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CENERAL INTRODUCTION:

any of the problems pf molecular structure are
concerned essentlally with forces., The stiffness of
alence bonds, the distortions in geometry due to the
various repulsions and attractions between atoms, the
strength of the tendencies of valence bonds to occur
at certain definite angles with each other, are some
examples of the kind of problem in which the idea of
force or stress 1s paramount. Usually these problems

nave bzen considered through the agency of eneigy, and

ts changes on changlng configurations of the molecule.

)

The reason for this indirect attack through energy,
rather than the more qualitatively illuminating one by
ccnsiderations of force is perhaps twofold. First, it
is probably thought that force is a quantity that is
not easily described or calculated by wave mechanics,
while energy 1s, and second, the first molecular prob-
lems to be solved have tecn the band spectra, strictly
a problem of energy as such.

It is the purpose of this thesis to show that
forces are almost as easy to calculate directly as en-
erzy ls, and that the equations are quite as casy to
interpret. urthermore, there exists for quantum me-
chanics a stress tensor of molecular forces, analagous

to the llaxwell stress tensor of electric and magnetic

forces. The thesils 1is, thus, very naturally divisible



into two parts. The first wlll deal with considera-
ticns of the forces on the atcms of a molecule, and
second part with the form of the stress tensor in
the space in and around a chemical molecule.
Unfortunately, time did not permit the actual com-

vutation of these forces and stresses for any real

cas

e, rather only the form of the equations for force

and stress have been worked out. The following is thus

to he looked upon as a descriptlon of a method of ob-

taining information about molecules, few actual compu-

tations having been performed.

FART I FCRCES

-

4 usual method of calculating inter-atomic forces

runs somewhat as follows: .
For a given fixed separation of the nuclei, the
enercy of the entire system .(electrons and nuclei) is

calculated. This is.done by the variation rnethod or

other perturbation schemes. Thils entire process is re-

peated for a new nuclear position, and the new value of

the energy calculatéd._.In this way, a plot of energy

vs. position of the nucleil is obtained. The force on a

nucleus is, of course, the slope of this curve.

Now the following method is one to obtain the

forces at a given configuration, knowing only the con=-

figuretion and not requiring the calculations at neigh-

is, it permits a calcula-

-~

boring configurations. That




tion of the slope of the energy curve as well as 1ts
value, for any particular configuration.

It is to be emphasized that this permits a con-
siderable saving of labor of calculations. To obtain
force under the o0ld scheme the energy needed to be cal-
culated for at ieast two (or three, 1if accuracy 1is to
be insured) different and neighboring configurations.
Zach point requires calculating the wave functions for
the entire system. In this new method, only one con-
figuration, the one in question, need have the wave
functions computed in detail. Thus, the labor is ap-
proximately half as great,

The method is based on the following theorem:

The force on any nucleus (consideredvfixed) in any
system of nuclel and slectrons 1is Just the classical
electrostatic attraction exerted on the nucleus in
gueztion by other nuclei and by the electron ch#rge
Jensity distribution. The electron charge distribu-
tion is of course gilven by p(x):?/q-[x) ir  A-(x)

-

is the charge distribution due tc one electron [, the
. - .

usual expression for which is J/LJ(?yfy et ,

where_ﬁk is the wave function for all the electrons,

and here, as later,‘fijfwill mean Integral over all

coordinates of all electrons except those of electron £. -

This is an interesting result in that it indi-
arnother way of looking at wave mechanlcs. All

[a)
CQ‘.

forces on nuclel, ctc. can be considered as purgly
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cal attroctions involving Coulomb's law. The

v
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e
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slectron cloud distribution, however, 1s prevented

(6]

spom collapsing by obeying Schrodinger's equation.

KECTN
Lo Tne

sorsiderations the nuclei are considercd as

0

c

%]

mass points held fixed in position.

T have applilced tho theorem to obtaln an expres-
sion for van der %Waals forces, and also to polariza-
bility by considering the force on an atom In a non-
uniform fileld.

2ecauge 1t permits one to get an.independent
value of the slops of the energy curve, the theorem
~ignt increase the accuracy in the calculation of such
curves, since a knowledge of both vg}ue and slope per-
mit a more accurate cur§e to e drawn than just knowl-

-

edge of value. Further, to obtain normal scparation of

)

atoms 1t 1is necessary to obtain a minimum for the encr-
oy curve. This usually requires accurate calculations
of the onergy at several points around the apbrbximate
minimum. If the slope of the energy is calculated in-
dopendently, however, by means of the force theorem,
it 1s a compnuratively simple job to obtain accurately
‘the position of zero force.

