necessary to quantify

space weather effects [10, 131].

Space weather products of interest, as described in Section 3.1, are publicly avail-

able for the most part. However, they are generally limited in their utility due to

sometimes large spatial separations from the satellite of interest [96]. In the case of

GEO ComSats, GOES satellites are also in GEO, but can be located more than 100
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Figure 3-4: Nominally performing thermistor in the amplifier payload from an In-
marsat satellite.

degrees in longitude from the GEO ComSat.

The challenges with satellite telemetry can be summarized in three main areas:

access, management, and interpretation of data. Satellite telemetry is rarely made

public. The data is proprietary, and access is limited due to satellite operators'

concerns about competitive advantage [26, 95]. To gain access to telemetry from

Inmarsat and Intelsat, we have established partnerships to assist with anomaly root

cause analysis and fault investigations. This has required spending weeks at both

Intelsat and Inmarsat to learn about specific company operations and about how

telemetry is managed (cataloged, designated, etc.). 7

Once selected, the quantity of data poses a logistical challenge. The GEO ComSat

telemetry from Intelsat alone, from only a select number of components and satellites,

totals over 0.5 TB. This quantity of data cannot be stored on a typical computer.

In addition, it must all be encrypted (at the request of the operating company). We

have chosen to store data on encrypted hard drives, and have to switch in and out

hard drives depending on which dataset we need access to (due to limits on hard

drive capacity). We have developed scripts to interact with the databases. Clever

organization of data, database management and tools to interface with the data are

7 The telemetry streams have designations that are not often clear what the sensor is measuring,
for example. This has required extensive iteration with the companies to determine which telemetry
streams are of interest to us.
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Figure 3-5: Solid-state power amplifier from an Intelsat satellite, hourly resolution

(same amplifier as Figure 3-6).

non-trivial, time-wise.

Lastly, interpreting the telemetry presents a key challenge. Without knowledge

of where the telemetry specifically comes from (i.e., physically on the spacecraft or

in the component) or of how the data is collected and recorded, telemetry interpre-

tation is problematic. We rely on the operators and manufacturers to provide this

information, though it is often difficult to acquire. Operators are typically not affil-

iated or collocated with the manufacturers of the satellites, and specifications, such

as technical drawings, may not be in the operators' possession or at their discretion

to share or distribute.

Noise and Resolution Challenges

As seen in Section 3.2.1, the telemetry is noisy. Events detected by the algorithms

could be anomalous events or sensor noise. Disentangling the two is challenging, and

both types are detected with the current event detection scheme presented in this

thesis. Missing data could be due to data dropouts (transmission or recording errors,

etc.).

Sometimes it is unclear which specific component on-board has had an issue be-

cause not every component may have a telemetry feed. As mentioned in Section 3.2.1,
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satellites have finite resources for data-handling. As a result, telemetry is collected

from critical components and, thus, cannot convey the entire picture of the satellite

system [141].

Telemetry resolution limits the types of anomalous issues one could detect (see

Nyquist Sampling [118]). For example, maneuvers for GEO ComSats can last sev-

eral hours and up to a couple of days depending on the maneuver, so minutely and

hourly resolution is likely sufficient for detecting these events. However, electrostatic

discharge events happen in fractions of a second, so minutely sampling will not be

able to detect the event in progress. The resulting degradation may be able to be

detected, but not the event itself.
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Chapter 4

Algorithm Analysis and Results

4.1 Algorithm Descriptions

The algorithms developed to date aim at detecting atypical features, called "events"

in this thesis, in the GEO ComSat telemetry. The algorithms include a method for

detecting transient events (or "spikes", jumps, drops) and for detecting change points

in the GEO ComSat telemetry. Figure 4-1 shows an example of both types of events.

Each event detected has an event date and an event score, which is a metric for the

magnitude of the event relative to what is "normal" in the telemetry. The scoring

metrics are discussed in more detail in the sections that follow.

We use statistical techniques to find transients and change points. There is no

imposed domain knowledge: the algorithms do not contain or impose any component-

or satellite-specific parameters or thresholds. There is no assumption about the un-

derlying distribution of the telemetry, and no training data required. M6re details

and rationale behind these choices are provided in Chapter 2. In Sections 4.1.1 and

4.1.2, a description of the algorithm, parameters, and applied telemetry examples are

provided for both transient and change point detection algorithms, respectively. A

summary description of both algorithms is given in Table 4.1.

For both algorithms, non-parametric statistical parameters are used (median,

quartiles, etc.). The median is chosen as the statistical metric over mean. Mean

assumes a normal distribution of the data, which is rarely ever the case, and has been
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Figure 4-1: Plot of SSPA telemetry. The large transient events and change points are
marked as examples of events detected by the two algorithms.

shown to be true for this dataset using a KS-test. Median is more robust to outliers,

which is advantageous if the outliers are what we are interested in detecting.

4.1.1 Transient Event Detection

Description

Transient event detection is based on the Tukey Method, relying on statistics of the

dataset to identify deviants [133, 137]. However, the data is segmented into bins (or

windows) that allow for the definition of "normal" to change over the dataset. In the

case of this work, the window is shifted along the dataset, comparing each telemetry

data point to the rest of the data points in the window. This is very similar to the

lightweight methods used by Hewlett-Packard in their online anomaly detection in

data center management, who also use a variant of the Tukey method [137].

The transient event detection method uses a constant segmentation scheme (same

duration window sizes), with a choice of 7-day windows. One orbit of a GEO satellite

is 1 day, so 7 days allows for any possible orbital periodicity to be (somewhat) mit-
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Table 4.1: High-level description of transient and
rithms.

change point event detection algo-

Transient Event Detection Change Point Event
Detection

Approach Use single sliding window Use two adjacent windows,
slide windows one data point

at a time
Detection Each telemetry data point is Compare median between two

compared to the local median adjacent bins

Event Scoring Number of standard deviations Percent change in median
the telemetry data point is between two adjacent bins

from the local window median

igated. The telemetry resolution considered in this study is hourly, so this equates

to 164 data points per window. A discussion of the event detection sensitivity to

window duration/size is provided in Section 4.4

Each telemetry data point is compared to the local median. For each data point,

the date and number of standard deviations from the local median is recorded. The

number of standard deviations is the event score. Selecting the events that have

the highest event scores (those that "deviate the most") or selecting the events with

scores higher than some threshold, allows for the user to input their domain-specific

knowledge, if they so desire. But, this is not necessary for the detection of events.

