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Doctor of Philosophy in Chemical Oceanography

Abstract

In this thesis, I use coastal measurements of dissolved 02 and inert gases to provide insight

into the chemical, biological, and physical processes that impact the oceanic cycles of carbon

and dissolved gases. Dissolved 02 concentration and triple isotopic composition trace net and

gross biological productivity. The saturation states of inert gases trace physical processes,
such as air-water gas exchange, temperature change, and mixing, that affect all gases.

First, I developed a field-deployable system that measures Ne, Ar, Kr, and Xe gas

ratios in water. It has precision and accuracy of 1 % or better, enables near-continuous

measurements, and has much lower cost compared to existing laboratory-based methods.

The system will increase the scientific community's access to use dissolved noble gases as

environmental tracers.

Second, I measured 02 and five noble gases during a cruise in Monterey Bay, California.

I developed a vertical model and found that accurately parameterizing bubble-mediated gas

exchange was necessary to accurately simulate the He and Ne measurements. I present the

first comparison of multiple gas tracer, incubation, and sediment trap-based productivity

estimates in the coastal ocean. Net community production estimated from 15N0 3 uptake

and 0 2 /Ar gave equivalent results at steady state. Underway 0 2 /Ar measurements revealed

submesoscale variability that was not apparent from daily incubations.

Third, I quantified productivity by 02 mass balance and air-water gas exchange by dual

tracer ( 3 He/SF 6 ) release during ice melt in the Bras d'Or Lakes, a Canadian estuary. The

gas transfer velocity at >90 % ice cover was 6 % of the rate for nearly ice-free conditions.

Rates of volumetric gross primary production were similar when the estuary was completely

ice-covered and ice-free, and the ecosystem was on average net autotrophic during ice melt

and net heterotrophic following ice melt. I present a method for incorporating the isotopic

composition of H 2 0 into the 02 isotope-based productivity calculations, which increases the

estimated gross primary production in this study by 46-97 %.

In summary, I describe a new noble gas analysis system and apply 02 and inert gas

observations in new ways to study chemical, biological, and physical processes in coastal

waters.

Thesis Supervisor: Rachel H.R. Stanley
Title: Assistant Professor, Department of Chemistry

Wellesley College

Thesis Supervisor: David P. Nicholson

Title: Associate Scientist, Department of Marine Chemistry and Geochemistry

Woods Hole Oceanographic Institution
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1.1 Background and motivation

The carbon cycle encompasses all of the mechanisms by which carbon is transferred be-

tween the atmosphere, ocean, land, and deep earth, and the environmental processes that

convert carbon between different chemical forms. Carbon dioxide (C02 ) concentration in

the atmosphere affects global climate because CO2 is a greenhouse gas. The deep ocean is an

important regulator of atmospheric CO 2 levels because it stores four times more carbon than

the remainder of the biosphere combined (Ciais et al., 2013; Le Qu6r6 et al., 2015). Glacial-

interglacial changes in the atmospheric CO 2 concentration are likely linked to changes in

the exchange of CO 2 between the deep ocean and atmosphere (Sigman and Boyle, 2000).

This exchange occurs through a combination of physical processes (e.g., air-sea exchange

and mixing) and biological and chemical processes (e.g., conversion of CO 2 to organic car-

bon through photosynthesis and to solid CaCO 3 through calcification). The rates of CO 2

production and consumption (photosynthesis and respiration) are nearly balanced in the

surface ocean, but a small fraction of the organic carbon produced sinks to the deep ocean,

where it can be isolated from the atmosphere for timescales on the order of 1000 y (Ciais

et al., 2013).

Human activities are currently perturbing the natural carbon cycle. Emissions of CO 2

from fossil fuel combustion, cement production, and land use change have caused the atmo-

spheric CO2 concentration to increase by 40 % over the past 250 years (Ciais et al., 2013;

Le Qu6r6 et al., 2015). To date, the oceans have absorbed 20-35 % of total anthropogenic

CO 2 emissions (Sabine et al., 2004; Sarmiento and Gruber, 2006; Khatiwala et al., 2009;
Wanninkhof et al., 2013; Ciais et al., 2013; Le Qu6r6 et al., 2015).

There are currently large uncertainties in the rates of natural processes governing the

exchange of carbon between the atmosphere and deep ocean, and these uncertainties make

it difficult to determine how ocean carbon storage is changing now and may change in the

future due to climate change. For example, recent estimates of the rate of organic carbon

transport from the surface to the deep ocean range from ~5-12 Pg C y- 1 (Laws et al., 2000;

Henson et al., 2011; Siegel et al., 2016), similar to the rate of atmospheric emissions driven by

human activities (currently -9-10 Pg C y- 1 ), and greater than the net flux of anthropogenic

CO 2 into the surface ocean (~2-3 Pg C y- 1 ) (Ciais et al., 2013; Le Qu6r6 et al., 2015). An

improved understanding of both the natural carbon cycle and the anthropogenic influences

on this cycle is needed to improve biogeochemical models of current and future climate.

Coastal regions play a disproportionately large role in the oceanic carbon cycle, relative

to their small spatial extent (Cai et al., 2006; Cai, 2011; Bauer et al., 2013). Addition-

ally, human activities strongly impact coastal regions (e.g., eutrophication, overfishing, and

damming) and global warming is driving sea level rise, further altering coastal ecosystems

(e.g., due to saltwater intrusion and erosion) (Cloern, 2001; Nicholls and Cazenave, 2010;
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Wong et al., 2014). There remains considerable debate regarding whether coastal waters are

on average a net source or sink of CO 2 and how climate change is affecting the magnitude

and sign of coastal ocean carbon fluxes (Frankignoulle et al., 1998; Cai, 2011; Bauer et al.,

2013). More observations are needed to resolve these uncertainties (Cai, 2011).

1.2 Tools for understanding the chemical, biological, and phys-

ical cycles of gases

1.2.1 Inert gas tracers

Modeling CO 2 and other biologically-active greenhouse gases is challenging, in part because

the gases are simultaneously affected by biological, chemical, and physical processes. Fur-

thermore, many of the physically-driven fluxes, such as air-sea gas exchange and diapycnal

mixing, are challenging to measure directly. Some methods of estimating the physically-

driven fluxes such as eddy correlation measurements and turbulent energy dissipation mea-

surements provide a snapshot of conditions over very small spatiotemporal scales (Gregg,

1987; Wflest et al., 1996; Fairall et al., 2000; Kunze et al., 2006). Gas tracers, in contrast,

integrate over timescales of days to weeks in the surface ocean or years in the deep ocean and

are a valuable tool for determining the average rates of these physical processes (Hamme and

Emerson, 2002; Ito and Deutsch, 2006; Hamme and Severinghaus, 2007; Stanley and Jenk-

ins, 2013), which are inherently patchy in space and time (Callies et al., 2015; Thompson

et al., 2016).

Many investigators take the approach of measuring one or multiple inert gases, which are

not biologically active, to parameterize the physical fluxes that affect all gases. Some inert

gases, such as the stable and naturally-occurring noble gases He, Ne, Ar, Kr, and Xe, are

present throughout the world's oceans in concentrations near atmospheric equilibrium. The

five stable noble gases have a wide range in molecular diffusivity, solubility, and temperature

dependence of solubility (Wood and Caputi, 1966; Weiss and Kyser, 1978; Jdhne et al., 1987a;

Hamme and Emerson, 2004a), causing the saturation state of each gas to have a different

sensitivity to a variety of physical processes (Stanley and Jenkins (2013), Figure 1-1).

Other inert gases exist solely because of human activities, such as the chlorofluorocarbons

(e.g., CFC-11 and CFC-12) and sulfur hexafluoride (SF6 ). These gases are absorbed by the

surface ocean and then mixed deeper into the water column through the oceanic thermoha-

line circulation (Fine, 2011). Furthermore, some naturally-present inert gases have concen-

trations and isotopic compositions that have been profoundly influenced by anthropogenic

activities. For example, atmospheric nuclear weapons testing in the mid-20th century re-

leased 3 H (tritium) which is oxidized to water (i.e., (3 H 1 )water) and slowly absorbed by the

ocean and decays to 3He with a ~12.31 y half life (Jenkins, 1998; MacMahon, 2006). The
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Figure 1-1: Differences in physical properties and response to physical forcing for gases

studied in this thesis. The physical properties are (a) solubility in L of gas per L solution

for a pressure of 1 atm of the pure gas (Bunsen solubility), and (b) molecular diffusivity (M
2

s- 1). (c) Changes in gas saturation state that occur if a water mass initially at equilibrium

with S = 34 PSS and T = 10 0C is heated or cooled, without any air-sea gas exchange.

Here A = (C/Ceq - 1) where C is the observed gas concentration and Ceq is the gas

concentration at saturation equilibrium. (d) Changes in He and Xe saturation state in

response to specific physical processes when the gases are initially at equilibrium. The

symbols APatm, AS and AT refer to changes in atmospheric pressure, water salinity, and

water temperature, respectively. The symbols F, and F, refer to the bubble-mediated air-sea

flux due to completely dissolving bubbles and partially dissolving bubbles, respectively, and

are calculated using the parameterization of Liang et al. (2013) and a wind speed of ulo =

7 m s-1. The lines for ice melt and ice formation show the saturation anomalies generated

by addition of glacial ice, as reported in Loose and Jenkins (2014) and formation of sea ice,
as reported in Loose et al. (2016). References for solubility: He: Weiss (1971), Ne and Ar:

Hamme and Emerson (2004a), Kr: Weiss and Kyser (1978), Xe: Wood and Caputi (1966)

fit following the procedure in Hamme and Emerson (2004a), 02: Garcia and Gordon (1992),
and SF6 : Bullister et al. (2002). References for diffusivity: He, Ne, Kr, Xe: Jhhne et al.

(1987a), Ar: extrapolated results from Jdhne et al. (1987a), 02: Ferrell and Himmelblau

(1967), and SF6 : King and Saltzman (1995). The solubility and diffusivity of 3 He and 4He

are similar and therefore not plotted separately here.
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distributions of these gases within the surface and deeper ocean are interpreted in relation to

their atmospheric histories to provide insights into the rates of physical processes affecting

all gases (Jenkins, 1998; Bullister et al., 2006; Fine, 2011; Sonnerup et al., 2013).

1.2.2 Deliberate gas tracer releases

Other investigators pioneered the method of deliberate gas tracer releases to quantify air-sea

gas exchange in the surface ocean and mixing processes in the deeper ocean (Ledwell et al.,

1993; St. Laurent and Schmitt, 1999; Ledwell et al., 2000). In the gas exchange studies,

investigators add one or more inert gases to the surface mixed layer, which are present at

low ambient concentrations, and monitor how the gas concentrations or ratios evolve with

time (Watson et al., 1991b; Wanninkhof et al., 1993). The rate of the change in the ratio

can be used to calculate the gas transfer velocity. For gas exchange studies, the tracer pair

should be chosen to have very different gas transfer velocities and a common choice is 3 He

and SF6 , which differ in diffusivity by a factor of 8 (Figure 1-1, Jdhne et al. (1987a); King

and Saltzman (1995)). These tracers also tag the surface water mass, enabling observations

of the evolution of other biogeochemical parameters within the tracer patch (Watson et al.,
1991a; Martin et al., 1994; Nightingale et al., 2000; Ho et al., 2011a).

1.2.3 Oxygen as a tracer of the biological pump

02 is produced by photosynthesis and consumed by respiration concurrently with organic

carbon production and consumption, respectively. Dissolved 02 is an effective tracer for net

community 02 production, that is, the gross photosynthetic production of 02 by autotrophs

minus community respiration by autotrophs and heterotrophs. A common approach is to

use measurements of the 02 /Ar ratio to quantify the biologically-driven supersaturation of

02; Ar and 02 respond similarly to physical forcing but Ar is biologically and chemically

inert (Craig and Hayward, 1987; Emerson, 1987; Spitzer and Jenkins, 1989). At steady

state, net community production should equal the rate of organic carbon export from the

surface ocean (Laws, 1991).

Within the past 15 years, the triple oxygen isotopic composition of 02 has been es-

tablished as a tracer of gross photosynthesis in the ocean due to the unique triple isotope

signatures of 02 added by air-sea gas exchange, produced by photosynthesis, and consumed

by respiration (Luz and Barkan, 2000, 2005; Juranek and Quay, 2013). Because the triple

oxygen isotope tracer is relatively new, advances in our theoretical understanding of the

tracer are ongoing (Kaiser, 2011; Luz and Barkan, 2011; Nicholson et al., 2011; Prokopenko

et al., 2011), as are improvements in measurement precision and accuracy (Barkan and Luz,

2003, 2011; Stanley et al., 2010).

One advantage of 0 2 -based tracers is that they integrate over larger spatial and temporal

scales than other common productivity methods such as incubations and sediment traps
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(Juranek and Quay, 2005). Additionally, 02 can be measured at high frequency with sensors

and mass spectrometers, enabling the detection of submesoscale variability in net community

production and ocean carbon uptake (Tortell, 2005; Cassar et al., 2009; Tortell and Long,

2009).

1.2.4 Challenges in the use of gas tracers

A persistent challenge in the use of 02 and natural abundance noble gases as ocean tracers

is that their concentrations are typically within a few percent of solubility equilibrium with

the atmosphere (Hamme and Emerson, 2006; Hamme and Severinghaus, 2007; Stanley et al.,

2009b; Nicholson et al., 2016). Insights into the rates of physical, chemical, and biological

processes are revealed by these small deviations from equilibrium, and therefore the concen-

trations of these gases must be measured with high precision and accuracy. Additionally, the

gas solubility and equilibrium isotope fractionation (if multiple isotopes are measured) as a

function of temperature and salinity must be known very accurately (Hamme and Emerson,

2004a; Hamme and Severinghaus, 2007; Stanley et al., 2009b). Another challenge for many

of the noble gases is that their concentrations are very low, typically less than 10 nmol kg-1

for individual isotopes of He, Ne, Kr, and Xe. Mass spectrometry is typically the method of

choice for noble gas analysis because the gases are biologically and chemically inert, making

reagent-based and optical methods infeasible. To date, published methods with sufficient

precision and accuracy to resolve the small noble gas disequilibria observed in the ocean are

generally laboratory-based, labor-intensive, and expensive (Severinghaus et al., 2003; Sano

and Takahata, 2005; Hamme and Severinghaus, 2007; Stanley et al., 2009a; Nicholson et al.,

2010; Aeschbach, 2016).

Precise and accurate measurements of 02 concentration are currently achieved a variety

of ways including with chemical sensors and traditional wet chemistry methods (titrations)

(Carpenter, 1965; Johnson et al., 2015; Bushinsky et al., 2016). In recent years, investi-

gators have improved the stability and calibration procedures for 02 sensors so that they

can operate autonomously for long deployments (Bushinsky and Emerson, 2013; Bittig and

K6rtzinger, 2015; Johnson et al., 2015; Bushinsky et al., 2016). However, regardless of the

precision at which 02 is measured, it is still necessary to separately quantify the biological

and physical fluxes of 02 in order to calculate the rate of net community 02 production.

Inert gases are a valuable tool for developing parameterizations that are applicable to 02

because the gases span a range of solubility and diffusivity that envelops 02 (Figure 1-1

a-b).

Another challenge in the use of the gases as oceanic tracers is that many different pro-

cesses are acting simultaneously, which makes interpretation of the data complex. For

example, temperature change, diffusive air-sea exchange, bubble-mediated air-sea exchange,

atmospheric pressure change, mixing between different water masses, ice freezing, and ice
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melt will all affect the saturation state and concentration of gases in surface waters (Figure

1-1 d). By measuring a suite of inert gases with a range of physiochemical properties it can

be possible to disentangle the fluxes due to different processes, by modeling how each gas

responds to different processes and finding the combination of processes that simulates all

gas measurements most accurately. For example, Stanley et al. (2009b) and others show that

time-series measurements of multiple inert gases can be used to separately quantify gas ex-

change due to diffusive exchange, complete bubble dissolution, and partial bubble dissolution

(Spitzer and Jenkins, 1989; Hamme and Emerson, 2006; Stanley et al., 2006). Furthermore,

measurements of multiple inert gases can be used to determine the relative proportions of

different water masses in regions affected by glacial melt (Beaird et al., 2015) and water

properties during deep-water formation and convection (Hamme and Severinghaus, 2007;

Loose et al., 2016; Nicholson et al., 2016).

1.3 Thesis overview

The overall objective of my thesis is to improve understanding of coastal carbon, oxygen

and inert gas cycles in coastal environments. The aims of my thesis are 1) to develop a

new, field-deployable method for the measurement of natural abundance Ne, Ar, Kr, and

Xe ratios in water, and 2) to quantify air-sea gas exchange using inert gases and biological

productivity using measurements of 02 /Ar gas ratios and the triple isotopic composition of

02 in coastal waters, where the tracers have been underutilized to date.

1.3.1 A new field-deployable noble gas mass spectrometer - Chapter 2

Although noble gases show great promise as geochemical tracers, analytical capabilities

have traditionally limited environmental applications of the full suite of noble gases and

especially of the heavier gases Kr and Xe (Aeschbach, 2016). Within the past 15 years,

several groups have published methods for measuring multiple noble gases including Kr

and Xe with 0.6 % precision or better (Sano and Takahata, 2005; Hamme and Severinghaus,

2007; Nicholson et al., 2010; Stanley et al., 2009a). However, these methods generally require

the collection of discrete samples in the field and subsequent transport to a laboratory for

time-consuming sample extraction and purification using cryogenic methods and vacuum

lines. These instruments typically have low throughput and high cost, which has limited

the number of groups who are able to use noble gases as geochemical tracers, and the

spatiotemporal resolution of observations.

Other groups have developed compact mass spectrometer systems that are operable in

the field and achieve precise, high-frequency measurements of more abundant dissolved gases

such as 02, N 2 , and Ar (Tortell, 2005; Cassar et al., 2009). These systems have dramatically

expanded the oceanic data sets of 02, Ar, and other gases as they obtain large quantities of
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data at relative ease compared to discrete sampling methods. Although portable methods

for measuring the lower abundance noble gases were recently published (Machler et al., 2012;

Visser et al., 2013), these methods do not obtain sufficient precision for oceanic applications.

In Chapter 2 (Manning et al., 2016a), I describe a new method for measuring Ne, Ar,

Kr, and Xe gas ratios in water using a field-deployable gas equilibration mass spectrometer.

Compared to previously published methods, this new instrument has much higher through-

put and lower cost, while also achieving precision and accuracy of ~1%, which is desirable

for oceanic measurements (Hamme and Severinghaus, 2007; Ito et al., 2007; Stanley et al.,

2009b; Nicholson et al., 2010, 2016).

I adapted the system from a published instrument, the equilibrator inlet mass spectrom-

eter, which measures 02 and Ar (Cassar et al., 2009). I modified the system by adding

purification with nonevaporable getter alloys and changing the gas equilibration procedure

to achieve full equilibration of the four noble gases. I validated the performance of the

instrument in the lab and field and demonstrated its utility by using the system to con-

tinuously sample water from Waquoit Bay, Massachusetts over a 1-week period. This new

instrument will enable more investigators to measure noble gases and use them as tracers of

environmental processes (Aeschbach, 2016).

1.3.2 Evaluating published gas exchange parameterizations using a time-

series of noble gas measurements in Monterey Bay - Chapter 3

The two mechanisms for air-sea gas exchange are diffusive exchange and bubble-mediated

exchange. However, many gas exchange parameterizations do not explicitly include a bubble-

mediated flux and there is currently no consensus on the most accurate parameterization for

bubble-mediated exchange (Liang et al., 2013; Emerson and Bushinsky, 2016; Plant et al.,
2016). Published parameterizations predict a wide range of magnitudes for both the net

bubble-mediated flux and the relative importance of bubbles that completely or partially

dissolve for a given wind speed and gas saturation anomaly (Hamme and Emerson, 2006;
Stanley et al., 2009b; Nicholson et al., 2011; Liang et al., 2013; Nicholson et al., 2016; Plant

et al., 2016). For lower solubility gases, such as 02, a significant fraction of the total air-

water flux is driven by bubbles, and uncertainties in the parameterization of bubble-mediated

exchange directly translate to uncertainties in net community production calculated from

02 mass balance when simultaneous noble gas measurements are not available (Plant et al.,
2016).

In Chapter 3 (Manning et al., 2016c), I use a six-day time-series of the five stable

noble gases collected in Monterey Bay, California along with a one dimensional geochemical

model to evaluate the performance of four different gas exchange parameterizations. The

tested parameterizations include three that explicitly quantify the flux from partially and

completely dissolving bubbles (Stanley et al., 2009b; Nicholson et al., 2011; Liang et al., 2013)
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and one that does not explicitly include bubble fluxes (Sweeney et al., 2007). I use profiles

of temperature and salinity and diapycnal diffusivity collected at 6 h intervals throughout

the cruise to force the model. My model demonstrates that all four parameterizations

simulate the measurements of Ar, Kr, and Xe well; the saturation state of these gases was

primarily driven by temperature change rather than air-sea gas exchange. For the lower

solubility gases, He and Ne, the models diverge and I find that the parameterization of

Liang et al. (2013) simulates the He data the best. The He results are also very sensitive

to the choice of solubility function, underscoring the need for accurate solubility functions

for all five stable noble gases in seawater (Hamme and Severinghaus, 2007; Stanley et al.,

2009b). These results demonstrate that gas exchange parameterizations developed for the

open ocean may also be applicable to coastal environments (Ho et al., 2011a) and support

other work demonstrating that time-series measurements of noble gases can be used to

develop and evaluate gas exchange parameterizations explicitly including bubbles (Hamme

and Emerson, 2006; Stanley et al., 2009b).

1.3.3 Quantifying productivity by gas tracer, incubation, and sediment

trap methods in Monterey Bay - Chapter 4

Several methods are available for quantifying oceanic productivity and the rate of organic

carbon export from the surface ocean to the deep ocean. All methods are thought to have

inherent advantages and disadvantages, but often only one or two methods are used at one

time, making it impossible to evaluate these biases. As the 02 /Ar and triple oxygen isotope

techniques have gained popularity, few published studies have directly compared incubation-

and gas-tracer based productivity estimates at the same time and location, and the methods

most commonly compared, 14 C incubations and gas tracer measurements, do not measure

the same aspects of the ecosystem metabolism (Halsey et al., 2013; Juranek and Quay, 2013).

A second objective of the cruise described in Chapter 3 was to compare different methods

of quantifying productivity.