It 1s also quite useful for gualitative coﬁsidere
stions.of etomic forces. It hecomes quite clear why
the strongest and most important forces arise when
there is a concentration of charge between two nuclei.

The nuclei on each side of the concentrated charge are




sach strongly attracted to it. Thus, they are in ef-
fect attracted towerd each other. In a If molecule,
for example, the antlisymmetric solution, because it
~ugt Le zero exactly between the two H atoms cannot
concentrate charge between them. The symmetrlic solu-
tion, however, can easily permit charge concentration
between the nuclei, and hence 1t is only the solution
that is symmetrical in the two electrons that lsads to
strong attraction, and the formafion of the moleculs,
as 1s well known.

Sometimes the atomic wave functlon of @ slngle a-
tom is distributed in space in such a manner as to have
large concentrations of charge situated in certaln ros-
itions relative to eacﬁ.other. Exémbles are the two
perpendicular concentration; arising from the p elec-
tpons in the oxygen atom, or the four tetrahedrally
arrenged places of higher charge density In the carbon
atom. A new'atom, being_brought up to this;ZWill”try
to overlap its charge with that of the central atom,
for otherwise 1t would not be strongly attracted.

Thet is, of course, the generally accepted explantion
of directed valence in the atomic-orbital method of
approach.® It is scen here as obvious that concentra-
tions of charge hetween atoms leads to strong attrac-

+ive forces, and hence, are properly called valence

bonds.

#uantum Theory of Valence, J. H. Van Vlieck and A.
Shorman Rev. Mod. Phys. 7, 167 (103G)




2., RAULTION FOR LEE FORCES
Let A be one of any number of parameters which
specify nuclear posltions. For example, R might be
=he x component of the position of one of the nuclel.
s+ force J‘,\ is to be associated with Ain such a way that
ﬁ J/{mcas wes the virtual work done in displacing the
nucleil al/\. This will define the force only when the
molecule is in a steady state, of energy U, for then
we can say )(;1 - '3',‘(/ . In the nor}-steady state we have
no sure guide to a2 definition of force. For example,

— +
= j‘ﬂ HY dn be the average energy of the system

if
’ 2 (i7)
we might define f‘ = - X (1)
. ] 2+
Cr again we might teke f; to be the average of -~ a3 or
L 2H . 2V
h_._. by 4 EF "4 (2.) smee 55 a1 -

I shall srove that in the steady state case DLoth
these definitions of force become exacztly equivalent,
and equal to- %/the slope of the cnergy cur-vé.‘ Since
(2) is far simpler than (1), we shall define force Dby
(2) in zgeneral. 1In particﬁlar it gives a simple ex-
pression for the slope of the energy curve.,

Thus we shall now prove, when HY=UWana _/ ypv =/
(where we take yreal, an inessential simplificatioh)'

that gl‘-/ - Juv I A

)= [pHEw - [Vt Ve v JH VY A

L {7 4 - fww2Y an
Whence, —g_;"-jz ’-;"70—“ ,‘ﬁ"v’w*/w\?'gff/-z %;_der fw 5

But,




2 Y, 5
Fow, Green's theorem states that [{"07 o-gv ’I}#so the

second term on the right can be rearranged to cqual the
f.l.i"‘u and vle wr'r-ive at the relatilon:

_____ f ",m w—v&”}k-jw“—‘f.w
|74
,z,f%l'uyﬂ-f""”g o = ".uf‘”“‘"' JPY 55

%4 (/]
or fA = —-f¢¢’a dr = f,l jin the steady state case

. N 1 ’
the first term vanishing since ,’v:{ gl /4r= ") O This

proves that ) 1is a simple expression for calculating the

slope of the energy curve if the wave functions are

known.

3, BFFECT OF PERTURZATIONS

Next let us consider the way .the. force acts under
o perturbation, by the regular Schrodinger perturbation

Let Vg, be the unperturbed potential, P the per-
+p)#=UY pe

metnod.
turbation. Let the solution of (__o
Y- YU+ +¥ ynere W is the zeroth approximetion, ¥

the first, and ‘)‘{ the seéond approximation to the cor-

rect wave function.

IV, ‘
Then -)i = .[Voz 3;’ v zeroth approximation
1 2P ¥
4 {]% = +2/.4,”)—}- first approximation

W, (4*2V
{ZJ?’ 273 flf " fj‘f }secona approximation

(3)




It is seen that it will be very advantageous to choose
M_ o

the pq.r'a*]eter A such that = Evy . If this is pos-
cible, then
2 JP A '
-f,‘ { f Ty first approximation .

2P A
+ {3.(%4'0 21 - &) second approximation.