Examples

In Figure 4-2, the transient events detected by the algorithm are marked on an ex-

ample of SSPA telemetry. The event dates are plotted with standard deviation (in

purple, right y-axis) and overlaid with the raw telemetry (in blue, left y-axis) for

greater than 3 standard deviations from the "local median" (i.e., 99.73% of the values

lie within 3 standard deviations of the bin median). The transient event identification

method detects all noticeable spikes, performing as intended.

Figure 4-3 shows another example of amplifier telemetry with transient events

detected. This figure shows the entire dataset in the top panel (2006 to 2011) and
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Figure 4-2: Transient events detected by algorithm on a SSPA telemetry stream.

a zoomed in region from December 2007 to October 2008. There are more events

detected in the first half of the data (210 spikes detected before January 2009) than in

the second half of the data (115 spikes detected after January 2009). This is because

the standard deviation in the data is small (0.02276) prior to a change between

December 2008 and February 2009. The data become noisier after 2009 and also

contain larger changes in median. This change is seen across all Inmarsat datasets

examined and may be indicative of a system-wide internal and/or external effect for

those satellites. Given this scenario, a data point need not deviate from the local

median by as much in the earlier half (pre January 2009) as it must in the latter half

of the data (where the standard deviation is 0.08156) to be considered a transient

event.

4.1.2 Change Point Event Detection

Description

Change point detection is prevalent in industries including finance, medicine, and so-

ciology (see Section 2.3.3). As a result, there have been many papers on change point

detection, such as those on climate change detection, genetic time series analysis, and

72



Spikes Detected 3 Std Dev. 10

S0. 0

U)

E .

0.
-0.9

0. -
E 0.6 -L A
Ti0.5 2

24- ay-067 12Fo 206 1 02-Apr-2 08 22M 208 1-u-08 3-Ag20 9Ot20

U)U

E E

0.6 >
0)

E

24-Dec-2007 12-Feb-2008 02-Apr-2008 22-May-2008 11-JuI-2008 30-Aug-2008 19-00t-20
Date

Figure 4-3: Transient event detection in amplifier telemetry. Spikes detected (in

purple) for lifetime amplifier current telemetry from an SSPA for greater than 3

standard deviations from the local median. The left y-axis notes the amplifier current

in Amps, and the right y-axis notes how nany standard deviations the detected spike

is from the local (7-day) median. Bottom: Zoomed in section from December 2007 to

October 2008, demonstrating the algorithm's ability to identify spikes from the local

median.

intrusion detection in computer networks [106, 137, 138, 149]. A common way to

detect the change points and determine trends in time series data is by represent-

ing the data using Piecewise Linear Approximations (PLAs) (or, Piecewise Linear

Representations (PLRs)) [115]. We use PLAs and approximate the data in bins (or

windows). The statistics, such as the median, of each bin are compared. Bin size

selection, or segmentation, is an active area of research [65, 66], and will be explored

in future development of the telemetry event identification algorithms. The current

method does not require "smart" binning techniques due to an optimization of the

change point method (using a moving window technique) 1671, as described below.

The change point detection algorithm employs an optimization scheme for finding

the events, or "change dates." The data is initially segmented into 7-day windows (or

"bins") and the weekly bin statistics (median, standard deviation, etc.) are computed.
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For bins that show large changes in median between adjacent bins, an optimization

routine is employed using a combination of two moving windows, one data point at

a time (telemetry is in hourly resolution) to maximize the difference in the median

between two adjacent windows in the local time frame of the originally large change

in median. When the change in median is maximized locally, the date of the "event"

is recorded as the boundary between the two moving windows.

The algorithm reports the largest changes in median, numbered with their change

value in descending order. An example of a section of the amplifier telemetry after

median change detection and optimization can be found in Figure 4-4. In general, we

allow the algorithm to report more changes in median (e.g., 30 changes detected) than

we expect to be significant for the dataset. The significance ranking is determined by

the magnitude of the change in median at the event date. The event date with the

largest change in median is "#1"; the second largest is "#2", etc. As a result, if the user

wants, when compiling all events together, there is a range of median change event

dates ordered by significance, from which one can then select a minimum threshold

after evaluating the entire dataset, i.e., we do not want to restrict an amplifier, for

example, to only detecting 15 events if many other amplifiers or components have 20

or more events detected, and we do not want to have the algorithm identify 15 event

dates from a second amplifier if it only 10 have notable changes in median.

Examples

The median change detection method successfully detects median changes identified

by visual inspection, as seen in Figure 4-4. The large change identified in Section 4.1.1

as occurring in January 2009 is, indeed, detected and identified and is ranked #2 for

the amplifier. The sharp drop in current at the very beginning of the telemetry is

ranked #1. In Figure 4-4, the slight change seen by eye between the #9 ranked

event and the #12 ranked event does not have a large enough change in median to be

ranked in the top 30 events selected. For example, if the number of events to detect is

increased to 40, the change between the #9 ranked event and the #12 ranked event

is detected and ranked #39. The transient detection method did identify the spike
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Figure 4-4: Median change detection method. Amplifier telemetry (blue) zoomed

into a region (June 2009 - December 2009) with the detected median changes (dashed

purple) using weekly bins. The method ranks the events (numbered) by the magnitude

of the difference in the median, the value of which is provided below the numbered

rank in this plot.

between the #9 ranked event and the #12 ranked event.

While we anticipate that users may want to incorporate weighting factors on the

ranking system based on system knowledge or based on multi-component assessments,

we have not yet included component- or spacecraft-specific factors into the event

ranking process. In addition to the raw change in median, the method also reports the

percent change in the median. This is useful when combining results from components

that have different ranges of operational values. For example, current telemetry may

exhibit changes in median on the order of tenths of an Ampere. Temperature data

may exhibit changes on the order of many degrees Celsius.