In Chapter 4, I use measurements of 02 concentration and 0 2/Ar gas ratios, along with

the triple oxygen isotopic composition of 02 to quantify net community production and gross

primary production. I compare these gas tracer results with estimates of net community

production and net primary production from incubations (measuring 14C uptake, 15 NO3

uptake, 1 5NHf uptake, and nitrification) and organic carbon export from sediment traps, to

form a detailed picture of the ecosystem metabolism and carbon cycle state. To date, most

published studies simultaneously comparing net community production from 15 N03 uptake

and from 02 /Ar were conducted in high nitrate, low chlorophyll regions of the open ocean

(Hamme et al., 2012; Giesbrecht et al., 2012) rather than nitrogen-limited, high productivity,

coastal regions.

I show that at the start of the cruise (Phase 1) the methods agreed remarkably well.
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Net community production from NO3 and from 02 /Ar agreed within experimental uncer-

tainty despite the methods having very different measurement timescales and the 15 N tracer

concentrations added during the incubations being high relative to ambient concentrations

(Dugdale and Goering, 1967). In the second half of the cruise (Phase 2), recently-upwelled

filaments of water entered the study area and we sampled both within and outside of these

filaments. Within the recently-upwelled water, incubations recorded higher productivity.

Within the whole study area, continuous 02 /Ar measurements reveal submesoscale vari-

ability that is not apparent from the once-daily incubations. These results demonstrate that

incubation- and gas tracer-based estimates of productivity can give comparable results when

the system is at steady state and highlight the advantages of using multiple productivity

methods in a dynamic system.

1.3.4 Productivity and gas exchange during seasonal ice melt in the Bras

d'Or Lake - Chapter 5

Temperatures in the Arctic are currently warming at two times the northern hemisphere rate

due to anthropogenic climate change (ACIA, 2004; Bekryaev et al., 2010). Investigators agree

that this warming is impacting oceanic biogeochemical cycles in this region, but there is not

sufficient data to conclusively determine for the entire Arctic Ocean whether the biological

pump is increasing or decreasing over decadal timescales and how its carbon uptake and

storage may change in the future (Bates et al., 2006; Cai et al., 2010; Parmentier et al.,

2013).

For example, the Arctic has undergone steady reductions in total sea ice cover as well

as reductions in multi-year sea ice cover over the past three decades (since the beginning

of the satellite record of sea ice) (Comiso et al., 2008; Maslanik et al., 2011), which has

complex interactions with upper ocean properties and gas cycling. Sea ice blocks sunlight

from entering the surface ocean and blocks gases from exchanging with the atmosphere, and

thus the loss of sea ice will increase the amount of light available to phytoplankton within the

upper ocean and increase the open water area for gas exchange (Parmentier et al., 2013). On

the other hand, recent results have shown that sea ice itself can harbor algae that produce

intense phytoplankton blooms, increasing regional estimates of primary production by up to

an order of magnitude (Mundy et al., 2009; Arrigo et al., 2012). Furthermore, investigators

have published conflicting results regarding the relationship between sea ice cover and gas

exchange rates (Loose et al., 2011a; Rutgers van der Loeff et al., 2014; Lovely et al., 2015).

One common approach is to assume that gas exchange scales linearly as a function of the

fraction of open water (Takahashi et al., 2009; Evans et al., 2015), however, this assumption

is not well-validated. Some investigators report enhanced gas exchange (Loose et al., 2009a;

Else et al., 2011) or reduced gas exchange (Rutgers van der Loeff et al., 2014) in the presence

of ice, relative to this linear relationship.
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Conducting field work in the Arctic is challenging due to its remoteness and the need

for icebreakers to access many regions. As a result, measurements are seasonally and spa-

tially biased, with many more observations in low-ice conditions during summer and fall

than in high-ice conditions during winter and spring, and with more measurements on the

continental shelves than in the open ocean (Parmentier et al., 2013).

In Chapter 5, I quantify productivity and air-sea gas exchange during seasonal ice melt in

the Bras d'Or Lake, Nova Scotia, Canada, an estuary. I used this site as a natural laboratory

to perform a controlled study of the processes affecting gas fluxes and productivity during

ice melt. This study may shed light on similar processes occurring in the Arctic Ocean.

We performed dual tracer release experiments (injection of 3 He and SF6 into the surface

water) (Watson et al., 1991b; Wanninkhof et al., 1993) in a bay within the estuary and I

quantified the air-sea gas exchange rate when the bay was nearly full of ice and when it

was nearly ice-free. I also measured 0 2 /Ar and the triple isotopic composition of 02 over

a 1-month period as the bay transitioned from ice-covered to ice-free, and I use these data

to quantify changes in net community production and gross primary production associated

with the ice melt. We find that at >90 % ice cover, the gas transfer velocity is 94% lower

than the velocity when the water is ice-free. I also present a new method for incorporating

the local triple oxygen isotopic composition of H20, the substrate for photosynthetic 02,
into the calculation of gross oxygen production from 02 triple isotope measurements.

1.4 Summary

As a whole, the body of work described in this thesis describes a new instrument for the

environmental science community and advances knowledge of carbon, 02, and inert gas cy-

cling in coastal and ice-covered waters. By developing a new field-deployable instrument

that collects near-continuous measurements, I have expanded the types of scientific studies

in which noble gases can be used as environmental tracers and the number of scientists who

will be able to measure noble gases (Chapter 2). I have collected and applied gas tracer

measurements at natural abundance, and through deliberate tracer releases, to quantita-

tively evaluate the performance of published gas exchange parameterizations at simulating

measurements in a coastal region impacted by recently-upwelled water (Chapter 3), to com-

pare productivity estimates from gas tracer, sediment trap, and incubation based-methods

in a dynamic coastal region (Chapter 4), and to quantify the effects of changing ice cover

on productivity and air-sea exchange in brackish waters (Chapter 5). In summary, the work

in this thesis describes new ways that gases can be used to improve our knowledge of the

chemical, biological, and physical processes affecting the carbon cycle in coastal regions,

with a focus on air-water gas exchange and primary productivity.
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Chapter 2

Continuous measurements of dissolved Ne, Ar, Kr,

and Xe ratios with a field-deployable gas

equilibration mass spectrometer

This chapter was originally published in Analytical Chemistry in 2016 and is reprinted
with permission from the publisher, ACS Publications. Copyright 2016 American Chemical
Society.

CC Manning, RHR Stanley, and DE Lott (2016) Continuous measurements of dissolved
Ne, Ar, Kr, and Xe ratios with a field-deployable gas equilibration mass spectrometer. Anal.
Chem. 88 (6), 3040-3048. doi: 10.1021/acs.analchem.5b03102.

The supporting information for this chapter can be found in Appendix A.
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2.1 Abstract

Noble gases dissolved in natural waters are useful tracers for quantifying physical processes.

Here, we describe a field-deployable gas equilibration mass spectrometer (GEMS) that pro-

vides continuous, real-time measurements of Ne, Ar, Kr, and Xe mole ratios in natural

waters. Gas is equilibrated with a membrane contactor cartridge and measured with a

quadrupole mass spectrometer, after in-line purification with reactive metal alloy getters.

We use an electron energy of 35 V for Ne to eliminate isobaric interferences, and a higher

electron energy for the other gases to improve sensitivity. The precision is 0.7 % or better

and 1.0 % or better for all mole ratios when the instrument is installed in a temperature-

controlled environment and a variable-temperature environment, respectively. In the lab,

the accuracy is 0.9 % or better for all gas ratios using air as the only calibration standard.

In the field (and/or at greater levels of disequilibrium), the accuracy is 0.7 % or better

for Ne/Kr, Ne/Ar, and Ar/Kr, and 2.5 % or better for Ne/Xe, Ar/Xe, and Kr/Xe using

air as the only calibration standard. The field accuracy improves to 0.6 % or better for

Ne/Xe, Ar/Xe, and Kr/Xe when the data is calibrated using discrete water samples run on

a laboratory-based mass spectrometer. The e-folding response time is 90-410 s. This instru-

ment enables the collection of a large number of continuous, high-precision and accuracy

noble gas measurements at substantially reduced cost and labor compared to laboratory-

based methods.

2.2 Introduction

Noble gases are biologically and chemically inert, making them useful tracers of physical pro-

cesses in the environment (Stanley and Jenkins, 2013). In water, measurements of dissolved

noble gases in tandem with bioactive gases such as 02 can be used to separate the effects

of biological versus physical processes on the equilibrium state of gases, enabling accurate

estimates of biological productivity (Stanley et al., 2010; Nicholson et al., 2010; Stanley

et al., 2006). Dissolved noble gas measurements can also be used to quantify oceanic pro-

cesses such as gas ventilation in deep-water formation regions, diapycnal mixing, and sea ice

melting and formation (Loose and Jenkins, 2014; Eveleth et al., 2014; Nicholson et al., 2010;

Hamme and Severinghaus, 2007). On land, measurements of noble gases in groundwater can

be used to generate paleotemperature records and for studies of groundwater-aquifer and

groundwater-ocean interactions (Aeschbach-Hertig and Solomon, 2013; Castro et al., 1998;

Stute and Schlosser, 1993).

Traditional methods for measuring multiple noble gases in natural waters via mass spec-

trometry involve the collection of discrete samples and laboratory-based analysis. Sample

processing and analysis is time-consuming (often multiple hours per sample) and requires
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specialized and expensive equipment. Currently, very few labs in the world are capable of

high-precision and high-accuracy (1 % or better) measurements of Ne, Kr, and Xe in natural

waters, and oceanic measurements of dissolved noble gases are sparse, particularly for Xe

(Loose and Jenkins, 2014; Hamme and Emerson, 2013; Stanley et al., 2009b; Hamme and

Severinghaus, 2007; Nicholson et al., 2010).

Recently, the development of mass spectrometric methods for measurement of dissolved

gases in the field(Machler et al., 2012; Cassar et al., 2009; Kameyama et al., 2009; Virkki

et al., 1995) has led to high-resolution data sets of gases including 02, Ar, N 20 and dimethyl

sulfide (Stanley et al., 2010; Marandino et al., 2009; Tortell, 2005). These instruments can

analyze water in the field, in some cases eliminating the need to transport discrete samples

back to the laboratory for subsequent analysis. In this paper we describe the gas equilibration

mass spectrometer (GEMS), a new method for on-site measurement of Ne, Ar, Kr, and Xe

gas mole ratios in natural waters. We evaluate the precision and accuracy of the GEMS

through comparison with a published laboratory-based method (Stanley et al., 2009a). Our

relatively low cost (-50 000 USD for the entire system in 2013) and low labor method

will allow much higher throughput of noble gas measurement and will increase the number

of scientists who are able to measure a suite of noble gases and use them as tracers for

quantifying physical processes in the environment.

2.3 Experimental section

The GEMS can be separated into the equilibration components ('wet side'), and the measure-

ment components ('dry side') (Figure 2-1). In brief, the equilibration components include

the following features: filtered water is pumped through a membrane contactor cartridge

containing a gas-permeable membrane, the headspace of the cartridge is continuously recir-

culated and dried, and gas is sampled via a capillary at a very low flow rate and transferred

to the mass spectrometer. A switching valve is used to alternate between sampling from the

cartridge and sampling ambient air, for calibration. The measurement components include

metal alloy getters for purifying the gas stream, a quadrupole mass spectrometer, vacuum

pumps, and a laptop computer. We describe below the final configuration that gave us the

best results. We encourage scientists who are interested in building their own systems to

consult the Supporting Information, where we describe some alternative configurations that

were less effective. The Supporting Information also includes tables of instrument settings

(Tables A-1-A-2) suppliers and part numbers (Tables A-3-A-4) and photos and schematics

of the instrument (Figures A-5-A-8).
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Figure 2-1: Schematic of the instrumental setup (not drawn to scale). See main text for
description. See Figures A-5-A-7 for photos of the system.

2.3.1 Equilibration components

For shipboard installation, water from the ship's underway seawater line passes through

three 10" filter canisters containing reusable pleated filters (100, 20, and 5 Pm nominal pore

size) at a flow rate of ~30 cm3 s-1 and then into a bucket placed in a sink (Figure 2-1).

Alternatively, any natural water source, such as water from a groundwater well or lake, can

be continuously pumped with a submersible well pump, filtered, and used to fill the bucket.

A two-layer filter bag consisting of 100 pm (outer) and 5 pm (inner) nominal pore size felt is

placed inside the bucket. The filters are necessary to prevent the membrane contactor from

clogging. Flexible PVC tubing and a gear pump is used to transfer water at a flow rate of

-18 cm 3 s-1 from the filter bag to the membrane contactor and then to waste, down the

sink drain (Figure 2-1). Our filter setup, water flow path, and gear pump is very similar

to the configuration for the equilibrator inlet mass spectrometer developed by Cassar et al.

(2009), except that we use the larger filter canisters to prolong the life of the disposable felt

filter bags, due to our higher water flow rates. The filter canisters are not necessary when

performing lab experiments with distilled or tap water.

The membrane contactor cartridge (Liqui-Cel Extra-Flow 2.5 x 8, model G540) con-

tains hollow, tubular membranes composed of porous, hydrophobic polyethylene fiber. The

tubes, called lumens, are 300 jm diameter and the total membrane surface area is 1.4 m2

Water flows through the membrane contactor, outside the lumens, and gas dissolved in the

water transfers across the lumens into the headspace (gas side) of the cartridge. Although

liquid water does not cross the membrane, water vapor transfers through the pores and can

condense on the headspace side of the membrane, reducing the gas transfer efficiency by

clogging the pores (Lv et al., 2010; Wang et al., 2005). Therefore, the headspace is contin-
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uously recirculated and dried to improve gas transfer efficiency across the membrane. The

headspace flows at 1.8 cm3 s-1 through a Nafion tube surrounded by molecular sieves and

cobalt chloride indicator (PermaPure DM-110-24), then through a small piece of flexible

PVC tubing containing -10 g of indicating Drierite (CaSO 4 , 10-20 mesh), then through a

T-shaped fitting with a capillary adapter for sampling the gas, and finally through a di-

aphragm pump before re-entering the headspace (Figure 2-1). These drying techniques were

selected because they do not require any additional gas or power sources. The headspace

is recirculated in the opposite direction to the water, i.e., water enters and gas exits at

the bottom of the cartridge. The recirculation loop increases the effective headspace vol-

ume by less than 10 %, and therefore it likely has a negligible effect on the response time.

Without drying, the headspace partial pressure of water vapor (PH2o) is near saturation

equilibrium, since water is observed to condense on the headspace side. With drying, PH20

in the headspace is somewhat lower and likely closer to ambient atmospheric PH20. We do

not measure the gas humidity because, as discussed below, the vast majority of the water

vapor is removed by the getters before entering the mass spectrometer.

A critical design principle of the gas equilibration mass spectrometer (GEMS) is that

the gas in the headspace of the membrane contactor must be in equilibrium with the water

flowing through the membrane contactor. If this condition is met, the gas mole ratios in

water can be calculated from the measured headspace ratios, relative to air, and the gas

solubility functions (Henry's law coefficients). At equilibrium, the headspace is composed

of all the gases that are dissolved in the water, each at a partial pressure (p) yielding

equilibrium with the water flowing through the membrane contactor. This partial pressure

of each gas can be calculated from its Henry's law coefficient, which is a function of the

temperature and salinity of the water. If air-equilibrated water flows through the cartridge,

the pressure of each gas in the headspace is equal to its pressure in air. If water that is 5

% supersaturated in Ne flows through the cartridge, the partial pressure of Ne will be 5 %

higher in the headspace compared to air. When first setting up the membrane contactor,

we recommend allowing water to flow through the cartridge for at least 1 h, to allow the

headspace composition (which is initially air) to come into equilibrium with the water flowing

through the cartridge.

To verify that the headspace is at a similar pressure to the ambient air, we temporarily

placed a pressure measurement gauge (Convectron), calibrated to air, in the headspace

recirculation loop. We found that the headspace pressure was within ~1 % of ambient air

pressure when sampling air-equilibrated water.

To maintain equilibrium, we ensure that the rate of gas flow out of the headspace and into

the mass spectrometer is negligible relative to the rate of gas transfer across the membrane.

We use a long, small-diameter capillary (0.05 mm ID, 5 m total length, deactivated fused

silica) to achieve this low flow rate. The estimated gas flow rate through the capillary is -8
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x 10-5 cm 3 s- 1 (~7 cm 3 d- 1) based on a modified Hagen-Poiseuille equation Cassar et al.

(2009) found that the Hagen-Poiseuille equation was a good approximation for capillary flow

in a similar system. Calibration of the instrument is performed by periodically sampling air

through a second capillary of the same dimensions.

Accurate measurement of temperatures throughout the water flow path is critical, in

order to correct for the effects of changes in temperature on the saturation state of each gas.

The temperature is measured at the water intake (using a sensor with accuracy of 0.05 'C),

and immediately before and after the membrane contactor using two thermistors (accuracy

0.1 'C). The average of these two temperatures is used as the equilibration temperature.

The thermistors (temperature sensors) are shown as green circles labeled TM in Figure 2-1.

We reduce the magnitude of the temperature change by placing foam insulation around the

filter canisters, tubing, and the membrane contactor.

2.3.2 Measurement components

A multiposition Valco valve is used to alternate between the two capillaries. The valve

is connected to a 1 m long capillary to sample air, a 1 m long capillary to sample the

headspace, and a common 4 m long capillary connected to the mass spectrometer. The

valve to the mass spectrometer (Figure 2-1, blue circle) is always open, and the second

open valve position switches from the headspace (red circle) to air (green circle) to perform

a calibration. Sample gas flows from the membrane contactor (air), through the capillary

and multiposition valve, through two chambers filled with reactive metal alloy getters and

then into the ion source of the quadrupole mass spectrometer (Hiden HAL 3F RC201).

Vacuum is provided by a combined turbomolecular and dry scroll pumping system (Agilent

TPS-Compact). The pressure measured in the mass spectrometer is ~1 x 10-5 Pa while

sampling air or the headspace of the membrane contactor.

Removal of unwanted gases such as N 2 , 02, and H 20 from the gas stream greatly im-

proves the detection limit by reducing molecule-molecule collisions within the mass spectrom-

eter, and reduces matrix effects caused by differences in composition and pressure between

the two gas streams. Published methods of noble gas analysis purify the gas stream using

low temperature (cryogenic) traps and/or chemical purification (Stanley et al., 2009a; Sano

and Takahata, 2005; Severinghaus et al., 2003; Visser et al., 2013). In-line purification with

getters is ideal for a portable system because it does not require any additional maintenance

in the field, nor the transport of cryogenic liquids. We used two custom-fabricated get-

ter chambers (cylindrical stainless steel containers) filled with SAES Getters St2002 pellets

(Figures A-7-A-8). During operation, the first can is heated to 300 'C and contains 100

g of getter; the second can is kept at room temperature and contains 30 g of getter. The

heated getter breaks the C-H bonds in CH4 , and adsorbs all other gases except for H 2 and

the noble gases. The room temperature getter adsorbs H 2 , from pure H2 gas and from the
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decomposed CH4 , and also adsorbs all the other gases, at a lower efficiency compared to the

heated getter. We selected alloy St2002 due to its superior N 2 removal efficiency (Figure

A-1). Reactivation of the getter surface is performed by heating both chambers to 400 'C

for 1 h, and is required roughly once per month (when the signal intensity for N 2 becomes

greater than the signal intensity for 4 0Ar). The getter lasts approximately one year before

replacement is needed. The temperature of both getter chambers is continuously recorded

using thermocouples in contact with the heater elements. Using this purification method,

>98 % of the non-noble gas content is removed from the gas stream before it enters the

ion source, regardless of the initial gas content (total pressure, humidity, and abundance of

other gases).

The noble gases are measured with a quadrupole mass spectrometer operated with a sec-

ondary electron multiplier (SEM) detector. The mole ratios are determined by selected ion

monitoring. Calibration with air, which has known and constant noble gas mole ratios (CO-

ESA working group, 1976), is used to convert the averaged ion ratios to the deviation from

saturation equilibrium. We measure Ne, Ar, Kr, and Xe. Helium is not measured because

we found that He permeates through the capillary and/or the cartridge (see Supporting

Information), and Rn is not measured because its concentration is too low (-6 orders of

magnitude less abundant than Xe in seawater).

The Hiden Analytical instrument was selected because it has the ability to measure

individual selected ions at different electron energies, in a repeated sequence, without a

loss in stability. We measure 22Ne with a reduced electron energy to prevent formation of

doubly charged C0 2 , which is a potential isobaric interference. Although the getters remove

>90 % of the C0 2, the signal intensity for CO2 after purification is sufficient to interfere

with the 22 Ne measurement. Therefore, we prevent the formation of the doubly-charged ion

COP by reducing the electron energy (cathode voltage) below 37 V, as done by Hamme

and Emerson (2004b) (see Supporting Information). We measure 22 Ne at an electron energy

of 35 V and all other masses at an electron energy of 55 V (TablesA-1-A-2). The precision

and sensitivity for Ar, Kr, and Xe is improved at the higher electron energy.

For Ar, we analyzed 36Ar (0.337 % abundance) and/or 3 8Ar (0.0629 % abundance). The

primary isotope, 4 0 Ar, is 500-10 000 times more abundant in air than the other noble gases.

The signal intensity for 40Ar is too high to be read accurately using the SEM at our operat-

ing pressure (Visser et al., 2013). The signal intensities for 36 Ar and 38 Ar are at least 40 and

8 times higher, respectively, than the other noble gases we measure. In general, we found

that measuring 3 8Ar was preferred because it could be measured on the same amplifier as
84 Kr, whereas 36 Ar had to be measured on a lower amplifier due to its higher abundance.

By minimizing the range of signal intensities, we minimize nonlinearities in the detector re-

sponse. For Kr, the primary isotope, 84 Kr (57.0 % abundance) was chosen. For Xe, the least

abundant gas, we measure both 129Xe and 132 Xe (26.4 and 26.9 % abundance, respectively),
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and take the average of the two signal intensities. Since Xe is the least abundant of the gases

we measure, measuring both isotopes and taking the average reduces the noise compared

to just measuring one isotope of Xe. Each measurement cycle (one measurement of each

selected ion) takes ~1 min; see Tables A-1-A-2 for further details on the mass spectrometer

settings.

We place a custom-fabricated heater jacket set to 50 'C around the manifold, to reduce

the effects of room temperature change on the instrumental response, which is of particular

concern when operating the instrument in the field, where there may be large fluctuations in

ambient temperature. We use thermocouples to continuously monitor and record the room

temperature and the manifold temperature. The mass spectrometer and vacuum pumps

are connected to an uninterruptible power supply (UPS, Eaton 9130) to isolate them from

power fluctuations.

The mass spectrometer data is acquired and saved using the manufacturer's software

(MASsoft Pro 7). A custom Visual Basic program automates the valve switching between air

and the headspace, and records temperatures and flow rates. The data from both programs

is plotted in real time using Matlab.

The system described above was optimized for measurement of noble gas mole ratios.

However, the equilibration components could potentially be used to equilibrate many other

gases, given that we achieve full equilibrium of Ne, Ar, Kr, and Xe, which span a factor

of 10 range in solubility. We have successfully obtained high-accuracy, high-precision mea-

surements of 0 2 /Ar mole ratios using the system described above, with the getter chambers

eliminated.

