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Abstract

This thesis focuses on the source mechanisms of Earthquakes of different scales, from
the micro-seismicity in oil/gas fields in Oman, to moderate earthquakes in Kuwait,
and finally to pico-seismicity, i.e. acoustic emission, in the laboratory.

To investigate the source mechanisms as well as their uncertainties, a waveform-
based Bayesian moment tensor inversion approach was developed and validated by
synthetic tests. The Bayesian approach estimates the source parameters and the
uncertainties by generating a posterior probability density function of the source
parameters. The effects of location, velocity model, and error model of the data
on the posterior prediction of the source parameters are discussed. This Bayesian
moment tensor inversion method was first applied to the well-documented induced
seismicity data in an oil/gas field in Oman.

On Chapter 3, we move on to another mideast country - Kuwait. We conducted
ground motion calculations in Kuwait due to regional large earthquakes and to local
seismicity. We found that the regional earthquakes with low-frequency and long-
duration surface waves were most likely to affect tall buildings, while the local smaller
earthquakes are most likely to affect small and old structures constructed before the
adoption of building codes. Using the Bayesian moment tensor inversion method, we
studied the source mechanisms of local earthquakes in Kuwait. Historically, Kuwait
has low local seismicity; however, in recent years the KNSN has monitored more
and more local earthquakes. In 2015, two local earthquakes - Mw4.5 on 03/21/2015
and Mw4.1 on 08/18/2015 - have been recorded by both the Incorporated Research
Institutions for Seismology (IRIS) and KNSN, and were widely felt by people in
Kuwait. Most earthquakes in Kuwait occurred close to oil/gas fields. The earthquakes
are generally small (Mw < 5) and are shallow with focal depths of about 2 to 8 km.
We determined the location and source mechanism of these local earthquakes, with
the uncertainties, using a Bayesian inversion method. Our results show that most
likely these local earthquakes occurred on pre-existing faults and may have been
triggered by oil field activities. In Kuwait, where oil fields are close to populated
areas, these induced earthquakes could produce ground accelerations high enough to
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cause damage to local structures.
Chapter 4 is devoted to the study of acoustic emissions during the rock fracturing

experiments in the laboratory. The laboratory fracturing can produce pico-seismicity
with magnitude as small as -7. Three event-detection and three location algorithms
have been implemented to the acoustic emission (AE) data from the fracturing ex-
periment of a cylindrical Berea sandstone sample (Diameter: 36.43 mm; Height: 76.7
mm). The first P-amplitude and waveform-based Bayesian moment tensor inversion
algorithms have been applied to the AE data to study the source mechanisms of this
fracturing related pico-seismicity. The location, and sensor calibration are discussed
in the thesis.

The main contribution from this thesis are: 1) Developing a waveform-based
Bayesian moment tensor approach; 2) Understanding the source mechanisms of local
earthquakes in Kuwait, and simulating the ground motion due to regional and lo-
cal earthquakes in Kuwait; 3) Characterizing the laboratory-scale fractures using the
fracturing related acoustic emission data.

Thesis Co-supervisor: J. Brian Evans
Title: Professor of Geophysics

Thesis Co-supervisor: M. Nafi Toksdz
Title: Robert R. Shrock Professor of Geophysics
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Chapter 1

Introduction

1.1 Background and motivations

Earthquakes happen in different scales. Source mechanisms of earthquakes are im-

portant to investigate the physics of seismic process from the acoustic emissions in

laboratory experiments, to micro-earthquakes in oil/gas fields, to local earthquakes,

and to regional moderate and large earthquakes.

Human beings have a long history recording and studying earthquakes, and devel-

oping seismometers. The earliest recorded earthquake occurred in 1831 BC, located

at Mount Tai in Shandong province eastern China, according to "Bamboo Annals".

Since 780 BC in Zhou Dynasty in China, Chinese started to record the occurring of

earthquakes. In 132 AD, a Chinese scientist - Zhang Heng - invented the first seis-

mometer in the world, which could indicate the direction of the earthquake over 300

miles away. However, none of these ancient earthquake records provide a quantitative

description of the earthquakes.

With the appearance of early spring-pendulum seismometers in 1751, earthquake

signal has started to be recorded and related to the seismic processes. Since 1900,

people built seismic networks to record the earthquakes. The development of instru-

ments make it possible to acquire earthquake data in a very broad scales, from the

global seismology, to moderate local seismicity, to microseismicity in oil/gas fields, to

acoustic emission in the laboratory scale.
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The bridging of the seismic signal to the real physics of the seismic processes

becomes challenging when the scales that we are able to explore become broader and

broader and the environments where earthquakes happen becomes more and more

complex. The objective of this thesis is to study the earthquakes in multi-scales:

determine their source characteristics, evaluate their potential effects on structures

and seismic safety, and develop a better understanding of the physics of earthquakes.

1.2 Previous studies

1.2.1 Bayesian moment tensor inversion

The source mechanisms of the great majority of tectonic earthquakes can be described

by a double-couple (DC), corresponding to a shear fracture. However, some events in

volcanic, geothermal, and salt dome areas exhibit more complex source mechanisms

with non-DC components, such as volumetric component (ISO) and compensated lin-

ear vector dipole (CLVD) (Cespuglio et al., 1996; Panza and Sara6, 2000; Templeton

and Dreger, 2006; Nayak and Dreger, 2014). These non-DC components have also

been related to mine collapses and nuclear explosions (Ford et al., 2009a,b). Previous

research on the analysis of induced seismic events in conventional oil/gas fields as-

sumed a DC source mechanism (Li et al., 2011a,b; Li, 2013). Assuming full moment

source mechanisms, Horilek et al. (2010) found a DC-dominated source mechanism

of the induced micro-earthquakes in a geothermal area during massive fluid injection.

However, recent studies have shown interest in non-DC components of source moment

tensors in hydraulic fracturing events (Silenf et al., 2009; Warpinski and Du, 2010;

Song and Toks6z, 2011; Song, 2013).

Many studies have implemented the inversion of the full moment tensor by the

least-squares (LSQ) method and the regularized LSQ method (Sipkin, 1982; Silenyr

et al., 1992, 1996). However, LSQ methods have disadvantages in estimating and

interpreting the uncertainty of the moment tensor solutions, since the LSQ methods

only search for the best moment tensor solution and do not give the probability dis-
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tributions of the solution. An important question for full moment tensor inversion

is whether the non-DC components are real. Some research has applied an F-test to

check the significance of the non-DC components (Templeton and Dreger, 2006; Sflenf

et al., 2009; Horilek et al., 2010; Nayak and Dreger, 2014). LSQ methods do allow

a limited uncertainty quantification, based on the Hessian of the misfit function near

the LSQ point estimate. But this is only a local and linearized estimate of uncertainty,

and can be difficult to interpret in the regularized case. Alternatively, to address the

uncertainties of moment tensors resulting from the data noise or imperfect station

coverage, many LSQ-based moment tensor inversion studies have applied re-sampling

methods to the data, such as Monte Carlo noise realization methods and jackknife

tests (SilenfV et al., 2009; Stierle et al., 2014a,b). The uncertainties of the moment

tensor results were obtained by statistically analyzing the solutions from the resam-

pled data. Du and Warpinski (2011) theoretically derived the uncertainty of the focal

plane solutions of seismic sources due to Gaussian noise contamination. In addition,

to estimate the uncertainties from earthquake mislocation and velocity mismodeling,

some research has observed the effects of mislocation and velocity mismodeling on the

moment tensor solutions by performing location and/or velocity model perturbation

tests (Stierle et al., 2014a,b). These tests only show how much the inverted param-

eter changes with the particular changes of earthquake location and velocity model.

They did not actually give the statistical uncertainties of the inverted parameters.

In addition, Nayak and Dreger (2014) assessed the sensitivity of the moment tensor

and location together by statistically analyzing all the feasible moment tensor and

location solutions with a variance reduction larger than a threshold. This method

actually provides better estimates of the uncertainties of moment tensor and location

solutions. The problem is that it is hard to illustrate how to choose a threshold, and

why one should choose a threshold of a certain value.

Compared to LSQ methods, Bayesian inversion methods have the advantages of

quantifying the uncertainties of model parameters by characterizing a posterior prob-

ability distribution over the parameter space (Tarantola, 2005; Kaipio and Somersalo,

2006; Stuart, 2010). Some studies have conducted Bayesian moment tensor inversion
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on moderate and large earthquakes. Duputel et al. (2012) introduced a Bayesian

moment tensor inversion method to estimate the uncertainties of source mechanisms

for large earthquakes (M, > 6.0) using W phase waveforms from a global seismic

network. That study did not determine the uncertainty of seismic locations jointly

with the moment tensor. A very recent paper by Musta6 and Tkalkid (2016) has de-

veloped a Bayesian full moment tensor inversion for a moderate-size earthquake with

a well-studied source mechanism using a regional seismic network. In that research,

both the uncertainty of seismic location and moment tensor have been studied by im-

plementing an outer Markov chain to sample the location parameters, and an inner

chain to sample the moment tensor parameters.

1.2.2 Ground motion due to regional and local earthquakes

in Kuwait

Previous research has provided useful methods to calculate the ground motion in a re-

gion. The ground motion prediction equation is a typical method to estimate ground

motion intensity based on the observed seismic data and attenuation laws (Abra-

hamson and Shedlock, 1997). However, this method does not include any physics of

earthquake source rupture and ignore the effects of complex crustal structures along

the wave propagation path on the wave field. To make the predication more phys-

ical and realistic, many studies use simulation methods to predict ground motions

according to a virtual future large earthquake (Olsen et al., 1995; Pitarka et al., 1998;

Olsen, 2000; Olsen et al., 2006, 2009). The reliability of these simulation methods

depends on the accuracy of the earthquake source rupture model, the seismic struc-

ture where the wave propagated, and the nonlinear site effects. In the recent decade,

increasing studies have used the ambient seismic field method to predict the ground

motion from sources around seismic stations (Prieto and Beroza, 2008; Denolle et al.,

2013, 2014). This ambient seismic field method can only predict the ground motion

near the seismic stations. In this thesis, we use the simulation method to calculate

the ground motion, since we are focusing on the ground motion calculation from the
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regional large earthquakes in the Zagros Fold Belt.

The possibility to use the simulation method to calculate the ground motion in

Kuwait due to regional large earthquakes is based on the well-documented studies on

the source mechanism in the Zagros belt and seismic structure in Arabic peninsula,

which provided valuable background and references for the ground motion calculation

in this paper (Jackson and McKenzie, 1984; Bou-Rabee, 2000; Pasyanos et al., 2007;

Sadek, 2004). Carman (1996) has studied the five structural elements in Kuwait based

on the data of the seismic structure maps, oil file wells, remote sensing/imaging data,

and in rocks. That study indicated a northeast trend for the principal horizontal

stress field. Pasyanos et al. (2007) studied the crustal structures in Kuwait using the

joint inversion of teleseismic receiver function and Rayleigh and Love fundamental

mode surface wave group velocity dispersion. In addition, some previous research

has been conducted on the long-period ground motion in the Arabian Gulf (Pitarka

et al., 2012, 2015), although there have not been quite detailed studies in the state

of Kuwait.

For the ground motion due to local earthquakes in Kuwait, although the source

mechanisms for these M < 5 earthquakes are not available from any previous studies,

the geological and geophysical studies focused on the tectonic and seismic structures

in Kuwait and Arabic peninsula (Carman, 1996; Bou-Rabee and VanMarcke, 2001;

Pasyanos et al., 2007; Laske et al., 2013), and more detailed studies about the shal-

low structures in Kuwait have (Bou-Rabee and VanMarcke, 2001; Bou-Rabee, 2000)

provided valuable background references for the source mechanism study of local

earthquakes and the ground motion calculation in this thesis.

1.2.3 Acoustic emission

The laboratory controlled fracturing in rock samples would generate the acoustic

emission (AE) - elastic energy related to very small "earthquakes" with the fault

plane size of tens to hundreds cm2. The acoustic emissions are of great important

to study the fracturing mechanics because under the laboratory experiments we are

better informed about the stress conditions, the rock properties, and the fault plane
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geometry during the fracturing process. However, the low signal-to-noise ratio of the

acoustic emission data, the high occurrence rate of AE events, and the difficulties

of the sensor calibrations make the event detection, location, and source mechanism

inversion difficult to implement.

The history of acoustic emission has been traced back to the middle 20th century

before the terminology "AE" was created, Obert and Duvall (1942) firstly detected

small noise emitted from rock in compression, and attributed these signals to mi-

crofractures in the rock. Kaiser (1950) recorded signals from the tensile specimens

of metallic materials. Later, Schofield (1961) firstly used the terminology AE in his

work. Since 1960's, many following work historically contributed to the development

of AE techniques and applied the AE techniques to to diverse engineering and sci-

entific areas (Drouillard and Laner, 1978; Drouillard, 1987, 1996; Grosse and Ohtsu,

2008).

During the past 50 years, fracture characterization has become one of the most

important application areas of AE techniques. Many early studies from 1960's to

1970's have used AE techniques to investigate fracturing and deformation processes

of rocks (Savage and Mansinha, 1963; Scholz, 1967, 1968a,b; Lockner and Byerlee,

1977). Savage and Mansinha (1963) studied the radiation pattern of AE due to

a tensile failure in a 2-D glass plate. Scholz (1968b) determined the microfracture

frequencies by AE event detection, and AE was also located in space by Scholz (1968a)

and found to be to locate the fracture during the compression of granite. Lockner

and Byerlee (1977) published the pioneering work of locate hydraulic fractures using

AE.

Recently, with the increasing interests on the hydraulic fracturing in unconven-

tional oil/gas fields, AE-based laboratory hydraulic fracturing studies has drawn

attention in both academia and industry. Stanchits et al. (2011) studied the frac-

turing of porous rock induced by fluid injection. Ishida et al. (2012); Fu et al.