4.2 Findings

The approach to fault detection and environmental sensing for the satellites is to

use the algorithms to find atypical events in satellite telemetry. As discussed in
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Section 2.4, the algorithms are applied to individual telemetry streams. The events

are compiled for a particular satellite component, for one satellite, and for multiple

satellites (e.g., for a fleet). The application of the algorithms to individual telemetry

streams is shown in the examples in Section 4.1. The following section compiles the

events at the different layers of abstraction.

We find certain event dates when many if not all the components of a particular

subsystem or satellite have an event detected. These event dates may be indica-

tive of system-level or environmental-level events. We compare the events to known

spacecraft activity and to known space weather events and indices.

4.2.1 Results for Individual Types of Components

When comparing the events detected for a type of component on a satellite, we

find clusters events at dates that are clearly not random. For example, for a set of

thermistors on one satellite (54 telemetry feeds), we have plotted the date and event

score for each telemetry stream, each thermistor with a different color. Figure 4-5

shows that the transient events are not random: there are dates where there are large
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Figure 4-6: Events in thermistor telemetry annotated with eclipse seasons. The light

green shaded regions are spring eclipses and the light red regions are fall eclipses.

events across many, if not all, of the telemetry files. Large events (dates when many

telemetry streams have high event scores) in December 2007 and December 2008

are annotated in Figure 4-5. This suggests there is some relationship between the

transients in the telemetry and system-level events, whether internal to the spacecraft

or due to external environmental influences. There are some thermistors that do not

show clustering of the other thermistor events, such as thermistors 1 and 2 (in red

and red-orange).

The clustering of event dates with event scores between 3 and 4 appears to have

a rough periodicity. This periodicity is likely explained by the eclipse seasons of the

satellite, which are marked on the plot in Figure 4-6. The events appear to be related

to moving in and out of eclipse. It should be noted that the largest events (highest

event scores) and thermistors exhibiting dispersion do not appear to be associated

with the eclipse seasons.

The dispersion exhibited by the first two thermistors in Figure 4-5 (shown in

red and red-orange) could be due to the physical locations of the thermistors with

respect to the others. The majority of the thermistors used in this study are from
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the high-powered amplifier payload. Thermistors 1 and 2 are from the propulsion

system, and are located near the thrusters. The wide spread in 2004 shows up in

other components' event analyses as well.

4.2.2 Results for One Satellite

Compiling the events from all telemetry streams in the dataset for one satellite, we

also find that some of the top events for different components occur on the same (or

similar) dates. The compiled events from all amplifier and thermistor telemetry we

have obtained from one satellite, totaling 185 telemetry streams, is show in Figure 4-

7. The event scores are summed on each day for both types of components. There are

event dates that clearly stand out. The top events (dates with the highest summed

event scores on that day) are marked with purple triangles.

1200 in mpliferL

09-Sep-2004 Thermistor Spikes09-Se~I p24 Top 20 Event Datesi
:1000 - 03-Jul-1999

- 800 03-Dec-2008
0
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> 400-
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Figure 4-7: Summed event scores for each day for 185 telemetry streams from one
satellite. The blue bars are the summed event scores for the amplifier telemetry events
and the green bars are for the thermistor telemetry events. The two types are stacked
so that the top events between the two component types are shown. The top twenty
events (dates with the largest summed event scores) are marked with purple triangles.

Examining the top ten events from each of the two component types, we find that

three of the ten top events are on the same date: 03-July-1999, 09-September-2004,

and 03-December-2007. These events are noted on Figure 4-7. The occurrence of
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these events indicate possible system-level events. These event dates are compared

to known space weather and spacecraft activity in Section 4.3.

The same event detection algorithms were deployed on the other satellites in the

dataset. We find that there are dates where the top events from one satellite coincide

with a top event from another satellite. From one satellite, we see a top event date of

03-December-2008 (as shown in Figure 4-5). In another satellite, we see a top event

data of 04-December-2008. When examining the events, a daily binning scheme was

selected, so these top events only separated by a day could be related. We investigate

this further in Section 4.3.

4.3 Event Analysis

4.3.1 System-Level Event Investigation

For each satellite in the analysis, we have investigated the top reported events. We

have compared the dates to known space weather activity: GOES >2 MeV electron

flux (daily fluence), GOES >10 MeV proton flux (daily fluence), the Kp index (mea-

sure of the geomagnetic activity), and to other notable events, such as Coronal Mass

Ejections (CMEs), interplanetary CMEs, and meteor showers. Figure 4-8 shows the

events and event scores plotted with space weather metrics. We have also compared

the event dates to known spacecraft operations and to other reported satellite anoma-

lies. We have summarized the findings from one satellite in Table 4.2. A more detailed

table of the event analysis can be found in Appendix B.

For each satellite that had a maneuver during its lifetime, the maneuver is detected

as one of the top 5 events for each of the satellites. This is a significant finding because

this information could be useful for a group who is interested in a satellite's activity

and listening in on a satellite's telemetry, such as for a SSA application.

For five of the satellites, we have Single Event Upset (SEU) dates and times. We

find no statistically significant relationship between the SEUs and the events detected

by the algorithms. There are a few instances where the event detected in the telemetry
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Figure 4-8: Plots of the daily summed event scores for all telemetry streams from one
satellite (199 telemetry streams) compared to space weather metrics: sunspot number
(top left), daily electron fluence in GEO from GOES (top right), daily proton fluence
in GEO from GOES (bottom left), and Kp index (bottom right).

occurs within a couple of days of an SEU (see Table 4.2).

4.3.2 Environment-Level Event Investigation

December 2008 Events

As mentioned in Section 4.2, there are two satellites that have their largest events

at the system-level only separated by one day, referred to as Satellite A and B for

simplicity. Upon closer investigation, the events from Satellite A and B occur at

03-Dec-2008 23:25:59 and 04-Dec-2008 04:59:59, respectively1 . Telemetry from each

satellite spans over a decade, so it is unlikely that it is a coincidence that these events

are unrelated. It could be indicative of an environment-level event that has been

detected.