2.3.3 Data analysis

In this section, we describe how to use the raw mass spectrometer data (extracted ion profile)

to calculate the mole ratios of the gases dissolved in water. As discussed above, if the rate

of gas removal from the headspace by the capillary is negligible relative to the rate of gas

transfer across the membrane, then full equilibration of the gases between the water flowing

through the membrane contactor and the headspace can occur (Machler et al., 2012; Cassar

et al., 2009).

We use the GEMS to determine the mole ratio of two gases (and the deviation of this

ratio from equilibrium), rather than their individual concentrations (Cassar et al., 2009). If

we recirculate air-equilibrated water through the membrane contactor, the measured ratios

of any two noble gases are equivalent for the headspace versus air. However, the raw signal

intensities for each gas in air versus the headspace are different by up to a few percent, and

the magnitude of the offset can change with time. These offsets may be caused by slight

differences in the rate of gas delivery to the mass spectrometer (e.g., due to differences

in pressure between the headspace and air, or slight differences in the dimensions of the
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two capillaries), and/or differences in composition between the two gas streams causing

matrix effects (Stanley et al., 2009a; Cassar et al., 2009). Although obtaining the individual

concentrations would be ideal, the noble gas mole ratios can be effectively used to quantify

physical processes (Hamme and Emerson, 2013; Nicholson et al., 2011, 2010).

We use Henry's Law to determine the equilibrium molality of any inert gas, such as Ne

nNeeq = PNeair - HNe(T, salinity) (2.1)

where nNeeq is the molar concentration dissolved in water at equilibrium (mol kg- 1 ) and

PNeair is the partial pressure of Ne in dry air (atm). HNe is the Henry's Law solubility

coefficient of Ne (mol kg- 1 atm- 1 ) and is a function of the water temperature and salinity

(Hamme and Emerson, 2004a; Benson and Krause Jr, 1976). We express the noble gas

molar ratios in terms of the in situ deviation from the solubility equilibrium, often termed

the saturation anomaly

Ne nxe

x = ) -I x 100%, (2.2)
Xe~ () e

where (nNe/nxe)w is the molar ratio of the gases dissolved in water and (nNe/nXe)eq is

the molar ratio of the gases in the water at saturation equilibrium. Here, we show how the

saturation anomaly, A(Ne/Xe), can be determined from measurements of (Ne/Xe)hs and

(Ne/Xe)air, the ratios in the headspace and air, respectively. Following from Equation 2.1

the equilibrium gas ratio (Ne/Xe)eq is defined as

Ne PNe HNe (2.3)

eeq = (PXe air HXe T

where the subscript TI indicates the in situ temperature (where the water was sampled). For

the membrane contactor, if the headspace is in equilibrium with the water passing through

the cartridge, then we can calculate the ratio of the gases dissolved in water as

(Ne PNe HNe (2.4)

Xe, \pXe )hs HXe )T 2

where the subscript hs indicates the headspace and T2 indicates the equilibration temper-

ature inside the membrane contactor. By substituting Eqns. 2.3 and 2.4 into Equation 2.2,

we find

A (Ne> -[(_1 x 100%. (2.5)
kXeJ ( Ne ( HN y\

\'eXe lair Hxe T -

Finally, using the definition of (HNe/HXe) which follows from from Equation 2.1 at TI and
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T2, we obtain

A(Ne \ _-(Ne\~ (Ne'\
Xe __ )Xehs \X eq,T2 -1 x 100%. (2.6)

/ .Xe/air \XeJ eq,T1 I

Thus, the deviation of the gas ratios from solubility equilibrium can be determined by

alternating between measurements of the noble gases in air and the headspace. The ratio

in air is measured periodically (e.g., for a 40 min block after every 100-300 min of water

sampling). We take the average of all the air measurements in each block (omitting the first

and last 5 min), and then apply a linear interpolation between each pair of air measurements

to calculate the air ratio at the time of each headspace measurement, as done by Cassar

et al. (2009) for 0 2 /Ar.

We measure T1 in situ, wherever the water is sampled. For example, on a ship T1 is

measured using a sensor mounted on the hull of the ship adjacent to the seawater intake. T2

is determined from the average of two thermistors in the water flow path: one immediately

before and one immediately after the membrane contactor. The salinity is measured once

and we assume the in situ and equilibration salinities to be the same. We have observed T2

to be up to 1.0 'C greater than T1, which results in a -2.5 % correction to the calculated

A(Ne/Xe) value.

2.4 Results and discussion

2.4.1 Precision

To determine the precision of the GEMS, we recirculated water from a temperature-controlled

bath through the membrane contactor and collected data while continuously sampling from

the headspace only. We then performed calculations to simulate the process of switching

between air and the headspace (Figure 2-2). For these calculations, we used the ratios calcu-

lated from the raw signal intensity (extracted ion profile), without adjustment to the molar

abundances in water or air. For example, the precision of the Ne/Kr ratio was calculated

from the signal intensity of 22 Ne/ 84Kr. We applied a linear interpolation to the raw ratio

data, based on averaging 30 min of data every 340 min (i.e., simulating a 40 min mea-

surement in air, with the first and last 5 minutes removed before averaging). This timing

is identical to the timing of the lab-based accuracy experiment described below. A 7-min

running mean filter was then applied to the 300-min intervals of data; this averaging time is

equal to the e-folding response time of Ne, which has the slowest response rate of the gases

we measure. We define the precision as the relative standard deviation (RSD) of the dif-

ference between the filtered ratios and the interpolated ratios. In a temperature-controlled

room, the precision is 0.7 % or better for all gas ratios (0.7, 0.5, 0.5, 0.6, 0.2, and 0.6 % for

Ne/Xe, Ne/Kr, Ne/Ar, Ar/Xe, Ar/Kr and Kr/Xe, respectively). We report the precision for
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Figure 2-2: Measurements of 22 Ne/ 84 Kr signal intensity while sampling the headspace and
recirculating air-equilibrated water through the membrane contactor. The pink dots show
individual data points, the black line is a linear interpolation based on averaging 30 min
of data every 340 min, and the blue line is the data after applying a 7-min running mean
filter. The precision is calculated from the difference in magnitude between the blue and
black lines.

all ratios as lighter gas/heavier gas for consistency. The relative precision (% RSD) is the

same for Ne/Xe as for Xe/Ne. Because the different noble gases we measure have different

abundances and physical properties, the gas ratios have varying precision and accuracy. We

report the precision and accuracy for all gas combinations since the utility of each gas ratio to

study environmental processes depends on the specific gases and on the precision/accuracy

for that specific ratio. We got very similar results (precision of 0.7 % or better for all gas

ratios) when we measured air in the lab continuously, instead of water. When determining

the precision from measurements of the headspace or air, we determine how similar each

measurement is to the expected value. We did not alternate between measuring air and the

headspace because if air was being used to calculate the expected headspace ratios, then

any disequilibrium in the water with respect to air would bias the calculated precision.

In the field, the precision was somewhat worse, likely due to room temperature change.

When we installed the mass spectrometer in an unheated garage, the mass spectrometer

signal intensity for each ion drifted with temperature, despite the heater jacket on the

manifold. In a variable-temperature environment, air calibrations should be performed more

frequently. To determine the precision, we measured air continuously and then averaged 30

min of data every 150 min. In this environment, the precision while measuring air was 1.0

% or better for all gas ratios (1.0, 0.6, 0.5, 0.9, and 0.8 % for Ne/Xe, Ne/Kr, Ne/Ar, Ar/Xe,

Ar/Kr and Kr/Xe, respectively). We did not determine the precision while measuring water

in the field because we did not have access to a temperature-controlled water bath.
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2.4.2 Accuracy

To determine the accuracy of the GEMS, we compared the GEMS data to a published

method (discrete samples analyzed by a laboratory-based mass spectrometer) during exper-

iments in the field and the lab (Stanley et al., 2009a). In the lab, using the GEMS, we

recirculated water from an insulated 0.12 m3 tank filled with distilled water that was open

to the lab air. The water in the tank was constantly mixed using a submersible pump at the

bottom of the tank. The temperature of the water was changed during the experiment. A

filter sock was placed directly into the water bath and a gear pump connected to tubing was

used to withdraw water from the filter sock and pump it through the membrane contactor.

For the discrete samples, water was withdrawn using a spigot on the bath. Inside the tank,

the spigot was connected to tubing, with the open end of the tubing placed next to the

filter sock, so that the water removed for discrete sample collection would be near the water

that entered the membrane contactor. Outside the tank, the other end of the spigot was

connected to tubing for sampling. In the lab experiment, we collected and analyzed one

discrete sample at 10 time points over five days.

In the field experiment, water was pumped from Waquoit Bay, MA, using a submersible

well pump. The water passed through the canister filters and then into a bucket to overflow,

as shown in Figure 2-1. After the canister filters and before the bucket, a sampling valve

was installed and used to collect the discrete samples. For this experiment, we collected and

analyzed one discrete sample at eight time points over eight days.

The discrete samples were collected in copper tubes, sealed with a cold pressure welder

and extracted in the lab (Jenkins et al., 2010). Noble gas abundances were measured on a

pulse counting quadrupole mass spectrometer (Stanley et al., 2009a). This method deter-

mines the concentration of each gas (in cmTP g 1 or mol kg- 1 ), with a combined standard

uncertainty of 0.2-0.3 % for each gas. In order to compare the GEMS data to the discrete

samples, we must convert the GEMS measurements of saturation anomalies to mole ratios.

Therefore, the choice of solubility function directly influences our estimates of the accuracy

of the GEMS.

For Ne and Ar, we used the solubility determinations of Hamme and Emerson (2004a)

who determined the solubilities of Ne and Ar in fresh water and seawater with an accuracy

of 0.30 and 0.13 % respectively, by equilibration with air. For Kr and Xe in fresh water (the

lab experiment), we used the solubility determinations of Benson and Krause Jr (1976) who

determined solubilities of all five stable noble gases in freshwater (but not salt water) with

a stated accuracy of 0.1-0.2 %. For the field experiment (sampling seawater), we used the

solubility of Weiss and Kyser (1978) and the solubility of Wood and Caputi (1966) for Xe,

fit by Hamme following the procedure in Hamme and Emerson (2004a), who determined

the solubilities in both fresh water and seawater. Recent works have drawn the seawater

solubilities of Kr and Xe into question because they are not consistent with oceanic data
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and have not been verified by multiple investigators (Hamme and Severinghaus, 2007). Thus

the Kr and Xe solubilities of Weiss and Kyser (1978) and Wood and Caputi (1966) have

uncertainties of 1-2 % (Hamme and Severinghaus, 2007; Stanley et al., 2009b), which results

in increased uncertainty in our accuracy estimates during the field experiment for all mole

ratios except Ne/Ar.

We define the accuracy as the average magnitude (absolute value) of the relative percent

difference between the GEMS and discrete samples, with both data sets expressed in terms

of gas mole ratios. We filtered the GEMS data with a 7-min running mean filter and then

calculated the average mole ratios over a 7-min period centered around the time each discrete

sample was collected. The choice of averaging time (from 3-15 min) did not significantly

affect the estimated accuracy. The mole ratios obtained by the GEMS are determined

from the measured saturation anomaly and the gas solubility at the in situ salinity and

temperature.

In the lab experiment, the relative accuracy of the GEMS was 0.9 % or better for all

gas mole ratios (Figure 2-3). The experimentally-determined accuracy was 0.8, 0.4, 0.9,

0.8, 0.8, and 0.6 % for the mole ratios of Ne/Xe, Ne/Kr, Ne/Ar, Ar/Xe, Ar/Kr, and Kr/Xe

respectively. The relative percent accuracy is the same for Ne/Xe as for Xe/Ne, and likewise

for the other gas mole ratios.

In the field experiment, the accuracy of the GEMS was 0.6, 0.7, and 0.4 % for Ne/Kr,

Ne/Ar, and Ar/Kr (Figure A-3). The accuracy of the ratios with Xe was substantially worse:

2.5, 2.0, and 2.4 % for Ne/Xe, Ar/Xe, and Kr/Xe, respectively. However, we found that we

could improve the accuracy for the ratios with Xe by using the discrete samples to calibrate

the GEMS (Figures A-2-A-4). We plotted the measured ratio, normalized to equilibrium

for the GEMS versus the discrete samples and calculated a linear fit. The slope, m, and

intercept, b were used to calibrate the GEMS data.

(nN,) ( )1
mxe nxe

x N ) eq- discrete [(J"e ) eqj GEMS

The R2 values for the fit were 0.93, 0.85, and 0.73 for Ne/Xe, Ar/Xe, and Kr/Xe,

respectively (Figure A-2). Using this technique to adjust the GEMS data, the accuracy

became 0.6, 0.4, and 0.4 % for Ne/Xe, Ar/Xe, and Kr/Xe, respectively. Similarly, with

calibration, the accuracy of the lab measurements also improved somewhat, to 0.6, 0.4 and

0.4 % for Ne/Xe, Ar/Xe, and Kr/Xe, respectively. Some of the error observed in the field

may be associated with errors in the solubility of Kr and Xe. However, since the offset

between the GEMS and discrete samples is not constant and seems to vary as a function of

the magnitude of disequilibrium, not all of it can be explained by solubility errors.

We conclude that the GEMS can reliably obtain accuracy of 0.9 % or better for Ne/Kr,
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Ne/Ar, and Ar/Kr using air as the only calibration standard. For Xe, if accuracy of 0.9 % or

better is desired, obtaining some discrete samples for calibration purposes is recommended.

We believe the reduced accuracy for Xe in the field experiment may be related to matrix

effects (Stanley et al., 2009a). Variability in the total pressure and/or the pressure of

specific molecules may cause non-linearities in the relationship between gas pressure and

signal intensity at the detector (e.g., due to altering the ionization efficiency for the gas of

interest). Xe is likely to be the most sensitive to these matrix effects because it is the least

abundant gas we measure (closest to the detection limit), and since its saturation state is

the most variable (Stanley et al., 2009b; Hamme and Severinghaus, 2007). In unpurified

air, the mole fractions of 02 and N 2 are ~109 times greater than Xe. Therefore, even

though the getters remove >98 % of the active (non-noble) gas content, the pressure of N 2

and 02 is still far greater than the pressure of Xe after purification. Furthermore, in the

field, biogenic gases such as 02 and CO2 will likely be more variable in abundance, and

farther from equilibrium, compared to the lab experiment performed with distilled water.

Therefore, we expect greater differences between the headspace and air composition in the

field, leading to larger matrix effects.

Additionally, even if we could remove 100 % of the active gas, the pressure of 40 Ar

would still be 300 000 times greater than the pressure of 129Xe, and therefore the measured

pressure of Xe may be affected by changes in the pressure of Ar (Stanley et al., 2009a). A

matrix effect caused by other noble gases may be more apparent at larger deviations from

equilibrium. In our field data set, the noble gas mole ratios were on average farther from

equilibrium, and also had larger maximum magnitudes compared to the lab data set. For

example, the largest saturation anomalies measured for Ne/Xe, Ar/Xe, and Kr/Xe were 6.4,

3.9, and 3.1 % in the field and 4.3, 1.7, and 2.1 % in the lab, respectively, based on the

discrete samples.

Notably, precision and accuracy are also degraded when the instrument experiences

vibrations, such as on a ship (see Supporting Information).

Since we only analyzed one sample at each time point, we cannot determine whether

any of the discrete samples may be inaccurate due to sampling or measurement problems;

however, by using samples at 8-10 time points, we believe we have a good estimate of

the overall accuracy. Comparing the two methods has an additional source of error: the

discrete samples capture the instantaneous gas composition at the time the tube was sealed,

whereas the GEMS averages over several minutes, with the e-folding time varying for each

gas. The GEMS achieves similar accuracy to other methods that are much more expensive

and labor-intensive.
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2.4.3 Equilibration timescale

When sampling the headspace, the signal intensity for each selected ion reflects a weighted

average of the concentration over the equilibration timescale of the system. To determine

the equilibration timescale, we switched between sampling water of two different gas com-

positions: air-equilibrated water and freshly distilled water. We fit the instrument response

to a kinetic equation (Cassar et al., 2009). The signal intensity or concentration, C, for each

noble gas can be modeled as

Ct = [Ci - Cf] exp(-t/r) (2.8)

where Ci is the initial signal intensity (before switching the water composition), Cf is the

final intensity (after stabilization), Ct is the intensity at any time t, and r is the e-folding

time of the instrument. Specifically, T t1 / 2 / ln(2), with t1 / 2 the time at which the signal

intensity is halfway between Cf and Ct. By rearranging equation 2.8, we can plot the data

as a linear equation of the form y = mx where x = t, m = T-1, and

y = ln (C.Cf ) - (2.9)
\Ci -OC5

For water at 20 'C and a water flow rate of 18 cm3 s-1, the e-folding times were found

to be 410(54) s for Ne, 240(80) s for Ar, 190(80) s for Kr, and 90(10) s for Xe, where

the numbers in parentheses are the standard uncertainty (Figure 2-4). These estimates are

based on at least three measurements of the e-folding time for each gas; each measurement

took -2 h. The e-folding time increases with decreasing solubility. A greater proportion of

the lower solubility gas must transfer between the water and the headspace in order for the

two phases to re-equilibrate, causing the equilibration time to increase. Other investigators

have noticed that lower solubility gases equilibrate less efficiently across Liqui-Cel membrane

contactors (Cassar et al., 2009).

2.4.4 Pilot field study

To demonstrate the utility of the GEMS, we conducted a pilot field study in Waquoit Bay,
MA, USA. We installed the mass spectrometer and laptop in an unheated boathouse, and

we installed the equilibration components just outside the boathouse. The filter and bucket

were placed on a bench, and the remainder of the equilibration equipment was installed inside

a wooden box to shelter it from precipitation. A hole in the the wall of the boathouse was

used to connect the capillary between the multiposition valve and the mass spectrometer.

To sample water, we deployed a submersible well pump -60 m offshore, in an aver-

age water depth of 1 m. The water pump and two temperature/salinity/depth sensors

(RBR Concerto) were attached to a hollow PVC pipe mounted on a cement block. The
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water pump was installed with the intake at an average depth of 0.4 m, and the tem-

perature/salinity/depth sensors were installed at an average depth of 0.4 and 0.8 m. An

additional temperature sensor ~1 m above the water level was attached to the PVC pipe,

to monitor air temperature. Wind speed data was taken from the Waquoit Bay Carriage

House weather station, 200 m north (inshore) of the water pump (NNERRS, 2016).

The GEMS collected data for one month. In Figure 2-5, we show the data from December

16-24, the time period when discrete samples were collected for method validation purposes.

We typically checked on the system twice per day (morning and early evening), and it

otherwise operated unattended. During these checks we replaced the filter socks (roughly

once per day), replaced the canister filters (once per week), and replaced the desiccant and

membrane contactor (once every five days). We also plotted the mass spectrometer data,
flow rates, and temperatures, to verify that the system was operating as intended. We

obtained a near-continuous time-series with occasional gaps resulting from the submersible

pump coming out of the water at the lowest tides (e.g., midnight on Dec 19 and afternoon

on Dec 21 in Figure 2-5). This type of study (sub-hourly measurement frequency, over a

month) would not be practical with traditional sampling and analysis methods (Machler

et al., 2012).

In Figure 2-5, the GEMS data for A(Ne/Xe) was calibrated using the discrete samples,
and the other data is unadjusted. The error bars for A(Ne/Xe) and A(Ar/Kr) are larger in

the field compared to the laboratory-based experiment, due to the larger uncertainties in the

seawater solubility of Kr and Xe compared to the fresh water solubility. See the Accuracy

section for more details.

The precision, accuracy, and response time of the system were sufficient to resolve sub-

stantial variability in noble gas saturation anomalies throughout the time-series. This vari-

ability was associated with changes in wind speed, water temperature, and air temperature

(Figure 2-5). To determine whether the observations were consistent with our scientific un-

derstanding of physical controls on gas saturation state, we used a simple model. The model

was forced with wind speed, temperature, and salinity observations, and the gas exchange

parameterization of Nicholson et al. (2011), which includes separate terms for diffusive and

bubble-mediated gas exchange (Manning and Nicholson, 2016). We assumed a fixed 1 m

water depth. We initialized the model on Dec 16, 12:30 pm using the measured saturation

anomalies of the first discrete sample. This model is an oversimplification because it does not

account for the movement of water masses (e.g., due to tides) and the variable water depth.

However, the model helps us to determine how much of the variability can be explained by

air-sea gas exchange and changes in temperature/salinity.

The model predicted many similar features to the observations. For example, the model

and observations show similar amplitude in the saturation anomalies, with Ne/Xe having

the widest range in saturation anomalies and Ar/Kr the least. Additionally, the timing
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of changes is similar in the model and data. For example, the model and data show the

saturation anomalies increasing from near-equilibrium to positive values on December 18-

20, and decreasing from positive values to negative values on December 20-21. The changes

in saturation anomalies are linked to changes in the water temperature and the air-water

temperature difference. High resolution data such as this could be used to examine other

processes such as tidally driven flows/mixing (e.g., by combining the GEMS with current

velocity measurements) and to infer the rates of biological processes (e.g., by combining the

GEMS with 02 measurements). In the Supporting Information, we describe in detail several

potential applications of the GEMS, including lab-based tank experiments, introduced tracer

studies, and parameterizing physical versus biological gas fluxes.

2.4.5 Comparison with other published methods

The GEMS dramatically increases throughput, decreases labor, and decreases costs com-

pared to traditional discrete sampling and analysis methods. The GEMS has improved

accuracy and time resolution compared to another portable method that measures Ar and

Kr, but not Ne or Xe (Machler et al., 2012). The accuracy is similar to (Brennwald et al.,
2013a; Sano and Takahata, 2005; Beyerle et al., 2000) or somewhat less accurate than (Stan-

ley et al., 2009a; Hamme and Severinghaus, 2007) laboratory-based methods that cause much

higher cost and labor. Additionally, the laboratory-based methods with higher precision re-

quire much more expensive instrumentation (over 250 000 USD), have higher analysis costs

(-500 USD per sample), and have lower sample throughput (-4 samples per day), since each

sample takes several hours to extract and analyze. In contrast, our system is less expensive

to build (~50 000 USD in 2013), requires minimal consumables, and can collect an endless

number of samples with a time resolution of 90-410 s. Thus, the GEMS enables continuous,
real-time measurements of four noble gases, with a sampling frequency (sub-hourly) that

would be challenging to achieve via traditional methods (Machler et al., 2012).