(2015) conducted an experimental study on interaction between hydraulic fractures

and partially-cemented natural fractures. Hampton et al. (2015) investigated the

fracture dimension when the laboratory hydraulic fracture interacted with natural
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discontinuity. Goodfellow et al. (2015) studied the hydraulic fracture energy budget

from the laboratory AE study.

Efficient and reliable detection, location, and source analysis methods for AE are

crucial to produce fast and accurate results. The similarity of AE and earthquakes

suggests it a possible method to study earthquake mechanism (Scholz, 1968a). On

the other hand, methods developed in modern seismology can be used to improve

the AE analysis. For the event detection, Swindell and Snell (1977) developed a pro-

cessor automatic signal detection system. (McEvilly and Majer, 1982) introduced an

automated seismic processor for microearthquake networks. Earle and Shearer (1994)

used an automatic-picking algorithm to characterize global seismograms . (Maeda,

1985) suggested a method for reading and checking phase times in auto-processing

system of seismic wave data. Kao and Shan (2004) introduced the source-scanning

algorithm to map the distribution of seismic sources in time and space. Kurz et al.

(2005) summarized the strategies for reliable automatic onset time picking of AE. All

the algorithms in that paper are originated from the seismic event detection.

For the earthquake location, Lomax et al. (2000) developed a Bayesian location

algorithm to determine the location, as well as the uncertainties. A double differ-

ence location algorithm was introduced to mitigate the effects of inaccurate veloc-

ity model on location and improve the accuracy of the relative location(Waldhauser

and Ellsworth, 2000). Recent studies for microseismicity and tremor earthquakes

have produced more efficient location algorithms dealing with large data set with low

signal-to-noise ratio. Zhang et al. (2014) introduced a new method for earthquake

depth determination by stacking multiple-station autocorrelograms. Zhang and Wen

(2015) suggested an effective method for small event detection and locate. (Grigoli

et al., 2013) developed an automated seismic event location by travel-time stack-

ing. Frank and Shapiro (2014) introduced an automatic detection of low-frequency

earthquakes (LFEs) based on a beamformed network response Location.

For the AE source analysis, the most common method used in AE is the polarity

method using the first-P polarity, and the moment tensor inversion method using the

first-P amplitude (Pettitt, 1998; Graham et al., 2010). Although the first-P ampli-
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tude moment tensor inversion methods are also used in seismology, many studies of

microseismicity used the waveform-based moment tensor inversion method to deter-

mine the source mechanism (Li et al., 2011a,b; Song and Toks6z, 2011; Gu et al.,

submitted).

1.3 Thesis outline

The thesis demonstrate the Bayesian source mechanism inversion method. We ap-

plied the source mechanism inversion methods to earthquakes in different scales, as

small as "centimeter" scale, such as the acoustic emissions in laboratory fracturing

experiments; to "meter" scale, such as the micro-seismicity happening in oil/gas fields

in Oman; to "kilometer" scale, such as local earthquakes widely felted in a Kuwait.

Using micro-seismicity data well-studied in an oil/gas field in Oman. Chapter 2

brings up the question of uncertainty quantification of the source mechanisms results.

To solve this problem, Chapter 2 developed a waveform-based Bayesian full moment

tensor inversion method to do both the source mechanism inversion and uncertainty

quantification. This method are first validated using detailed synthetic tests, and

then applied to real microseismic data.

We broaden our investigation to earthquakes recorded in Kuwait in Chapter 3.

Located at the gulf area in Arabian Peninsular, Kuwait has been affected by large

tectonic earthquakes in Zagros fault. In the first part of Chapter 3, we simulated the

ground motion due to large earthquakes in Zagros belt. In the second part of Chapter

3, we studied the local earthquakes in Kuwait. Historically, Kuwait itself is an aseismic

place, however recently more and more local earthquakes have happened in Kuwait.

We investigate the source mechanisms of these local earthquakes in Kuwait, using the

Bayesian moment tensor inversion method. Based on the source mechanism results,

the ground motion due to local earthquakes are simulated.

After explaining the Bayesian source mechanism inversion method and applying

the methods to the micro- and moderate-seismicity (0 < M < 5) near oil/gas field in

Oman and Kuwait. Chapter 4 investigate even smaller "earthquakes" with the "fault"

36



size of tens to hundreds cm2 , i.e. the acoustic emissions corresponding to laboratory

rock fracturing experiments. I first introduce several event detection methods to

automatic pick events from the continuous acoustic emission (AE) data. Then I

applied three location algorithm to AE data, and determined source mechanisms are

using both the first-P amplitude and the full waveform data.

Chapter 5 concludes the whole thesis and proposes future researches.
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Chapter 2

Bayesian Moment Tensor Inversion

and Uncertainty Quantification for

Induced Microseisimicity in an

Oil/Gas Field

2.1 Introduction

Induced micro-earthquakes happen widely in conventional and unconventional oil/gas

fields. Induced seismicity study is of great importance in monitoring and under-

standing the processes of hydraulic fracturing, fluid injection and oil/gas extraction

(Maxwell et al., 2014; Shapiro, 2015). The source mechanism inversion is one of the

main areas of the induced seismicity studies. The determination of source mecha-

nisms of induced earthquakes can give the stress and fault orientation in the field

(Vavryuk, 2014).

The source mechanisms of the great majority of tectonic earthquakes can be de-

scribed by a double-couple (DC), corresponding to a shear fracture. However, some

events in volcanic, geothermal, and salt dome areas exhibit more complex source

mechanisms with non-DC components, such as volumetric component (ISO) and com-
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pensated linear vector dipole (CLVD) (Cespuglio et al., 1996; Panza and Sara6, 2000;

Templeton and Dreger, 2006; Nayak and Dreger, 2014). These non-DC components

have also been related to mine collapses and nuclear explosions (Ford et al., 2009a,b).

Previous research on the analysis of induced seismic events in conventional oil/gas

fields assumed a DC source mechanism (Li et al., 2011a,b; Li, 2013). Assuming

full moment source mechanisms, Horilek et al. (2010) found a DC-dominated source

mechanism of the induced micro-earthquakes in a geothermal area during massive

fluid injection. However, recent studies have shown interest in non-DC components

of source moment tensors in hydraulic fracturing events (Silenf et al., 2009; Warpinski

and Du, 2010; Song and Toks6z, 2011; Song, 2013).

Many studies have implemented the inversion of the full moment tensor by the

least-squares (LSQ) method and the regularized LSQ method (Sipkin, 1982; Sileny

et al., 1992, 1996). However, LSQ methods have disadvantages in estimating and

interpreting the uncertainty of the moment tensor solutions, since the LSQ methods

only search for the best moment tensor solution and do not give the probability dis-

tributions of the solution. An important question for full moment tensor inversion

is whether the non-DC components are real. Some research has applied an F-test to

check the significance of the non-DC components (Templeton and Dreger, 2006; Silen'
et al., 2009; Horilek et al., 2010; Nayak and Dreger, 2014). LSQ methods do allow

a limited uncertainty quantification, based on the Hessian of the misfit function near

the LSQ point estimate. But this is only a local and linearized estimate of uncertainty,

and can be difficult to interpret in the regularized case. Alternatively, to address the

uncertainties of moment tensors resulting from the data noise or imperfect station

coverage, many LSQ-based moment tensor inversion studies have applied re-sampling

methods to the data, such as Monte Carlo noise realization methods and jackknife

tests ($ilenf et al., 2009; Stierle et al., 2014a,b). The uncertainties of the moment

tensor results were obtained by statistically analyzing the solutions from the resam-

pled data. Du and Warpinski (2011) theoretically derived the uncertainty of the focal

plane solutions of seismic sources due to Gaussian noise contamination. In addition,

to estimate the uncertainties from earthquake mislocation and velocity mismodeling,
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some research has observed the effects of mislocation and velocity mismodeling on the

moment tensor solutions by performing location and/or velocity model perturbation

tests (Stierle et al., 2014a,b). These tests only show how much the inverted param-

eter changes with the particular changes of earthquake location and velocity model.

They did not actually give the statistical uncertainties of the inverted parameters.

In addition, Nayak and Dreger (2014) assessed the sensitivity of the moment tensor

and location together by statistically analyzing all the feasible moment tensor and

location solutions with a variance reduction larger than a threshold. This method

actually provides better estimates of the uncertainties of moment tensor and location

solutions. The problem is that it is hard to illustrate how to choose a threshold, and

why one should choose a threshold of a certain value.

Compared to LSQ methods, Bayesian inversion methods have the advantages of

quantifying the uncertainties of model parameters by characterizing a posterior prob-

ability distribution over the parameter space (Tarantola, 2005; Kaipio and Somersalo,

2006; Stuart, 2010). Some studies have conducted Bayesian moment tensor inversion

on moderate and large earthquakes. Duputel et al. (2012) introduced a Bayesian

moment tensor inversion method to estimate the uncertainties of source mechanisms

for large earthquakes (M, > 6.0) using W phase waveforms from a global seismic

network. That study did not determine the uncertainty of seismic locations jointly

with the moment tensor. A very recent paper by Mustad and Tkalkid (2016) has de-

veloped a Bayesian full moment tensor inversion for a moderate-size earthquake with

a well-studied source mechanism using a regional seismic network. In that research,

both the uncertainty of seismic location and moment tensor have been studied by im-

plementing an outer Markov chain to sample the location parameters, and an inner

chain to sample the moment tensor parameters.

In this study, we introduce a waveform-based Bayesian full moment tensor in-

version method. Both the uncertainties of seismic moment tensor and location are

analyzed. Unlike the Bayesian method implemented by Mustad and Tkalkid (2016),

we sample the source location and the moment tensor parameters using a single

Markov chain; this approach reduces computational cost and provides more accu-
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rate uncertainty estimates, particularly for the source location. Moreover, we use the

conditionally Gaussian structure of the parameter posterior to solve portions of the

inverse problem analytically, reducing the dimension of the sampling problem and

allowing the impact of source location uncertainty on moment tensor uncertainty to

be explicitly quantified. We first validate the method using synthetic data before

applying this full moment tensor inversion method to a selected induced event in

an oil/gas field in Oman (Figure 2-1). We determine the full moment tensor of the

induced seismicity from a conventional oil/gas field. The seismicity of this field and

source mechanisms of events using DC assumptions have been studied extensively

(Sarkar, 2008; Li et al., 2011a,b). To better quantify the uncertainties, we used the

newly developed waveform-based Bayesian method for full moment tensor inversion,

source relocation, and uncertainty quantification.

2.2 Methodology

2.2.1 Full moment tensor and waveform modeling

The source mechanisms of a seismic event can be represented by a 3 by 3 symmetric

matrix M,

M11 M12 M13

M M21 M22 M23  (2.1)

M31 M32 M33

where each element of the matrix presents a force couple (Figure 2-2). M is the

full moment tensor representation of a seismic source mechanism. Figure 2-2b shows

three examples of different source mechanisms with their full moment tensor matrix

representation, physical presentations, and beach ball presentations.

The matrix M can be converted to fault plane solutions, which are very important

for analyzing and interpreting the induced seismicity. The following equations define
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Figure 2-1: Map view and side view of the stations and located events for both

near-surface network and downhole network (Sarkar 2008). The red dots denote the

location of the detected events. and the green triangles show the location of the

stations. The black lines are the identified faults. The green triangles (VAL1, VA21,

VA31. VA41, and VA51) are the five near-surface stations. These stations are located

in shallow boreholes 150 in below the surface.
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Figure 2-2: a) Graphical description of the M matrix. Each element of the matrix
represents a. force couple. b) Three examples of source mechanisms. Top: The M
matrix of DC, CLVD, and ISO source mechanisms. Middle: The physical representa-
tions for three kinds of source mechanisms. Bottom: The beach ball representations
of the three source components.

the source-related quantities (Vavryuk, 2001):

E Arninl (2.2)Amax~

3 32

-= E A12, (2.3)
j=1 k=1

I 3 = (jA k) (2.4)

CLVD = 2c(1 - |ISO|), (2.5)

DC 1 - JISO - CLVD|, (2.6)

U - 1 1(2.7)- = (t + P), = (t - P), 27

where Am, 1, and Am,2 are the minimum and maximum eigenvalues of M; t and p

correspond to the eigenvectors of the maximum and minimum eigenvalues, which

indicate the maximum tensile and compressional stress directions; ISO, CLVD, and

DC denote the percentages of source components; u is the fracture plane normal

vector, and v is the slip vector.

Before performing Bayesian inversion, we must create a forward model that relates

44

a) b)



the moment tensor and the location of the seismic source to the observed seismograms.

To do so, we first construct a Green's function library, and calculate the synthetic

seismograms for a point moment tensor source using the discrete wavenumber in-

tegration method (Bouchon, 1981, 2003). The synthetic seismogram v! of the ith

component at the nth geophone of location xn is modeled by

3 3

vi(x2, x8 , t) = M Gij,k (x, x-, t) * s(t) + e(t), (2.8)
j=1 k=1

where Gij,k(xg, x8, t) is the spatial derivative of the Green's function of the ith

component at the nth geophone of the location Xn due to a point moment tensor

source of the location x, s(t) is the source time function, and e(t) is the noise

perturbation of the ith component at the nth geophone. Since M is a symmetric

matrix (Figure 2-2), we can simplify M to a vector m of six elementary moment

tensor parameters, i.e., m 1 = M1, m 2 = M 22 , m3 = M3 3 , m 4 = M 12, m 5 = M13 , and

m6 = M 23. Concatenating all the seismograms and corresponding Green's function

matrix (here the Green's function has been convolved with the source time function)
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and noise perturbation, we rewrite Equation 2.8 as

V!(t, Gil,1(to) GA,(o GA,(o 2Gil,2(to) 2Gi2 3(to) 2GA,(o M2
2 (to) _ G,( i2,2(to) G3,3 (to) 2G,2i 2Gi 2 ,3 (to) m

(ti) G, e(t) G,2(ti) G,3(ti) 2G,2(tO 2, (ti) 2G,(t)

e (tT)

(2.9)

Finally, Equation 2.9 is simplified as

d = G(x)m+e, ER3 , mER (2.10)

where x denotes the source location x8 in Equation 2.8, d is the concatenation of all

the waveform vectors vf, G(x) is the concatenation of all the synthetic seismograms

of six elementary moment tensor parameters, and e is the concatenation of all the

noise vectors. The objective of the Bayesian inversion is to predict parameters m and

x in Equation 2.10 and quantify their uncertainties based on the waveform data d.