We examined the locations and separation of these two satellites on orbit (infor-

'Recall, this analysis is using hourly telemetry, so the times listed here is not exact to the digits
reported. The time reported in this analysis is the time the telemetry was sampled that hour.
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Table 4.2: Top event date analysis for one satellite. The event dates are compared
to the space weather environment, spacecraft operations, and reported spacecraft
anomalies. More information can be found in Appendix B.

Top Event Space Spacecraft Other Reported
Dates Environment Operations Anomalies

03-Dec-2008 None, quiet Transponder SEU Thruster anomaly
on Dec. 7 with GOES-12

09-Sep-2004 Fast solar wind from None Thaicom outages
coronal hole arrived 12-Sep-2004

at Earth 6-7 Sep
2004

02-Jul-1999 None, quiet None Echostar IV fuel
system anomalies in

July 1999
28-Oct-2013 Handful of powerful None Unknown

CMEs starting Oct.
25, several

associated X-class
flares

04-Nov-1997 None, quiet Maneuver in Unknown
progress

02-Jul-1999 Moderate Kp=4 None Echostar IV fuel
system anomalies

July 1999,
ABRIXAS failure of

onboard batteries
28-Feb-2010 28-Feb-2010 large Maneuver in AMC-16 further

CME, not progress, degradation of solar
Earth-directed Transponder SEU arrays early March

Feb. 27 2010, GEO
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mation not revealed for proprietary reasons). Satellite A is located to the east of

Satellite B. Satellite A is the first to experience the event, and then about five hours

later, Satellite B experiences the major event (having moved eastward towards Satel-

lite A's initial position). The time spacing between the locations is roughly two hours.

The top events are recorded within 5 hours of each other. It seems very unlikely that

these events are unrelated, and there is likely an environmental reason for the largest

events for both satellites to occur within a few hours of one another. Further analysis

is required to determine the cause of this potential environmental event.

Events Compared to the Space Environment

We compare the high-energy electron fluence accumulated before the largest events.

Build up of high-energy electrons can lead to charging of dielectric materials, poten-

tially causing catastrophic discharges [18, 781. Comparing the fluence accumulated 1,

7, 10, 14, and 21 days prior to the large event dates to a random Monte Carlo sam-

pling of days, we find no statistically significant relationship between accumulated

fluence and the events detected by the algorithms.

Roughly half of the events detected occur when there is a sharp increase in solar

wind speed. This could be due to such events as the passing of a fast CME, from a

coronal hole, or a slower CME being overtaken by a faster CME. Future work includes

a more detailed investigation of the timing of the solar wind changes compared the

event times though this is limited due to the lack of solar wind detection in GEO at

the time of the event. To supplement, we will look into using solar wind propagation

models, such as those in the Space Weather Modeling Framework (developed by

the University of Michigan and supported by the Community Coordinated Modeling

Center (CCMC)) [130].
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4.4 Algorithm Performance and Sensitivity

4.4.1 Computational Resources

Since the transient detection method involves comparing each individual data point

to local median, the execution time is expected to be linearly dependent on the size

of the telemetry file. Running the method on our dataset confirms this expectation of

a linear relationship between computational time and the number of data points. For

example, for an Inmarsat telemetry file with hourly resolution (6.14 years, 1,284,144

data points), the method takes 0.0721 s. For reference, the total time to run the

transient detection method is 0.572 s on 18 telemetry files2

Running the change point detection method on our dataset shows a linear, nearly

constant, relationship between execution time and number of telemetry data points.

For example, for an Inmarsat telemetry file with hourly resolution (6.14 years, 1,284,144

data points), the method takes 0.576 s and the average time is 0.553 s for all telemetry

files 2 . For reference, the total time to run the change point detection method on 18

telemetry files is 9.950 s.

4.4.2 Tunable Parameters

The algorithms currently sum event scores by day, summing the event scores for the

12:00 AM to 11:59 PM time period. This choice allows for a quick examination of

data when over a decade of telemetry is analyzed. However, this choice leads to some

discrepancies, like those discussed for the December 03-04, 2008 events. Therefore,

this binning start time is a parameter, which is prompted for at the start of the

routine. We have moved the summation start/end times by fractions of a day and

found that the top event dates are still the largest in each run.

In addition, the duration of the summation window (1 day in this analysis) can be

eliminated, and the resolution of the telemetry (hourly, for example) can be used for

event score summing. This leads to binning of event scores by telemetry resolution,
2 The transient and change point detection methods were run on a MacBook Pro version 10.9.5,

2.5 GHz processor, 16GB memory, MatLab version 8.4.0.150421 (R2014b).
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but can be challenging when trying to detect environmental effects in satellites that

are not spatially collocated.

For transient event detection, the bin size for comparing a data instance is the

median over one week. For change point detection, the median is compared between

one-week sets of data instances. This one-week duration is also considered a tunable

parameter: the routine prompts the used for an integer number of data points as the

window size (making it dependent on the data resolution). Similar to the choice of

the start of a bin, we find no change in the results reported for the top events.
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Chapter 5

Concluding Remarks

Knowledge of the space environment is key for the design, performance, and long-

term operation and reliability of GEO ComSats, which are critical assets to com-

munications, navigation, science, and defense industries worldwide. The algorithms

presented in this thesis aim to identify events and trends in GEO ComSat telemetry,

applying ranking metrics to single component telemetry streams, and compiling the

events across multiple components, and across multiple spacecraft or fleets. Using

space weather data for validation, the algorithms enable the telemetry to be used a

"sensor" for the space environment.

We conclude with a summary of the algorithm work to date. We highlight key

assumptions and weaknesses in the current algorithms and approach. We conclude

with the near-term path forward for this project1 and the future applications, impacts,

and long-term benefits of the work started in this thesis.

5.1 Summary of Work

We have developed algorithms that identify deviations from normal, avoiding component-

or satellite-specific conditioning. The current algorithms are capable of detecting

transient events and change point events. We have presented preliminary results

'Future work is to be completed in A. Carlton's doctoral studies, funded by the NASA Space
Technology Research Fellowship.
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demonstrating detection of transient and change point events, finding the events

noted by visual inspection along with subtle jumps and changes, and the reporting

of events detected by their relative deviation from nominal.