The main disadvantage is that the described GEMS system does not determine the

gas concentrations; instead it determines their mole ratios. In the future, we plan to test

modifications to the GEMS that will enable the determination of the gas concentrations, in

addition to their mole ratios. For example, the GEMS could be used along with a second

mass spectrometer measuring 02 /Ar ratios (e.g., an equilibrator inlet mass spectrometer

(Cassar et al., 2009), a membrane inlet mass spectrometer (Tortell, 2005; Virkki et al.,
1995; Kana et al., 1994), or the GEMS system described above, with the getter chambers

eliminated) and a well-calibrated sensor for 02 concentration. The 0 2 /Ar ratio and the 02
concentration could be used to derive the Ar concentration (Eveleth et al., 2014; Hamme

et al., 2012) and the other noble gas concentrations could be determined from the GEMS

noble gas ratios and the Ar concentration. Another potential modification is changing the

system to measure individual samples, instead of a continuous gas stream (Visser et al.,
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2013; Machler et al., 2012).

2.5 Conclusions

We have described the gas equilibration mass spectrometer (GEMS), a new field-deployable

method for continuous measurement of the mole ratios of four noble gases (Ne, Ar, Kr,

and Xe) dissolved in water. In the lab, the precision is 0.7 % or better, and in a variable-

temperature environment the precision is 1.0 % or better. The accuracy is 0.9 % or better

for all gas ratios in the lab. In the field (and/or at greater disequilibrium) the accuracy is

0.7 % or better for Ne/Kr, Ne/Ar, and Ar/Kr and 2.5 % or better for Ne/Xe, Ar/Xe, and

Kr/Xe, but can be improved through calibration with discrete samples to 0.6 % or better.
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Quantifying air-sea gas exchange using noble gases

in a coastal upwelling zone
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3.1 Abstract

The diffusive and bubble-mediated components of air-sea gas exchange can be separately

quantified using time-series measurements of a suite of dissolved inert gases. We have

evaluated the performance of four published air-sea gas exchange parameterizations using a

five-day time-series of dissolved He, Ne, Ar, Kr, and Xe concentration in Monterey Bay, CA.

We constructed a vertical model including surface air-sea gas exchange and vertical diffusion.

Diffusivity was measured throughout the cruise from profiles of turbulent microstructure. We

corrected the mixed layer gas concentrations for an upwelling event that occurred partway

through the cruise. All tested parameterizations gave similar results for Ar, Kr, and Xe;

their air-sea fluxes were dominated by diffusive gas exchange during our study. For He and

Ne, which are less soluble, and therefore more sensitive to differences in the treatment of

bubble-mediated exchange, the parameterizations gave widely different results with respect

to the net gas exchange flux and the bubble flux. This study demonstrates the value of

using a suite of inert gases, especially the lower solubility ones, to parameterize air-sea gas

exchange.

3.2 Introduction

Noble gases dissolved in seawater are biologically and chemically inert, making them excel-

lent tracers of numerous physical processes that control gas saturation states in the ocean

(e.g., bubble mediated and diffusive gas exchange, temperature change, atmospheric pres-

sure change, ice melting, diapycnal mixing, deepwater formation and ventilation) (Loose and

Jenkins, 2014; Nicholson et al., 2011; Stanley et al., 2009b). By simultaneously measuring

several inert gases with a range of physical properties (e.g., diffusivity, solubility, and de-

pendence of solubility on temperature), we can separately quantify many of these physical

processes (Hamme and Severinghaus, 2007; Hamme and Emerson, 2002). For example, the

solubility of the noble gases decreases with decreasing atomic mass, and the lower solubility

noble gases (He and Ne) have a larger portion of their total gas exchange flux driven by

bubbles. The dependence of bubble flux on solubility can be explained as follows: for lower

solubility gases the atmospheric concentration is high relative to the water concentration,

and thus when air bubbles dissolve in the water, the bubbles will generate a larger percent

increase in the gas concentration, compared to a higher solubility gas. Additionally, the

saturation state of the higher solubility (heavier) noble gases changes more dramatically in

response to surface heating/cooling, and mixing of water masses with different temperatures,

due to the stronger dependence of the solubility on temperature compared to the lower sol-

ubility (lighter) noble gases. Parameterizations of physical processes from inert gases can

be applied to bioactive gases, to obtain more accurate estimates of processes including bio-
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logical productivity (Hainine and Emerson, 2006; Stanley et al., 2009b) and denitrification

(DeVries et al., 2012; Chang et al., 2012).

Here, we use a quasi-Lagrangian time-series of the five stable noble gases (He, Ne, Ar, Kr,

and Xe) in Monterey Bay, CA, along with a vertical model, to evaluate the performance of

four gas exchange parameterizations, which differ in their treatment of diffusive and bubble-

mediated air-sea gas exchange. These data are some of the few published measurements

of a suite of noble gases in a coastal upwelling zone, where environmental factors such as

increased levels of surfactants and reduced fetch for wind wave generation may cause the

relationship between wind speed and gas exchange rates to differ from the relationship in

the open ocean (Upstill-Goddard, 2006; Frew, 1997). In a forthcoming publication, we will

apply the noble gas-based parameterizations of physical processes to 02 concentration and

isotope measurements, in order to quantify net community production and gross primary

production during the time-series.

3.3 Methods

3.3.1 Cruise description

We participated in a seven-day quasi-Lagrangian cruise in Monterey Bay, CA, USA, on

the R/V Western Flyer, Sept 27-Oct 3, 2014. During the cruise, rosette casts to -180 m

were conducted four times per day, at roughly 06:00, 12:00, 18:00, and 00:00 local time.

Immediately prior to nearly every cast, vertical profiles of microscale turbulence to -70

m were obtained using a vertical microstructure profiler (VMP-200, Rockland Scientific).

Rates of turbulent kinetic energy dissipation were calculated using two perpendicular air-

foil type shear probes on the VMP-200. The Nasmyth spectrum was used to recursively

estimate dissipation and diapycnal diffusivity, K, (Wolk et al., 2002). Roughly three high

quality turbulence profiles were obtained every 6 hr.

All CTD casts were performed and all noble gas samples were collected in the vicinity

of mooring Ml (21 km west of Moss Landing, CA), which is maintained by the Monterey

Bay Aquarium Research Institute (Figure 3-1). Starting on Sept 28, 12:35 and throughout

the rest of the cruise, we selected where to collect CTD and turbulence profiles by following

an autonomous underwater vehicle (AUV) drifting at o ~ 25.2 kg m- 3 (25-45 m depth),

near the base of the thermocline. Thus, the cruise was quasi-Lagrangian, but with respect

to the base of the thermocline, rather than the mixed layer. We also collected noble gas

samples from one offshore cast (37 km west of Moss Landing, CA), which indicated that

there is minimal spatial variability in noble gas distributions, with respect to both saturation

anomaly and concentration.
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Figure 3-1: Map of the study site. Pink diamonds indicate the locations of Moss Landing,

CA, mooring M1, and the offshore cast. Grey squares are locations of CTD casts and white

circles are locations that surface samples were collected (sometimes colocated with CTD
casts, sometimes in between casts). Colorbar shows elevation and bathymetry in meters.

3.3.2 Noble gas data

In this paper, we present noble gas data (He, Ne, Ar, Kr, and Xe concentrations) from

discrete samples, which were collected from the ship's underway seawater line and from

Niskin bottles. The samples were collected in copper tubes, sealed with a cold pressure

welder, and extracted in the Isotope Geochemistry Facility at Woods Hole Oceanographic

Institution (Jenkins et al., 2010). Noble gas abundances were measured on a pulse counting

quadrupole mass spectrometer using the system described in Stanley et al. (2009a). The

dissolved concentration of each gas (in cmSTP g 1 or mol kg- 1) was determined, using

selected ion monitoring (Stanley et al., 2009a) and including isotope dilution analysis for

Kr and Xe. The estimated error (combined precision and accuracy) is 0.27, 0.27, 0.24,

0.25, and 0.27 %RSD (relative standard deviation) for He, Ne, Ar, Kr, and Xe respectively.

As we did not analyze samples in replicate from this dataset, the errors are based on a

different dataset of duplicate samples that were collected and analyzed by the same methods

immediately following this dataset. Three samples with evidence of air contamination (based

on anomalies in the relative excess concentration of the five noble gases in the sample,

compared to the other samples at a similar depth) were eliminated from the dataset.

Since the rate of gas exchange is dependent on the deviation of the gas concentration

from equilibrium, accurate solubility functions are critical for accurate parameterization

of air-sea gas exchange and other physical processes. Hamme and Emerson (2004) have

published high-quality solubility data for Ne and Ar (errors of 0.30 and 0.13 % respectively)

based on equilibration of water with air at a range of temperatures and salinities (Hamme

and Emerson, 2004a). For the other gases in seawater, researchers have typically used the

solubility data of Weiss (1971) for He, Weiss and Kyser (1978) for Kr, and Wood and Caputi

52



(1966) for Xe. Errors of ~2 % may be present in these solubility functions because they

were determined for 1 atm of each pure gas, and these data must be extrapolated over

several orders of magnitude to calculate the solubility with respect to air. For example,

Weiss (1971) determined the solubility of Ne in addition to He, and his reported seawater

Ne solubility was ~1.5 % Hamme and Emerson (2004a). Additionally, the published Kr

and Xe solubilities in seawater are subject to uncertainties in the atmospheric mole fraction

of each gas (Aoki and Makide, 2005). Therefore, for He, Kr, and Xe, we use currently

unpublished solubility data from Lott and Jenkins (personal communication, 2015), who

determined the solubility of He, Kr, and Xe from 0 to 36.6 PSS, and from <1 to 35 'C by

equilibration of water with air. An additional advantage of the Lott and Jenkins dataset

is that the solubilities were all measured on the same samples, using the same instrument.

Thus the He, Kr, and Xe solubilities of Lott and Jenkins should be more internally consistent

compared to data compiled from three different papers (two different laboratories). At the

typical sea surface conditions during our study (S = 34.4 PSS, T = 16 'C), the solubilities

of Lott and Jenkins are 2.2 % higher for He, 1.3 % higher for Kr, and 0.1 % less for Xe,

compared to the published solubilities.

In the main paper, we show the data and model results calculated with the Hamme and

Emerson (2004) solubilities for Ne and Ar, and the Lott and Jenkins solubilities for He,

Kr, and Xe. In the Supplemental Information Information, we show the results using the

published solubilities for He, Kr, and Xe, and we provide the noble gas concentration data

along with ancillary data (salinity, temperature, atmospheric pressure, etc.) so that it can

be used by future investigators with the most accurate solubility functions available. The

choice of solubility functions does not affect our overall conclusions, however, all models

simulate the He data better when the Lott and Jenkins solubility is used instead of Weiss

(1971).

For the gas molecular diffusivity, which also enters into the gas exchange parameteri-

zations, we used the freshwater data of Jdhne et al. (1987a) adjusted by -0.138 % per ppt

salinity (-4.75 % adjustment for 34.4 PSS, the typical salinity in our study) for He, Ne, Kr,

and Xe, and extrapolated values for Ar (Manning and Nicholson, 2016).

3.4 Model description

3.4.1 Data input and model setup

We developed a ID vertical model for the time-series including diffusion and gas exchange

for each noble gas. We ran the model using four different gas exchange parameterizations

and evaluated the ability of each parameterization to accurately simulate the mixed layer

saturation anomalies and concentrations measured throughout the cruise. The model was

initialized with CTD profiles of temperature and salinity, and idealized noble gas profiles,

53



described in more detail below. The model run proceeded as follows: at each time step (20

s), for each gas, the air-sea gas exchange flux was calculated and then the gas concentration

in the surface box (upper 1 m) was adjusted, based on this flux. Then the diffusive flux

at the edge of each box (1 m spacing) was calculated, which mixed the change in gas

concentration from gas exchange throughout the mixed layer and deeper into the water

column. We used a Crank-Nicolson diffusion scheme to calculate the flux between each box,

based on the vertical diffusivity rates measured every 6 hr. The vertical diffusion rate was

variable with depth and with time, and the model did not explicitly prescribe a mixed layer

depth. Measured diffusivity was generally orders of magnitude higher near the surface where

gases are mixed much more vigorously, compared to deeper waters below the mixed layer.

Our vertical diffusivity determined from microstructure profiles is more accurate compared

to other published studies where the diffusivity was crudely estimated for the base of the

mixed layer only.

We ran the model from Sept 28, 00:00-Oct 3, 02:00 local time. We linearly interpolated

all data to the model time step of 20 s. CTD profiles of temperature and salinity were

binned to the depth grid spacing of 1 m, from 0.5-69.5 m, and then linearly interpolated

between casts. Temperature and salinity profiles from each CTD downcast (every 6 hr) were

used in the model for calculating the simulated gas saturation anomalies. The turbulence

profiles measured prior to each CTD cast (roughly three turbulence profiles per CTD cast)

were averaged, and then linearly filtered to 1 m depth spacing (1-70 m) before interpolation

to the model time step.

Measurements of wind speed, atmospheric pressure, and relative humidity were obtained

at 10 min intervals from sensors on mooring MI (Figure 3-1). There were two wind sensors

on the mooring: a Vaisala ultrasonic anemometer and a RM Young propeller anemometer.

For this study we used data from the ultrasonic anemometer as it was specified to have

higher accuracy and a lower detection limit. The wind sensors were both at 4 m height

above the sea surface and the wind speeds were extrapolated to ulo, the wind speed at 10 m

height, using the equation Ub = u_(b/a)0 -" with a and b the sensor and extrapolated heights

respectively (Hsu et al., 1994). During the time period included in the model (excluding

the upwelling event, discussed below), the root mean square deviation (RMSD) of the two

sensors was 0.38 m s-1 (9.8 %). The mean difference between the two sensors was 0.29 m

s-1, with the anemometer giving higher wind speed 86 % of the time. The model results

were very similar regardless of which anemometer dataset was used. For example, the net

gas exchange flux typically differed by 13 % or less when the model was run with data from

either anemometer.

The gas saturation anomaly was used in all the gas exchange parameterizations, and is

defined in A notation as

AC = (Cw/Ceq - 1)100% (3.1)
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with C,, and Ceq the water and saturation equilibrium gas concentrations, respectively. The

equilibrium concentration of each gas at each time step was calculated with respect to local

sea level pressure and humidity, specifically

Ceq = Ceq,ref X (Psi - PH2O)/(Pref - PH20,eq) (3.2)

where Ceq,ref is the reference equilibrium concentration at the measured salinity and tem-

perature for 1 atm total pressure of air with water vapor at 100 % humidity. The pressure

terms are all expressed in atm: Pref = 1 atm is the total reference pressure of air, Pi is

the local sea level pressure, and PH20 and PH20,eq are the water vapor pressures in situ

and at equilibrium (100 % relative humidity), respectively, calculated from the salinity,

temperature, and relative humidity (Dickson et al., 2007).

The model was initialized with an idealized profile for each gas (Figure 3-2), since we did

not have a depth profile at the start of the cruise. The concentration was fit to be similar

to the other profiles at depth. The initial surface concentration of each gas was determined

by fitting the model to either the concentration or saturation anomaly of the first sample,

which was collected on September 28, 06:15. The fit was determined by minimizing the

RMSD between the sample and model results for the four parameterizations. Fitting the

models to the initial sample concentration versus saturation anomaly gave slightly different

results because the saturation anomaly of each discrete sample was calculated based on the

temperature and salinity of the water sampled, rather than the modeled temperature and

salinity, which was interpolated from the CTD downcasts. There were sometimes differences

between the real-time underway and interpolated CTD profiles (for underway samples) and

offsets in the temperature and salinity profiles between the upcast and downcast (for Niskin

samples). Therefore, the model and sample equilibrium concentration were sometimes differ-

ent. Below, we separately report the performance of the models optimized to concentration

and saturation anomaly (section 3.5).

3.4.2 Adjustment for upwelling

We observed evidence for upwelling of colder water with higher noble gas and lower 02

concentrations between the casts on Sept 29, 18:30 and Sept 30, 06:16 (Figure 3-3). Tem-

perature sensors at mooring M1 recorded a >1 'C decrease in temperature at 1, 10, and 20

m depth between Sept 29, 19:40 and Sept 30, 06:10. This time period coincided with the

strongest winds and the strongest northerly (upwelling-favorable) winds observed during the

time-series (winds were 10.0-11.8 m s-1 from 18:40-21:30). Additionally, diapycnal diffu-

sivity was enhanced during the upwelling event, from roughly 10-20 m on Sept 29, 23:30

and then from 30-40 m on Sept 30, 05:30, suggesting vertical propagation of wind-driven

turbulence from the surface to deeper waters (Figure 3-3).
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Figure 3-2: Measured profiles and idealized initial profile of noble gas concentrations (a-e)

and saturation anomalies (f-j) during the cruise. The offshore cast was collected on Sept 30,

21:30 and its location is shown in Figure 3-1. The black line is the idealized profile that was

used to initialize the model on Sept 28, 00:00. The horizontal black lines show the estimated

measurement error.

Our diffusion-based model was not able to reproduce the upwelling event. Therefore, we

manually reset the gas profiles at Sept 30, 06:16, the time of the first cast after upwelling.

The saturation anomaly of each gas throughout the upper 25 m was reset to the same

value for all models, and these saturation anomalies were determined by minimizing the

RMSD of the model results for the four different parameterizations to the first two samples

collected after the upwelling event, on Sept 30, 06:33 and 07:10. Gas concentrations below

25 m were not adjusted because the temperature and 02 profiles below 25 m remained

similar following the upwelling event (Figure 3-3). We fit the model to either the mean

concentration or mean saturation anomaly of these two samples. This approach was identical

to the approach used to determine the initial surface concentrations. We excluded samples

collected during the upwelling event (at Sept 29, 19:33, and Sept 30, 01:30) when assessing

the model performance.

We did not add a continuous upwelling flux throughout the cruise (e.g., using a published

upwelling index for the region). Upwelling events are episodic in this region during the fall

(Fitzwater et al., 2003), and our temperature and mooring data indicated that only one

upwelling event occurred during our time-series, overnight Sept 29-30. Additionally, we

were able to simulate the remainder of the time-series without a continuous upwelling flux.

We omitted advection from the mass balance because we did not have sufficient spatial

coverage to resolve advective fluxes. This omission is likely not a serious limitation since

our measurements at an offshore station suggested that the dissolved gas concentrations

and saturation anomalies were very similar offshore to near M1 (Figure 3-2). Furthermore,

56



a b c

E20-

0 40-
- 09/28 00:20 - 09/28 00:20 - log-average
- 09/29 02:00 - 09/29 02:00 -09/29 23:40

60- - 09/30 00:20 - 09/30 00:20 -09/30 05:40

200 250 300 12 14 16 -6 -4 -2 0 2

02 conc [pmol kg~1] Temperature [0C] log10 Kz [m s-2 I

Figure 3-3: A) 02, b) temperature, and c) diapycnal diffusivity (Kz) profiles collected
during the cruise. In a-b), the profiles on Sept 30, 00:20, during the upwelling, showed

a decrease in mixed layer temperature and 02. In c), diffusivity in the upper 40 m was

enhanced following the upwelling, compared to the log-average (geometric mean).

we evaluate the performance of the models using only He and Ne, which should be the

least affected by advective fluxes and mixing between different water masses. These gases

will have the lowest lateral variability in concentration and saturation anomaly, due to the

very small temperature dependence of their solubilities (0.2 and 0.7 % 'C- for He and

Ne, respectively) (Stanley and Jenkins, 2013; Nicholson et al., 2011; Hamme and Emerson,

2002). Additionally, our data show that the surface He concentration was barely altered by

the upwelling event, a clearly non-Lagrangian process.

3.4.3 Choice of gas exchange parameterizations

We ran the model using four different gas exchange parameterizations: Liang et al. 2013

(L13), Nicholson et al. 2011 (N11), Stanley et al. 2009 (S09), and Sweeney et al. 2007

(Sw07) (Liang et al., 2013; Nicholson et al., 2011; Stanley et al., 2009b; Sweeney et al.,

2007). N11 and S09 were developed from inverse models of noble gas data, with S09 using

a three-year time-series of monthly profiles of He, Ne, Ar, Kr, and Xe concentration at the

Bermuda Atlantic Time-series Study site (BATS) in tandem with a 1D oceanic mixed layer

model, and N11 using a global dataset of Ne, Ar, N 2 /Ar, and Kr/Ar measurements in tandem

with an ocean general circulation model. L13 used a large eddy simulation (LES) model

coupled to a bubble population model to parameterize the bubble-mediated exchange and

did not use oceanic gas measurements to tune the model; however, the L13 parameterization

reproduced oceanic data well. With all three parameterizations, the total gas exchange flux

is calculated as the sum of diffusive and bubble-mediated exchange:

Ft = Fd + Fb (3.3)
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with Ft the total flux, Fd the diffusive flux, and F the bubble flux. Each parameterization

further separates the bubble-mediated flux into two components:

Fb = Fc + F (3.4)

where F, is the complete trapping bubble flux from typically smaller bubbles that completely

dissolve and Fp is the partial trapping bubble flux from typically larger bubbles that partially

dissolve. The exact equations for Fd, Fc, and Fp differ between authors, as we discuss below.

Finally, Sw07 used a global dataset of dissolved inorganic radiocarbon data to quantify

the rate of uptake of anthropogenic (bomb) radiocarbon into the ocean. Sw07 does not not

explicitly include the bubble-mediated component of air-sea gas exchange, i.e. it includes

Fd but not F. The Sw07 parameterization is within the range of other gas exchange

parameterizations derived from oceanic measurements that do not include a separate term

for bubble-mediated exchange (Wanninkhof, 2014; Ho et al., 2006; Naegler et al., 2006;

Wanninkhof and McGillis, 1999), and is used as Fd in N11.

All of the parameterizations use ujo as the only environmental forcing variable. In L13,

uio is converted to u, using an empirical formula for the drag coefficient (Sullivan et al.,

2012; Large and Pond, 1981). Therefore, none of the models explicitly include variables such

as surfactants, precipitation, and/or fetch.

S09, Sw07, and N11 all parameterize Fd using an equation of the form

Fd = Aujo(Sc/660) On(Ceq - Cw). (3.5)

Here A is an empirical constant and Sc is the Schmidt number of the gas at the water

temperature and salinity. Sc is defined as the ratio of the kinematic viscosity of seawater to

the gas diffusivity. N11 and Sw07 both use A = 0.27 cm hr-1, whereas S09 uses A = 0.30

cm hr-1, and will thus yield a diffusive flux that is 11 % higher for a given wind speed and

gas concentration. The comparison to Fd calculated from L13 is more complex since u, is

a nonlinear function of ulo. At uio = 5 m s-1, Fd of L13 is approximately equal to Fd of

S09 and N11. At lower wind speeds, Fd of L13 exceeds S09 and N11 (by a factor of five at

iO = 1 m s- 1 ), and at higher wind speeds Fd of L13 is less than S09 and N11 (by a factor

of two at ulo = 10 m s-1). The differences in Fd for L13 (scaled to u*) versus the other

parameterizations (scaled to uj1) also have a slight dependence on the gas Schmidt number.