2.2.2 Bayesian formulEquan: prior, likelihood, and posterior

We apply Bayes' rule to the parameters m and x given data d

= P(dlm, x)7ro(x)iro(m)
P(d )'
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where iro(m) and iro(x) are the prior probability density of moment tensor m and

location x, P(dlm, x) is the likelihood function, P(d) is the evidence (or the marginal

likelihood), and P(m, xtd) is the posterior probability density.

The priors 7ro(m) and iro(x) depend on the information we know about M and

x. The priors that we use are simply improper uniform probability density functions

, i.e., iro(M) = const and iro(x) = const. Improper priors are not integrable and

are considered particularly "non-informative" (Sivia and Skilling, 2006); they can

suceessfully be used in Bayesian inference as long as the posterior distribution is

proper, which is guaranteed by the expressions below.

The form of the likelihood function P(dlm, x) follows directly from equation 2.10,

and depends on the probability distribution Pe of the additive error e

P(dlm, x) = Pe(d - G(x)m), (2.12)

where Pe is the probability density function of e, which is a function of the error

mean pe and the error covariance matrix Ee.

In this paper we assume the error is Gaussian-distributed with zero-mean and

covariance Ee

e ~- A(0, Ee), (2.13)

and that Ee is the diagonal matrix. The error variance of a particular component

of seismograms, (o) 2, is the diagonal element of the block related to that seismic

component. The error term models any residual variation, including the observation

error, and the model inadequacy, i.e. imperfections of Green's function resulting

from any neglected physics (Kennedy and O'Hagan, 2001; Kaipio and Somersalo,

2007). With the Gaussian probability distribution of e, the likelihood function can

be presented as

P(dfm, x) exp 1 (d - G(x)m)T Ee1 (d - G(x)m) , (2.14)
w (27r) eNdet Ee d 2

where N is the total number of data samples used for inversion. With the above prior
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and likelihood function, we can obtain the joint posterior distribution of m and x

P(m, x d) = cP(dlm, x), (2.15)

where c is a normalization constant.

2.2.3 Posterior sampling and prediction

A general approach for characterizing the posterior distribution of m and x is the

Markov chain Monte Carlo (MCMC) sampling. The Metropolis-Hasting algorithm

(Metropolis et al., 1953; Hastings, 1970), a particular kind of MCMC scheme, con-

structs a Markov chain that asympotically samples from the posterior. We can evalu-

ate the joint posterior density of m and x, P(m, xfd), up to a normalizing constant,

as given in Equation 2.15. Although this is principle sufficient to run an Metropolis-

Hastings sampler, the linear dependence on m and nonlinear dependence on x of the

Green's function G(x) results in a complex joint dependence of the posterior density

on m and x. Thus a generic MCMC approach will encounter great difficulty: slow

mixing, and an inaccurate characterization of the posterior. We instead design two

MCMC approaches that makes more careful use of the problem structure.

Direct sampling for m at fixed x

For the first approach, we sample m directly from its full conditional distribution

P(mld, x*) without resorting to MCMC. Since for a given x* the modeling waveform

G(x*)m depends linearly on m, P(mjd, x*) can be determined analytically:

P(mld, x*) ~ N(pLr(d, x*),F Em(d, x*)) (2.16)

im(d, x*) = [GT(x*)E-lG(x*)]- GT(x*)Ee-jd (2.17)

Fm(d, x*) = [GT(x*)E -lG(x*)] -. (2.18)

If one wishes to ignore uncertainty in the source location, i.e., to assume a fixed x*,

then this approach characterizes uncertainty in the moment tensor m under such an
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assumption. But it can also be used as a building block for an approach that jointly

characterizes the uncertainty in m and x, which we describe next.

Joint marginal-then-conditional sampling

For the second approach, we first obtain the marginal posterior probability distribu-

tion P(x*ld) for any given x*

P(x*ld) cx P(dlx*) = f: P(dlm, x*)7ro(m)dm

We substitute for P(dfm, x*) using Equation 2.14 and obtain

exp
(27r)N det e f-xoo

exp - N d ]

(27r)N det J

(d - G(x)m) T E-1 (d -
_2

S00

L exp
1 6

2
2 j,k=1

Aj,k mmk +

G(x)m)1 d m

6

j=1

Bjm] d6 m

exp - (E-) d]
2i=1

.(-27r N det E.

exp[-j
N

E (Ee-i)
i=1

Odet Ee det A

(27)N IBTA-lB

det A

C BTA-lBe2

(2.20)

where

N

A = (E-1)
_=1 *

Gi1  Gi1Gi2  Gi1Gi3  Gi1Gi4  Gi1Gi5  Gi1Gi 6

Gi 2Gi1  Gi2  Gi2Gi3  Gi2GA4  Gi2Gi5  Gi2Gi6

Gi3Gi Gi3Gi2  G 2 Gi1Gi4  Gi1Gi5  Gi3Gi6

G 4Gi 2 GA4Gi2 GA4Gi3 Gi4 G 1Gi5 Gi4Gi6

Gi5Gi Gi5Gi2 Gi5Gi3 Gi5Gi4 Gi5 Gi5Gi6

Gi6Gi1 Gi6Gi2 Gi6Gi3 Gi6Gi4 Gi6Gi5

, (2.21)
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and
Gil

Gi2
N Gi3  (2.22)B =E~(E2'~ idi

i=1 G

Gi5

Gi6

This analytical result lets us evaluate the marginal posterior probability density

P(x*ld) at any x* in the region of interest. We can then sample from P(x*Id)

using the adaptive Metropolis (AM) MCMC method (Haario et al., 2001). The AM

scheme adjusts the covariance matrix of x every no steps through the MCMC chain

based on all the previous samples of x:

C*o = SdCoV(XO,... ., x ) + sdOjd (2.23)

where C*, is the updated covariance matrix at step no, Eo > 0, which is a constant to

make C* positive-definite, d = 3 which is the dimension of x, and sd = 2.42/d.

For each sampled x*, we then sample m based on the full conditional distribution

of m (Equation 2.18). This algorithm is called marginal then conditional sampling

(MTC) (Fox and Norton, 2015), and effectively yields a single Markov chain that

explores P(m, xjd). The posterior distribution of m given d can be extracted as

P(md) = J P(mlx*, d)P(x*|d)dx*. (2.24)

2.3 Synthetic test

To validate our methods, we first applied our Bayesian inversion method to the syn-

thetic data. The configuration of the seismic source and stations was shown in Figure

2-1. The synthetic source is located at x = [6.4, 5.4, 1.0] km. The source mechanism

was set to be Strike = 500, Dip = 400, Rake = 2800, DC% = 61%, CLVD% = 17%,

ISO = 21%, ce = 100. A layer velocity model was used in the synthetic tests (Figure
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2-3, lower right). A 10% Gaussian noise was added to the synthetic data. We grid

the region around the true location, and pre-calculate the Green's functions for each

possible location grid. The finest grid size is 0.1m.

The synthetic vertical component seismogram for the five stations are shown in

Figure 2-4. The analytically-obtained marginal posterior probability distribution

P(xId) can be computed according to Equation 4.8, the 3D normalized log analytical

marginal probability distribution log P(x Id) is shown in Figure 2-5.

We apply two uncertainty quantification procedures - 1) Direct sampling for m,

with x fixed at the true location; 2) AM MCMC sampling for P(x) and marginal-

then-conditional sampling for m - to the synthetic data. The MCMC chain of m

and the posterior distribution of m for the two procedures are compared in Figure

2-6. The resulting MCMC chain of x is shown in Figure 2-8.

The comparison between the synthetic waveforms and the posterior predicted

waveforms is shown in Figure 2-7. We plot the posterior predicted waveforms as

the purple shading areas, and the mean predicted waveforms as bold red lines. For

Figure 2-7a), the posterior predicted waveforms are calculated using G(x*)m, where

G(x*) is the Green's function at the the fixed location x* and m is from the direct

MCMC sampling. For Figure 2-7b), the posterior predicted waveforms are calculated

using G(x*)m, where G(x*) is the Green's function at the location x* sampled by the

marginal posterior probability distribution P(x Id), and m is from the marginal-then-

conditional sampling. The mean posterior predicted waveforms are the average of all

the posterior predicted waveforms. The comparison of the inverted source mechanism

results and true values are shown in Table 2.1. The posterior predicted waveform

region (purple areas) are narrow, and the mean posterior predicted waveforms (red

lines) matches well with the synthetic data (blue) for both the two procedures.

The uncertainties of the source parameters and location are presented in the same

table. We find that uncertainty of location x is small (< 1 m). Although as expected,

the standard deviation of source parameters from P(m d) is only slightly larger than

those from P(mId, x*), the two posterior distributions - P(mId, x*) and P(mId) -

are also show small differences. This is because, for the synthetic data, the velocity
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x = 6.4 km, y = 5.4 km, z = 1.0 km
Strike = 40', Dip = 50', Rake = 280* 2
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Figure 2-3: The configuration of source and stations of our synthetic data. Left: The

cbll)e ol the left shows the locations of the source and the stations. The red star
denotes the source. the green triangles denote the stations. Right: The beach ball
on the top right shows the mechanism of the synthetic source. The green triangles
denote the projection of the 5 stations oil the source focal plane. The velocity model
is shown at the bottom right.

model is known. and the forward Green's functions are accurate. The 3D marginal

probability distribution P(x d) is very sharp around the true location. The inclusion

of variances of other physics into the model would expand the uncertainties of m and

x, e.g. velocity model. However, in the paper we only consider the ulncertaillties of

m and x.

2.4 Results for real data

The data used are from an oil and gas field in the Sultanate of Oman. studied ex-

tensively by Sarkar (2008) and Li et al. (2011a.b). The events were located using the

NonLinLoc algorith1. which utilizes a probabilistic, nionlillear, global-search earth1-
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Figure 2-4: The synthetic vertical component seismogranis from the five stations.
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Figure 2-7: The comparison of the mean posterior predicted (red) and synthetic

(blue) seismograms. The purple shading areas (very narrow) show the 104 posterior

predicted waveforms. All the seismograms are bandpass filtered between 3Hz an 8Hz.

a) The posterior predicted waveforms are based the direct sampling of m at the true

location x = [6.4, 5.4, 1.0]. b) The posterior predicted waveforms are based on the

Green's function at x sampled from the marginal posterior distribution P(xld) and

m from joint sampling of P(m, xod).
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Table 2.1: The source mechanism results for the synthetic event
Direct sampling for m Gibbs sampling for m

for the fixed x AM MCMC for x
True value Mean Standard deviation Mean Standard deviation

E (km) 6.4 6.4 6.4003 0.0004
N (km) 5.4 5.4 5.4005 0.0005
Z (km) 1.0 1.0 1.0001 0.0004
Mo(Nm) 3.128e+11 3.140e+11 2.366e+09 3.145e+11 2.239e+09
Strike (0) 50 49.4 0.3 49.6 0.3
Dip (0) 40 39.9 0.3 39.4 0.3
Rake (0) 280 279.1 0.4 278.8 0.4
DC (%) 61 61.7 1.0 64.2 1.1
CLVD (%) 17 16.4 0.7 16.8 0.7
ISO (%) 21 21.8 0.8 18.9 0.9

0 (0) 10 9.6 0.4 9.5 0.4
The first Mean for x=(E,N,Z) is the fixed location x from the true value.

C.31



quake location algorithm (Lomax et al., 2000). The seismicity data are from the

surface monitoring network (Figure 2-1). For this network, five surface stations, in-

strumented with SM-6B geophones, have been set up since 1999. The data used in

the Oman studies consist of 800 events located at the surface network. This field is

dominated by two fault systems: the northeast-southwest trending main faults and

northwest-southeast trending auxiliary system. The accurate and detailed 1D P-wave

velocity models are from the sonic logging data (Sarkar, 2008). The S-wave velocity

models are from the double-difference tomography results (Zhang et al., 2009).

We selected one event from the surface monitoring network. The data for inver-

sion are the vertical component seismograms from five stations, since the horizontal

components are not accurate because of the unknown orientation of seismometers.

The whole seismograms are shown in Figure 2-9. We only fit a part of the seismo-

grams from each station. The fitted seismogram contains a P-segment which involves

2 periods before the P-wave arrival and 4 - 8 periods after P-wave arrival, and a S-

segment which involves 2 - 6 periods after the S-wave arrival. Independent time-shift

for the P- and S-segment for each station is applied before the Bayesian inversion to

mitigate the effects of imperfect Green's function (Zhu and Helmberger, 1996).