But, by the usual perturbutibn methods,

hoth o, #-Z FZa
wvhere #is the wéve "'mﬁction of the system in: the}',’un-
rerturbed normal state, of ener'gy'Eo , and @ 1s that

of the unperturbed system in state X, of energy Eg.,

and ‘/P/K} = jﬁ. P Gy dv? .

Substituting this in (4)we obtain

- G I1%EL) +2 2 “””“” &—) 7

We can now make some applications of the equation
(5)to van der Waals forces and polarizabiliﬁy.',‘.-"'f’?'*‘
4, VAN DER WAALS FORCES m

We shall fir'st consider the case of two atoms,lbe—
cause of its relative simpllcn.ty. Let, here as lster, -
Greek subscripts «4.. stand for nuclei, and Roman o‘nés"

» Jsy k.. for'electrbns. If R is the separation of
the two atoms then P'pq where @ < 2 (x; %+ --zz. ;)
summed over all electrons i of one atom, and all elec-
trons | of the other atom.”™ Let ocur A parameter’be

R; then since only the perturbation P involves R, we

.
g

#H. largenall. Rev.Mod., Phys. 11, page 1 (1939)




can use equation (Gl Assume the atoms have no perma-
nent dipole moments, or (,,/q/,,)=0 then (5) gives

the relation,

-

2

f - - _E;Z (oo Ia,*-t) ; n , N
— usin ¢ quantum numbers

R’ “’l ‘a*F’-Ek-E‘ : g q v k, ] »

for the two different atoms, energies Ep and Fj.

.

For sevaral atoms we take P '§ R Que
. | ; ‘

where R is the distance from atom«, to atompe, ahd
“w

Qup = 37 (214 Yy-212), sufnmed for pairs of electrons of
the atoms #palone. We take for our'A parameter the
number-,u/, giving the .displacement of nucleus 2 in some
direction. Cur force )f,‘, is force 'ori/é in the direction
of Mo . The non vanishing terms, 1f we assume no per-
manent dipoles, lead to

/“ = -6 éj "‘L""r (00 / C?/ e

. Aaw | J/“p R & 4o Lo 1Eq.~Ex, -Lp,

whe re "‘r are quantum numbers representing the various
(orthogonal) states of a‘tom Y of energyf}r

In words, the force on nucleus 2 in the,a,dir-ection
is the sum for 211 other nuclel «, of the usual expres-
sion of van der Waals force that would exist bbetweenwb
and P, times the cosine of the angle vetween Kagand the
direction,«,. (ie. 3/’ 72 ). |

This proves the well lmown result that to this de-

gree of approximation van der Waals forces are inverse




ower, central and additive force:z.
7 p

- Oe  PCLARIZABILITY
The polarizabillitye 1s defined so that if B be
he electric field an atom finds itself in, M=~ £

1.
Vs

ic the dipole strength induced. Ve sce going to meas-

-

ure forces. The force on an atom with dipole strength

i is ﬁf'g%;

Let a be the z!cordinate 7 of the nucleus. Ve

want to take a as our parameter; varying it gives the

force on tho nucleus. The results will be calculated

at a= 0 however. Ve can taoke the perturbing potential
:(z—a) £ +4 F(Z-d)z' : so thga force on the nu-

cleus should be, neglecting F? relative to §, & + KE)F

is the direct attraction (nucleus considered

tg

since

with unit charge). Now,

—Q—E =£+tFZ . P‘t = Z£ ";.,LFZ"
dA& Jaro . ’ a=g
Using (5) we obtain,
Goaﬂn
Torce = £ # F (0/%[0) + EF?Z *
' T
direct T permanent induced
attraction dipole  dipole

The permanent dipole moment  (0140) always equals O

for atoms. Since the force on the induced dipole should

be « EFve see that

2
3¢ 2 (0/z/x) the usual expression.

o =
[ Fo —£K.




S CTHIR MODIFICATIONS OF THL TORCE RQUATICNS

De N L

e shall exteld the force ecquation (2) to get an
even clearer plcture of what it mcans. Suppose, for

cxarple, the system for which Vis the wave function

contains several nuclel, and let the coordinzates of

ore of these nuclel oz)be X,7' Z%x X/: wherem=l, 2,5 |

mean X,Y,2Z. Suppose our A parameter to be one of.

these coordinates, and the resultant force on the nu-
cleus o in the M direction will be given

directly by,
--fw"-”“ from (2). -

Ilow V i3 the interaction of all the nuclei with each

other ( Vup), of each nucleus with an elsctron ( Vas ),
and of each electron with every other ( Ky ); or

BVer t E Ve # Z

The nuclear-nuclear forces are of no interest, since
they are easy to calculate Dy Coulomb's law. ¥e shall
consider from here on only that puart of the forces due

tc electrons.