We have built relationships with two GEO ComSat operators, Inmarsat and Intel-

sat, allowing us to consider a GEO ComSat dataset of 22 satellites, spanning almost

two decades (1996 to 2015) in this analysis. We find both transient and change point

events that occur in many or all of the telemetry files considered (GEO ComSat

dataset), indicating potential system-level effects on certain dates. In addition, we

find an event date that occurs in two satellites: 04-December-2007, which may be

indicative of an environment-level event. We have considered the space environment,

available operational information, and anomaly reports from other spacecraft in GEO.

Futher analysis with the events detected is required to determine if a relationship ex-

ists.

5.2 Algorithm Assumptions and Vulnerabilities

Non-Parametric Statistics

Non-parametric statistics are used in this analysis, which simply means that the

statistics are not based on parameterized families of probability distributions (such

as the commonly used normal distribution). We make no assumptions about the

probability distributions of the variables being assessed. To verify that the data are

not normally distributed, we tested the data with a one-sample Komolgorov-Smirnov

test ("ks-test") [82]. The test rejects the null hypothesis at the 5% significance level

that the data is normally distributed. Figure 5-1 shows the empirical cumulative

distribution function (CDF) compared to the standard normal CDF.

The wider applicability and increased robustness of non-parametric tests comes

at a cost: in cases where parametric would be appropriate, non-parametric tests have

less power (i.e., a larger sample size can be required to draw conclusions with the

same degree of confidence). However, we do use standard deviations. This is because

it is difficult to characterize the spread non-parametrically. Future work will examine
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Figure 5-1: Empirical cumulative distribution function (CDF) compared to the stan-

dard normal CDF for a one-sample Kolmogorov-Smirnov test on an example telemetry

stream. Telemetry streams from other components were also tested and yielded the

same result: reject the null hypothesis that the data is normally distributed.

the use of quartiles, which is the basis of the Tukey method [133].

Lack of Spacecraft Operational Data

A key weakness in this study is the lack of availability of spacecraft operational data.

There many variables affecting telemetry, including the operational procedures and

commanding of the components and spacecraft as a whole. Commanding may cause

the telemetry to change, and we want to be able to identify these affects (to make

sure we do not confuse them with other sources, such as the environment). We have

acquired maneuver logs, which are used in the analysis in Section 4.3, but have been

unable to acquire other operational information for proprietary reasons. For example,

for the Inmarsat data, the changes in median may occur due to routine ground system

reconfiguration.2 Future work includes a continued effort to obtain the operational

data.

2 Personal communications with Inmarsat operators (July 2015).

87



Window Sizes and Binning

As discussed in Section 4.4, the choice of window size for change point comparison

and transient event data instance comparison occurs for a window of 7 days. This is

a tunable parameter, but it is an assumption for the analysis. This assumption was

made based on the current data set: GEO ComSats orbit in a synchronous rotation

with Earth, returning roughly every day. The window choice of 7 days allows for daily

periodicity to be smoothed out over the median. Greater than 7 days may not allow

for smaller events to be detected. This is a parameter we will explore as we expand

our datasets.

Data Resolution

Currently, the majority of the data in our datasets have hourly telemetry resolution.

This is a challenge and may prevent detection of events that occur on shorter time

scales, such as electrostatic discharges. Future work includes acquired data sets with

finer resolution.

5.3 Future Work

5.3.1 Path Forward

The path forward for this work is in the areas of increasing data for testing and

validation, algorithm development, and considerations for integration into current

operations.

Increasing the Telemetry Database

We are actively engaged in pursuing more telemetry and spacecraft operational infor-

mation. We are interested in telemetry from orbits other than in GEO. We are in the

progress of getting access to Van Allen Probes data, Lunar Reconnaissance Orbiter

(LRO) data, and data from Air Force Research Laboratory (AFRL) spacecraft. These

spacecraft are selected because each is equipped with dedicated space environment
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monitoring technology, which will allow for better validation of algorithms. Events

that are detected in the telemetry can be directly compared to the local space weather

environment as detected on-board. The data providers have also indicated that they

would be able to supply command logs and other operational information.

As mentioned before, we will also be investigating different data resolutions and

will work on acquiring spacecraft operational commanding information. We will work

on determining if there is a certain resolution that is the lower limit for the detection

of certain types of events.

The amplifier system (roughly half of the telemetry analyzed in this thesis) may

be less sensitive to the space weather environment due to its location deep within the

spacecraft structure (i.e., more shielded from the space environment than other com-

ponents). We would expect to find that certain components are more or less sensitive

to external space environment effects, either by their location within the spacecraft or

their design and function (e.g., a magnetometer). Therefore, we plan to obtain larger

datasets that are representative of the entire spacecraft. For example, a dataset could

include magnetometer data, thruster data, power system data, etc. Accompanying

spacecraft operational information, such as maneuvers and commanded changes, will

be imperative to evaluating possible internal effects on the telemetry that might be

identified by the algorithms.

Algorithm Development

For algorithm development, we plan to add in methods to detect larger-scale (longer-

term, seasonal or yearly) and other unusual features and trends in the telemetry,

such as changes in the slope of the local data or changes in the noise envelope (or

variance). The scale of the longer-term changes will be defined using techniques such

as principal component analysis and clustering of similar structures. The resulting

information will enable variable bin sizing that is could be more appropriate for the

scale of the changes. The statistics for each bin can be used to detect changes in the

slope of the data and the change in the amount of noise in the data.

The current algorithms are retrospective, "batch" algorithms, looking back at pre-
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vious windows of data and analyzing them. For eventual use in operations, we plan to

enable real-time (or near-real-time) detection, moving the algorithms "online." This

will require increasing the computational speed of the algorithms.

We plan to integrate learning algorithms for use after a certain period of time on

orbit. While we do not want to rely on it for early operations or for changing or new

environments, learning could be beneficial once in a nominal orbit, such as once in

Martian orbit. The training does not have to be in advance or real-time. We are

looking into techniques that, after a certain amount of elapsed mission time, can use

learning by modeling previously seen telemetry. The response to hazards using the

initially proposed algorithms can be fast, but the learning can be slow, supplementing

algorithms if there are nominal operating periods.