For the Bayesian inversion, since it is difficult to estimate a true error covariance

matrix including both the effects of data noise and model inadequancy, in order to

bound the uncertainties we assume a Ee with large diagonal values (- equals 10%

of the maximum amplitude over all the stations). First we fix the location to be the

NonLinLoc location and apply the direct MCMC sampling for m. The full moment

tensor results and the uncertainties are shown in Figure 2-10. The waveform matching

with the variance reduction is presented in the same figure. We plot the posterior

predicted waveforms as the purple shading areas, and the mean predicted waveforms

as bold red lines. The posterior predicted waveforms are calculated using G(x*)m,

where G(x*) is the Green's function at the the fixed location x* and m is from the

direct MCMC sampling. The mean posterior predicted waveforms are the average of

all the posterior predicted waveforms. Second, we apply an AM MCMC sampling for

x and a marginal-then-condition sampling for m. We show the full moment tensor
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Figure 2-9: The vertical components from five stations for the selected event. All the

seismograms are bandpass filtered between 3Hz an 8Hz. The black lines show the

arrival time of P waves, and the red lines show the arrival time of S waves.
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results, the relative uncertainties, and the waveform matching in Figure 2-12. The

posterior predicted waveforms are calculated using G(x)m, where G(x) is the Green's

function at the sampled location x and m is from the marginal-then-conditional

sampling. The inclusion of the uncertainty of x increased the shading areas of the

posterior predicted waveforms, and the uncertainties of the source mechanism results.

The Bayesian source mechanism results with the uncertainties are shown in Table

2.2. The small uncertainties of location are because we assume the velocity model is

accurate, and we do not include the uncertainty of velocity models in our Bayesian

inversion. We will include the uncertainty of velocity models in our future work. The

Bayesian full moment tensor result shows that even considering the uncertainties the

strike of the fault plane is close to the directions of the main fault system in this

oil/gas field.

2.5 Discussion

The Bayesian moment tensor inversion method works well for recovering the source

mechanisms and location from the seismograms; this is validated by our synthetic

study. In addition, the Bayesian method naturally lets us obtain the uncertainties

of the source parameters and location from the posterior distributions of these pa-

rameters. The fault geometry and DC component of the MT are determined most

accurately. The uncertainty of isotropic and CLVD components is relatively larger

than those of the DC components.

Based on the synthetic simulation and the study of an induced seismic event from

an oil/gas field, we can state that the uncertainty quantification of full moment tensor

solutions is a powerful tool to estimate how reliable the source mechanism model is.

This study does not include the uncertainty of the velocity model. We expect that

the inclusion of velocity uncertainties, in future work, will broaden the uncertainties of

the both moment tensor and location solutions and provide more realistic uncertainty

bounds.
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Figure 2-10: Top left: The focal plane projection of the mean value of the source

mechanism from direct sampling of m at the fixed x from initial NonLinLoc location.

The dashed line shows the mean value of the fault plane solutions. The green triangles

denote the five stations. Top right: The green region shows the uncertainty of the

fault plane solutions and the tensile and compressional stress from direct sampling of

m at the fixed x from initial NonLinLoc location. Bottom: The comparison of the

mean posterior predicted (red) and real (blue) data for the separated P- and S-wave

segments. The purple shading areas show the 1011 posterior predicted waveforms. The

mean and range of the variance reduction (VB) for each station is shown in the figure.
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Figure 2-12: Top left: The focal plane projection of the mean value of the source

mechanism from marginal-then-conditional sampling of m at each x from AM 1ICMC
sampling. The dashed line shows the mean value of the fault plane solutions. The

green triangles denote the five stations. Top right: The green region shows the

uncertainty of the fault plane solutions and the gray dots and crosses show the tensile

and compressional stress from marginal-then-conditional sampling of m. Bottom:

The comparison of the mean posterior predicted (red) and real (blue) data for the

separated P- and S-wave segments. The purple shading areas show the 101 posterior

predicted waveforms. The mean and range of the variance reduction (VR) for each

station is shown in the figure.
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Table 2.2: The source mechanism results of the real event 20010035
Direct sampling for m Gibbs sampling for m

for the fixed x AM MCMC for x
Mean Standard deviation Mean Standard deviation

E (km) 6.50 6.5018 0.0047
N (km) 5.10 5.1008 0.0027
Z (km) 0.97 0.9619 0.0055

M0 4.3967e+10 1.6907e+09 5.9863e+10 4.6811e+09
Strike (0) 87.3 3.2 87.9 4.1
Dip (0) 63.8 3.9 62.8 5.1
Rake (0) 40.1 4.6 38.8 6.3
DC (%) 56.8 13.3 55.9 13.3
CLVD (%) 48.1 12.2 30.7 12.8
ISO (%) 13.4 6.7 12.6 8.3

a (0) 16.8 7.9 17.5 8.2
The first Mean for x=(E,N,Z) is the initial NonLinLoc location result.
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Figure 2-13: Results for non-identical covariance matrix. Top left: The focal plane

projection of the mean value of the source mechanism from inarginal-then-conditional
sampling of m at each x from AM MCMC sampling. The dashed line shows the mean
value of the fault plane solutions. The green triangles denote the five stations. Top
right: The green region shows the uncertainty of the fault plane solutions and the
gray dots and crosses show the tensile and compressional stress from marginal-then-
conditional sampling of m. Bottom: The comparison of the mean posterior predicted

(red) and real (blue) data for the separated P- and S-wave segments. The purple
shading areas show the 10' posterior predicted waveforms. The mean and range of
the variance reduction (VP ) for each station is shown in the figure.
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Figure 2-14: Results for 20% Gaussian noise. Top left: The focal plane projection

of the mean value of the source mechanism from inargial-then-conditional sampling

of m at each x from AM MCMIC sanipling. The dashed line shows the mean value

of the fault plane solutions. The green triangles denote the five stations. Top right:

The green region shows the uncertainty of the fault plane solutions and the gray dots

and crosses show the tensile and compressional stress from marginal-then-conditional

sampling of m. Bottom: The comparison of the mean posterior predicted (red) and

real (blue) data for the separated P- and S-wave segments. The purple shading areas

show the 104 posterior predicted waveforms. The mean and range of the variance

reduction (VR) for each station is shown in the figure.
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Chapter 3

Ground Motion Modeling and

Source Mechanism of Regional and

Local Earthquakes in Kuwait

3.1 Introduction

Kuwait is affected by two different kinds of earthquakes, regional tectonic earthquakes

and smaller local earthquakes. The tectonic earthquakes occurred mostly in the

Zagros region and surrounding areas. To monitor these earthquakes, Kuwait initiated

the Kuwait National Seismograph Network (KNSN) in 1997, which consisted of seven

three-component short-period stations (AB, MI, QR, RD, RS, SA, UM) and one

three-component broadband station (KB), in operation from 1997 to 2013. Since

the year 2013, the KNSN upgraded the seismic monitoring network by replacing five

short-period stations (MI, QR, RD, RS, UM) with broadband stations.

Figure 3-1 shows the significant regional earthquakes around Kuwait in the period

1997-2016. On average, about one earthquake of magnitude 6 or greater occurs in the

region each year. From the seismograms recorded from the station MI, we noted most

of them have long duration surface waves. To estimate the effects of these regional

earthquakes on structures, we applied the pseudo displacement spectral analysis to
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a 08/18/2014 Mw 6.2 earthquake which happened at the Iran-Iraq border 200 km

NNE of Kuwait city and was widely felt in Kuwait. We show the three-component

seismograms and the pseudo displacement response spectra of this earthquake in

Figure 3-2. The peak response periods occurred at 3.4 s, 5.7 s, 6.9 s, and 16.0 s.

The long period (16 s) peak shown is due to Love waves that are recorded on E-W

component.

One experiment has been done by the Kuwait Institute for Scientific Research

(KISR) to record the ambient vibration at the top terrace of the Al-Hamra Tower,

using two Kinemetrics systems (3 component Episensor accelerometer and Q330 data

logger). We show the ambient vibration spectra of the Al-Hamra Tower on day 329 of

the year 2013 in Figure 3-3. The ambient vibration peak periods - 3.3 s, 5.7 s, and 7.1

s - obtained from two instruments, each with three components, are quite consistent.

These values are close to the periods of the peak pseudo displacement response spectra

- 3.4 s, 5.7 s, and 6.9 s. From the observed ground motion and building ambient

noise measurements, we can conclude that potential damaging ground vibrations to

the tall buildings could occur due to regional earthquakes.

Local earthquakes in Kuwait occur more frequently. Since 1997, the KNSN has

recorded more than 1000 earthquakes (Mw < 5). Most of the local earthquakes are

distributed close to the oil/gas fields in the northeast and southwest of Kuwait (Fig-

ure 3-4), probably induced by oil production activities. Two large local earthquakes

- Mw 4.5 in 03/21/2015 and Mw 4.1 in 08/18/2015 - have been recorded by both the

Incorporated Research Institutions for Seismology (IRIS) and KNSN. The seismo-

grams of the Mw 4.5 earthquake from three selected stations and the corresponding

pseudo displacement response spectra are shown in Figure 3-5. The peak response

periods are in the range of from 1 s to 2 s.

We compare the pseudo displacement response spectra for the Mw 6.2 regional

earthquake from MI and the Mw 4.5 local earthquake from RQ in Figure 3-6. The

reason we choose these two stations is that MI is the closest station to the hypocenter

of the Mw 6.2 earthquake, and RQ is the closest station to the hypocenter of the Mw

4.5 earthquake. Thus, we can compare the maximum observed response spectra of the

68



KU*

RAYN

30

1997 21
40' 50 60 70

--111
o 0r~~-Aak

Ii "o*-- -4

o1 
-

o

o1

0 50 100
Time (sec)

Mag >7

Mag 6-7

Mag 5-6

Kuwait city

Station

150 200

Figure 3-1: Significant regional earthquakes since 1997
broadband station MIB in Kuwait.

affecting tall buildings in Kuwait. Seismograms are recorded by the

40

3:"

20'

10'



77

4-~ 7

Farthq uake Recording
Location Station

DISPLACEMENT EAST

- - AA -

20 40 60 do 100 120 140 160 180

DISPLACEMENT NORTH

20 40 60 0 10 120 140 16 10

DISPLACEMENT VERTICAL

20 40 60 80 100 ,20 140 160 180

Time (Sec)

0.

0.

0.

C) 0.

a)0.
Ea)
0 0.
C,

0.

0.

Displacement Response Spectra

9 East

-- North

-Vertical
7

6

5

3

.2-

0
10 10 10 10

Period (s)

Figure 3-2: This 2014/08 18Mw 6.2 earthquake wvas widely felt in Kuwait. The red beach ball shows the inechanisn and the

observed (blue) seismograms at MIB in Kuwait are in the middle. The response spectra of displacement and acceleration are

plotted on the right.

m

40

30

20

0.2

0-

-0-2

-0.4
0

0.2

0.1

0-

-0.1

-0.2
0

0.2

=

-0. 2



2

-20

-40

-60

-80

-100

Average amplitude spectra of station 1017 for day 329

_ 5.6956 7.-34East-

1.5222 North

0.09 T 3.26950.8098 163 et

2 4 6 8 10
Period (s)

Average amplitude spectra of station 1019 for day 329

-I -20

-40-

-602

-80

-100 1
0 2 4 6 8 10

Period (s)

Figure 3-3: Left: Amplitude spectra. calculated using ambient noise data recorded by two Kinemetrics EpiSensor instruments.

at the top of the Al-Hamra Tower. Average spectra for the day 329 of year 2014 (computed with a 600 s moving window). The

station 1017 did not work well. The vertical component of station 1017 does not receive any meaningful signal., and the two

horizontal components were not calibrated well.

U

0



Kuwait Seismicity 1997-2015
46 45' 47 00' 47 15' 47 30' 47 45' 48 00 48 15' 48 30 48 45'

46 45' 47 00 47 15' 47 30' 47 45' 48 00' 48 15' 48 30' 48 45'

Kuwait oil fields
6 45 4700 47 15 47'30 47 45 48uC 815 48 3 845'

30 00 N 
30 00'

W E

S

2945 12945

29 30 - 29 30

K u w a i
29 I5 29 15'

29 00' 29 00'

28 45' 28 45

O l field4

46 45 47 00 4 7 15 47 30' 47 45' 48 00' 48 15 48 30' 48 45'

C']1 -

Figure 3-4: Left: Local earthquakes in Kuwait during 1997-2015. The small red circles denote the M < 3 earthquakes. the large

red circles denote the 4 > Al > 3. and the yellow stars with red edges denote the 5 > M > 4 earthquakes. The two largest local

events (03/21/2015 Mw = 4.1 and 08/18/2015 Mw = 4.5). shown by white stars. occurred in 2015. Right: Oil fields in Kuwait.

30 00'

29 45'

29 30'

29 15

29 00'

28 45'

A 'RS

- I

WKB
Mw 4.5 *

4 OR

I*
Sion

4>M>=3*3>M
3>M



Station RD
ACCELERATION EAST

5. .0 70 W0 90 100 Ito i2n 130 i4n 150

ACCELERATION NORTH

a2:
so -0 'o t o 'o I . I

ACCELERATION VERTICAL

5 6 0 To a. 9o 10. 110 12. 130 I4Q 15o

Time (Sec)

Displacement Response Spectra of RD
0.35 -

0.3

0.25

0.2

_ 0.15

0.1

0.0.05 z

10 10 10
T (s)

-I

Station MI
ACCELERATION EAST

50 60 70 80 90 100 110 120 a aM

ACCELERATION NORTH

-0.5 -

a o l 70 so W o 11. 12o 13D

ACCELERATION VERTICAL

6. 70 W0 W 10 W It 120 1"0

Time (Sec)

Displacement Response Spectra of UM
0.14

0.1

0.08

.

0.04

0,02

10 10 10,
T (sa)

Station UM
ACCELERATION EAST

-

So 60 7M WD M 10. 110 12N 13.

ACCELERATION NORTH

5 6 7 C EL t 100 110 12 1"

ACCELERATION VERTICAL

so so 7M so go too 11 m 20 130

Time (Sec)

0.12

0.1

0.08

E 0.06

0.04

Displacement Response Spectra of MI

10 10
T (a)

Figure 3-5: Top: 3-Component seismograms for the Mw 4.5 local event (from Kuwait National Seismic Network station. Bottom:

Pseudo displacement response spectra of 3-Component seismograms for the Mw 4.5 local event (from Kuwait National Seismic

Network stations). The blue line shows the east component, the red line shows the north component, and the black line shows

the vertical component.