Suppose m, are the coordinates of electron & , and

as before, X"those of nucleus «of charge ¢« Then, X e %

where R,:"- ‘é ( X 4‘:}2,' So we see that
LA/ T §a 2V and that ¥ <o
IXZ I, IX

Thev (") leads to
- +j¢ll' 2%

. 94"
FAL does not invelve any

. sinc
 [£ 2s [fifuradario o

¥e




xcept those of slectron £.

®

ciectron coordinates
Jr linally
£ J{Zpmg £l v 18
where E,: o 5)‘,/5{*:: is the
field at the point+ due to the nucleusa , The 3N
space for N electrons has thus been reduced to a 2

o« Y :
space. This can be done since E“(f)‘/depends only on i

and is the Same function of 2“no matter which 1 we pick.

Thus the force on the nucleus is the attraction

calculnted electrostatically due to the charge distribu-

tion P (X) =‘z,’,o‘.(x) r_‘,_(x)=j_:'/¢'l/dv_’

where (7)
It 1s possible to simplify this further. Suppose
we construct an electric field vector MF (double lettersfF
for vectors, corresponding single ones f;;for their com-
ponents) such that V°/F="4’7f‘:7"'") y V*F =0 )

- z
or, for one slectron, VoF~ 4'”"0. Now from the deri-

vation of E; we ¥now that it arises from the charge on

nucleus « , say qq’ so that VeF =0 except at the

harge ¢o Where 1ts integral equals .

"

Gen, %o - o[ (eE)ex bre t oL [5 (VeEY dw

M

%d [F/;(]dx‘ (‘?))

i’he transformation
of the integral peing accomplished by integrating by
varts. Or finally, the force on a nucleus is the charge

on the nucleus times the electric field there due to all



the electrons.

This field is calculated classically from the charge

~

distribution of each _/I/WVWM

“or later purposes I willl speak of a nuclear charge
density /Ay even tho the nuclear charges are concentrated

cnes. In this way, I can say for example,

S oy Fr = 27 g oy v
R a.llt

e .
-1is the force on all

nuclel in the région R.

It is these forms of the theorem which are men-
tioned in the introduction as leading to the most easily
interoretable results, as for example, the attractions
arising from suitably placeé chargé_concentrations.

7. THE CHARGE DISTRIBUTION .FOR VAN DER WAALS FORCESH

Ve are now in a position to make an analysils of van
der Waal's forces in the light of theoreml*)ﬁ; Ye shall
only consider two atoms, ®« and® , each having one elec-
tron, | and? . Ve wish to know what charge distribu-
tion nucleus & sees and how the attraction of « for
this charge distribution leads to ven der ¥Waals force.
411 charges are considered to be unilt chargéé;'”Proofs'

for the statements made in this paragraph have been

relzgated to an appendix.

Tetailed calculation shows that the force on £ cdue

to the e lectron belonging to A is negligible (of order
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‘kLio) compared to that due tec its own electron / (of
order 74‘7 ). We thus need only find 2(Y orfIf‘/’uf. ~ The
non-vanishing terms of this are either syrmetrical =-
bout the nucleus, and hence leading to no force, or
they =2re of the form ‘6[') #.(1) where (l/zlmj‘ ?‘:0-

£ the ground state of & is an s statc then, £ is an.

tate eném 1s a p state, or eclse L is a p state and

6]

M is a & state. All these terms have posltive cog'ffi—
cients if (#/Z/m) is positive, and negative coefficients
1¢ (4 1x/m) 1is negative. I have drawn some diagrams
tndlcating the reglons where these functilons g, #, are
positive, or negatlve.

4ll these charge distributions nre added together
with suitable coefficients (positi\}er for the terms in

-

the diagrams), and added to the symmetrical distribution.

The result is, of course, 2 ,distribu{:ion with a somewhat
zreater charge densitf on the right of the nucleus than
on the left. ﬁence', the nucleus is urged to the right.
nxact salculations of these terms lead, after several
trens formations, to the expression for the van der viasl's
forces obtained before.

The charge distributions for some of the terms ap-

arly riwva o rq'?v-\r\'levmnmoh'l- .
a ¥ oglve & QLpPpC.Le MCHCIv

0]
t-J
(]

pear-as below. These terms ¢l
to the atom. They are added after multiplying by posi-

- . :
tive coefficients of order ®7 and so cach atom has in- -

;
i
:
|
i

duced in it = dipole moment of this order. It s the

+See Also E. Wi ner; Lectures on the Properties Of The |
Solld State age 695
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sttraction of this nucleus for the unsymmetrical charge
distribution that leads to the -’% van der %Waal's at-

traction.

p state

The z direction 1s in the direction of the other.

nucleus, toward the right.