Future work also includes sensor fusion techniques to intelligently combine the

results from different event detection methods, transient event detection and change

point event detection. Based on a preliminary assessment, we plan to use the JDL

(Joint Directors of Laboratories) data fusion framework [142]. We will make a "situa-

tion assessment" (level 2); this assessment aims to identify the most likely situations

given the observed events and trends [142]. It establishes relationships between the

sensors of interest, determining the significance of the relationships. The determi-

nation of relationship significance, in this case, is informed by the findings from the

telemetry response in certain scenarios (both internally and externally).

From learning, intelligent weighting can be incorporated to yield a spacecraft sys-

tem health state estimation. For health state estimation techniques, we are consider-

ing Kalman filters and maximum a posteriori (MAP) techniques [25]. An extension

of this work can be to take it to an "impact assessment": projecting the possible

outcomes (risks, vulnerabilities, and opportunities) with prediction and estimation

techniques [142]. These techniques can be integrated with autonomous software for

on-board decision-making.

Informed by analysis of previous mission data, we plan to incorporate diagnosis

into the algorithms. This will inform on-board decision making algorithms of how

to react or which action to take (since the source of the event will be provided with
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a confidence interval). We are considering model-based techniques, such as analyti-

cal models, which compute the residuals between measured and estimated variables.

Fault diagnosis is achieved by (1) residual generation, (2) residual evaluation, (3) ap-

plication of the appropriate decision logic [54]. There are also model-based methods

that rely on physical models and Bayesian networks, which we will likely not consider

based on the dependence on specific components and computational requirements,

respectively.

The confidence in the algorithm findings can be determined by integrating statisti-

cal testing methods. We plan to incorporate an associated statistical significance with

each event detected in the next iteration of the algorithms by implementing hypoth-

esis testing (i.e., null hypothesis is that there is no change in the distribution/data)

and Monte Carlo simulations.)

5.3.2 Future Applications and Impacts

The implications of the development of these algorithms are far-reaching for future

satellites. Applications can be found in the interest in in-orbit servicing, many satellite

constellations, and deep space missions.

There is an interest in the ability to service satellites in-orbit, especially in con-

tested orbits such as GEO. The interest is echoed in many recent solicitations, in-

cluding a DARPA Request for Information in 2014. The algorithm suite could enable

greater space situational awareness for the servicing satellites, to have an in-situ

measurement of the local environment. The algorithms also help the satellite needing

servicing by allowing detection and diagnosis of unusual performance or behavior.

In recent years, enabled by lower costs of small satellites and greater launch oppor-

tunities, several companies have proposed constellations of hundreds of small satellites

(e.g., LEOsat, OneWeb, SpaceX). Constellations provide data and media distribution

services as well as imaging and weather observations. As our society increases its de-

pendence on satellite services for comm and navigation, there is a growing need for

efficient systems monitoring and space situational awareness to avoid service inter-

ruptions due to hazards such as space weather and orbital debris. Long time major
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spacecraft operator players operate tens of satellites at once. Shifting to operating

hundreds of satellites necessitates a change in the role of satellite and operator. Re-

duced dependence on ground control is a must, which includes the ability to identify

and react to hazards autonomously on-board.
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Appendix A

The Space Radiation Environment

The three principal sources of radiation to be considered are those emanating from

the Sun, trapped particles in Earth's magnetic field, and Galactic Cosmic Rays. Solar

variability drives the strength and frequency of Solar Particle Events and the Earth's

magnetosphere strongly influences the sources of radiation by shielding the Earth

(and near-Earth orbiting satellites) from hazardous levels of energetic particles.

A.1 Solar Environment

The Sun dominates the solar system environment, with a mass of nearly 2x 1030 kg

(99.9% of the total mass of the solar system) and a radius of ~7x 10 km. The Sun is

classified as a G2V main sequence star, emulating a black body with peak emissions

at around 460 nm (giving the Sun a yellowish appearance). Solar emissions include

electromagnetic (EM) radiation, a constant solar wind, and Solar Energetic Particles

(SEPs). The magnitude and frequency of eruptive and particle events from the Sun

are mostly dominated by the solar cycle.

Solar Emissions

Electromagnetic (EM) radiation via continuous photons provides all heat and light

input to the solar system. The Sun has an average luminosity of 3.85x 1026 W, the
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brightness of which decreases as the inverse of the square of the object's distance

from the Sun (~1/r 2). At Earth, the solar radiation per unit area (the "solar con-

stant") is roughly 1361 W/m 2 [70] and takes approximately 8 minutes to arrive at 1

Astronomical Unit (AU) (~1.496 x 10' km). The EM radiation is in the radio, visible,

ultraviolet (UV), and X-ray wavelengths.

In addition to EM radiation, the Sun continuously ejects matter into space [84].

This stream of energized charged particles is called the "solar wind." The huge bubble

of supersonic plasma is primarily composed of electrons and protons thermally-driven

outward from the Sun. The magnetic field of the plasma has variable direction, with

an average strength of around 5 nT. The solar wind varies in temperature, speed, and

density. The solar wind temperature is around 105 to 106 K and the speed is about

400 km/s (-3-4 days to reach Earth), but can be boosted by coronal holes. The

density of the solar wind when it reaches Earth's magnetosphere (discussed further

in Section A.2) is about 9 protons/cm 2 [42].

Solar energetic particles (SEPs) are protons, electrons, and heavier nuclei that

are 10s of MeV to GeV. These particles are intermittent and bursty and can arrive

at Earth within a few hours, or as short as 15 minutes. Eruptive events and solar

particle events are discussed in further detail in this section.

Solar Variability

The Sun is a variable source, significantly impacting the solar environment. The

"solar cycle" is -11 years, with a full cycle lasting -22 years. The cycle cause is

believed to be related to the reversal of the Sun's magnetic field, which reverses every

eleven years and makes a full cycle (returning to the original polarity) after about 22

years. Fueled by the solar dynamo, increased magnetic variability in the Sun causes

flux emergences, such as sunspots, coronal loops, and other phenomena, which are

the manifestations of magnetic flux tubes that form in the solar interior and pass

through the solar surface.