-



0.9 East

0.8 North
-Vertical

0.7

0.6

0.5
E

C 0.4

0.2

0.1

0
101 100 101 102

Period (s)

Figure 3-6: The comparison of the pseudo displacement response spectra of the Mw
6.2 (main frame) and Mw 4.5 earthquakes (left-bottom corner in blue sub-frame).

two earthquakes. The peak response period range of the Mw 6.2 earthquake is above

3 s, which is longer than that of the Mw 4.5 earthquake. In addition, the maximum

amplitude of the Mw 6.2 earthquake is larger than that of the Mw 4.5 earthquake.

However, in the short-period range around 1 s, the Mw 4.5 earthquake presents higher

response than the Mw 6.2 earthquake. The different peak response periods mean these

two kinds of earthquakes could cause potential damage to structures with different

vibration frequencies.

This Chapter focuses on the ground motion simulation in Kuwait, and includes

two parts: 1) Ground motion due to regional earthquakes around Kuwait and effects

on tall buildings; 2) Ground motions and source mechanisms of local earthquakes and

ground motion calculation in Kuwait.
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3.2 Regional earthquakes around Kuwait

Tall buildings are greatly affected by long trains of low-frequency seismic surface

waves from regional earthquakes. There is a rapid increase in the number and (on-

struction of tall and ultra high buildings in the world including Kuwait, e.g. the

Al-Hamra Tower with the height of 414m (Figure 3-7). Seismic motions are greatly

amplified with increasing height of the buildings. Many tall buildings in the world

have been built with the structural health monitoring system (Qelebi and Liu. 1998:

Qeleli et al.. 2014). Building response to seismic activities can be obtained by the

seismic interferometry method, using the ambient noise recording from the build-

ing monitoring system (Kohler et al.. 2005: Snieder and *afak. 2006: Prieto et al.,

2010). However, even with reliable building response, realistic groundi motion input

is important to assess the seismic hazard to tall buildings.

Previous research has provided useful methods to calculate the ground motion

in a region. The ground motion prediction equation is a typical method to esti-

mate ground motion intensity based on the observed seismic data and attenuation

laws (Alralhamson and Shedlock. 1997). However. typical hazard calculations do not

nchide physics of earthquake source rupture and ignore the effects of complex crustal

structures along the wave propagation path on the wave field. To make the predica-
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tion more realistic, many studies use simulation methods to predict ground motions

using a virtual future large earthquake (Olsen et al., 1995; Pitarka et al., 1998; Olsen,

2000; Olsen et al., 2006, 2009). The reliability of these simulation methods depends

on the accuracy of the earthquake source rupture model, the seismic structure where

the wave propagated, and the nonlinear site effects. In the recent decade, increasing

studies have used the ambient seismic field method to predict the ground motion

from sources around seismic stations (Prieto and Beroza, 2008; Denolle et al., 2013,

2014). This ambient seismic field method can only predict the ground motion near the

seismic stations. In this section, we use the simulation method to calculate ground

motion, since we are focusing on the ground motion calculation from the regional

large earthquakes in Zagros Fold Belt.

The possibility of using the simulation method to calculate the ground motion in

Kuwait is based on well-documented studies on the source mechanism and seismic

structure in- Kuwait. These provided valuable background and references for the

ground motion calculation in this paper (Jackson and McKenzie, 1984; Bou-Rabee,

2000; Al-Awadhi and Midzi, 2001; Pasyanos et al., 2007; Sadek, 2004). In addition,

some previous research has been conducted on long-period ground motion in the

Arabian Gulf (Pitarka et al., 2012, 2015), although there have not been quite as

detailed studies in the state of Kuwait.

In this section, we first analyzed the ground motion observed by Kuwait National

Seismograph Network (KNSN) from regional earthquakes and local earthquakes for

selected sites in Kuwait (Bou-Rabee, 1999). The response spectra (pseudo displace-

ment/acceleration spectra) are calculated and compared with the ambient noise spec-

tra at a site near Al-Hamra Tower to assess the seismic hazards to tall buildings in

Kuwait City. In addition, to estimate the seismic hazard in Kuwait City, we calculate

the ground motion from a Mw 7 virtual earthquake. We consider Mw 7 to be the

maximum credible earthquake is because previous seismic hazard research in Oman

by El-Hussain et al. (2013). The seismicity of Zagros region and maimum magnitude

of credible earthquakes have been studied extensively for seismic hazard studies in

Eastern Gulf region (especially Dubai, UAE, and Oman). To minimize the calculation
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uncertainties from the crustal and sedimentary basin structures model, we calibrated

the input velocity model with a recent 08/18/2014 Mw 6.2 earthquake. The effects of

near surface sediments (i.e., soil layers) on the surface waves have also been identified

by conducting a simple 2-D finite difference simulation.

3.2.1 Methods and model validation

The observed ground motion in Kuwait shows that the potential hazard to tall build-

ings in Kuwait is from regional earthquakes. To predict the ground motion in Kuwait

and provide information for the generation of building codes, we need to calculate

the ground motions for potential earthquakes near Kuwait.

For ground motion calculation, we used the discrete-wavenumber (Bouchon, 1981,

2003) method for the 1-D layered modeling and the finite difference method for the

2-D and 3-D structural models (Almuhaidib and Toks6z, 2014). In this paper, we

focused on the 1-D velocity model in Kuwait. The crustal velocity model is based on

the KUW1 model of Pasyanos et al. (2007). The 2-D finite difference modeling was

used to identify the amplification effects of soil layers in Section 3.2.2.

To validate the method and model, we selected the 08/18/2014 Mw 6.2 earth-

quake, synthesized the seismograms of that earthquake and made the comparison

with the observed seismograms. To better fit the observed seismograms, we varied

the thickness, P-wave velocity, and S-velocity of the first layer from the KUW1 model

of Pasyanos et al. (2007). The velocity model used in this paper is shown in Table

3.1. There is a good match between the observed and synthetic seismograms, as well

as their displacement response spectra (Figure 3-8).

3.2.2 Results and discussion

To determine the ground motions in Kuwait, synthetic seismograms from the largest

credible magnitude regional earthquakes were calculated - a Mw 7 earthquake located

300 km east of Kuwait City. Maximum credible magnitude for the region is Mw = 7

corresponding to a moment of Mo = 6.6 * 1026 dyne - cm. Source (fault rupture
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Table 3.1: 1-D elastic model for ground motion calculation'
Thickness VP Vs Density Qp Qs

L ayer number (kmn) (kmn/2) (kmn/2) (g/Cmn2) (8-1) (S-1)
1 3.0 2.50 1.50 2.50 80 40
2 4.0 4.76 2.75 2.60 100 50
3 17.0 5.89 3.40 2.70 300 150
4 9.0 6.41 3.70 2.70 300 150
5 11.0 6.95 3.90 2.70 300 150
6 o 7.80 4.40 2.70 300 150
a To better fit the observed seismograms, we varied the thickness, P-wave
velocity (Vp), and S-wave velocity (Vs) of the first layer of the KUW1
model of Pasyanos et al. (2007).

dimension) was assumed to be 20 km x 40 km with the top of the rupture 5 km

below the surface, as shown in Figure 3-9. The model earthquake is a thrust event

with fault plane: strike = 3000, dip = 20', and rake = 90'. The ground acceleration,

velocity, and displacement were calculated and shown in Figure 3-10. Our calculation

results show that in Kuwait City, the maximum acceleration in Kuwait is 5 cm/sec2

and maximum displacement is 5 cm. The duration of the ground motion is longer

than 200 seconds.

It is important to mention that the ground motions shown in the figures are for

bedrock, that is for competent rocks. Soil layers tend to amplify these motions and

the amplification depends on geotechnical properties of the site.

Soil and soft sediments generally amplify the ground motions. We demonstrated

this by an example where there is a sedimentary patch on the hard crustal layer

(1-D Kuwait velocity model). We placed seismic station STA1 on the top of the

soil layer, and STA2 on the top of a hard rock. The attenuation effects are ignored

here. The seismic source is set as a simple point source 5 km away from STA2, and

10 km from STA1. The resulting two-component seismograms are shown in Figure

3-11. Note that the shear waves and Rayleigh waves are amplified by more than a

factor of two on the sediment layer. Thus, depending on geotechnical conditions and

soil properties, actual ground motion could be twice as high or higher. With more

detailed information about the geotectonical information underneath Kuwait City, we

can better quantify and predict the ground motions.
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Figure 3-9: Finite Zagros Fault Model (AI, 7), Jl= 6.6 * 1)26 (iy,,t l mised

for discrete-waveminnber integration based ground motion simulations. The source

dimension is 20 km x 40 kin. The calculated seismogram in Kuwait city due to an

earthquake located across the Gulf from Kuwait is shown in Figure 3-10. The maxi-

mum acceleration in Kuwait is 5 cm/scC2 and maximum displacements are 5 cm. The

duration of the ground motion is longer than 200 seconds. The contoured maximum

displacements around the quake are also shown in the Figure 3-10.

3.3 Local earthquakes in Kuwait

Kuwait has relatively low local selsmnicity historically. The maxinmun reported local

earthquake was the 1993 M4.7 Kuwait earthquake, which could have been induced by

the burning of the oil fields during the Iraq war (Bou-Rabee and Nur. 2002). However.

in recent years the improved Kuwait National Seismic Network (KNSN) has monitored

more and more local earthquakes. Since 1997. the KNSN has recorded more than

1000 earthquakes (Mw < 5). Two large local earthquakes - Mw4.5 in 03/21/2015 and

Mw4.1 in 08/18/2015 - were reported by both the Incorporated Research Institutions

for Seismology (IRIS) and KNSN. Earthquakes happen repeatedly in the same general

locations close to the oil/gas fields in Kuwait. The correlation of oil/gas fields and

earthquake epicenters are showi in Figure 3-4. The earthquakes are generally small

(Mw < 5.0) and are shallow with focal depthis of about 2 to 8 km. Such events

are very commnion in oil/gas reservoirs all over the world. including North America,

Europe, and the Middle East (Sarkar, 2008: Li et al.. 2011a,b; Zoback and Gorelick.

2012; Ellsworth. 2013; Shapiro, 2015). In Kuwait, because of the proximity of these

earthquakes to population centers, they could create seismic hazard to older structures

built without any earthquake design codes. Determining the nature of these events
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is important to improve the performance and safety of existing systems.

Source mechanism inversion has been widely used to study the physics of earth-

quakes in oil/gas fields (Li et al., 2011a,b; Song and Toks6z, 2011). However, the

source physics of the local events has seldom been studied in Kuwait. Previous geo-

logical and geophysical studies focus on the tectonic and seismic structures in Kuwait

(Carman, 1996; Bou-Rabee and VanMarcke, 2001; Pasyanos et al., 2007; Laske et al.,

2013). Carman (1996) has studied the five structural elements in Kuwait based on the

data of the seismic structure maps, oil wells, remote sensing/imaging data, and rock

physics. That study indicated a northeast trend for the maximum principal horizon-

tal stress field. Pasyanos et al. (2007) studied the crustal structures in Kuwait using

the joint inversion of teleseismic receiver function and Rayleigh and Love fundamental

mode surface wave group velocity dispersion. More detailed studies about the shallow

structures in Kuwait have been reported by Bou-Rabee and VanMarcke (2001) and

Bou-Rabee (2000). These structural studies provided valuable background references

for the source mechanism study in this part.

In this part, we studied the source mechanisms of selected local earthquakes,

with their uncertainties, using a Bayesian moment tensor method (Gu et al., sub-

mitted). The maximum compressional stress, indicated by the source mechanism

results, matches with the regional north-east stress field around Kuwait. Most likely

these local earthquakes occurred on pre-existing faults and were triggered by oil field

activities, as determined by true history of the events.

An accurate near-surface seismic structure is significant to study the source mech-

anism of local earthquakes. We use the known sonic well logging data to better

constrain the velocity model in the shallow depth. All the velocity values from the

well logging data are plotted in Figure 3-12.

Combining the KUW1 model and the well logging data, we tested three velocity

models - KUW1, VELl, and VEL2 (Figure 3-13) - in the later source mechanism

inversion study.
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3.3.1 Data and methodology

The local earthquakes are generally distributed in two clusters, one around the north-

ern oil fields and the other around the southern oil fields. The seismic data of

these local earthquakes were collected by the Kuwait National Seismograph Net-

work (KNSN). The KNSN was initiated in 1997 (Bou-Rabee, 1999), and consisted

of seven three-component short-period stations (AB, MI, QR, RD, RS, SA, UM)

and one three-component broadband station (KB) in operation from 1997 to 2013.

Since the year 2013, the KNSN has upgraded the seismic monitoring network by re-

placing five short-period stations (MI, QR, RD, RS, UM) with broadband stations.

The count of earthquakes shows an increased occurrence rate of the total number of

earthquakes since 2002, and a more rapid increase of M > 3 since 2012 (Figure 3-14).

The figure shows a non-uniform distribution of earthquakes. There are three factors

that contribute to the distribution: 1) The improvement of the KNSN with time; 2)

Disruption caused by the invasion of Kuwait by Iraq in 1990; and 3) The U.S.-Iraq

war in 2004 and the following terrorism. Since 2013 the KNSN has been operating

without interruptions.

We focused on the broadband seismic data of M > 3 earthquakes from 2013 to

2015 because of the high quality and broad frequency response of these seismograms.