For the bubble-mediated fluxes F, and Fp, the differences between parameterizations

are not simple to characterize because they are functions of additional variables such as the

gas saturation anomaly, diffusivity, solubility, and atmospheric mole fraction, as well as uio.

The dependence on these factors can differ between models. For example, Fp is scaled to the

gas diffusivity, D, as Fp oc Do 5 in N11 and Fp oc D2/ 3 in S09. L13 sets Fp 0c (Sc/660) 2 / 3

All three parameterizations assume that F, is independent of D.
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We report the differences between parameterizations for Fd, Fc, and Fp in our model

below. We refer the reader to the authors' original papers for more details on each param-

eterization (Liang et al., 2013; Nicholson et al., 2011; Stanley et al., 2009b; Sweeney et al.,

2007). In the Supplemental Information, we provide MATLAB functions for calculating gas

exchange fluxes using each of the four tested parameterizations, as well as several additional

parameterizations that only include Fd (Manning and Nicholson, 2016).

3.5 Results

We evaluated the performance of each parameterization by comparing the model results to

near-surface measurements (2-4 in depth, 15 samples total). We show the gas time-series

with respect to saturation anomaly as well as with respect to concentration (Figure 3-4), and

we calculated the error using both parameters. For the most soluble gases, Ar, Kr, and Xe,

all models gave very similar results and simulated the surface measurements well. The four

models diverged for He and Ne, which have higher diffusivity and lower solubility, making

them more sensitive to differences in the treatment of bubble-mediated gas exchange.

1.77 7.35 1.3 1 1  dj e

S1.76 7.3 -5 .1g 1 3 - 2.9 ' 4 05 E 18 -Liang13 004Vt

S1.72 E 72 E E E 4.5
1-20 2.85

01 /74 2 0 7/2 / / 01/

73 404 ' = chsn107.15 1.24 2.839C ~ r C C-7

0 0 27209/28 09/30 10/02 Z 09/28 09/30 10/02 09/28 09/30 10/02 09/28 09/30 10/02 X 09/28 09/30 10/02

3r a d -Stanley 09 8 s4 8 h - -Nicholson 11
Sweeney 07

2 -6 --Iiang13 -

Z 02

09/28 09/30 10/02 09/28 09/30 10/02 09/28 09/30 10/02 09/28 09/30 10/02 09/28 09/30 10/02

Figure 3-4: Near-surface gas concentrations (a-e) and saturation anomalies (f-j), from
samples and model results. The gap in the models around midnight Sept 30 corresponds
to the upwelling event. Error bars reflect one standard deviation error in concentration
measurement and do not include solubility uncertainty. Maroon circles are samples during
the upwelling event that were not included in the Monte Carlo error analysis. The grey
circle is an unexplained outlier that was included in the error analysis.

The concentration plots for Ar, Kr, and Xe clearly show the impact of the upwelling event

overnight on Sept 29-30: near-surface gas concentrations following the upwelling were 2-4 %

higher than before the upwelling (Figure 3-4 c-e). The concentration increase for Ar, Kr, and

Xe following the upwelling was driven by the replacement of warmer water by colder water

with higher equilibrium gas concentrations (but similar saturation anomalies for each gas).

In contrast, the concentrations of He and Ne changed by <1 % due to the upwelling because

these gases have a lower dependence of their solubility on temperature and therefore the
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equilibrium gas concentration was similar before and after upwelling. Additionally, because

the upwelling event coincided with high winds, some of the concentration increase for He

and Ne during this period can be attributed to bubble-driven supersaturation rather than

temperature change.

There was one sample following the upwelling, shaded grey in Figure 3-4, that fell below

the model results for Ar, Kr, and Xe concentration, but not saturation anomaly. This

sample was collected in warmer water (16.4 'C) compared to the four surface samples taken

within 24 hr of that sample (15.2-15.7 'C) and therefore it had a lower equilibrium gas

concentration (Ceq). It is possible that this sample may have been from a different water

mass compared to the rest of the time-series, however, it was included in all of our error

estimates because we had no specific reason to discount it.

For each gas, the initial surface concentration and surface concentration after upwelling

were set by fitting the models to the measured concentrations of the first sample and the

first two samples after upwelling, respectively. Due to the measurement uncertainty for these

initialization values, we performed a Monte Carlo error analysis where the initial concen-

tration and concentration after upwelling were simultaneously varied randomly 100 times

with a normal distribution, with the optimized concentrations (Figure 3-4) set as the mean

and the measurement error set as the standard deviation. We evaluated the performance of

the different parameterizations by calculating the RMSD between all measured near-surface

sample concentrations and the coincident modeled concentrations, for each noble gas and

each parameterization. We then repeated the error analysis, but instead fit the models to the

measured saturation anomaly of the first sample, and the first two samples after upwelling,

and calculated the RMSD with respect to saturation anomaly. We report the results for

each parameterization as the mean standard deviation of the RMSD determined from the

Monte Carlo error analysis for both concentration and saturation anomaly (Table 3-1).

Unfortunately, the fact that the highest wind speeds in our time-series coincided with

the upwelling event made it more difficult to discriminate between parameterizations. If

the models are run through the full cruise duration, without resetting the concentrations

after the upwelling, the four gas exchange parameterizations predict substantially different

trajectories for He and Ne during and following the high wind event (Figure 3-5). As wind

speed increases, the magnitudes of Fd, F,, and F, increase and so do the differences between

models. Below, we discuss the advantages and disadvantages of including upwelling versus

not including upwelling in our model, and the insights gained from both approaches.

60



Table 3-1: Performance of the four parameterizations in simulating the surface He and Ne
data, with and without adjustment for upwelling. RMSD is reported as the mean standard
deviation, from the Monte Carlo error analysis. The % best fit indicates the frequency that
a specific parameterization gave the best fit (lowest RMSD) of the four parameterizations.

He, with upwelling adjustment
.z He conc. RMSD He saturation % best fit, % best fit,

(10-9 mol kg- 1) RMSD (%) He conc. He saturation

Sweeney 2007 8.3 0.8 0.47 0.05 8 3
Nicholson 2011 8.5 1.1 0.46 0.05 25 30
Stanley 2009 10.4 1.5 0.56 0.07 2 3
Liang 2013 7.9 0.7 0.44 0.04 65 64

Ne, with upwelling adjustment
.a t . Ne conc. RMSD Ne saturation % best fit, % best fit,

(10-8 mol kg- 1) RMSD (%) Ne conc. Ne saturation

Sweeney 2007 3.8 0.4 0.48 0.05 2 1
Nicholson 2011 3.8 0.4 0.48 0.06 32 33
Stanley 2009 4.2 0.6 0.55 0.08 10 8
Liang 2013 3.7 0.3 0.46 t 0.04 56 58

He, without upwelling adjustment
r He conc. RMSD He saturation % best fit, % best fit,

(10-9 mol kg~ 1 ) RMSD (%) He conc. He saturation

Sweeney 2007 9.6 0.3 0.53 0.02 0 0
Nicholson 2011 7.8 0.6 0.43 0.04 45 36
Stanley 2009 13.7 0.8 0.77 0.08 0 0
Liang 2013 7.7 0.2 0.42 0.01 55 64

Ne, without upwelling adjustment
.a t . Ne conc. RMSD Ne saturation % best fit, % best fit,

(10-8 mol kg~ 1 ) RMSD (%) Ne conc. Ne saturation

Sweeney 2007 7.6 0.4 0.96 0.05 0 0
Nicholson 2011 4.7 0.3 0.58 0.04 0 0
Stanley 2009 3.4 0.1 0.44 0.02 100 100
Liang 2013 6.8 0.4 0.85 0.05 0 0
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Figure 3-5: Model results without upwelling adjustment. Near-surface gas concentrations

(a-c) and saturation anomalies (d-f), from samples and model results that were optimized to
give the best fit to the first sample. All plotted samples were included in the error analysis.

3.6 Discussion

3.6.1 Modeled surface concentrations and saturation anomalies

When the model is adjusted for upwelling, the L13 model has the most skill in simulating

the surface He and Ne data, yielding the lowest RMSDs of the four parameterizations (Table

3-1). L13 is the most accurate parameterization for predicting surface He concentration and

saturation 65 and 64 % of the time, respectively. Additionally, L13 is the most accurate

parameterization for predicting surface Ne concentration and saturation 56 and 58 % of the

time, respectively. N11 is most accurate 25-33 % of the time for He and Ne concentration

and saturation. The S09 and Sw07 models were each the most accurate parameterization

in 10 % or less of the Monte Carlo simulations for He and Ne. In general, the RMSD for

He and Ne concentration and saturation is similar for L13, N11, and Sw07, and higher for

S09. The modeled concentrations and saturation anomalies for He and Ne, when including

upwelling, looked very similar for L13 and Sw07, although as shown in Table 3-1, L13 was

usually the most accurate parameterization. However, a large part of the apparent skill of

Sw07 at reproducing the observed He data comes from the upwelling adjustment. The gas

added by upwelling compensates for the lack of gas added by an explicit bubble-generated

flux.

For He, when the model is run without adjustment for upwelling, the differences between
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parameterizations, and the need for an explicit bubble-generated flux to produce the ob-

served He supersaturation become clearer (Figure 3-5). Without the upwelling adjustment,

the Sw07 parameterization predicts lower He concentrations and saturation anomalies than

the other parameterizations, especially toward the end of the time-series. If the time-series

were extended, the He concentration in Sw07 would continue to decay toward equilibrium

(Heeq), and Sw07 would therefore underestimate the true He concentration. While we do

not have a long enough time-series to say for certain, the fact that all but one surface He

sample in our time-series are supersaturated suggests that a model that predicts equilibrium

concentrations at steady state, such as Sw07, would be incorrect. An explicit bubble flux

into the ocean is needed to generate consistently supersaturated surface waters for gases that

are insensitive to temperature change. The solubility of He only changes by 0.2 % aC-1.

Without the upwelling adjustment, L13 is most accurate for predicting surface He con-

centration and saturation anomaly 55 and 64 % of the time, and N1I is most accurate 45 and

36 % of the time, respectively. The performance of L13 and N11 for He is similar with and

without the upwelling adjustment. However, notably, without the upwelling adjustment,

the S09 parameterization appears to overestimate the bubble flux for He during the high

winds that coincided with the upwelling.

For Ne, when the model is run without an adjustment for upwelling (Figure 3-5), S09 is

the most accurate parameterization for Ne concentration and saturation anomaly 100 % of

the time and has the lowest RMSDs of the four parameterizations, even though S09 has the

highest RMSDs for Ne when the upwelling adjustment is included, and the highest RMSDs

for He without the upwelling adjustment. This result suggests that Ne is an intermediate

case, where upwelling, bubble-mediated fluxes, and diffusive fluxes are all important in

setting the near-surface gas concentration. In the model runs without upwelling, S09 predicts

high bubble fluxes which increase the Ne concentration to be similar to the true concentration

after upwelling. The case with upwelling is likely more reasonable for Ne, although it does

unfortunately overestimate the skill of the Sw07 model, due to the short duration of the

time-series. Again, if the time-series were extended, the Ne concentration modeled with

Sw07 would decay toward equilibrium, which is not consistent with the observations. All

of the surface Ne samples are supersaturated, despite the solubility of Ne having a weak

dependence on temperature (0.7 % aC-1), which supports the need for an explicit bubble-

mediated flux into the ocean to generate some portion of the observed supersaturation.

For Ar, Kr, and Xe, all parameterizations simulate the data well after the correction

for upwelling. For these gases, the RMSD of each parameterization is very similar and we

conclude that all parameterizations have similar skill in simulating the heavier noble gases

for our dataset. With a somewhat longer time-series, and/or without the upwelling event,

the differences between the parameterizations would likely be clearer, and we might be able

to see the importance of bubble-mediated exchange for somewhat more soluble gases, such
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as Ar. When the model is run without adjustment for upwelling, all four parameterizations

predict similar trajectories for Ar, Kr, and Xe and underestimate the concentrations and

saturation anomalies of these gases after the upwelling event (Figure 3-5).

These results demonstrate the different factors that controlled each gas' change in con-

centration overnight on Sept 29-30. For He, bubble-mediated exchange generated a small

concentration increase (<1 %). For Ne, upwelling and bubble-mediated exchange were both

important in producing a moderate concentration increase (~1 %). For Ar, Kr, and Xe,

upwelling/mixing caused a large (2-3 %) concentration increase. Because Ar, Kr, and Xe

were barely affected by the high wind event that coincided with the upwelling, their concen-

trations could not be used to constrain the proportion of the surface water that was replaced

with colder water with higher gas concentrations.

Over the whole time-series, the surface concentrations of Ar, Kr, and Xe were primarily

controlled by upwelling and diffusive gas exchange. These more soluble gases contrast with

He which was primarily controlled by bubble-mediated and diffusive gas exchange, and Ne,

which was controlled by a combination of upwelling, bubble-mediated gas exchange, diffusive

gas exchange.
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Figure 3-6: Air-sea gas fluxes of He (a-d) and Xe (e-h) during the time-series including

adjustment for upwelling and modeled using all four parameterizations. Positive fluxes are

into the ocean. The flux is separated into three components: diffusive flux (Fd), complete
bubble trapping (F,), and partial bubble trapping (Fp). The Sw07 parameterization only

includes Fd.

3.6.2 Modeled air-sea fluxes

For each gas, the differences between parameterizations, or lack thereof, can be understood

by examining the gas fluxes predicted by each parameterization (Figure 3-6 and Table 3-2).
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The parameterizations differ greatly in their prediction of the total bubble flux, and the

fraction of the total bubble flux from partial trapping versus complete trapping. The Sw07

and Nil parameterizations use the same equation for Fd, but Sw07 does not include the

bubble terms F, and Fp. The magnitude of Fd for He is 19 % less in Sw07 compared to Nil

because there is no bubble-mediated exchange to increase the saturation anomaly, and thus

the diffusive flux of He. The magnitude of the He bubble flux, F, is greatest for S09 (double

Nil and twelve times L13); thus S09 predicts the highest He concentrations throughout the

time-series.

The lower skill of the S09 parameterization compared to Nil and L13 in simulating He

(both with and without the upwelling adjustment), and the improved performance of S09 in

simulating Ne when the upwelling adjustment is not performed, both suggest that S09 may

be overestimating bubble-mediated exchange in this environment. One potential explanation

is that the S09 parameterization was tuned using He solubility data that was -1 % too low

(saturation anomalies that were -1 % too high), compared to the LJ15 solubility used in

this model. Assuming that the S09 model was fit to reproduce He saturation anomalies that

were too high, it may overestimate bubble fluxes. As we observe, S09 does predict the largest

bubble-mediated fluxes of the four parameterizations. When we run the model using the He

solubility of Weiss (1971), which is ~2 % lower than the He solubility of LJ15, all models

underestimate the near-surface He concentrations and saturation anomalies (Figures B-2 and

B-3 in Supplemental Information). The S09 parameterization comes closest to simulating

the He data when using the Weiss (1971) solubility because it predicts the largest bubble

fluxes.

The Nil and L13 parameterizations were fit to inert gas data not including He, and the

L13 parameterization was not tuned using any oceanic gas data. Therefore, Nil and L13

would not have errors related to uncertainties in He solubility. This result underscores the

need for accurate gas solubility functions in order to realistically interpret oceanic gas data

(Hamme and Emerson, 2004a).

The modeled air-sea fluxes help to explain why the parameterizations all give very simi-

lar trajectories for Xe, Kr, and Ar in Figure 3-4. For Xe, the Sw07 and Nil models predict

nearly the same Fd because the diffusive flux greatly exceeds the bubble flux (Table 3-2).

The absolute and relative values of F, and Fp for Xe vary widely between the different

parameterizations. L13 is unique among the parameterizations in simulating a bubble strip-

ping effect in which heating-induced supersaturation exceeds the bubble overpressure effect,

resulting in a net removal of gas by partial bubble trapping (Fp). The S09 and Nil pa-

rameterizations always give net bubble flux into the ocean for Fp, even for supersaturated

gases. NIl, S09, and Sw07 predict similar Fd for Xe and have a small or zero bubble flux

(the magnitude of F is 5 % or less of the magnitude of F). For L13, the sum of Fd and F

for Xe gives a net flux that is very similar to Fd for the other parameterizations.
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Table 3-2: Comparison of air-sea fluxes, based on data plotted in Figure 3-6 (i.e., including
adjustment for upwelling). The Fd and Fb are mean values, averaged over the whole time-
series. Positive fluxes are into the ocean. Liang 2013 predicts Fp < 0 and F, > 0 for He and
Xe. Therefore, the fraction of Fb from Fp is negative for He (Fb > 0) and over 100 % for Xe
(Fb < 0).

Helium fluxes
Parameterization Fd Fb Fraction of Fb from Fp

[10-13 mol m- 2 s-1] [%J
Sweeney 2007 -4.7 0
Nicholson 2011 -5.8 3.7 11
Stanley 2009 -7.5 7.9 3
Liang 2013 -5.0 0.6 -16

Xenon fluxes
Parameterization Fd Fb Fraction of Fb from Fb

110-13 mol m- 2 s-1 [%]
Sweeney 2007 -2.7 0
Nicholson 2011 -2.7 0.1 41
Stanley 2009 -3.0 0.1 1
Liang 2013 -2.8 -0.4 103

The choice of optimizing the initial conditions to concentration versus saturation anomaly

does not significantly affect our interpretations, as shown in Table 3-1. For example, the

modeled total air-sea flux (Ft) for each gas varies by 7 % or less between the two optimiza-

tion values. Additionally, the Monte Carlo error analysis results are very similar when the

wind speed from the propeller anemometer is used rather than the sonic anemometer. The

modeled F for each parameterization is generally within 13 % for either anemometer, and

both wind speed sensors predict L13 is most accurate 64-77 % of the time for He and 56-72

% of the time for Ne.

3.7 Conclusions and future work

This study is complementary to others that have demonstrated the value of using oceanic in-

ert gas measurements in tandem with models to quantify air-sea gas exchange fluxes (Nichol-

son et al., 2011; Stanley et al., 2009b; Hamme and Emerson, 2006). We demonstrated that

short-term, high-frequency measurements of inert gases and diapycnal diffusivity can be

used to quantify air-sea gas exchange in coastal regions. We found that accurately parame-

terizing bubble-mediated exchange was necessary to simulate the near-surface measurements

of He and Ne collected during our time-series. The tested parameterizations gave a wide

range of results for the direction and magnitude of the net bubble flux, and the proportion

of partial versus complete bubble trapping, indicating that there are still large uncertainties
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in models of bubble-mediated gas exchange. Higher wind speed conditions, and/or a longer

period of Lagrangian observations would have resulted in a greater divergence between the

parameterizations for He and Ne.

The parameterizations that displayed the most skill in simulating the He observations

were Liang 2013 (Liang et al., 2013) followed by Nicholson 2011 (Nicholson et al., 2011).

This result was observed regardless of whether we ran the model with or without an adjust-

ment for upwelling. For Ne, the parameterization of L13 was most accurate when the model

was adjusted for upwelling partway through the cruise. For Ar, Kr, and Xe, all parame-

terizations gave very similar results and simulated the observations well, after adjustment

for upwelling. For these heavier gases and the moderate wind speeds observed during our

study, we conclude that diffusive exchange driven by temperature change was more impor-

tant than bubble-mediated fluxes in controlling the gas concentrations of Ar, Kr, and Xe.

Due to the complication of upwelling during our cruise, a longer uninterrupted Lagrangian

time-series and/or higher average wind speeds would have enabled clearer discrimination

between parameterizations for the heavier gases, and an evaluation of the importance of

bubble-mediated exchange for Ar.

The four tested parameterizations performed fairly well, despite not explicitly incorpo-

rating factors other than wind speed that may affect gas exchange rates in the coastal ocean

(e.g., fetch and surfactant concentration). Evaluating these and other gas exchange param-

eterizations against in situ measurements in a wide range of environmental conditions, and

for longer periods of time, is an important goal of future work.
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3.9 Supplemental information

The Supplemental Information for this paper includes the noble gas data presented in

the paper and plots of the model results using published solubility functions for He, Kr,

and Xe, and the gas_toolbox, a set of MATLAB functions for calculating gas exchange

fluxes with the parameterizations cited in this paper. The gas toolbox is freely avail-

able online at http://www.github.com/dnicholson/gas _toolbox (Manning and Nicholson,

2016), and the remainder of the Supplemental Information is in Appendix B. Use of the

gastoolbox also requires installation of the Gibbs-Seawater Oceanographic Toolbox for

MATLAB (http://www.teos-10.org/software.htm) (McDougall and Barker, 2011).
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Chapter 4

Impact of recently upwelled water on productivity

investigated using in situ and incubation-based

methods in Monterey Bay

This chapter was submitted to the Journal of Geophysical Research: Oceans on Septem-
ber 2, 2016 and a revised manuscript has been requested by the editor.
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4.1 Abstract

Photosynthetic conversion of CO 2 to organic carbon and its transport from the surface to

the deep ocean is an important regulator of atmospheric CO2 . To understand the con-

trols on carbon fluxes in a productive region impacted by upwelling, we measured biological

productivity via multiple methods during a cruise in Monterey Bay, California. We quanti-

fied net community production and gross primary production from measurements of 0 2 /Ar

and the triple oxygen isotopic composition of 02 ("A), respectively. We simultaneously

conducted incubations measuring uptake of 14 C, "NO- and 15NH+, and deployed shallow

particle interceptor traps. At the start of the cruise (Phase 1) the productivity methods

agreed well, with net community production of 36(10) and 37(8) mmol C m- 2 d- 1 from

02/Ar and NO uptake respectively, net primary production of 90(22) mmol C m- 2 d-1

from C uptake, and gross primary production of 258(28) mmol C m- 2 d- 1 from 17A. Later

in the cruise (Phase 2), recently upwelled water with higher nutrient concentrations entered

the study area, causing 14 C and 15 NO3 uptake to increase substantially. Continuous 02 /Ar

measurements revealed submesoscale variability in productivity in Phase 2 that was not ev-

ident from the incubations. These results demonstrate the insights gained by using multiple

methods to quantify productivity in a dynamic system.

4.2 Introduction

Although microbial carbon uptake in the surface ocean plays a major role in regulating

atmospheric CO 2 levels, quantifying the rate of this process has proven challenging on both

a local and a global scale (Emerson, 2014; Siegel et al., 2016). Through photosynthesis,

microbes in the sunlit euphotic zone convert CO 2 to organic carbon (OC), simultaneously

consuming nutrients and producing 02 (Longhurst and Harrison, 1989; Ducklow et al., 2001).