Sunspots (or, more generally, bipolar active regions) are conduits for the transport

of magnetic energy and flux from the solar interior to the solar corona. As such,
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sunspots are an indication that there are significant disturbances in the magnetic

field lines on the Sun's surface and through its atmosphere. Sunspots appear as

dark spots (due to the spot being cooler than the surrounding surface) and were first

observed in the 1600s by Galileo. The solar cycle strength is defined by the Wolf

Zurich sunspot number1 , which is used to quantify the overall number of sunspots on

the Sun at any time. Figure A-1 shows the number of sunspots during the previous

and most recent solar cycles (solar cycles 23 and 24).
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Figure A-1: Sunspot numbers as a function of time from Solar Cycles 23 and 24

(ongoing). Solar cycle 24 began in January 2008. Sunspot data from SILSO Data

Files, Royal Observatory of Belgium, Brussels [147].

The solar cycle has a large impact on the solar system environment, regulating

nearly all solar variability in irradiance, solar wind, flares, coronal mass ejections,

'The sunspot number calculation by NOAA SWPC is in the process of a revision. The calibration

factor applied for over one hundred years appears to be inaccurate, so the factor is being removed.

This will reconcile discrepancies between the two major sunspot number reporting forms (the other

being the Group Number). The full transition by NOAA SWPC will take place in the solar minimum

between cycles 24 and 25. Initial findings indicate better correlation between space weather indices

and the revised sunspot number [31]. See Clette et al. (2014) for a detailed explanation and findings.
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etc. Solar maximum is characterized by increased radiation emissions in radio, X-ray,

and gamma-ray energies. Solar particle events (SPEs), solar flares, and coronal mass

ejections (CMEs) are much more frequent and likely during periods of solar maximum,

occurring at frequencies of up to every few hours, lasting from a few minutes to several

hours [53].

Solar Particle Events (SPEs)

Eruptive events originating from the Sun are powered by an explosive conversion of

magnetic energy into radiative or kinetic energy, producing solar flares or coronal mass

ejections (CMEs), respectively. Solar flares and CMEs can cause strong interplane-

tary shock waves, which can lead to geomagnetic storm activity and magnetosphere

coupling [22, 53].

Solar flares are a sudden burst of radiation lasting minutes or hours. Solar flares

are associated mainly with X-ray radiation, but other radiation is also present at

wavelengths that can include hard X-rays and gamma-rays (via Bremsstrahlung),

soft (thermal) X-rays and EUV (multi-million degree Kelvin gas), hydrogen-alpha

(hot chromosphere emissions), and GHz radio bursts (energetic electrons in magnetic

fields). A large quantity of energy is released from a small volume in a short period

of time. Since the only viable energy source is intense solar magnetic fields, the flares

must be fueled by a very rapid means of converting stored magnetic energy into a

particle energy and heat, i.e., magnetic reconnection. For more details on magnetic

reconnection, see "Magnetic Reconnections" by Priest and Forbes (2000) [102].

Coronal mass ejections (CMEs) are huge bubbles of plasma ejected from the Sun.

The most distinguishing feature of a CME is a strong magnetic field with large out-of-

the-ecliptic components. The ejection speed can be anywhere from 10s of km/s to 2000

km/s, making an Earth arrival in 24 to 36 hours or as short as 14 to 17 hours. CME

formation models involve the release of plasma being held down by closed magnetic

loops via magnetic reconnection. The magnetic fields are stressed through the motion

of the photospheric footprints. Once released, the magnetic buoyancy forces quickly

accelerate the plasma away from the Sun [102].
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Co-rotating Interaction Regions (CIRs) form in response to fast solar wind inter-

acting with slower solar wind, generally recurring every 27 days (~1 solar revolution

on its spin axis) [132]. CIRs cause fluctuations in the solar wind, particularly in the

B, component of the interplanetary magnetic field (IMF) and are effective at causing

strong increases in high-energy electrons in the outer radiation belt [73, 86]. It is pos-

sible for the relativistic electrons of a CIR to produce higher levels of deep dielectric

charging than CMEs [21].

Solar energetic particles (SEPs) originate from magnetic reconnection and shock

acceleration. Both flares and CMEs can generate shocks in the corona, and fast CMEs

can generate shocks in the solar wind. Both flares and CMES are powered by the

release of magnetic energy in the Sun's corona through magnetic reconnection. Part

of the energy in these events is in the form of nuclei accelerated to high energies and

released into space. As described previously for CMEs, the particle types are protons,

electrons, and some heavier nuclei. The particle energies can range from a few tens

of keV to GeV (the fast particles can reach 80% of the speed of light). Proton and

electron events are the most commonly measured, as they can have a large impact

of spacecraft and life, especially when energies above -1 MeV for protons and ~20

MeV for electrons are reached (see Figure 1-2). SEPs travel easily along magnetic

fields (they can also scatter (diffuse) across field lines, but more slowly). SEPs arrive

promptly at Earth when the Earth is connected magnetically to the source region.

Commonly used metrics to describe solar particle events, in addition to the ener-

gies, are flux and fluence. Both the peak flux of an event and the build up of flux

over time (fluence) can have detrimental effects on a satellite (e.g., [71, 78, 89]). Flux

is the rate at which particles flow through a given area. Flux typically has units of

particles/cm 2 s1 sr'. Flux is commonly quoted with respect to a given energy. Differ-

ential flux is the flux at a certain energy and integral flux, as the name implies, is the

integrated flux at a certain energy and higher. Fluence F is the accumulation of flux

J over time T: F(T) = f' J(t)dt. Fluence at a given energy typically has units of

particles/cm2 . Another commonly used metric is total ionizing dose (TID), which is

the total energy per unit mass of material transferred to the material via ionization
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from all ionizing radiation [99, 124]. This metric is dependent on the specifics of the

satellite (e.g., shielding, materials). The energy delivered, and therefore the exact

nature of the potential damage incurred, is dependent on the particle type.