We applied the cross-correlation to the waveforms from northern and southern clus-

ters at the same station and found the waveforms from the same cluster have high

correlation coefficients (> 0.5). One example of the waveform correlation for the ver-

tical components of station RS was presented in Figure 3-22. This means that these

earthquakes, which occurred repeatedly in the same areas, should have similar source

mechanisms. The other waveform correlation analysis results are shown in Figure

3-18, 3-19, 3-20, 3-21, and 3-23.

To determine the source mechanisms of the event, as well as their uncertainties,

we applied the waveform-based Bayesian moment tensor inversion methods (Chapter

2) to the two largest local events in 2015 - 03/21/2015 Mw 4.5 and 08/18/2015

Mw 4.1 earthquakes (Figure 3-15). We sampled the moment tensor solution m =
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(M, M2 2, M33 , M12 , M13 , M 23 )T, according to the full conditional distribution

P(m~d, x*) oc P(djm, x*) = 1 exp 1- (d - G(x*)m) e (d - G(x*)m),
(2r)N det ge [2

(3.1)

where d denotes the waveform data, Ee is the error covariance matrix, and G(x*)

is the matrix containing the synthetic seismograms of six elementary moment tensor

parameters at the trial location x*. The trial location has varied from depth of zero

to ten km at the event hypocenter. We tried different source depths because the event

depth is difficult to determine accurately by the travel-time-based location method,

with the sparse seismic network and inadequate knowledge of a detailed velocity model

for the crust. The depth distribution from the catalog was shown in Figure 3-15. The

depth of the events generally concentrated at 2 to 8 km. Note the depths shown in

Figure 3-15 are not include any information about their uncertainties. The accuracy

determination of the depth will be shown in the later section. The waveform-based

moment tensor inversion can help to locate the events more accurately. We sampled

103 m at each trial source depth, and quantified the uncertainties by calculating the

mean and standard deviation of posterior predicted m.

3.3.2 Results

Applying the waveform-based Bayesian moment tensor inversion method, we obtained

the source mechanisms of the 03/21/2015 Mw 4.5 and 08/18/2015 Mw 4.1 earth-

quakes. We show the variance reduction (VR) as a function of trial depth in Figure

3-15. The best full moment tensor results and the uncertainties are shown in the

inset. The waveform matching is presented in the same figure. We plot the posterior

predicted waveforms as the purple shaded areas, and the mean predicted waveforms

as bold red lines. The posterior predicted waveforms are calculated using G(x*)m,

where G(x*) is the Green's function at the the fixed location x* and m is from the

direct MCMC sampling.

The best fitting depth - 2 km and 4 km - for the two earthquakes is shallow and

close to the typical reservoir depth. The maximum stress field from the source mech-
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anism results matches with the local northeast-southwest maximum compressional

stress direction. We note the second maximum VR for Mw 4.5 earthquake also show

the possibility that this earthquake may have occured at deeper depth - 8 km. How-

ever, the trial source at 8 km does not produce the strong Rayleigh waves shown in

most of the local earthquakes in Kuwait.

To determine the ground motions due to local earthquakes in Kuwait, we synthe-

size the seismograms from the largest credible magnitude local earthquakes calculated

- a Mw = 4.5 EQ located at the southern and a Mw = 4.1 EQ located at the northern

oil fields. We show the acceleration distribution in Kuwait in Figure 3-33, 3-34, and

3-35.

98



Waveform matching of the 03/21/2015 Mw 4.5 EQ
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Figure 3-24: Results from KUW1 velocity model. Upper: The comparison of the

real data (blue) and the mean posterior predicted waveform (red) for the Mw 4.5

earthquake at the best matching depth. The data are bandpass filtered by 0.1 to 0.5

Hz. Right: Variance reduction of waveform matching as a function of trial source

depth. The resulted source mechanism of different trial depth are plotted as beach

ball on the figure. The best source mechanism solution, presented as both beachball

and text, is shown in the black frame.
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Figure 3-25: Results from KUW1 velocity model. Upper: The comparison of the

real data (blue) and the mean posterior predicted waveform (red) for the Mw 4.5

earthquake at the best matching depth. The data are bandpass filtered by 0.1 to 0.15

Hz. Right: Variance reduction of waveform matching as a function of trial source

depth. The resulted source mechanism of different trial depth are plotted as beach

ball on the figure. The best source mechanism solution, presented as both beachball

and text, is shown in the black frame.
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Waveform matching of the 03/21/2015 Mw 4.5 EQ
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Figure 3-26: Results from VELl velocity model. Upper: The comparison of the
real data (blue) and the mean posterior predicted waveform (red) for the Mw 4.5
earthquake at the best matching depth. The data are bandpass filtered by 0.1 to 0.5
Hz. Right: Variance reduction of waveform matching as a function of trial source
depth. The resulted source mechanism of different trial depth are plotted as beach
ball on the figure. The best source mechanism solution, presented as both beachball
and text, is shown in the black frame.
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Waveform matching of the 03/21/2015 Mw 4.5 EQ
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Figure 3-27: Results from VELl velocity model. Upper: The comparison of the

real data (blue) and the mean posterior predicted waveform (red) for the Mw 4.5

earthquake at the best matching depth. The data are bandpass filtered by 0.1 to 0.15

Hz. Right: Variance reduction of waveform matching as a function of trial source

depth. The resulted source mechanism of different trial depth are plotted as beach

ball on the figure. The best source mechanism solution, presented as both beachball

and text, is shown in the black frame.
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Waveform matching of the 03/21/2015 Mw 4.5 EQ
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Figure 3-28: Results from VEL2 velocity model. Upper: The comparison of the
real data (blue) and the mean posterior predicted waveform (red) for the Mw 4.5
earthquake at the best matching depth. The data are bandpass filtered by 0.1 to 0.5
Hz. Right: Variance reduction of waveform matching as a function of trial source
depth. The resulted source mechanism of different trial depth are plotted as beach
ball on the figure. The best source mechanism solution, presented as both beachball
and text, is shown in the black frame.
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Waveform matching of the 03/21/2015 Mw 4.5 EQ
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Figure 3-29: Results from VEL2 velocity model. Upper: The comparison of the

real data, (blue) and the mean posterior predicted waveform (red) for the Mw 4.5

earthquake at the best matching depth. The data are bandpass filtered by 0.1 to 0.15

Hz. Right: Variance reduction of waveform matching as a function of trial source

depth. The resulted source mechanism of different trial depth are plotted as beach

ball on the figure. The best source mechanism solution, presented as both beachball

and text, is shown in the black frame.
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Waveform matching of the 08/18/2015 Mw 4.1 EQ
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Figure 3-30: Results from KUW1 velocity model. Upper: The comparison of the
real data (blue) and the mean posterior predicted waveform (red) for the Mw 4.1
earthquake at the best matching depth. The data are bandpass filtered by 0.1 to 0.5
Hz. Right: Variance reduction of waveform matching as a function of trial source
depth. The resulted source mechanism of different trial depth are plotted as beach
ball on the figure. The best source mechanism solution, presented as both beachball
and text, is shown in the black frame.
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Figure 3-31: Results from VEL1 velocity model. Upper: The comparison of the
real data (blue) and the mean posterior predicted waveform (red) for the Mw 4.1
earthquake at the best matching depth. The data are bandpass filtered by 0.1 to 0.15
Hz. Right: Variance reduction of waveform matching as a function of trial source
depth. The resulted source mechanism of different trial depth are plotted as beach
ball on the figure. The best source mechanism solution, presented as both beachball
and text, is shown in the black frame.
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Waveform matching of the 08/18/2015 Mw 4.1 EQ
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Figure 3-32: Results from VEL2 velocity model. Upper: The comparison of the

real data (blue) and the mean posterior predicted waveform (red) for the Mw 4.1

earthquake at the best matching depth. The data are bandpass filtered by 0.1 to 0.5

Hz. Right: Variance reduction of waveform matching as a function of trial source

depth. The resulted source mechanism of different trial depth are plotted as beach

ball on the figure. The best source mechanism solution, presented as both beachball

and text, is shown in the black frame.
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3.3.3 Discussion

Triggering stress and damage of local earthquakes

Based on other examples, induced earthquakes oil field earthquakes generally occur

on pre-existing faults and are triggered by pore pressure and stress changes caused

by fluid injection or extraction (Sarkar, 2008; Li et al., 2011a,b). A detailed study of

more than 5,000 earthquakes in an oil/gas field in Oman was carried out by Sarkar

(2008), and Li et al. (2011a,b). It showed that the hypocenters of earthquakes were

on pre-existing faults that were activated by stress changes due to fluid injection or

withdrawal. The focal mechanisms were controlled by the regional tectonic stress

fields (Li et al., 2011a,b).

Local earthquakes in Kuwait occurred generally close to oil fields in Northern and

Southern Kuwait. These earthquakes occurred in Northern and Southern fields have

similar waveforms. These best fitting depths (maximum variance reduction) are close

to the typical reservoir depth - 2 to 4 km. The waveform-based Bayesian moment

tensor inversion results of the 03/21/2015 Mw 4.5 and 08/18/2015 Mw 4.1 earthquakes

show the northeast-southwest oriented maximum horizontal stress, which matches

with the regional tectonic stress fields obtained from well log data. In addition, the

strike direction of the fault plane solution - almost north-south - matches with the

main structural elements in Kuwait. Thus, local earthquakes in Kuwait are most

likely occurred on pre-existing faults and are induced by oil production activities.

The fault mapped using the seismic reflection data cannot be obtained at the surface

because of pliocene sediment cover. An unusual pattern of seismicity is the relative

sparsity on Burgan field, the largest oil field in Kuwait. This may be due to the

shallow depth of the reservoir, or relatively small production after the Iraq invasion.

The induced earthquakes, in regions where tectonic activity is low, are generally

small events, with magnitudes Mw = 5 or less. However, these events, occurring in

the reservoirs, generally are very shallow with focal depths. As a result, they could

produce ground accelerations high enough to cause damage to local structures (Fig-

ure 3-33, 3-34,3-35). In Kuwait, where oil fields are close to populated areas, induced
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Figure 3-36: Left: The trial velocity model. We use KUW1 velocity model (Pasyanos

et al., 2007) from 8 km to oc. All the trial two-layer model from 0 to 8 km are plotted

in the same figure; Right: Zoom in of the depth 0 to 8 km.

earthquakes could be hazardous to structures constructed without using seismic de-

sign criteria. The majority of older buildings in Kuwait could be affected by local

earthquakes. However, we would not expect these induced earthquakes to be a hazard

to new well-constructed structures.

Shallow structure in Kuwait

The shallow seismic structure in Kuwait needs to be better quantified. Based on the

constraints from the sonic logging, all the possible trial velocity models are shown in

Figure 3-36. The inclusion of the velocity model into the Bayesian moment tensor

method would help to determine which velocity model is more likely to generate the

typical seismograms in Kuwait.
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Chapter 4

Characterization of Acoustic

Emission During Fractures in

Laboratory

4.1 Introduction

Fracturing of rock samples in the laboratory generates acoustic emissions (AE) -

elastic energy related to very small "earthquakes". Acoustic emissions are of great

importance in studying the fracturing mechanics because in laboratory experiments

we can have the information about the stress conditions, the rock properties, and the

fault plane geometry during the fracturing process. However, the low signal-to-noise

ratio of the acoustic emission (AE) data, the high occurrence rate of AE events, and

the difficulties of sensor calibrations make the event detection, locating, and source

mechanism inversion difficult to implement.

The history of acoustic emission goes back to the middle of the 20th century,

before the terminology "AE" was created. Obert and Duvall (1942) first detected

small noise emitted from rock under compression and attributed these signals to

microfractures in the rock. Kaiser (1950) recorded signals from the tensile specimens

of metallic materials. Later, Schofield (1961) used the terminology AE in his work.
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Since the 1960's, much subsequent work has contributed to the development of AE

techniques and applied the AE techniques to to diverse engineering and scientific

areas (Drouillard and Laner, 1978; Drouillard, 1987, 1996; Grosse and Ohtsu, 2008).

During the past 50 years, fracture characterization has become one of the most

important application areas of AE techniques. Many early studies from 1960's to

1970's have used AE techniques to investigate fracturing and deformation processes

of rocks (Savage and Mansinha, 1963; Scholz, 1967, 1968a,b; Lockner and Byerlee,

1977). Savage and Mansinha (1963) studied the radiation pattern of AE due to

a tensile failure in a 2-D glass plate. Scholz (1968b) determined the microfracture

frequencies by AE event detection, and AE was also located in space by Scholz (1968a)

and found to locate fractures during the compression of granite. Lockner and Byerlee

(1977) published the pioneering work of locate hydraulic fractures using AE. Since

this early start of the laboratory study of seismic processes, much work has been

done to learn the slip processes of tectonic earthquakes using the laboratory analog

fracturing process, which was detected by AE (W Goebel et al., 2013; Kwiatek et al.,

2014).

Recently, with the increasing interest in the hydraulic fracturing in unconventional

oil/gas fields, AE-based laboratory hydraulic fracturing studies have drawn new at-

tention in both academia and industry. Stanchits et al. (2011) studied the fracturing

of porous rock induced by fluid injection. Ishida et al. (2012) injected supercritical

liquid C02 into a borehole inside rock samples and monitored the AE due to hydraulic

fracturing. Fu et al. (2015) conducted an experimental study on the interaction be-

tween hydraulic fractures and partially-cemented natural fractures. Hampton et al.

(2015) investigated the fracture dimension when the laboratory hydraulic fracture in-

teracted with a natural discontinuity. Goodfellow et al. (2015) studied the hydraulic

fracture energy budget from the laboratory AE study.