The majority of the OC is respired back to CO 2 by autotrophs and heterotrophs within the

euphotic zone, but some small fraction of the OC is exported to deeper depths in the ocean,

where it is isolated from the atmosphere on timescales ranging from weeks to millennia

(Ducklow et al., 2001; Emerson, 2014). The magnitude of this biological pump, and the

mechanisms controlling its spatial and temporal variability, are thus of great importance for

accurately modeling the global carbon cycle and predicting its future changes (Falkowski

et al., 1998; Behrenfeld et al., 2005; Ciais et al., 2013).

In this paper, we refer to various aspects of the ecosystem metabolism related to the

biological pump (Williams, 1993). Gross primary production (GPP) is the total amount of

carbon fixed by autotrophic microbes into organic carbon. Net primary production (NPP)

is GPP minus autotrophic respiration (RA), i.e. respiration by phytoplankton only. NPP

quantifies the amount of carbon available to the heterotrophic community. Net community
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production (NCP) is NPP minus heterotrophic respiration (RH), or equivalently, GPP minus

community respiration (equations 4.1 and 4.2):

NCP = NPP - RH (4.1)

NCP = GPP - RA - RH (4.2)

NCP quantifies the carbon available for export from the euphotic zone, and therefore NCP

is the key parameter in estimating the magnitude of the biological pump (Laws, 1991;

Williams and Purdie, 1991; Hansell and Carlson, 1998). We also use the terms gross oxygen

production (GOP) to refer to the gross amount of 02 produced by photosynthesis, and net

oxygen production (NOP) to refer to the net amount of 02 produced (Munro et al., 2013).

GOP and NOP can be converted to GPP and NCP respectively, based on empirically-derived

stoichiometric ratios of O:C for gross and net production (Laws, 1991; Bender et al., 1999).

In this study, we quantify all five parameters: GPP, NPP, NCP, RA and RH, for the mixed

layer, enabling us to estimate the amount of inorganic carbon that is fixed into organic

carbon, the amount of organic carbon available for transport out of the mixed layer, and

the importance of heterotrophs and autotrophs for recycling carbon within the mixed layer.

Several techniques are available for estimating GPP, NPP, and NCP, including bottle

incubations, in situ mass balance techniques, and algorithms derived from satellite-based

ocean color data (Emerson et al., 1997; Behrenfeld et al., 2005; Emerson, 2014). Each method

measures a specific aspect of the ecosystem metabolism, integrates over a specific timescale,

and is thought to have inherent advantages and disadvantages (Williams et al., 2004; Juranek

and Quay, 2013; Emerson, 2014). However, in many studies, only one or two methods of

estimating productivity are used, making it challenging or impossible to evaluate possible

method biases and to establish quantitative relationships between productivity estimates

from different methods.

The cruise took place in the Monterey Bay, a highly productive embayment on the

central California coast, approximately 20 km long and 30 km wide (Pilskaln et al., 1996;

Pennington and Chavez, 2000). The bay is within an eastern boundary upwelling zone and

is affected by wind-driven coastal upwelling, which occurs most intensely just north of the

bay at Point Anio Nuevo (Rosenfeld et al., 1994; Graham and Largier, 1997; Woodson et al.,

2009). Filaments of cold upwelled water tend to be advected southward from the Point into

the middle of the bay, our main study area (Ryan et al., 2009). The large-scale upwelling-

favorable winds are most intense in spring and summer but continue periodically into the

fall, when this cruise took place (Graham and Largier, 1997). These upwelling regions play a

disproportionately large role in the global carbon cycle, relative to their small spatial extent

(MacIsaac et al., 1985; Falkowski et al., 1998; Pennington et al., 2006). In these regions,

nutrient-rich water is transported from deeper waters to the euphotic zone, stimulating
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biological activity. High productivity at the base of the food web sustains enhanced biomass

at higher trophic levels, enabling these regions to support active fisheries (Peterson et al.,

1988).

Monterey Bay has been well-studied with respect to biogeochemistry. Monthly, multi-

year time-series of productivity, based on incubations measuring the uptake of 14 C-labeled

dissolved inorganic carbon (DIC) and 15 N03 have been reported previously (Pennington

and Chavez, 2000; Wilkerson et al., 2000), and numerous process-oriented biological studies

have been conducted (Pilskaln et al., 1996; Kudela and Dugdale, 2000; Ward, 2005; Ryan

et al., 2009; Johnson, 2010; Smith et al., 2014a, 2016). However, productivity estimates

derived from in situ measurements of 02 /Ar and the triple oxygen isotopic composition of

02 have not been published for Monterey Bay.

The in situ 02 mass balance technique has been widely applied for estimating NCP

and GPP in the open ocean (Juranek and Quay, 2013), but can be challenging to apply in

systems where recently-upwelled water is observed at the surface; this low 02 water may

bias estimates low if not accurately accounted for (Munro et al., 2013; Teeter, 2014; Haskell

et al., 2016b). Furthermore, inferring carbon export below the mixed layer from techniques

within the mixed layer is complicated by the fact that lateral transport of surface waters

and oceanic fronts may cause a spatial and/or temporal decoupling between carbon fixation

and export (Olivieri and Chavez, 2000; Estapa et al., 2015; Nagai et al., 2015).

Here we present one of the first published data sets where productivity estimates from

both 0 2 /Ar and the triple oxygen isotope composition of 02 (1 A) are combined with mul-

tiple other methods including incubations measuring the uptake of 14 C, 15 NO- and 15 NH+

and nitrification (microbial oxidation of NH+ to NO-), as well as sediment trap-based fluxes

of particulate carbon and nitrogen (PC and PN). For example, there are few published stud-

ies where 1 5NO3 uptake (new production) and in situ 0 2 /Ar (net community production)

were measured simultaneously at the same locations (Emerson et al., 1993; Giesbrecht et al.,

2012; Hamme et al., 2012). Although theoretically these methods should be equivalent at

steady state and/or when averaged over large spatiotemporal scales (Laws, 1991; Falkowski

et al., 2003), this assumption has been tested at a limited number of locations, primarily

high nitrate, low chlorophyll open ocean regions such as the Southern Ocean and subarctic

North Pacific (Hendricks et al., 2005; Reuer et al., 2007; Giesbrecht et al., 2012). In this

study, we compare productivity estimates by multiple methods in a new environment, a

nitrogen-limited, highly productive site (Kudela and Dugdale, 2000) within the California

Current System.
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4.3 Background on methods

4.3.1 "C incubations

The 14 C-method of estimating primary production (abbreviated herein as 14 C-PP) is one

of the oldest and most widely used methods of quantifying marine productivity (Stee-

mann Nielsen, 1951, 1952), and it is the standard against which many satellite-based pro-

ductivity algorithms are validated and calibrated (Behrenfeld and Falkowski, 1997; Carr

et al., 2006). However, there remains uncertainty regarding which aspects of the ecosystem

metabolism the incubations measure. The degree to which the incubation captures gross

versus net production depends on incubation duration, the time of day at which the incu-

bation is initiated, the light level in each bottle, and even the ratio of photosynthesis to

respiration itself (Steemann Nielsen and Jensen, 1957; Williams et al., 1983; Williams, 1993;

Karl et al., 1996; Bender et al., 1999; Marra, 2002, 2009; Pei and Laws, 2013; Pennington

et al., 2015). For example, a 12 h daytime-only incubation will yield higher 14 C-PP than a

24 h incubation carried out over a full day-night solar cycle, because nighttime respiration

will convert some of the OC produced during daytime back to DIC (Bender et al., 1999).

There is generally agreement that 24 h 14 C incubations initiated during daytime measure

something between GPP and NCP (Smith et al., 1984; Bender et al., 1999; Juranek and

Quay, 2005; Marra, 2002, 2009; Juranek and Quay, 2013).

Another important aspect of the method is that the procedure only measures the carbon

that is retained on the filter. The GF/F filters retain 14C-POC, and some fraction of the
1 4 C-DOC that is exuded by phytoplankton (Karl et al., 1998). Some of this 14 C-DOC is

taken up by bacteria which are then retained on the filter. Of the labeled material that

remains as DOC when the incubation is terminated, some passes through the filter and

some is adsorbed (Karl et al., 1998). The fraction of total OC fixed that is lost as DOC

and not retained on the filter can be up to 30 % (Karl et al., 1998). Thus, the incubations

underestimate the total 14C uptake into OC.

4.3.2 "N incubations

Nitrogen is often a limiting nutrient in marine ecosystems, including Monterey Bay (Kudela

and Dugdale, 2000). By measuring uptake of individual N species and nitrification we can

better understand the role that nutrient availability plays in regulating primary production.

Phytoplankton assimilate various forms of inorganic nitrogen through processes indi-

rectly related to photosynthesis (Dugdale and Goering, 1967). When these microbes die

and/or are eaten, PN and NH+ (reduced N) are released. Some of the PN sinks below the

euphotic zone, and is remineralized to NH+. Over annual time scales, the vast majority

of NH+ below the euphotic zone is oxidized to NO- by nitrifying organisms. This NO- is
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then transferred back to the euphotic zone through upwelling and mixing processes. Within

this paradigm, NH+-based production is called regenerated production (as NHf is produced

within the euphotic zone) and NO-based production is called new production (as NO is

produced below the euphotic zone). At steady state, i.e., if the concentration of NO and

organic matter within the euphotic zone is not changing, then new production will equal

NCP and export production. If we assume that the only forms of nitrogen taken up by

phytoplankton are NO- and NH+, then the sum of the uptake of these two species gives

NPP (Dugdale and Goering, 1967), after conversion from N to C units based on the Redfield

ratio or other C:N data (Redfield et al., 1963).

There are, of course, limitations to this approach. The method underestimates the total

N uptake because the uptake of other forms of regenerated N such as DON (e.g., urea, amino

acids, and proteins) is not quantified (McCarthy, 1972; Eppley and Peterson, 1979), and

because some fraction of the 15N label that is taken up by phytoplankton and then exuded

as DON is not retained on the filter. Another important consideration is that nitrification

within the euphotic zone can generate a significant fraction of the total euphotic zone NO
inventory in many oceanic regions (Dore and Karl, 1996; Diaz and Raimbault, 2000; Yool

et al., 2007; Grundle et al., 2013; Santoro et al., 2013) including Monterey Bay (Ward, 2005;

Smith et al., 2014ab). In this study, we performed nitrification rate estimates to separate

NO produced within the euphotic zone from NO produced below the euphotic zone, for

the purpose of calculating new production (Yool et al., 2007).

An additional methodological challenge is that N occurs at low concentrations in much

of the world's oceans (Moore et al., 2013), including Monterey Bay (Kudela and Dugdale,

2000), and therefore the addition of bioavailable nitrogen could perturb nutrient cycling

within the incubation bottle. Ideally, the concentration of tracer added should be <10 % of

the ambient concentration, to ensure that the tracer itself does not stimulate N assimilation

and primary production (Dugdale and Goering, 1967).

4.3.3 02 mass balance

Measurements of 0 2 /Ar gas ratios and the triple oxygen isotopic composition of 02 are

effective tracers of NCP and GPP, respectively. The 02 /Ar mass balance technique has

become a widely used approach for in situ determinations of NCP. Both gases have similar

diffusivity, solubility, and dependence of solubility on temperature (Ferrell and Himmelblau,

1967; Jdhne et al., 1987a; Garcia and Gordon, 1992; Hamme and Emerson, 2004a). As a

result, Ar is commonly used as an abiotic analogue for 02; Ar responds similarly to physical

forcings but has no biological flux (Craig and Hayward, 1987; Spitzer and Jenkins, 1989).

To calculate net biological production of 02, investigators must correct for the effect of

physical processes because in many environments the physical and biological fluxes of 02

are similar in magnitude in the mixed layer (Emerson, 1987; Hamme and Emerson, 2006;
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Castro-Morales and Kaiser, 2012; Giesbrecht et al., 2012). Physical processes that affect 02

include air-sea gas exchange, vertical mixing/entrainment and lateral advection.

The triple oxygen isotopic tracer of dissolved 02 exploits the unique isotopic signatures

of 02 produced by photosynthesis, consumed by respiration, and added to the ocean by

air-sea gas exchange (Luz and Barkan, 2000, 2005; Juranek and Quay, 2013). Specifically,

photochemical reactions in the upper atmosphere impart a small mass-independent isotopic

fractionation signature on tropospheric 02, which is transferred to 02 dissolved in the ocean

through air-sea gas exchange (Thiemens et al., 1995; Luz and Barkan, 2000), with a known

mass-dependent fractionation (Reuer et al., 2007; Stanley et al., 2010). Photosynthetic 02

is derived from H20, which does not have a measurable mass-independent isotopic signature

(Luz and Barkan, 2000; Juranek and Quay, 2013). Respiratory isotopic fractionation of 02

has been determined experimentally (Luz and Barkan, 2005).

In many studies, each location is only sampled once (e.g. transect cruises) or sampling

at the same location occurs very far apart in time (much longer than the residence time of

02 in the mixed layer, which is typically on the order of two weeks), making it necessary

to assume the gases are at steady state in order to calculate NCP and GPP (Stanley et al.,

2010; Giesbrecht et al., 2012; Munro et al., 2013). When a higher-frequency time-series of

measurements is obtained (as occurred during this cruise), investigators can quantify the

change in [02] and 17 A with time and include these terms in the productivity estimates

when appropriate (Hamme et al., 2012; Tortell et al., 2014; Wilson et al., 2015). Because

the calculations of NCP and GPP from 02 /Ar and triple oxygen isotope data can vary

substantially between studies, we outline our calculations in section 4.5.

4.3.4 Sediment traps

Sediment traps directly measure the flux of organic particles out of the surface ocean, in

contrast to the previously described methods which measure processes within the surface

ocean and are used to infer downward organic matter flux (Buesseler, 1991; Emerson, 2014).

To interpret the sediment trap data, we must keep in mind that there are three main modes

of OC export: passive sinking of particles, active transport by zooplankton and other animals

who consume OC near the surface and exude it at depth, and physical transport of OC by

mixing and advection (Buesseler, 1991; Carlson et al., 1994; Steinberg et al., 2000; Emerson,

2014). Sediment traps primarily capture the passively sinking particulate flux. However,

of the methods used during this cruise, sediment traps are the only one that measures any

component of the export flux directly, and the only one that quantifies the C flux below the

euphotic zone.

A challenge in the use and interpretation of data from upper ocean particle traps, which

are intended to collect the passively sinking flux of detrital matter, is the inadvertent col-

lection of actively swimming zooplankton in the trap (Michaels et al., 1990). These living
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organisms can be a significant portion of the carbon content retained on the filter but do

not represent carbon export. Various correction methods for zooplankton swimmers can be

used, including placing screens within the particle traps to prevent zooplankton from sink-

ing to the bottom, counting zooplankton within the unfiltered trap water and/or manually

removing zooplankton from the filter paper after filtration (Michaels et al., 1990).

4.4 Field and analytical methods

4.4.1 Cruise description

The cruise (CANON14) took place from 27 September-3 October 2014. During the cruise,

we obtained casts with a conductivity-temperature-depth sensor (CTD, Sea-Bird SBE 9)

and Niskin bottle rosette to -180 m four times per day, at roughly 06:00, 12:00, 18:00,
and 00:00 local time. Throughout the paper, all dates and times are reported as local time

(UTC - 07:00). All CTD casts at 6 h intervals were obtained near mooring 1 (Ml, 36.75

ON, 122.03 oW, 21 km west of Moss Landing, CA), which is operated by the Monterey

Bay Aquarium Research Institute. Sunrise and sunset were at 07:00 and 19:00, respectively.

Immediately prior to nearly every cast, we obtained vertical profiles of microscale turbulence

to ~70 m using a vertical microstructure profiler (VMP-200, Rockland Scientific). Rates of

turbulent kinetic energy dissipation were calculated using the profiler's shear probes and fast

temperature sensor, and diapycnal dissipation and diffusivity (Kz) were estimated following

Wolk et al. (2002). These diffusivity measurements are used to quantify the impact of

vertical mixing on the mass balance of the gas tracers (Manning et al., 2016c).

Throughout the cruise we deployed an autonomous underwater vehicle (AUV), which

drifted at o-o a 25.2 kg m- 3 (25-45 m depth), near the base of the thermocline. We

conducted CTD casts and deployed sediment traps in the vicinity of the drifting subsurface

AUV; however, the ship's course between casts sometimes varied in order to meet other

science goals (Figures C-1-C-2). We use wind speed measurements obtained by a Vaisala

ultrasonic anemometer from MI to calculate air-sea gas transfer coefficients (k).

4.4.2 Rates of '4C uptake ("C-PP)

We collected water for in situ measurements of '4 C-PP just prior to dawn each day from

depths corresponding to 100, 50, 30, 15, 5, 1, and 0.1 % surface irradiance, I" (photosyn-

thetically active radiation, or PAR), estimated using a Secchi disk. We conducted 24 h incu-

bations at the seven in situ light levels, following the procedure in Pennington et al. (2015).

For the depth-integrated 14C-PP (calculated using a trapezoidal integration), we calculated

the simulated depth of each light level based on the algorithm of Morel and Berthon (1989).

Each daily 1 4C-PP measurement has an error of 7 % RSD (relative standard deviation),
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based on another data set of triplicate incubations by the authors (Pennington et al., 2015).

During this cruise, a single incubation was carried out at each depth.

4.4.3 Rates of 15NO- uptake, "NH' uptake, and nitrification

As for the 14C-PP incubations, we collected water for in situ measurements of 15 NO uptake,
15NH+ uptake, and nitrification just before dawn each day from depths of 50, 30, 15, 5, 1,

and 0.1 % I,. We followed the procedures of Kudela and Dugdale (2000) and Smith et al.

(2014b) for the incubations. Two sets of incubations took place: one set included all light

depths and was held for 24 h; a second set from 50, 1, and 0.1 % light were terminated

after 6 h to assess the effects of incubation time and isotope dilution on rate estimates. We

added isotopically labeled substrates to a final concentration of 0.2-1 Pmol L- 1 of 15 NO
and 0.08 pmol L- 1 of 15NH+. For NOT, we targeted a 10 % 15 N enrichment at the start

of each incubation using an established relationship between temperature and [NO3] in

Monterey Bay because nutrient analyses were not yet available at the time of incubation.

For NH+, we added a fixed quantity of tracer to all bottles, which was selected to ensure
15 N uptake was detectable, while also minimizing perturbation to the system over the three

orders of magnitude range in [NH+] observed in Monterey Bay and the contiguous California

Current System (Smith et al., 2014a, 2016). Post-cruise analysis indicates that average 15N

tracer additions represented 51(8) % and 208(31) % of the ambient NO- and NH+ pools,

respectively. The predicted nutrient concentrations were an overestimate, in part due to the

anomalously warm and nutrient-poor surface water mass that persisted in the region during

our cruise (Bond et al., 2015; Seager et al., 2015). The potential biases that could result

from the non-negligible tracer enrichments are discussed in section 4.6.3.

Analyses of PN concentration and isotopic ratios occurred at the University of Califor-

nia Santa Barbara Marine Science Institute. Measurement of 15 N in the N03+NO2 pool

occurred at the University of Connecticut in the Granger Lab by the denitrifier method

(Sigman et al., 2001). Reference materials USGS32, USGS34 and USGS35 were analyzed in

parallel to calibrate 615 N values.

We calculated 15 N uptake and nitrification following Dugdale and Goering (1967) and

adjusted the NH+ uptake and nitrification rates for isotope dilution following Kanda et al.

(1987), by comparing the uptake estimates from the 6 h and 24 h incubations. Isotope

dilution corrections increased NH+ uptake by 30 %, and increased nitrification rates by 400

%. Even with the revised, higher nitrification rate estimates, mixed layer nitrification rates

were only 2 % of NO uptake.

We integrate the 15 N uptake measurements using the depth at which each Niskin bottle

was closed (rather than the light-equivalent depth) because the uptake rates are calculated

with respect to the nutrient concentrations measured in the bottle. Since incubations were

not performed at 100 % I,, we assumed the 15 N uptake at 100 % I, (0 m depth) is equiva-
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lent to the uptake at 50 % I,, (~2 m depth). We estimate the error of each daily incubation

measurement to be 9 % for NO- uptake, 23 % for NH+ uptake, and 15 % for nitrifica-

tion. These estimates are based on prior incubations of mixed layer water in Monterey Bay

(unpublished results from coauthor Jason Smith). During this cruise, a single incubation

was carried out at each depth.

4.4.4 [02], [Ar], 0 2/Ar, and 17 analysis

Throughout the cruise, we measured 02 and Ar concentrations ([02] and [Ar]), 0 2 /Ar

mole ratios (n(02)/n(Ar), abbreviated herein as 02/Ar), and the triple oxygen isotopic

composition of 02 (6170, 6180, and 17A).

We used a field-deployable mass spectrometer (gas equilibration mass spectrometer,

GEMS) to measure 0 2 /Ar near-continuously from the underway system (2 m depth). We

configured the instrument as described in Manning et al. (2016a), except that the getter

chambers were removed and the mass spectrometer was a Pfeiffer PrismaPlus QMG200.

The system is similar to the equilibrator inlet mass spectrometer developed by Cassar et al.

(2009). For calibration, the system measured 0 2/Ar in air for 40 min after roughly 4 h

of sampling the headspace of the equilibrator cartridge. We manually controlled the exact

switching times to ensure that we obtained data while on station for the CTD casts whenever

possible.

We analyzed 154 discrete samples from either the underway seawater system or from

Niskin bottles for 0 2 /Ar, 6170, and 6180 with a Thermo Fisher Scientific MAT 253 isotope

ratio mass spectrometer at the Woods Hole Oceanographic Institution. We followed the

protocol of Barkan and Luz (2003) with some modifications (Stanley et al., 2010, 2015). We

analyzed samples 4-7 months after the evacuation of the flasks (3-5 months after sampling).

The precision (mean standard deviation) of replicate field samples from the same Niskin

bottle was 5.0 per meg for 17 A, 0.015 %o for 6170, 0.031 %o for 6180, and 0.12 % for

A(0 2 /Ar). For samples from the underway seawater line collected in rapid succession (within

8 min), the precision was 6.7 per meg for 17 A, 0.023 %o for 6170, 0.047 %o for 6180, and 0.38

% for A(0 2/Ar), and this lower precision is likely related to real environmental variability

that is not captured in samples collected from the same Niskin bottle. See section 4.5.2 for

more details on the triple oxygen isotope terminology.

On the day before the cruise departed, we flushed the underway line with bleach to re-

move biofilms that could cause high rates of respiratory consumption of 02 (Juranek et al.,

2010). After the cruise, we evaluated the agreement between the different sampling and an-

alytical methods. Using all discrete near-surface samples (underway and Niskin) the average

difference between the discrete samples and the GEMS was -0.05(1.11) %. Furthermore, the

mean offset between the surface Niskin samples and the underway GEMS was 0.14(1.22) %.