8. CONCLUDING REMARKS
I would suspect that the actual calculation of the

forces in a rcal molecule to be not impractical. The
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) ) .
f&“}"i{‘, is not too different from f‘”’f‘/"’, which

lntter must be calculated f the enrgy is to be know}m
2t all (as i;r; the;varia:'tional me.thod). o

I have made an unsuccessful Aattempt‘ to compare the
ac_c;mady of this -_me:thod.of' getting the}slope when we |
use an almost correct wa‘ve,f‘uncﬁtion obtained from ‘_t.he_
varistional method to the accuracy of the ordinary wéy

of getting the energy at ‘successive points.
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z.nT IT.
0. STRESSES

In varicus molecular problems, questions aerise as
to the relative importance of certain of the forces.
For example, how much of the tendency of H atoms in CHgy
to be tetrahedrally arranged arises from H-H'repulsions,
and how much to actuval diréctive efforts of théicarboﬁ v
valence bonds. vSimilar;y,tis‘it the HfH;fegéiéidnb |
which forées the H-0-H gonés to méke an éﬁgle of 106i
degrees, 1n splite of the tendency of the O valence
bonds to issue at only 90 degrees. How strong is the
H-H repulsive part so that we can get an idea of the
oxyzen bond "anpgular stiffness" in.;ﬁder to more ac-

curately get elastic constants of such crystals as

IR B B
Ljltck

3

tZ.‘.

A real answer to such problems could, of course,

only come with considerations of the stresses 'iIn space

o

in verious regions near the molecule. Tor example, if
the H-H rewvulsion is strong, large compression might be
across plane A, Plane B

H Atem might give tension coupled

with shear, the tension to
hold the H in, the shear a-
rising from the strained

state of the normally per-.

pendicular C-H bonds.
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in answer to such questions can be given, of course,
only if a stress tensor uscan be found such that its
Intesral over any closed surface R, f&»‘d" slves the
resultant force on all nuclei inside R, * the time rate
of chunge of the total momentum in that regidn R of the

clectrons (this last term vanishing in the steady state).

ot

he "quantum field" would be just ana-

fuch a tensor for
logous bto HMaxwell's stress tensor Tfor the elcfromagnetic
fieid, :
10, ?oém a THE STRES TENSOR FOR ONE TLECTRON,
shall first consider the stresscs in space for a
sistem contalning only one electron. The generalization
from this 1Is easy. Nuclel are con¢idered held fixed.
Yie want)fﬁla“ﬂ%o be equal to the
resultant force on all nucle; in ® plus the time rate
of change of the total momentum in R of the'elnctron;‘
This total momentum in R of the electron is just the
integral ovér'R of‘thé olectvon momentum density., This
last ferm vanishes in the steady state condltlons, but |
we shall consider the gqural,case, - Now Green s}theoyem
says that | R . "
L Sunodds =) UoSy dnr L
R R Z DSme
Ve s meant & Fx.

Thus we would like the following relation to hold:

.

S Ul b= [ frEides f ol p b 2 2{f 1A 2 ‘/’"’ ']}

or

Py *
Voo Suws Pubu Akt 3 B0V 3




whore /?Vsnuclear charge density, E the clectric field‘

due to nuelel, such that Vel =/ VAE=0 ;| E=VV Y
and V 1s the potential the electron findé itself in.

also fF equals the £1z1d due to the electron such that
VelF=-4T¥¥'s vafF=0 (8) lotting ¥ 5e the wave function

ng the state of the electron.

'_l
o

deserib

serm on the right hand side of (11) is

ot

The firs
by (10) the force on the nuclel of R due to clectrons,
the second term the force due to other nucleil, and the

third term is just the time rate of change of electron

Tt is seen that in definlng S, a similar 4iffi-

culty a2rises as in defining the force above. The Saa
is defired only thrbugh its diVGrgénce, and this does
ot permit a unldue solution., T will proceed to find

T

one s=olution of (1ll1), however, reserving, for later,
remarizs on its unliqueness.
&’L

& tensor satisfying (11) exists, and it .is conven-.

ient to present it in three parts;

Sars = L + Mues + Nowo vs)
In this expression 44913 defiﬁed‘by R
TN - AL EEL] W

and i1s just the Maxwell stress tensor, for the nuclear=-
nuclesar forces, and which contributes the second term ..

on the right of (11). It need not be considered furthar.
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also f;,‘,is glven by

ST Luns = A;; Fot b £y = OE olF duns 7

Al , ot ¥, I ¥t syt Qy _ oY 'V']
Mo = iewoom Lty t ¥ Lar,  Jxr. 31, JA. 74, Oy

and
“ie nov prove that the divergence of these last two
tensors gives the first andu third terms on the right
of (11). -

1i. FPROCF QF THE STRESS TJI\SOR EQUATION
First we find o __Z 4
,JU 7 vJ vy
My, - 411;: [" 4(':). ]" v 4

Froof. TFrom (18)

T h* AL l/ 2 T it Ju J P
2V o L Al -74'
- ”§ e7%n] 2. [ ax X ’fn u.. A P50 QX :A',.