Efficient and reliable detection, location, and source analysis methods for AE are

crucial to produce fast and accurate results. The similarity of AE and earthquakes

suggests it a possible method to study earthquake mechanism (Scholz, 1968a). Also,

methods developed in modern seismology can be used to improve the AE analysis.
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For event detection, Swindell and Snell (1977) developed a processor automatic signal

detection system. McEvilly and Majer (1982) introduced an automated seismic pro-

cessor for microearthquake networks. Earle and Shearer (1994) used an automatic-

picking algorithm to characterize global seismograms . Maeda (1985) suggested a

method for reading and checking phase times in an auto-processing system of seismic

wave data. Kao and Shan (2004) introduced the source-scanning algorithm to map

the distribution of seismic sources in time and space. Kurz et al. (2005) summarized

the strategies for reliable automatic onset time picking of AE. All the algorithms in

that paper originated from seismic event detection.

For earthquake location, Lomax et al. (2000) developed a Bayesian location al-

gorithm to determine the location, as well as the uncertainties. A double difference

location algorithm was introduced to mitigate the effects of an inaccurate velocity

model on location and improve the accuracy of the relative location (Waldhauser and

Ellsworth, 2000). Recent studies for microseismicity and tremor earthquakes have

produced more efficient location algorithms dealing with a large data set with low

signal-to-noise ratio. Zhang et al. (2014) introduced a new method for earthquake

depth determination by stacking multiple-station autocorrelograms. Zhang and Wen

(2015) suggested an effective method for small event detection and location. Grigoli

et al. (2013) developed an automated seismic event location by travel-time stack-

ing. Frank and Shapiro (2014) introduced an automatic detection of low-frequency

earthquakes (LFEs) based on a beamformed network response location.

For the AE source analysis, the most common method used the first-P polar-

ity and the moment tensor inversion method using the first-P amplitude (Pettitt,

1998; Graham et al., 2010). Although the first-P amplitude moment tensor inver-

sion methods are also used in seismology, many studies of microseismicity used the

waveform-based moment tensor inversion method to determine the source mechanism

(Li et al., 2011a,b; Song and Toks6z, 2011; Gu et al., submitted). The goal of this

chapter is to characterize fractures in laboratory-scale rock samples (- cm) using

the analysis methods from seismology. In this study, I implemented several event

detection, location, and moment tensor inversion algorithms to the AE data from the
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fracturing experiment of Berea sandstone. That fracturing experiment was conducted

using the newly-built triaxial compressional machine at MIT. The AE techniques has

just been implemented in that machine, and the calibration and testing are just being

done. The data shown in this chapter is the first AE aquisition from the new system.

4.2 Experimental Data

4.2.1 Laboratory system

The AE data are collected from the newly-built AutoLab 1500 laboratory system

and the National Instrument (NI) data acquisition system at the rock mechanics lab

at MIT (Figure 4-la). The AutoLab 1500 includes: 1) A pressure vessel and the

associated pressure intensifiers to generate confining stress and piston to generate

stress on a test specimen (Figure 4-1b); 2) An electronics console that interfaces with

the mechanical system to precisely control the state of stress and to condition and

amplify signals from the transducers and devices measuring force, pressure, displace-

ment, strain, temperature, velocity, and resistivity; and 3) A data acquisition system

that generates reference signals to control the equipment, to acquire data, and to pro-

cess the data collected on each experiment (New England Research: AutoLab 1500

Instruction Manual).

The pressure vessel is divided into two chambers separated by a moveable piston

(Figure 4-1c). The specimen resides in the lower pressure chamber, which replicates

the overburden pressure. The higher pressure in the upper chamber moves the piston

into contact with the sample assembly. When the pressure in the upper chamber is

greater than that in the lower chamber, a directional force is applied to the specimen.

The piezoelectric (PZT) sensors are attached to the rock sample, and connected to

the NI data acquisition systems to collect AE data. The dominant response frequency

range of the PZT crystal is between 300 kHz to 1 MHz.
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4.2.2 Fracturing experiment

The AE data used in this Chapter were from Berea sandstone fracturing experiments.

The sample was Berea sandstone machined to a cylinder with the diameter of 36.43

mm and length of 76.7 mm. The confining pressure and differential pressure applied

to the sample as a function of time during the whole compression process is shown in

Figure 4-2. The light blue rectanguler marked in Figure 4-2 shows the time period

when the main fracturing happens. The large sound related to this fracturing was

heard clearly in the lab. The P velocity, measured at the confining pressure (Pc) of

10.0 MPa, and differential stress (Pd) of 2.0 MPa, is 3800 m/s, and the average S

velocity at the same pressure condition is 2300 m/s.

Eight PZT sensors were placed over the surface of the cylinder. The distribution

of the position of sensors is shown in Figure 4-5. The AE data has been collected

from the beginning of compression, i.e. time = 0 sec, until the time = 420 sec.

We separated the whole AE signal series into 256 segments. Figure 4-6 shows the

segments of the AE data including the main fracturing (left), and the segment just

after the main fracturing (right). The large spike on the left corresponding to the

main fracturing of the Berea sample.

To illustrate how the acoustic energy changed with the applied stress, we defined

the acoustic intensity (AI) as

AI = j u(t)2 dt (4.1)

where u(t) is the AE signal as a function of time, and Tei is the integral time window.

Comparing the trend AI and stress, it is obvious that the AI had a huge jump when

the differential stress dropped (Figure 4-7). The AI measured by the eight sensors has

a consistent trend, although the energy levels for different sensors are different. This

may be because the eight sensors had different responses to the fracturing emitted

acoustic waves, or due to differences of transducer coupling.
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4.3 Methodology

The processing and interpretation of the AE data implemented in this Chapter in-

cludes automatic event detection, location, and moment tensor inversion. We intro-

duced three automatic event detection methods, three location methods, and two

moment tensor inversion methods in this part.

4.3.1 Automatic event detection

STA/LTA

The STA/LTA method is widely used for event detection in both seismology and

acoustic emission data analysis (Swindell and Snell, 1977; McEvilly and Majer, 1982;

Earle and Shearer, 1994). The STA/LTA means the STA over LTA, where STA

denotes the short-time average, and the LTA denotes the long-time average:

STA== 1NSTA
STNA = N I |ui|, (4.2)

NSTA

and
NLTA

LT A = N 1 E |ui|. (4.3)
NSTA =1

The selection of the STA and LTA window, and the threshold is important to

obtain accurate onsets. Normally, the STA window should be short enough to resolve

the event, and the LTA window should be long enough to average the local noise.

The STA/LTA threshold is also tricky to detect the events. Low thresholds would

result in the false alarm of arrivals, while high thresholds would result in missing the

events. We applied the STA/LTA picker to a waveform sample containing four events

(Figure 4-8). The picked onsets of the four events are picked accurately when the

STA, LTA window and threshold are chosen reasonably.
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AIC

The Akaike Informative Criteria (AIC) has been used to determine the onset of signal

in seismology and acoustic emission (Maeda, 1985; Kurz et al., 2005). The equation

of the AIC calculation is

AIC(tw) = t, - log(var(Rw(tw, 1))) + (T -t - 1) - log(var(Rw(1 + t,, Tw))), (4.4)

where t, is the time index, ranging from all the samples of the waveform R., the signal

series in a window w. Rw(t., 1) and R,(1 + te, T,,) denote the samples ranging from

time index t, to 1 and the samples ranging from time index 1+ tw to Tw, respectively.

The global minimum of the AIC function picked the onset of the signal. The AIC

works well if we assume the waveform window only contains one onset (Figure 4-9a),

i.e., single-event picking. The onset picked by AIC is almost the same as the manual

picked one.

We also tried to apply the AIC calculation to the window, which contains several

separate arrivals as in Figure 4-9b, and picked the local minimum of the smoothed

AIC function. It is obvious that the picks are off the true onsets.

SSA

The SSA, referring to "Source Scanning Algorithm", is a waveform-based location

algorithm used in seismic tremor location (Kao and Shan, 2004). Similar to AE, the

tremor signal generally has low signal-to-noise ratio and is hard to detect and locate

accurately. The SSA method constructs a brightness function

S 2

br(x, y, z, t) = S + (4.5)
U? (t + ATr(X, y, z))

t=1

where br(x, y, z, t) is the brightness function dependent on the source location (x, y, z)

and the arrival time t, Ari(x, y, z)) is the relative moveout of station i, s is the station

number, and to, is the length of the waveform window. A grid search was applied over
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Table 4.1: SSA Location results for the synthetic waveforms
True Value No Noise 50 % Gauss

X (mm) -1.9 -2.2 -7.2
Y (mm) -6.2 -6.2 -7.2
Z (mm) 32.6 32.0 37
t- pick (ms) 0.14 0.14 0.14

all the possible source location, and arrival time space. The br(x, y, z, t) would have

the maximum value when the trial location and arrival time is predicted correctly,

since all the waveforms from different stations will be shifted by the accurate moveouts

and aligned at the same time. The SSA can not only detect the event, but also locate

the event.

I illustrated the SSA algorithm using synthetic tests. The synthetic AE system

is shown in Figure 4-10. One synthetic event was set inside the modeled cylinder

with the same size as the experiment. We synthesize the received waveforms of the

eight sensors due to that event. The synthetic waveforms include one set without

noise contamination, and one set with 50% Gaussian noise. The spatial brightness

distribution at the best arrival time pick, the temporal brightness at the best location,

and the alignment of the synthetic waveforms are shown in Figure 4-12 and 4-12. The

recovered location and arrival time for denoised synthetic data and noisy synthetic

data are compared in Table 4.1. We found that even with 50% Gaussian noise, the

SSA can detect the event well and, meanwhile, locate the event with an error less

than 5 mm in each of the three space dimensions.

4.3.2 Location

Grid search

The grid search is the simplest algorithm for AE location. We first grid the cylinder

space (Figure 4-14), and calculate the theoretical travel time from each grid. Then,

we construct an objective function to measure the difference between the theoretical
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and observed arrival time of one phase

N,

arg min f(xi, y, zi, To) = N |To,(Xi, y, Z) - 7-O - Ttheo(Xs, Ys, s, z i, i, Zi)l2 (4.6)
i=1

. i ) (xi - xS) 2 + (y' - ys) 2 + (Z - (47
vPh

f (xS, Ys, z8, To) is objective function, Tobs(X4, yr, 4z) is observed arrival time of a phase

for ith receiver, Theo(Xs, Ys, zs, X, yr, z ) is the theoretical travel time of a phase from

source to ith receiver, T0 is the origin time, [Xs, Ys, zS] is the source location, [xi, yj, Z]

is the ith receiver location, vPh is the velocity of the rock sample for one phase. The

best location would be found when the objective function is minimized.

NonLinLoc

The NonLinLoc, referring to "nonlinear location", is a Bayesian-based location pack-

age (Lomax et al., 2000), which can not only locate the AE event, but also provide

the uncertainties of the location. The uncertainties of the location x were presented

as a posterior probability density function P(x d), d is the arrival time data. In this

chapter, we directly use the open source NonLinLoc package to study the location,

as well as the uncertainties of the AE events.

SSA

The SSA location algorithm has been illustrated in the event detection part. For

the implementation, we divide each AE data segment (e.g., 243) into 4070 small

windows, and apply the SSA to each window assuming there is only one event in each

window. In reality, some windows only contains noise and cannot contribute to map

the microfractures in the specimen. The greatest differences between the window

contains noise and the window contains obvious fracturing related event are that the

maximum value of the brightness function. The noisy window, in general, has low

maximum brightness value, and vice versa. To leave out the noise events, I set an

SSA brightness threshold, and only considered the "bright" windows to the AE event
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count.

4.3.3 Full moment tensor inversion (FMTI)

Here I applied the full moment tensor inversion (FMTI) method to the equation used

in Chapter 2, I first obtain the marginal posterior probability distribution P(x*Id)

for any given x*

P(dlx*)
V(-27r) Ndet Ee

f exp - G(x)m)T Ee I (d - G(x)m)] d m

N

exp (Ee d]

(2 7r)N de tEe

exp -E (E-1) d?
(2 )i=1 e -I

V(27r)N det Ee
N

exp -jE (E-~1)i d?
.I

detEe det A

exp
1 s
12 E Aj,kmmk +

L j,k=l

(27r)N BTA-B

det A

!BTA-1Be0

(4.8)

where

N

A = (Ee-)

G 2 Gj1Gi2  Gj1Gi3  G 1GA4  Gj1Gi5  Gj1Gi6

Gi2Gjj Gi2  Gi2Gi3  Gi2GA4  Gi2Gi5  Gi2Gi6

Gi3Gj Gi3Gi2  G 2 G 1 G Gj1Gi5  Gi3Gi6

Gi4Gjj Gi4Gi2  G 4 Gi3  G 2 Gj1 Gi5  G24 G2

Gi5 Gj Gi5Gi2 Gi5Gi3 Gi5G 4 Gi2 Gi 5G 6

Gi6Gjj Gi6Gi2 Gi6Gi3 Gi6 GA4 Gi6 Gi5 G 6
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Table 4.2: Simplified Green's functions for six moment element
Simplified Green's function

Gil 4 sin 2 os20,
1 2v~r

G i2 sin2 Osin2 Oi

Gi 4 cos2 i

G 4 -7p1 Qsin
2 Oi cos 20

Gi 47r1ri sin 20i sin Oi

Gi6 4 sin 20i cos Oi47rpv,,ri

and
Gil

Gi2

N = di Gi3  (4.10)
i=1 G

Gi5

Gi6

The posterior distribution of m given d can be extracted as

P(mld) = P(mlx*, d)P(x*d)dx*. (4.11)

P-amplitude based FMTI

The P-amplitude based moment tensor inversion (FMTI) uses simplified Green's func-

tion to generate the forward Green's functions of each moment elements (Table 4.2).

This simplification assumes a homogenous and isotropic media in the space where the

elastic waves propagate. The data for the inversion are the amplitude of the P waves.