We did not apply any correction to the GEMS data because these mean offsets were very
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small relative to the uncertainty in the offset.

We obtained measurements of [021 using a SBE 43 sensor on the CTD rosette and

calibrated the sensor via Winkler titration (Carpenter, 1965). Using 25 water samples

collected throughout the cruise and analyzed at sea, we calculated one calibration for all 02

data: [02]cal = 1.0075[02]meas + 2.87 (R2 = 0.9993) with [02]cal and [O2lmeas the calibrated

and measured (uncalibrated) concentrations in iLmol kg-

We also collected discrete samples for measurement of noble gas concentrations (He, Ne,

Ar, Kr, and Xe). Briefly, water samples were collected in copper tubes and sealed with a

cold pressure welder; gas was subsequently extracted from the water and analyzed using a

quadrupole mass spectrometer (Stanley et al., 2009a; Loose et al., 2016). In this paper we

only use the [Ar] results, which had an estimated error (combined precision and accuracy)

of 0.24 %RSD (relative standard deviation). See Manning et al. (2016c) for the complete

noble gas data.

4.4.5 Sediment trap-based particle fluxes

We deployed shallow particle interceptor traps (PITS) composed of three individual plastic

collection tubes, each 1.4 L in volume (Knauer et al., 1979) at 50 m depth, connected to

a surface drifter. We filled the traps with 0.2 micron filtered seawater prior to deployment

and added two 10 g NaCl pills to the base of each tube to form a dense brine to retain the

particulate material. Deployments lasted ~24 h, beginning daily between dawn and noon.

Once on deck, using 0.2 micron filtered seawater, we emptied each collection tube, rinsed

three times, and made each sample up to 2.0 L. Then we filtered 0.5 L from each 2.0 L sample

and froze the filters for subsequent analysis for POC and PON content at the University of

California Santa Barbara Marine Science Institute by online combustion. For five of the six

deployments, we removed another 33 mL from each sample and then combined the three

fractions and analyzed the samples by microscopy for quantitative taxonomic identification

of zooplankton swimmers. We used this data to estimate the zooplankton volume and carbon

content (Nozais et al., 2005). Estimates of the swimmer C flux from individual traps ranged

from 8-145 % of the total POC flux from the same trap.

4.4.6 Nutrients and pigments

We analyzed concentrations of phaeopigments and chlorophyll by filtering water samples

onto glass fiber filters (GF/F), extracting pigments with acetone, and analyzing with a

Turner fluorometer (Pennington and Chavez, 2000). We measured ammonium concentra-

tion on fresh unfiltered seawater samples immediately after collection using a fluorimetric

method (Holmes et al., 1999), and for all other nutrients, we froze unfiltered samples aboard

ship (Dore and Karl, 1996) for later analysis with an Alpkem 300 autoanalyzer (Sakamoto

et al., 1990). Detection limits were 0.5, 0.5, and 0.01 mol kg-1 for Si0 4 , NO- and NH+
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respectively, and error was ~ 0.6 %, 3 %, and 0.5 % at maximum range for SiO 4 , NO and

NH+.

4.4.7 Satellite data

We used satellite-based sea surface temperature (SST) maps from MODIS Aqua and Terra

(JPL/OBPG/RSMAS, 2006a,b) to assess the spatial structure of near-surface tempera-

ture within the bay. To determine whether the satellite data were contaminated by cloud

cover, we examined true-color satellite images, which showed that 25-26 September and 30

September-3 October were nearly cloud-free within Monterey Bay whereas 27-29 September

had significant clouds within the bay. We included SST pixels with a quality level of 2 or

higher (level 5 is the highest quality), and eliminated the most questionable data (level 1).

Many of the pixels masked at quality levels 2-4, predominantly in relatively small areas to

the north and south of Monterey Bay near the coast, persisted in the same locations and

shapes in multiple images separated by many hours or days. This indicates those tempera-

ture features were likely real oceanographic features (SST fronts and cold filaments) rather

than clouds. Incorrect flagging of strong SST fronts as clouds is a known issue in the MODIS

quality algorithms in coastal regions (Oram et al., 2008; Nieto et al., 2012). SST data within

the main study area are not sensitive to the choice of quality level.

4.5 Calculations

4.5.1 Calculation of NOP from 0 2/Ar mass balance

We quantify the biologically-generated supersaturation (or undersaturation) of 02 with re-

spect to Ar using the tracer A(O2 /Ar):

A (02 /Ar) (02 /Ar) - . (4.3)
(O2/Ar) e I

Here (02 /Ar) and (O2/Ar)eq are the measured and equilibrium mole ratios, respectively,

and A(O2 /Ar) is often expressed in percent by multiplying by 100 %. A0 2 is defined

similarly, by removing Ar from equation 4.3. We calculate the gas saturation states using

the solubility data of Hamme and Emerson (2004a) for Ar and Garcia and Gordon (1992)

for 02. For the gas diffusivity, we use the data of Ferrell and Himmelblau (1967) for 02 and

extrapolated values for Ar based on the data for other noble gases in Jdhne et al. (1987a);

Manning and Nicholson (2016).

Net 02 production (NOP) measures the net autotrophic production of 02 minus com-

munity respiratory consumption by autotrophs and heterotrophs. We define the biological
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02, [O21B as

[021B = A(0 2 /Ar)[0 2 ]eq = [02] - [02]eq [Ar] (4.4)
[ Ar ]eq [ Ar ]eq

We include the term [Ar]/[Ar]eq, in contrast to other studies where it is often assumed

that [Ar]/[Arleq = 1 if [Ar] is not directly measured (Hamme and Emerson, 2006; Stanley

et al., 2010; Giesbrecht et al., 2012). Our discrete Ar samples indicate that [Arl/[Ar]eq =

1.036(0.006) within the mixed layer and displayed no consistent gradients with depth or

time (Manning et al., 2016c); we used this average value to calculate [O21B throughout the

cruise, which increases [021B by 3.6 %, compared to assuming [Ar]/[Areq - 1.

We calculate the steady state mixed layer NOP as the rate of biological 02 production

needed to balance the loss of biological 02 to gas exchange and vertical mixing (Cassar

et al., 2011, 2014).

NOP = ko2, [02]B + K, 0[02]B (4.5)
Dz

where ko2, is the time-weighted gas transfer velocity for 02 (m d- 1 ), calculated using the

algorithm of Reuer et al. (2007) with the wind speed-based parameterization of Sweeney

et al. (2007), and K, is the vertical diffusivity (M 2 d- 1) from microstructure profiles. The

term k02, is calculated using winds measured at mooring MI. During the entire cruise

k02, = 1.79(0.07) m d- 1 . We omit lateral advection from the mass balance because we did

not observe consistent gradients in [02]B in the mixed layer between our main sampling area

(within 5 km of the mean cast location) and the water outside this area (Figures C-1-C-2).

We calculate 1021B over the mixed layer, which is shallower than the euphotic zone depth

(1 % I,), because we have continuous 02 /Ar measurements at the surface only and because

the subsurface physical fluxes of 02 are more difficult to quantify because they are due to

mixing and transport, rather than air-sea exchange. Using the CTD [02] profiles every 6 h

and/or the 02 /Ar profiles measured more sporadically, we could not distinguish the small

subsurface [021B fluxes from the large fluxes due to physical processes such as internal waves

and lateral advection.

In this study, we used K, profiles obtained during the cruise to parameterize the vertical

flux of [021B out of the mixed layer. In many other studies, K, is estimated based on past

measurements, which can induce a factor of 10 uncertainty into the vertical 02 flux, and

is sometimes the largest source of error in estimates of NOP (Hamme and Emerson, 2006;

Giesbrecht et al., 2012; Jonsson et al., 2013; Cassar et al., 2014; Weeding and Trull, 2014).

For each CTD cast that was immediately preceded by microstructure profiles, we calculated

the vertical biological 02 gradient, a[02]B/Oz from a linear regression of the measured [O2]B
profile from the base of the mixed layer to 10 in below the mixed layer (Figure 4-1b). We

multiplied this vertical gradient by K, at the mixed layer depth, linearly interpolated to the

same time as the CTD cast (Figure 4-la). The average K, at the base of the mixed layer

was 1.6(2.4) x 10-5 m2 s- 1 and the range was 9.5 x 10-7 - 1.1 x 10-4 m 2 s-1. This result is
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similar to estimates by Haskell et al. (2016b) who determined K, = 1.5(0.6) x 10-5 m 2 s-1

at the base of the mixed layer during fall and winter in the Southern California Bight, using

a wind speed-based parameterization of turbulence due to shear (Haskell et al., 2016a). The

average vertical biological 02 flux was -3.5(4.6) mmol 02 m- 2 d- 1 , and the range was -19.0

to -0.1 mmol 02 m- 2 d-1. One cast yielded a much larger magnitude flux of -95 mmol

02 m- 2 d~ 1 ; this cast was not included in the average K_ and 02 fluxes because it was

an outlier. Due to the wide range in 02 fluxes estimated from individual profiles, and the

lack of consistent changes with time, we applied the average vertical biological 02 flux to

all casts. Vertical mixing increased the calculated NOP by less than 10 %, and constraining

this flux reduces uncertainty in our NOP calculations.

a

-29 Sept 18:26
-03 Oct 00:15

-6 -4 -2
1og10(K,) [m2 s~1 I

b

t
MLD

Oz

-60 -30 0 30

[0 21B [pmol kg-]

-20 -10 0 10
A(O 2 /Ar) [%]

d

90 110 130
17A [per meg vs air]

Figure 4-1: Representative profiles of (a) Kz, (b) 02, (c) A(0 2 /Ar), and (d) 17 A (A=

0.5179). Black horizontal lines on (a-d) indicate mixed layer depth, and black slopes in (b)

show the vertical gradient in 02. In (c), measurement error is smaller than filled symbols,
and in (d), representative measurement error is shown on one profile with error bars.

For each cast, we define the 02-based mixed layer depth (MLD) as the first depth below

10 m where 1021 is more than 1 % different from the value at 10 m, similar to Castro-Morales

and Kaiser (2012). The MLD averaged 14(4) m and we used this average MLD of 14 m

as the integration depth when calculating mixed layer productivity from the incubations

(sections 4.6.2-4.6.3).

We convert NOP to NCP (from oxygen units to carbon units) using an 02 :C ratio

(photosynthetic quotient) of 1.4 and 1.1 for NO- and NH+ driven uptake, respectively

(Laws, 1991). The 02 :C photosynthetic quotient was 1.33 in Phase 1 and 1.35 in Phase 2,

based on the mixed layer NO- and NH+ uptake incubations (section 4.6.3).
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4.5.2 Calculation of GOP from 17A

Using the triple isotopic composition of 02 we can quantify the rate of GOP. We characterize

the isotopic composition of 02 using the tracers 6180, 6170, and 17A. We define 6180 -

X 18 /X8 - 1. Here, X1 8 = r(' 80/ 160) is the measured ratio and Xa = r(18 0/ 160)air

is the ratio of 02 in air, collected locally, which we used as the reference standard. The

tracer 6170 is calculated analogously. The terms 6180 and 6170 are often expressed in %o

by multiplying by 1000.

We define 17A as

17A = ln(6170 + 1) - A ln(61 O + 1). (4.6)

Here, we use A - 0.5179 which is the empirically-determined ratio of the fractionation

factors for respiratory 02 consumption in 170 relative to 180 (i.e. A 17/18,E) (Luz and

Barkan, 2005). Using this definition, 17 A is not changed by respiration but is affected by

photosynthesis, air-sea gas exchange, and mixing between water masses (Hendricks et al.,

2005; Juranek and Quay, 2013; Nicholson et al., 2014). For dissolved 02 in water, 17 A is

typically reported in per meg (1 per meg - 0.001 %o) due to the small range of values. 02

derived from air-sea equilibrium has 17 A ~ 8 per meg (Reuer et al., 2007; Stanley et al.,

2010), and 02 that is purely biological in origin has 17A ~ 293 per meg with A = 0.5179.

Thus 17A is a tracer of the proportion of 02 in a given water parcel that was generated from

biological activities, relative to the amount added via air-sea exchange.

The most accurate method of calculating GOP from the triple oxygen isotopic compo-

sition of 02 has received much discussion in the literature. There is currently no single

universally-accepted method of calculating GOP, and many authors have argued that the

ideal choice of parameters and constants may depend on properties of the system (e.g., the

microbial species of interest and isotopic composition of oxygen in water, which is the source

of photosynthetic 02) (Luz and Barkan, 2000; Juranek and Quay, 2005; Reuer et al., 2007;

Luz and Barkan, 2009; Stanley et al., 2010; Kaiser, 2011; Luz and Barkan, 2011; Nicholson

et al., 2011; Prokopenko et al., 2011; Hamme et al., 2012). However, there is strong scientific

consensus that calculations should be performed using the individual isotope ratios rather

than the empirically defined term 17A which is a combination of two isotope ratios (Kaiser,

2011; Luz and Barkan, 2011; Nicholson et al., 2011; Prokopenko et al., 2011). We include the

raw data (6170, 6180, 17A, A(02 /Ar), [021, salinity, temperature, depth, and wind speed)

as a supplement to this paper (Data set 2) so that GOP can be re-calculated in the future

using new formulas (Kaiser, 2011). We also provide the MATLAB code used to calculate

GOP, to ensure that the calculations in this paper can be reproduced by others.

We use the following equation to calculate GOP (equation S8 from Prokopenko et al.

83



(2011)):

k[O2 ]eq 1X - 1 + h[02] 1
GOP = [ [0i2 AX1 . (4.7)

X17 AX18

Here h is the mixed layer depth, k is the gas transfer velocity for 02, X 17 = r(170/ 160) and

the subscripts p and eq refer to 02 produced by photosynthesis and at air-sea equilibrium,

respectively, and A = 0.5179 as in equation 5.7. Oxygen terms without a subscript ([02],

X17, and 17 A) are the measured mixed layer values. At steady state, i.e., if there is no

change in 17 A with time, then h[O2 ]& 17 A/&t = 0, and equation 5.9 simplifies to equation 7

of Prokopenko et al. (2011).

We calculate X1q 8 based on Benson and Krause (1984) and Benson and Krause (1980a),

and from Stanley et al. (2010) (17 Aeq = 8 per meg, which is consistent with our

daily analyses of equilibrated water at room temperature). We assume that the seawater

(the substrate for photosynthetic 02) has the isotopic composition of VSMOW, as defined

with respect to air in Barkan and Luz (2011), and that photosynthetic 02 has the isotopic

composition of average phytoplankton defined in Luz and Barkan (2011). If we instead

assume that the surface seawater in Monterey Bay has an isotopic composition of 6180

-0.5761 and 6170 = -0.3092 with respect to VSMOW, based on a global gridded data set of
6180 in seawater (LeGrande and Schmidt, 2006) and published relationships between 6170

and 6170 in seawater (Luz and Barkan, 2010), GOP is ~11 % higher. Since we did not collect

water samples for measurement of the isotopic composition, and the global data set may be

less accurate in coastal regions, we felt it was more appropriate to use the composition of

VSMOW.

We omit the terms for kinetic isotopic fractionation during air-sea gas exchange in equa-

tion 5.9, which have been included in some other studies (Kaiser, 2011; Nicholson et al.,
2011; Hamme et al., 2012; Nicholson et al., 2014). Including these terms decreases GOP

by 1 %, which is well within the error of the method. In regions with higher wind speeds,
this term will become more important. Also, we do not include a correction for vertical

mixing/entrainment of 02 (Nicholson et al., 2012; Wurgaft et al., 2013; Nicholson et al.,
2014) because we found that there was no consistent gradient in 17A with depth below the

mixed layer (Figure 4-1d).

Given that we did not observe a trend in 17 A with time, we calculated steady state

GOP for each individual sample, then bin-averaged the samples using a 2 h window. This

approach helped to ensure that times when sampling frequency was higher and replicates

were analyzed were not over-weighted when calculating the average GOP.

We convert GOP to GPP (from oxygen units to carbon units) using 02 :C ratios of 1.33

in Phase 1 and 1.35 in Phase 2; the same ratios used for the conversion of NOP to NCP.
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4.6 Results and discussion

4.6.1 Hydrographic and biogeochemical setting

For this study, we consider all CTD/Niskin bottle data, all sediment trap data, and all

underway data collected within a 5 km radius of the mean CTD profile location (Figure

4-2). The mean location is a central point where the average distance to all 23 CTD casts is

minimized. The 5 km radius is the minimum distance that included all CTD cast locations.

If we had included all underway measurements (Figure C-1) in our productivity estimates

from 02, this could have generated more biases between the incubation/trap and 02 mea-

surements due to the significant spatial variability in physical properties and productivity

within Monterey Bay and contiguous waters that is recorded in the underway record but

not the other methods (Pennington and Chavez, 2000; Ryan et al., 2009). Throughout the

paper, all results are expressed as mean( standard deviation) unless otherwise specified.

Phase 1 Phase 2
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18 C
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Figure 4-2: Map of study site showing MODIS sea surface temperature measured (a) 25
September 23:11 (representative of Phase 1) and (b) 30 September 23:31 (during Phase 2).
White areas over water indicate no satellite SST data was available. White squares show
locations of CTD casts in Phase 1 (a) and Phase 2 (b). Grey triangles show location of
mooring M1. The black circle shows the region within 5 km of the mean profile. (c) Map of
California, showing location of Monterey Bay.

We separate the cruise into two phases, based on the surface water characteristics (Fig-

ures 4-2-4-4). Phase 1 is a relatively stable period beginning with the first CTD cast on

27 September 15:00 and ending 29 September 09:35. Phase 2 is a more dynamic period

beginning 29 September 09:35 and lasting through the end of the cruise, during which we

sampled multiple water masses at the surface, including a colder, recently upwelled filament,

as well as a warmer water mass in which the the water was biogeochemically similar to Phase
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1. During Phase 1, temperature was high (16.45(0.18) 0C), A(0 2 /Ar) was high (9.8(1.8)

%), and macronutrient concentrations were low ([NO3] < 0.2 kmol kg-' for all seven casts

and [Si0 41 < 1.0 Rmol kg-1 for six out of seven casts) in the upper 4 m. During Phase

2, on average, the surface water in Phase 2 had lower temperature (15.88(0.40) 0C), lower

A(O2 /Ar) (6.7(3.2) %), and higher nutrient concentrations ([NOg = 0.5(0.5) smol kg- 1 ,
maximum 1.7 Rmol kg-1 and [SiO 4j = 1.7(0.8) Rmol kg-1, maximum 3.0 timol kg-').

We determined the start time for Phase 2 based on the ship's temperature record; Phase

2 began on 29 September when the sea surface temperature first dropped to 15.91 0C, three

standard deviations below the mean temperature observed in Phase 1. During the cast on

29 September 06:00, the mixed layer conditions were consistent with the other Phase 1 casts,

and beginning with the cast on 29 September 12:00, the mixed layer conditions were more

variable. Thus, Phase 2 began some time between these two casts. The exact start time for

Phase 2 does not affect our conclusions. At the beginning of Phase 2 (between the morning

of 29 September and 30 September) there was a transition period when cold (- 15 0C) water

with A(O2 /Ar) ~ 0 % persisted within the study area for several hours. During the rest of

the cruise, the water was often colder and had lower 02 concentrations than in Phase 1, but

not as extreme as the conditions during the transition period. This observation suggests

that the transition period water was advected out of the study area after the morning of 30

September.

Satellite-based sea surface temperature (SST) measurements supported our shipboard

observations of changes in surface water properties in Monterey Bay during the cruise, as

well as the presence of strong temperature fronts in Monterey Bay and contiguous waters.

On the night of 25 September, surface waters were predominantly warm (Figure 4-2a). There

was a patch of colder water at the northwestern edge of the bay, likely a filament of recently

upwelled water, but it was outside our main sampling area (Figure 4-2a). Clouds over

Monterey Bay obscured all SST images on the nights of 26-28 September. By nighttime on

30 September, SST was substantially colder throughout the bay. Our study area overlapped

with the coldest water and somewhat warmer water was present to the east and west (Figure

4-2b).

The above observations are suggestive of lateral advection of recently upwelled water into

the study area during Phase 2. The transition between the two phases coincided with the

highest total wind speeds and highest southward (upwelling-favorable) wind speeds observed

during the cruise (Manning et al., 2016c). Our data suggest that during Phase 2, we sampled

multiple water masses including a colder water mass with lower 02 and higher nutrients,

consistent with recently upwelled water (Pennington and Chavez, 2000; Ryan et al., 2009;

Johnson, 2010), a warmer water mass that had biogeochemical characteristics more similar

to Phase 1, and also mixtures of these two water masses. Furthermore, there were often

significant difference between the underway and M1 surface measurements of temperature,
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Figure 4-3: Measured profiles of (a) temperature, (b) [02], and (c) [NO3 during the cruise.
The black contour lines are at (a) 15.9 'C, (b) 260 gmol kg- 1 , and (c) 1.2 Lmol kg-1, and
are selected to emphasize the colder water with lower 02 and higher N03 that entered
the euphotic zone during Phase 2. The vertical grey dashed lines show the timing of CTD
casts and the vertical white lines are at 29 September 09:35 and 30 September 10:10, the
transition period at the start of Phase 2 when the coldest, lowest 02 surface water passed
through the site.
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[N03], and [021, especially during Phase 2, demonstrating that there was small-scale vari-

ability in these parameters within Monterey Bay (Figure 4-4 for underway data, mooring

data not shown). In this paper we quantify differences in productivity between the two

phases, and the impact of these different water masses on productivity estimates in Phase

2.

4.6.2 "C incubations

Here we focus on the incubation results integrated to the mean mixed layer depth for the

cruise (14 m, section 4.6.4). This integration depth is most appropriate for comparison with

the 02-based productivity estimates (section 4.6.4) (Hendricks et al., 2004; Hamme et al.,

2012; Juranek and Quay, 2013). Euphotic zone 14C-PP (to 1 % I) was on average 11 %

higher than mixed layer 14C-PP. In the supplementary information, we include all incubation

results (0.1-100 % I). We report all results for all methods as mean( standard deviation)

except when noted otherwise.

Because water for the incubations on 29 September was collected at 06:00, when the

euphotic zone was warm, had high 02, and low nutrients, we consider these incubations to

be representative of Phase 1. Mixed layer 1 4C-PP was 90(22) mmol C m- 2 d- 1 in Phase

1 and 142(12) mmol C m- 2 d-1 in Phase 2, an increase of 57 % (Figure 4-5c). We also

note that the first incubation, which was initiated 3 h before sunset, is potentially biased

somewhat higher (by <30 %) than the other incubations which were initiated at dawn

(Pennington et al., 2015).