#

,,,,. {"’ (V l(’)f (v'wj (v‘Wj"’-(v‘l#)

But Schrodinger's equation says that

A o= A Iy A et ¥ ypr
Faom v il 57 tV¥ and g5 V=7 T &

Substituting these values of V'“and of V“//'in the above

ve get, +£2 2 ‘ £
NITIWEN 245 EF W & /r'f/ ¥
A 2o | A ¥ Syt w2 _.y_«f
—*J'f 2 2% *.’rt a,\’” ;tf 3}{— V,”:xu

fall'
]"‘"’ JF lcading to (19).




i
n
’—J

1

Seccend we find IZ‘,AL;“ - y%’ (z7)
rroof. TIrom (17)
T Vaby =& [£.F. f]- . [FuFu $usT
M

L, (V=) + £, (V+E) + £,(Vol) 7 Fa (V&)
or, #7 ,e£,,, '4‘7’5/’»'-‘/""_”*"; by (12) and (14)

or Ye£ = F/}Y :Vﬁﬂ' sinceF*V¥from (12), proving (21).

Addéing (19) and (21) we obtain

7

Voo (B tMy) B fat A 2 [y 3Y - #;}{‘] (oo,

Thus the sum of the divergence of &, and Meglves the
first and third terms on the right of (11). Also the
divergence of M, sives the second term. Hence (11) is

4 4
(VG VIS

12. CAST OF SEVERAL ELECTRONS:
The following formulas may be proven in an analo-

gous manner to those of one electron:

ry ’ ' .
f‘.ﬂ[“‘;n]‘/-s is the re°ultant force on. nucle:. in R .-
L4
plus time rateuoi_‘_ch.ange of momentum (” /

in R of the  electrons.

The nuclear part M.being left over

Sac =l +MF

Mo .
for only one integration.

4nEl, <L Ff4FLE, -FF L. 7’) ’y
VoS =y [T Y hde ‘oaFe [ETV) £

28t vk _ i:." 2277 e ..
M, < [$ ],‘-;-_' ;-5;(004 -7',;," o1l IAL ;x‘; ax,"]‘:,,y
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ethods exactly analogous to those u>sed‘ in corlving | i
(11) and (21) Show‘that ’
Sl G ST [P - ¥ Kades

+ j,ff ""f';’f:: A dor
shere I 1s the Interaction potential‘é' Vjjof the elect-

ronc with ceach othecr.

r ‘DI | -_ - :1'
e £S5 ax; =0 since T Oa, I ',_9

L}

Thus the validity of equation (lli) is established.

13, TUNILUZNESS
As previously mentioned, unfortunately Juwls not
unique, and I can see no way of meking 1t so. It is

ossible to add to it any tensor A, whose divergence

'S

vanishes identically, o,.nce}f;,.is defined only through

ts divergence. Such divergenceless tensors are easy

to construct. Ior example, i* A 1s any vector and 1f

. JA .
e = ‘,7: - ;‘“’ (vesr) then ?..’Auu =0

0f course A,,,1s symmetrical if VxA =0

For example, with A= Jﬁ (”}Ile ,.1nd that we could ‘

nzve just as well written ’
.. _ AL _ A" [ fJ“)’ gy 2t pt _Lr v ",&)

This form of the tensor M, n*igh‘ have been used insteadf

of the form defined through equation (18). There is nom.‘ ;

»cacon to choose one rather than the other. The /‘(..g

=

of form (18) it the 7, mentioned by Pauli.® It is to e

#Handbuch fer Fhysik XXIV Page 106
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be nobticed that, although Pauli mentlions space tensors
foyr guonbum mechanlcs he does not at all have the equiv-
sient o our equation (11). The divergence of hils Tww

(19), gives only the momentum flow part of the actual

) }1_‘.-

forze, 2nd this only after "-— :/;0 13 added to it.