I
A.2 Near-Earth Environment

A second radiation hazard is the trapped energetic particle environment in Earth's

magnetic field, known as the Van Allen radiation belts. The belts differ in distribution

and energy for protons and electrons. They are generally located at about 1 RE to 4

RE with energies of about 0.1 - 400 MeV and at about 2 RE to 8 RE with energies

of about 0.4 - 4.5 MeV for protons and electrons, respectively [53]. Figure A-2 shows

the distribution of particles as a function of altitude.
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While the trapped radiation belts provide protection from the direct effects of solar

storms to regions inside the belts, they are a hostile environment to satellites located

within or passing through the belts [22]. Many satellite operational anomalies are

reported from within the belts [9, 22], so the belt orbits are often avoided if possible.

The AE8 and AP8 models (and now AE9/AP9 models) are typically used to pre-

dict the variations in the belts [50, 111, 134]. However, the variations are still not
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well understood and the focus of current research efforts [105]. To better understand

and characterize the radiation belt environments, the Van Allen Probes (two satellites

supported by NASA's Heliophysics division "Living With a Star" program) are ded-

icated space environment monitoring of the radiation belts, revealing unprecedented

details on the belts and working on determining the physical mechanisms leading to

their formation, sustained existence, and their variability [11].

A disturbance in the belts that is particularly well-characterized (due to the num-

ber of satellites that experience it) is the South Atlantic Anomaly. Satellites in LEO

see a variation in radiation flux as they pass through their orbits. The SAA is a region

of higher radiation caused by the difference in alignment of Earth's rotational and

magnetic axes, causing the inner belt to be closer to the Earth over the South Atlantic

[22]. The SAA is taken into account in the design and operation any LEO satellite

that will pass through it, as the increased radiation can have a large impact on the

satellite [53]. It should be noted that the SAA is not static; it moves in response to

Earth's changing magnetic field.

A.3 Galactic Environment

Galactic cosmic rays (GCRs) are particles produced by high-energy events (such as

the acceleration processes from supernova events), which travel at relativistic speeds.

The types of particles and masses are varied: from a single proton up to higher

atomic number nuclei. GCRs are predominantly protons (~83% hydrogen), with

contributions from alpha particles (-15% helium), few electrons, and less than 1%

heavier nuclei [9, 42, 114, 143]. GCRs have energies up to 1014 MeV [22] and typically

occur out of phase with the solar cycle; radiation from GCRs peaks at the declining

phase of the solar cycle and solar minimum and reaches a minimum at solar maximum.

At solar minimum, the solar wind speeds and densities are low, allowing GCRs to

reach the magnetosphere [53, 107].

The Cosmic Ray Telescope for the Effects of Radiation (CRaTER) instrument

on the Lunar Reconnaissance Orbiter (LRO) measures solar energetic protons and
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galactic cosmic rays in lunar orbit (particularly ions with energies greater than 10

MeV) [123]. Analysis of CRaTER measurements has confirmed the weak modulation

of GCRs in the past 25 years due to low interplanetary magnetic fields and prolonged

periods of little solar activity [113].

Cosmic rays have free access to the near-Earth environment, particularly over the

polar regions where the magnetic field lines are open to interplanetary space. Satellites

in high inclination orbits such as sun synchronous orbit are exposed to higher radiation

from GCRs moving along Earth's magnetic field lines, which converge at the magnetic

poles [15]. While the flux rate is low, GCRs can produce intense ionization as they

pass through matter due to their relativistic speeds and high energies. The extreme

energies and relative unpredictability of GCRs pose a threat to spacecraft. A GCR

loses energy mainly by ionization, where the energy loss is dependent on the square

of the particle's charge, Z, which can be increased if the particle undergoes nuclear

interactions within the electronic part. Therefore, lower Z ions (which are more

abundant) deposit as much energy as less abundant, higher Z ions [141].

In addition to particles, intense amounts of gamma radiation perforate the galaxy

[22]. For the most part, the Earth's magnetic field provides shielding for spacecraft

from galactic radiation, so this is likely not a concern for most spacecraft.
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Appendix B

Event Analysis

Event Data Space Weather Other Reported Known Spacecraft Events
Analysis Anomalies

GOES >2 MeV GOES >10 MeV SEUs/SSC

Event Date Electrons (daily Protons (daily Kp Index CMEs, Interplanetary Known satellite Operations/Ma w/in 1

fluence, fluence, CMEs, comments anomalies neuvers week o
particles/cm2) particles/cm2) Event Dai

GOES 12 thruster Transponi

3-Dec-08 quiet, 3.3e6 quiet, 1.9e4 quiet, kp=1 none problems 12-Dec- r SEU Dec

2008 2008

relatively quiet, coronal hole spewing Thaicom 3 outages SEU Sep
9-Sep-04 i7 quiet, 1.4e4 quiet, kp=0 solar wind, to arrive at for several hours 12, 200d

Earth 6-7 Sep 2004 12-Sep-2004

Handful of powerful CMEs

28-Oct-13 relatively quiet, relatively quiet, quiet, kp=0 starting Oct. 25, several
associated X-class flares

peak of southern Delta
relatively quiet, Aquariid meteor shower,

30-Jul-13 3.2e7 quiet, 1.1e4 quiet, kp=1 pair of CMEs 26-Jul-2013,
but not really Earth-
directed, glancing

relatively quiet, 
Maneuver

4-Nov-97 quiet, 1.2e7 1.8e6 quiet, kp=2 between 1-13
Nov 1997

Echostar IV fuel

moderate, system anomalies

2-Jul-99 quiet, 4.7e6 quiet, 1.5e4 kp=4 ' July 1999, ABRIXAS
failure of onboard

batteries
AMC-16 further Maneuver Transpont

28-Feb-10 quiet, 6.1e5 quiet, 1.9e4 quiet, kp=0 28-Feb-2010 large CME, degradation of between 23 Feb r SEU Fel
not Earth-directed solar arrays early to 07 Mar 2010 27,201C

March 2010, GEO
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