Waveform based FMTI

If we assume the instrument response for all the sensors is the same at the frequency

domain in which we are interested, and we can directly apply the waveform-based

Bayesian moment tensor inversion method to the AE waveforms as illustrated in

Chapter 2.
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4.4 Results

We first apply the three event detection methods, and the three location methods to

the two example waveform segments (Figure 4-6). The comparison of the counts of

the detected events for the period of strong AE event occurrence is shown in Figure

4-15. We also applied the grid search location algorithm to the automatic picked first-

P arrival time from the STA/LTA and AIC algorithms to obtain the initial location

of the AE events. For the SSA method, we divided each segment into 4070 windows,

and apply the SSA for each small window by assuming each window only contained

one event. However, since some windows may just have noise, and the located event

is not trustable. We setup a threshold to leave out the noisy windows. The event

location distribution with the inference of the fault plane based on the event location

are shown in Figure 4-16. The location results from SSA with the threshold of 0.1

are compared with other detection methods in Figure 4-15. We also try to present

the SSA location of the segment 244 by assigning the located event more solid color

when the maximum brightness value is high, while assigning the located event more

transparent color when the maximum brightness value is low (Figure 4-18).

Then, we applied the location algorithm to 42 testing events using grid search

and NonLinLoc method. The location results from the grid search and NonLinLoc

method were shown in Figure 4-18 and 4-19. For the NonLinLoc method, leaving out

those events with large uncertainties, only 32 events were located. By comparing the

event location and the scanned fault plane geometry, we can see that the location

results map the fracture well.

After testing all the algorithm using a sub data set, we then go through the

whole 420 sec AE data. For the event detection, to combine the strength of different

methods, we used the STA/LTA to do the first-round scanning of the whole real-time

AE data, and extracted single events from the AE recording. After that, for each

single-event window, we apply the AIC, and SSA detection/location to that window.

This strategy combine the efficiency of STA/LTA, and the accuracy of the AIC-picker.

In addition, the SSA provided the initial location guess, and help to infer the fracture
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geometry.

The event rate and accumulated event count from the STA/LTA detection for the

raw data and the raw data bandpass filtered by 10kHz to 500 kHz are shown in Figure

4-20 and 4-22. The trend of the event rate as a function of time are generally similar,

however, since the algorithm detected more events for the filtered data before the

main fracture happened, the accumulated event number for the filtered data did not

show a huge increase as it is shown for the unfiltered data. We plotted the detected

P-arrivals of the eight channels for each detected events and mark the events with at

least four P-arrival picks with a black lines (Figure 4-21 and 4-24).

In this Chapter, to better quality control the detection, we focused on the 5837

events detected by the STA/LTA method using the unfiltered raw data. The auto-

matic picked first-P arrivals for a common event (Event 2137) from the STA/LTA,

AIC, and SSA were shown in Figure 4-21, Figure 4-24, and Figure 4-25. Visually

checking the quality of the picking, the AIC method provided the most accurate

picking comparing to STA/LTA and SSA (e.g., Event 2137). The SSA, although do

not picked the phase arrival accurately, provided the initial guess of the location and

could delineate the rough fracture shape while finishing the event detection (Figure

4-26).
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To quality control the AIC-picker, I manually picked the P arrivals for 5738 events

detected by the STA/LTA method. I showed the location results based on the P

arrival times from the AIC and manual arrival picking in Figure 4-27 and 4-28), the

nucleation processes of AE events are generally similar, which shows the accuracy

of the AIC picking. I divided the fracturing processes into three parts - the pre-

main-fracturing stage, main-fracturing stage, and post-main-fracturing stage. At the

pre-main-fracturing stage, events occurred sparsely all over the specimen. Then,

at the main-fracturing stage, the events had a rapid increase of occurrence rate and

presented a trend of nucleation at the late main-fracturing stage. However, the events

generally still scattered all over the specimen. This either because the microfractures

were distributed all over the sample, or the large location errors of small events. Based

on the test location study showing in Figure 4-18 and Figure 4-19, the large events

with good waveforms correlated well with the fault plane.

After locating the AE events, I chose 12 events along the main fracture plane and

applied the full moment tensor inversion to them (Figure 4-29). The moment tensor

results are shown from Figure 4-30 to 4-31. The moment tensor analysis of the AE

data shows a general dip-slip source mechanisms for the selected events with good

waveforms along the main fracture, and a vertical maximum compressional stress.

The strike of events were consistent with the fault plane geometry, which is roughly

in north-south direction when the event was close to the center of the fault plane,

and turned to the east-west direction when the event is close to the fault edges.

However, some events indicated a horizontal maximum compressional stress, which

may be because of the inhomogeneity of the specimen, or errors because the waveform

amplitudes without calibration.
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Figure 4-20: The STALTA event detection results for the unfiltered AE data. a)
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4.5 Discussion

4.5.1 Location calibration

An important question about the AE characterization is the accuracy of the event

location. To address the error bound of the location, an active source location ex-

periment was conducted for a Lucite (PMMA) specimen. The sample was machined

to a cylinder with the diameter of 38.10 mm and length of 77.47 mm. Eight PZT

sensors were placed over the surface of the cylinder. The distribution of the position

of sensors is shown in Figure 4-42. The velocity of the P-wave was 2770 m/s, and the

S-wave velocity was 1395 m/s.

We connected the triggering source to each sensor, and use other sensors as re-

ceivers. For example, if connected channel 0 to the source, then channel 2, 3, 4, 5,

6.7 were used as receivers. Channel 1 did not work since it was at the same port as

channel 1. We can only connect the triggering source to the port. Thus, we had six

P-wave arrivals to determine the location of the channel connected to the triggering

source. The S-waves were observed, however, since the size of the sample is small,

the separation of P- and S-waves was generally comparable to the dominant period

for the P- and S-waves (- 10pus), it was hard to pick the S-wave arrivals accurately.

The location error from a simple grid-search location algorithm is shown in Table 4.3

and Figure 4-43. The comparison of the observed and theoretical P-wave arrivals is

shown in Figure 4-44. The maximum residuals of the P-wave arrivals is around 1

ps. The recorded waveforms the eight active source tests, as well as the theoretical

P-wave travel time as a function of source-receiver distance, is presented in Figure

4-45.

The location calibration results show that the error of the source are generally

in an order of mm, this could also be estimated by the maximum residual of the

observed and theoretical P-wave arrival time - 1 ps. Since the P-wave velocity is

around 3000 m/s, a mis-pick of 1 ps for one channel could result in a mislocation

around 3 mm. If we consider the AE sampling rate of 25 MHz, 1 ps phase arrival

error equals to 25 samples. For a typical period of P-wave, which is around 10 ps
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Table 4.3: Location error from the active source experiment
Ch # AX(mm) AY(mm) AZ(mm)
0 1.0 1.0 9.0
1 4.5 5.5 0.1
2 5.5 6.5 0.8
3 1.0 4.0 3.5
4 1.0 1.0 1.5
5 3.5 2.5 2.3
6 3.5 6.5 3.2
7 1.0 1.0 3.0

and equals to 250 samples. The arrival time picking error is only 1/10 of the typical

wave length of the P-wave.

The order of 1 mm for the location is acceptable compared to the sample size, but

what if we decrease the location error to the order of 0.1 mm? In order to decrease

the location error to an order of 0.1 mm, we need to decrease the picking error of the

P-wave arrivals to a couple of samples, or equally 1/100 of the typical wave period

of the P-wave. This picking error is hard to achieve. A more realistic way is to

increase use the high frequency PZT sensors to increase the dominant frequencies of

the recorded AE data.

4.5.2 Sensor calibration

Sensor calibration is of great importance to apply any amplitude based analysis, e.g.,

moment tensor inversion. Although we applied the full moment tensor inversion to

the AE data from the fracturing experiment, and the moment tensor results make

some sensor considering the real fracturing processes, at the time when we recorded

the AE data from Berea sandstone, the sensors were not calibrated. We actually had

no idea about the real physical meaning of received signals, whether it was displace-

ment, velocity, or acceleration. In addition, we assumed the instrument response and

the coupling between the specimen and sensors were same for all the eight sensors.

In order to calibrate the sensor, McLaskey et al. (2015) introduced a calibration tech-

nique using an in situ ball drop system during AE experiments. Since the momentum

of a dropped ball is measurable, an in situ ball drop during the AE experiments could
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convert the amplitude of any other AE sources, e.g. fracturing, to the momentum of

the ball. The building of the in situ AE calibration system is still actively in progress

in our lab.
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Chapter 5

Conclusions

In Chapter 2, we introduced a waveform based Bayesian moment tensor inversion

method. The method works well for recovering the source mechanisms and locations

of earthquakes and enable us to obtain the uncertainties of the source parameters and

locations from the posterior distributions of these parameters. We tested the Bayesian

method using synthetic data and found that the fault geometry and DC component

of the MT are determined most accurately. The uncertainties of isotropic and CLVD

components were relatively larger than those of the DC components. Based on the

synthetic simulation and the study of an induced seismic event from an oil/gas field,

we can state that the uncertainty quantification of full moment tensor solutions is a

powerful tool to estimate how reliable the source mechanism model is.

Future work could be done to further develop the Bayesian moment tensor inver-

sion method in Chapter 2. First, a Gaussian error model was assumed to efficiently

generate the marginal probability density function of seismic location giving waveform

data. A more realistic error model based on the noise recording in the seismograms

would be valuable to test. Second, an improper prior probability density function ( iro

= constant) was assume. I could use stronger priors to better constrain the moment

tensor and location parameters, e.g., the P-wave polarity, the P/S amplitude ratio,

the phase travel time, or the characteristic marks from the waveform features. Third,

I did not include the velocity model into the inversion, a more completed study in

the future would provide a full description of the probability distribution of moment
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tensor, location, and velocity model, based on observed seismograms.

Chapter 3 focused on the ground motion simulation in Kuwait due to regional and

local earthquakes. In the regional earthquakes section, we calculated the potential

largest ground motions, about 5 cm, due to a maximum Mw = 7. The regional

velocity model has been validated by the good matching of the observed seismograms

of the 08/18/2014 Mw 6.2 Iran-Iraq-borer earthquake with the synthetic seismograms.

In addition, the amplification effects of soil layers on ground motions were discussed

by conducting a finite difference model. A factor of two or three amplification can

occur when a soil layer is placed on the top of original crustal material. In the second

part, we focused on the local earthquakes in Kuwait, which have had an increasing

occurrence rate recently. These earthquakes happen repeatedly in the same locations

close to the oil/gas fields in Kuwait. We applied the source mechanism inversion to

two local earthquakes (Mw4.5 in 03/21/2015 and Mw4.1 in 08/18/2015), which were

recorded by both the Incorporated Research Institutions for Seismology (IRIS) and

KNSN, and widely felt by people in Kuwait. The earthquakes are generally small

(Mw < 5) and are shallow, with focal depths of about 2 to 8 km. The depths for

most of the local earthquakes are consistent with the reservoir depth - 2 to 4 km. We

determined the location and source mechanism of these local earthquakes, with the

uncertainties, using a Bayesian inversion method. Our results show that most likely

these local earthquakes occurred on pre-existing faults and may have been triggered

by oil field activities. In Kuwait, where oil fields are close to populated areas, these

induced earthquakes could produce ground accelerations high enough to cause damage

to sturctures near the earthquake epicenters.

More work could be done for the ground motion simulation for the whole Arabian

penisula due to earthquake in the Zagros belts. This could provide a general picture

of ground motion distribution in Arabian penisula and help the countries near the

Zagros belt to generate more realistic building codes. For local earthquakes in Kuwait,

a detailed shallow structure model would be inferred from the local seismic data, in

order to determine the location and source mechanisms more accurately.

Chapter 4 applied three different event detection and three different location algo-
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rithms to the acoustic emission (AE) data derived from the fracturing experiments in

a cylindrical Berea sandstone sample (Diameter: 36.43 mm; Height: 76.7 mm). The

first P-amplitude and waveform-based Bayesian moment tensor inversion algorithms

have been applied to the AE data to study the source mechanisms of this fracturing

related pico-seismicity. The migration of the AE event locations as a function of

time showed a spatial and temporal evolution of microfractures in the specimen. At

the beginning of the fracturing processes, a few AE events occurred randomly in the

specimen. While, as the main fracturing, which was indicated by a rapid differen-

tial stress drop, occurred, the AE events increased significantly and tend to nucleate

along the fracture. After the main fracturing processes, fewer events could be de-

tected and these events are generally along the formed fracture planes, the geometry

of which has been recovered by laser scanning the fractured specimen surface. One

thing we should notice from the AE location during the main fracturing is that the

events generally scatter all over the specimen although the trend of nucleation can

be observed. This may be due to large errors on the smaller events or there could

be many microfractures all over the samples. The larger evens with good waveforms

during the main fracturing correlated well with the fractures. These may be because

large events are occurring on the fracture are signal to noise ratio is high enough to

locate them very accurately. The moment tensor analysis of the AE data shows a

general dip-slip source mechanism for the selected events with good waveforms along

the main fracture, and a vertical maximum compressional stress. However, some

events indicated a horizontal maximum compressional stress, which may be because

of the inhomogeneity of the specimen, or errors because the waveform amplitudes are

without good sensor calibration.

The AE characterization for laboratory rock fracturing is of great challenge due

to the large data size and the difficulties of amplitude calibration. On the other hand,

because of the controllable laboratory fracturing process and the recoverable fracture

geometry, the AE study has its own advantages for studying fracturing physics com-

pared to using real earthquake data. For future work, I will develop a more efficient

and automatic algorithm to analyze AE data accurately and reduce the labor work
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such as phase picking. In addition, the AE data should be calibrated to present ex-

act physical meaning. With these two prerequisites, we may design AE experiments

mimicking real fracturing processes and develop the concepts to better describe the

fracturing processes under geological conditions or human activities, e.g., hydraulic

fracturing.
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