It is to be noticed that we have considered th

“

fixed. The gencralization to the case when these

ruclie
sre considered as moving also, 1s very simple to male.
.O

In that case we can take —fe,as the sum of“s 7,28 in the

many electron case (18') except that some of the elect-

nons are considered as nuclei. The tensors £oue and Mevu
Iy . s

are unnecessary. The I‘SA“,OJS’[,[{N,..]"{S' is then just

change of momentum contained in R due

b

Yo de & -
the time rate o

to electrons and to nuclei.. “In the steady state all

t»is vanlshes.

E HYDROGEN ATOM

3

14, TFORY TOR
The stress tensor has been worked out for the
snoce around a H atom in it° normal state. I have used.

IBs

spherical coordinates X,s/4, XK= 8, X329 | The wave

function is = J& €N

Ve get ‘ | P o
: o o o ' * A H + . (]
gﬂ" : ";[..- ,”‘-f/-'? 734
; . | | -
o i -dn - . e _» _ 2
-2 T —— : B ; P [~
an o ¢ J ; o At AY IV
_ o« ' < _ 32 _2
- o 7 o ¢ T3 e

g

b
b
'%)
i
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ZI’ 5" = C ,A’n ) ’ .
A” b - L :
_ e .ar_ <. J? :
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P o e .sl2l |-
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meaning, as one would expect, compression along r and

tension tra neversely

The largest values of %,“ are near the origin and due
almost entirely to Eﬁﬂjat large distunces the values

are small, but these are due primarily to MM“M

15, COWCLUSION R
| Admittedly, thie Shortvacceunb“ef‘bhe stress‘ten;
sor leaves mucn te be desifed; It vould be very desir-'
able to see just hevi ’thev stress tensor behaves for a »
real molecule;i nttempte have been made to calculate
thiu out lor tae simple hydrogen molecular ion, but '_vf
the formulas lead to integrals of considerable diffi-  ?[5
culty, uben the calculutlon ofA/:is attempted. Ellip-nlﬁ
tical coordlnaues were ‘used, |
,nI”would conclude that;the‘aeﬁualfcelculétienieff
the stress tensor for eny real pfoblem wouldvbenextfeme;
1y Gifficult, although the information resulting from
such a ‘calcul 2ticn may be well worth the trouble. |

The major difficulty arises from the computation




of the fiold fF ave to the te.l.éc‘trﬂ'éh cloud. T’his:éou]‘.d',
in principle, be calculated using Greon theorem, 1f
T
( z
¢(’}:_[ v Q)JJW" and fF= V/d then VGIF""‘”y

but this 1is hwrdly a prac+1cal scbeme.

......

BT

3




* - 26 -

APPENDIX
Proof of the statements made in paragraph 7.

Consider two nuclel < and @ , with electrons 1
and 2 respectively. The perturbations due to the
interactions is @+ zvS wheref @ = [x.x.+%y -22%] A)

= EL0rz -z ) (2xnd 2%y, ~328) (2-2)] (g)

We need only consider terms up to 7%-7 in the ex-
pansions as these will turw ouﬁ to be the first which
do not vanish. By the usual perturbation theory we
set, wffq*lﬂ*l{{ where

i, = 9ot) 0, (2)

W - £ &1101.0)9« (1) del2)+ R‘ E-‘.:{ft/-”) & 1) 12)

N

i‘(ﬁlqua)(‘n«Q»)"ﬁ'r (#s OMM){“““ S“) +i7a"'j"‘"’[“"4")¢‘(|}¢,(1)
(oo ~E4,) (b o) ey

Where -6A £ is needed for normalizing ¥ . summations
are implied on k, 1, m, n. E;}neans EFe+£,  the energy

of atom k +that of 1.

The charge dehsity due to electron 1 is
)= [Py = Wi +2 [l A 4 2 [ ¥ A 18 b

(1) ot +2 F % Pot)lmm Go0) s o Yoo Soe) s udln 0 1
Foo - £oy) (boa ~Lmm) |

t _;‘ (‘l qo") (‘J’t 000/4_' .
(ilo fk‘y{foo [ﬁ‘n} ¢(}/‘“ y - .

o . Jeme ‘t'v-l oo = O
CU@)[MSO/ {JJ“)/ “) .fv,S..=0.

. { oo "E’u}([,.‘[*n)

h‘n s

% H. Margenau, Rev, Mod. Phys. 1ll. page l 1939.
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Now let the subscript a represent the p state such

that (az/0) #2
Let « represent any p state at all.
Further let/ represent the d state combining with«

such that («/Z/73/ #0

Notice that .4, -0 unlesskl =< , and,, 8., ounless £ =73,

“e§,, -0 unless &<, , and,, s, -ounless £

and 45, -0 unless #°/° because of (A) and (B),

c) -
The terms,may thus be simplified, the only remaining

ones being,
2 fon Gudlca God 1 < Boo o Qoo
P(’)"' (/-1"} d“/ﬂ ’-R_—‘ (;.._ﬁﬂ){‘;._ﬁ‘}’”’/".l-ﬂ‘ (t-ou' “)(E‘._[“) d‘/(

+ é’-, ﬁo-l/})fnp ;aﬂj (7. ¢‘,+ 2 oa Sue 2t Goe . 5 .
Coo—tin)(Eoy-2p) R7 (fas ~Fare) [Fo0 -222) '

4

+3_ (‘fd an) (4,1 500)
rR7 (f——o.‘["){£°’-[.ﬁ) ¢: ¢/‘

Summation is implied over all repeated sujf?&gs.of a
given type. The terms in the first line are symmetrical,
only the last three have an electric moment. A careful
analysis of the possible coefficients of thgse terms
leads to the result that the sign of the coéffiqient of
#u ¢, 1is the same as the sign of (m/2z/4) . Hence the
disymmetry of the various terms does not tend to cancel
out, but rather to build up.

Now using equation (6)we see that to get the force
on nucleus 4 we have two things to consider, the effect

of electronen« and the effect on « of its own electron

1.
The first isf[ %‘3#]/’@@11&9 X., ¥, z, are the
(& A (3




coordinates of 3 relative to @ , ani R is the distance
from « to 84 . This becomes, on expandingf{:%‘»«g g%;_‘:_z“)ﬂ,)dn
Now A/is likes(/calculated above.
Thus the only term which can arise of order equal to or
less than  is [A¥~/Zi4iwhich clearly vanishes. As a
matter of fact, the first non-vanishing terms are the
l/ﬁlo terms. Thus the charge distribution around /&
only effects « as /g’

The effect of the charge distribution I on nucleus

« is of course, [r(y -1—; A4v; which becomes

F = % (oa Q-vs)& Soo/ b2 / dr+ 2 loa Se,c)(ux §oe)
" . - 0"}(!“-&/’} ] ’ 7 °7 { u.}(":o tdd)[ﬂ’ 77—1'7 Pe b

f_g'- o Qoe wp Seoo /A{ Ao &)

k7 mo-gg)(ﬁ‘- ‘ﬁ) ﬂ_"

-

These expressions (/can be somewhat simplified by

means of the relation [dﬁ ;,‘E,Zdw=(;_—,_f2)/;/‘ 2 4
= 4

This may be proved by noting thatjg_}z.(;t'/g,-.—fﬁ.,—"; (4 Vo) — J Yot 2

But H Fy= Eady =TtV = (T-7)gyor 7 P4=tadh — Tt

Mg

L s OV _ E
from which it follows that,-J% (7% =4 33 =7 3

Substituting this we obtain
o J 8 By o = S S =S A7 ) S 2 i oy Y

leaiing to the above relation since the terms in T cancel

each other. Thus the exwression (/for force may be re-




duced to, (o 5) (n G0s)
{on dd (.f .fao oA Jdutw/ (%t Yoo 2
—F =2 el - W2 a2 2822222 [ A 2 4
F
4z e Bed o S—"f)ft:-&)fa;’—,q.. =

(Coo — Fan)(Eo0—£ys)

It might be desirous to prove this from the usual

exp]’.‘e ssion (./.( QQ’){dd 000, -/
F = Lo g-' J

but this 1s
2 == q" /’fmlmt) )“ﬁwél’-}d"“fsinca 5 =34 - LANY AN fnmw}
the last term (&‘*X"—JZ;"}’ vanishing on integration.

Now (o g, 25 b, = Jo 2 (soh]~Sh 4 SZ(ht)

But 5 %m Ln» f‘l)p:‘

L JEAE At = s Soe [ U by GO e Sy [Pt Tl %)

Considering only those terms whiqh do0 not vanish, this
becomes, after integrating over coordinates 2 on the
right,

fféu/ h/ %%”/«s«fo.’/f{o'/’”f“{w low Suo)f # 2 &£ #)

Similarly

JHdk3E At = ““&“}/"az k«@«o)f/,,xl., (I)

Since iﬂ:-,;z‘t this last expression([/vanishes.
2z,

® x (ZL/,
‘o

000
Now take + 22 H) + 2
ELo ~Eue x ( }

by &/
The first part is F, and. the becond is O so we get,
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m 2l 9o (o)) (5 - gz ) S

é:. "[a(-{

/'f-f vao}
- Z (ﬂo—ﬁ‘} [-‘d fq.o) //.)% yo A

- 5 [3x Quo '

ki

Showing that (F)is equivalent to e/ .