4.6.3 1 5N incubations

During this cruise, the euphotic zone was anomalously warm and low in nutrients compared

to prior years, and tracer concentrations were significant relative to ambient conditions

(section 4.4.3). The 15N tracer addition to bottles with low ambient DIN concentrations

may have perturbed nutrient cycling within the incubation flasks and potentially caused

our incubations to overestimate rates of N uptake and transformations, especially for NH+.
This is a common issue for 15N incubations in N-limited marine systems, and with NH4
incubations in general (Goldman et al., 1981; Allen et al., 1996; Ward, 2005).

Despite these potential caveats, our 15 N incubation results are generally consistent with

the other methods (section 4.7). In Phase 1, NO- uptake was lower and NH+ uptake was

similar, compared to Phase 2 (Figure 4-5a-b). Within the mixed layer, N03 uptake was

4.9(1.1) mmol N m-2 d- 1 in Phase 1 and 8.6(1.3) mmol N m-2 d- 1 in Phase 2, an increase

of 76 % (Table 4-1). Mixed layer NH+ uptake was 1.5(0.6) mmol N m- 2 d- 1 in Phase 1

and 1.6(0.4) mmol N m- 2 d- 1 in Phase 2. Nitrification rates were 2 % of N03 uptake rates

in Phase 1 and Phase 2. If we assume that NH+ and NO- are the only N sources taken up

by phytoplankton, N uptake increased 59 % between Phase 1 and Phase 2.
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Table 4-1: Mixed layer productivity and nitrification results (mmol m- 2 d- 1 )a

Phase 1 Phase 2
Method C N 02 C N 02
1 4C-PP 90(22) 11.8(2.9) 120(29) 142(12) 11.8(1.0) 192(16)
11N03 uptake 37(8) 4.9(1.1) 49(11) 65(10) 8.6(1.3) 88(14)
15NH+ uptake 11(4) 1.5(0.6) 15(6) 12(3) 1.6(0.4) 16(4)

Nitrificationb 0.8(0.7) 0.10(0.09) -2.0(1.8) 1.4(1.3) 0.17(0.16) -0.34(0.32)

02 /Ar-NCP 36(10) 4.7(1.4) 48(14) 30(12) 4.0(1.6) 41(16)

17A-Gpp 258(28) 34(4) 343(37) 255(42) 33.5(5.5) 344(57)

Particle flux' 21(19) 2.7(2.5) 28(26) 21(19) 2.7(2.5) 28(26)

a Values are converted between C, N, and 02 using a C:N molar ratio of 7.6:1, based on
the sediment trap POC:PON ratio (section 4.6.6), and a C:0 2 ratio of 1.33 in Phase 1 and
1.35 in Phase 2 based on the ratio of NO:NH+ uptake (section 4.6.4). Positive C and N
values indicate uptake and positive 02 values indicate production. Values in bold are the
units of the original measurement.
b Nitrification rates are converted from mol N:mol C using a ratio of 1:8.3 (Dore and Karl,
1996) and from mol N:mol 02 using a ratio of 1:2 based on the reaction chemistry (NH+
+ 20 2 - N03 + H20 + 2H+).
C Measured at 50 m depth; all other methods integrated to the average mixed layer depth
(~14 m).

We converted the N uptake to C uptake based on sediment trap POC and PON mea-

surements, which recorded a C:N molar ratio of 7.6(0.3) throughout the cruise, somewhat

higher than the canonical Redfield ratio of 6.6 (Redfield et al., 1963). The 15 N incubation

results agree with our observations of higher euphotic zone N03 concentrations in Phase 2

compared to Phase 1, which stimulated N03 uptake and primary production, and decreased

NH+ uptake and nitrification.

4.6.4 NCP and NOP from 02/Ar

Throughout Phase 1, A(02 /Ar) = 9.8(1.8) % and showed no consistent diurnal cycle, nor

any trend with time (Figure 4-4). Assuming steady state in Phase 1, NOP was 47(14)

mmol 02 m- 2 d 1 . The uncertainty is calculated by propagating uncertainty in 1O21B (18

%), kw,02 (10 %, based on the agreement between Sweeney et al. (2007) and other recent

wind speed-based parameterizations (Ho et al., 2006; Wanninkhof et al., 2009; Wanninkhof,

2014)), and the vertical flux of [O21B (4.6 mmol 02 m- 2 d- 1 , Table 4-1). Although NOP

follows a diurnal cycle (Johnson, 2010; Wilson et al., 2015), spatial variability in 0 2 /Ar,

lateral transport, and variable rates of vertical mixing may have confounded the observation

of a diurnal cycle in 02 /Ar during this time-series.
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Figure 4-5: Results of depth-integrated incubations measuring (a) 1 5 NO3 uptake, (b)
15 NH+ uptake, and (c) 14 C-PP, as well as (d) sediment trap-based POC flux to 50 m. Orange

circles indicate data representative of Phase 1, and blue squares show data representative of

Phase 2. For (a-c) the size of the symbols approximates the measurement error.

In Phase 2, we measured a larger range of values for surface A(0 2 /Ar), with a minimum

of -0.7 % between midnight and 09:30 on 30 September, and a maximum of 12.8 % near sunset

on 2 October. The average A(O2/Ar) in Phase 2 was 6.7(3.2) % beginning at 29 September

09:35 (when the colder water began to enter the study area) or 7.9(2.4) % beginning on 30

September 10:10 (immediately following the transition period, when the coldest water with

lowest 02 concentrations was present in the study area). Steady state NOP beginning on

30 September 10:10 was 41(16) mmol 02 m-2 d-1, which is 14 % lower than NOP in Phase

1.

We argue that it is appropriate to exclude the measurements during the transition period

between 29 September 09:35 and 30 September 10:10 when calculating NOP because the

recently-upwelled water sampled at the surface during this period was clearly far removed

from steady state. For example, if NOP remained constant throughout the cruise at the

rate calculated during Phase 1 and advective 02 fluxes were negligible, the steady state

A(0 2 /Ar) in Phase 2 would be 10 % (Figure C-3), rather than 0 %, the value observed at

30 September 00:00.

If we assume that NCP increased 57 % in Phase 2 (equivalent to the increase in 1 4 C-PP),

we would expect A(0 2 /Ar) to increase from 0 to 5 % between 30 September 00:00 and 3

October 00:00, or to increase from 6 to 9 % between 30 September 10:10 and 3 October

00:00 (Figure C-3). The steady state A(0 2 /Ar) is 15 % and the system would take -30
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days to reach steady state. Even if NOP remained constant in Phase 2, we would expect

A(0 2 /Ar) to increase by 1-3 % by the end of the cruise (Figure C-3). The wide range

of measured values of A(0 2 /Ar) and the lack of a consistent increase in A(O 2 /Ar) during

Phase 2 suggests that we were indeed sampling multiple biogeochemically distinct water

masses during Phase 2.

Due to the spatial variability in 02, we are not able to determine the rate of change in

A(0 2 /Ar) with time, which is needed for a non-steady state calculation of NOP (Hamme

et al., 2012; Tortell et al., 2014; Wilson et al., 2015; Palevsky et al., 2016a). For example,

we can calculate a linear regression of A(02 /Ar) versus time over any 48 h period in Phase

2 (beginning 30 September 10:10 or later), with the 48 h period chosen to prevent diurnal

cycling in 02 from biasing the slope (Hamme et al., 2012). For the 48 h regressions, the

slope ranges from 0.5-1.4 % d 1 (Figure C-4) and the variability in the slope caused by

small shifts in the start and end time indicates that we would have low confidence in any

non-steady state term.

Potentially, we could calculate the non-steady state 02 flux using only measurements in

the recently upwelled water mass, which likely exhibited the biggest change in productivity

and A(0 2 /Ar). However, we were unable to separate the time-series in Phase 2 into different

water masses with different histories (Figure C-5). Although the water sampled in Phase

2 ranged from 15.0-17.6 'C, the salinity range was narrow (most measurements between

33.35-33.40 PSS) and a wide range of 02 saturation anomalies were observed across the

range of salinity values (Figure C-5). Temperature in the mixed layer will be strongly

affected by surface heat fluxes and cannot be used as a unique water mass tracer (Price

et al., 1986; Cayan, 1992; Large et al., 1994). Our high-frequency 0 2 /Ar data enabled us to

detect multiple, biogeochemically distinct water masses within our study area during Phase

2, but our estimated NOP during Phase 2 is likely an underestimate as we were unable to

calculate the non-steady state 02 flux.

If we had continuously sampled within a single recently upwelled filament during Phase

2, the changes in 02 would become apparent by the end of the time-series and it would be

possible to calculate the non-steady state 02 flux (Figure C-3). Alternatively, if we had an

additional tracer that could be used to separate the time-series into different water masses

(e.g., N0 3 or salinity), this would have facilitated our estimation of the non-steady state 02
fluxes inside and outside of the filament of recently upwelled water. Finally, if the time-series

had continued for longer during Phase 2 (i.e. 5-10 days instead of 3 days) and productivity

within the recently upwelled filament had continued at a higher rate compared to outside

of the filament, the magnitude of the total increase in A(0 2 /Ar) (the non-steady state 02
flux) within the filament during the observation period would have been larger and may

have been easier to quantify, despite the fact that the ship was transiting through different

water masses.
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Figure 4-6: (a) Mixed layer '7 A (A = 0.5179), showing all samples, and (b) steady state
GOP, calculated with 2-h bin averaging. The green squares are during Phase 1 and the pink
triangles and blue circles are during Phase 2. In (b) the blue circles were included in the
average GOP calculation, and the pink triangles are samples collected during the transition
period at the start of Phase 2 when we sampled the coldest, lowest 02 surface water; we
excluded these samples from the Phase 2 average.

4.6.5 GPP and GOP from 17A

Using the steady state equation, GOP was 343(37) mmol 02 m- 2 d-1 in Phase 1 and 334(58)

mmol 02 m-2 d-1 in Phase 2 beginning at 29 September 09:35, or 344(57) mmol 02 m-2

d- 1 in Phase 2 beginning at 30 September 10:10 (following the transition period, as done for

0 2 /Ar, Figure 4-4). The uncertainty in GOP is calculated by propagating the uncertainty

in k (10 %, section 4.6.4) and the standard deviation of GOP/k[02]eq (equation 5.9), after

averaging the samples into 2 h bins.

Our steady state calculation suggests that GOP was similar in Phase 1 and Phase 2,

however, as discussed above for 02 /Ar (section 4.6.4), 02 may not have been in steady

state during Phase 2, and it is likely that we sampled different water masses with unique

biogeochemical characteristics during Phase 2. We did not observe a consistent increase

in 17A during Phase 2 and therefore were unable to calculate a non-steady state GOP. We

calculated that to generate a 57 % increase in GOP in Phase 2 relative to Phase 1 (equivalent

to the increase in 14 C-PP), we can add a non-steady state term, 017 A/Ot = 7 per meg d-1

in equation 5.9. Thus a ~20 per meg increase in GOP between 30 September 10:10 and 3

October 01:00 would be consistent with the observed increase in 14 C-PP. Although samples
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from Phase 2 did not show a steady increase in 17A throughout Phase 2, 17A was 109(2)

per meg on 30 September 12:30, and 118(12) per meg between 2 October 18:30 to 3 October

00:30, an increase of 9 per meg. A small change in 17A measured for a short period of time

may be indistinguishable from other sources of variability/error, such as the precision of

replicate samples (5-7 per meg), the variability within the mixed layer (often greater than

5-7 per meg), diurnal changes in 17A (Sarma et al., 2010) and spatial variability in GOP. If

the cruise had extended for longer in Phase 2, with GOP maintained at a higher, constant

rate, the change in 17A would become more apparent with time. When 02 is at steady state,

a 57 % difference in GOP is easily distinguishable with the triple oxygen isotope method;

for the MLD and wind speed at our study site, a steady state mixed layer GOP = 320 mmol

m- 2 d-1 yields 17A ~ 110 per meg and GOP = 500 mmol m- 2 d- 1 yields 17A ~ 150 per

meg. Thus, as for NOP, the steady-state estimate of GOP is likely an underestimate of the

true GOP in Phase 2.

4.6.6 Sediment trap-based carbon fluxes

During the cruise, total particulate organic carbon (POC) content (particles and swimmers)

retained on filters gave a flux ranging from 31-56 mmol C m- 2 d- 1 . Estimates of the swim-

mer POC content ranged from 4-46 mmol C m- 2 d-' (8-145 % of the total PC flux). The

large spread in the swimmer corrections results in part because we only counted zooplankton

in a small fraction of the water (0.1 L out of 4.2 L). Additionally, there is uncertainty in the

conversion of the abundances of various zooplankton taxa to their carbon content (Nozais

et al., 2005).

Considering that swimmer fluxes were not measured on one of the six deployments,
there was a large range in swimmer PC estimates, and the calculated net PC flux on one

day was negative (due to swimmer flux exceeding the net flux), we opted to apply the

average swimmer correction of 21(18) mmol C m- 2 d-' to each daily flux estimate. After

this correction, the average PC export flux during the cruise was 21(19) mmol C m- 2 d-'

(range 10-36 mmol C m- 2 d- 1) and the PC flux was very similar in Phase 1 and Phase 2. In

Figure 4-5, error estimates for each sediment trap are calculated by propagating error from

the PC flux measured in the three collection tubes, and the uncertainty in the swimmer

estimates. For the sediment traps, we consider the incubation beginning on 29 September

to be more representative of Phase 2 because it began just a few hours prior to the start of

Phase 2. As expected, the PC fluxes from all six traps measured at 50 m depth are lower

than mixed layer NCP calculated from 02 /Ar and from 15NO3 uptake (Table 4-1).
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4.7 Synthesis and comparison with prior work

By integrating the results of all the methods, we gain a much more complete understanding

of the ecosystem metabolism and carbon cycle state than we would achieve using just one

method. We can quantify GPP, NPP, and NCP directly. By difference, we can quantify RA

and RH, the consumption of organic carbon by autotrophs and heterotrophs, respectively.

Furthermore, we can evaluate the agreement between different methods of estimating the

same parameters (e.g., NCP from 02/Ar and NCP from N03 uptake). For comparison

purposes, we convert all methods to C units (Table 4-1) and present the results in an energy

flow diagram (Figure 4-7), which displays the fate of GPP.

a) Phase 1 b) Phase 2
17 A-02 GPP GPP

100% 100%
14 C-PP or 7 /
15N-NPP NPP RA NPP RA

38 20 62 80 60 32 40 68
C N C N C N C N

02/Ar or /\4/\
15N-New P NCP RH NCP RH

15 15 23 5 13 27 47 5
0 N O/C N O N O/C N

Figure 4-7: Energy flow diagram for (a) Phase 1 and (b) Phase 2, showing the percent of
GPP that is respired by autotrophs (RA), respired by heterotrophs (RH), remains as NPP,
and remains as NCP. 1 5N-NPP is calculated from the sum of NO- and NH+ uptake and
1 5 N-New P is calculated from NO uptake. All ratios are converted to C units using ratios
as described in Table 4-1. In Phase 2, the values of NCP from 02 and GPP are likely an
underestimate due to non-steady state conditions.

For example, if we assume that 14 C-PP and the sum of 15 NO- and 1 5 NH+ uptake both

approximate NPP (Marra, 2002; Hendricks et al., 2005; Halsey et al., 2010), we can compare

the results of these two methods. Mixed layer NPP from 1 5N was 47 and 46 % lower than

NPP from 14 C in Phase 1 and Phase 2 respectively. The discrepancy between the 15 N and
14 C uptake rates suggests that other forms of N such as urea and other DON species were

important N sources for phytoplankton (McCarthy, 1972; Bronk et al., 1994), and/or that

a significant portion of the N taken up by phytoplankton was recycled during the 24 h

incubations. Given that N is the limiting nutrient in Monterey Bay (Kudela and Dugdale,

2000), we expect dissolved organic matter and nutrient recycling to play a larger role in

N uptake relative to C. Temporal decoupling between C fixation and N uptake is another

potential cause of discrepancies between simultaneous 14 C and 15 N incubations. C fixation
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requires light but some phytoplankton, including diatoms which are a significant primary

producer Monterey Bay, can uptake N in dark and light conditions (Hutchins and Bruland,

1995; Kudela and Dugdale, 2000; Clark et al., 2002). Although the absolute values of NPP

calculated from 15 N and 14 C are different due to the greater complexity of N cycling, the

relative increase in productivity by both methods is nearly identical for Phase 2 relative to

Phase 1.

We can also compare mixed layer NCP calculated from 02 /Ar and the N03 uptake

incubations. We assume that N03 uptake minus nitrification yields new production (Yool

et al., 2007) and that new production is equivalent to NCP (Laws, 1991; Falkowski et al.,
2003). In the mixed layer, nitrification decreased new production by 2 %. Nitrification rates

were higher deeper in the water column and decreased euphotic zone nitrification (to 1 %

I,) by 3-45 % (mean 17 %, data set DS3). In Phase 1, the methods agreed remarkably

well, yielding NCP of 37(8) and 36(10) mmol C m- 2 d- 1 from NO uptake and 0 2/Ar

respectively, despite the incubations measuring real-time uptake in bottles and the 02/Ar

technique measuring productivity integrated over approximately one week (the residence

time of 02 in the mixed layer). The agreement between the two methods supports our

conclusion that 02 was at steady state in Phase 1. As expected, the particle flux to 50 m

measured by the sediment traps (21(19) mmol C m- 2 d- 1 ) was lower than the mixed layer

NCP calculated by either method.

In Phase 2, new production increased to 65(10) mmol C m- 2 d- 1 whereas 02 /Ar-based

NCP decreased to 30(12) mmol C m- 2 d- 1 , according to the steady state calculation.

However, we believe that 02 was not in steady state during Phase 2 and therefore this

calculation is likely an underestimate of the true NCP (section 4.6.4). We also emphasize

that GPP in Phase 2 is likely an underestimate because the system was not at steady state.

Therefore the magnitude of the apparent changes in the fraction of GPP going to NPP and

NCP may be overestimated in Figure 4-7.

The frequent measurements of 02 in Phase 2 gave us insights into the biogeochemical

dynamics which were not evident from the daily incubations. All of the 24-h incubations

in Phase 2 were initiated at dawn with water from CTD profiles that had measurable near-

surface nitrate concentrations and low 02, characteristic of the recently-upwelled water.

Evaluating 02 data from all of the CTD casts and underway measurements in Phase 2

showed a wider range of conditions, including both high nutrient, low 02 surface waters and

low nutrient, high 02 surface waters. Thus the 0 2-based approaches, which were obtained

regularly throughout the cruise, provide information on the submesoscale variability in pro-

ductivity within our study site (Figures 4-4, C-1, and C-2). This high-frequency productivity

data cannot be easily obtained via incubations because they are more labor intensive and

because the time of day the incubation is initiated will affect the measured productivity

(Pennington et al., 2015), confounding the detection of spatial variability.
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We can compare our 02 /Ar and 17 /-based estimates of NCP (36(10) mmol C m- 2 d 1 )

and GPP (258(28) mmol C m- 2 d- 1 ) during Phase 1 with other recent studies using these

methods in the California Current system. Munro et al. (2013) calculated NCP of 27(11)

mmol C m- 2 d- 1 and GPP of 168(61) mmol C m- 2 d during October 2006 in inshore

California waters near Santa Barbara (termed the "north inshore" region in their study).

Our Monterey Bay NCP is equivalent within uncertainty, but our GPP is higher. Our GPP

results are very similar to their annually-averaged estimate of 232(86) mmol C m- 2 d- 1.

Haskell et al. (2016b) found mixed layer NCP to be 10(15) mmol C m- 2 d- 1 in inshore

California waters near Los Angeles during October 2013, lower than NCP during our study.

GPP was 230(37) mmol C m- 2 d- 1 during the same time period (W.Z. Haskell II, personal

communication), which is similar to GPP during our study.

Additionally, Johnson (2010) calculated daily NCP using moored near-surface 02 and

NO sensors at Ml between April-August 2006. He found NCP ranged from approximately

-24-48 and -14-53 mmol C m- 2 d- 1 when calculated from NO and 02 respectively. These

results overlap with our Phase 1 estimates of NCP, but our Phase 2 estimate of NCP from

NO- uptake incubations is somewhat higher than the corresponding range of results from

INO] by Johnson (2010).

We can also look at ratios of different productivity measures to quantify the extent of

recycling. If we assume that the 24 h incubations with 14 C approximate NPP (Marra, 2002),

the ratio of GOP/NPP was 3.8(1.0) in Phase 1 and 2.4(0.5) in Phase 2. However, our ratio

in Phase 2 is likely biased low due to the steady state calculation underestimating GOP. The

GOP/NPP ratio in Phase 1 is similar to the GOP/ 14 C-PP ratio of 3.3 for phytoplankton

growing on nitrate measured by Halsey et al. (2010), but somewhat higher than the ratio of

2.7 for gross 02 production to net C uptake observed in incubations from a global compilation

of all JGOFS sites (Juranek and Quay, 2013). Munro et al. (2013) calculated a GOP/NPP

ratio of ~4.8-8.1 in the north inshore region, using 6 h daytime 14 C incubations scaled to 24

h by multiplying by 1.81 (Eppley, 1992). Some of the discrepancy between the GOP/NPP

ratio determined in our study and Munro et al. (2013) may be due to uncertainty in scaling

the incubations from 6 h to 24 h.

We also use the ef-ratio = (new production)/NPP = NCP/NPP (Laws et al., 2000) to

quantify the fraction of net autotrophic production available for export, and the ratio of

NCP/GPP to quantify the fraction of gross autotrophic production available for export.

In Phase 1, the ratio of NCP/GPP was 0.14 when calculated using 17 A-GOP and NCP

from either NO uptake or 02 /Ar (Figure 4-7). The ef-ratio was 0.77 and 0.84 in Phase

1 and Phase 2 respectively, when calculated from NO- and NH+ uptake. It was 0.40

and 0.45 in Phase 1 and 2 respectively, when calculated from NO uptake and 14C-PP. In

Phase 1, the ef-ratio from 02 /Ar and 14 C-PP was 0.40, identical to the result from NO-

uptake. In Phase 2, we have less confidence in the 0 2-based ef-ratio calculations because
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the system was not at steady state. The ef-ratio calculated from N uptake only is likely an

overestimate throughout the cruise as it does not include additional sources of N such as

urea (McCarthy, 1972; Eppley and Peterson, 1979). However, our ef-ratio values are similar

to other measurements in Monterey Bay based on NO- and NH+ uptake where ef-ratios >

0.5 are commonly observed (Kudela, 1995; Olivieri, 1996; Kudela and Dugdale, 2000); for

example in a modeling study Olivieri and Chavez (2000) calculated an annually-averaged

ef-ratio of 0.84 by this method.

Finally, the POC flux at 50 m was - 58 % of the mixed layer NCP in Phase 1 (from

02 /Ar and from NO uptake), and 32 % of the mixed layer NCP in Phase 2 (from NO
uptake), indicating that roughly half of the mixed layer NCP was respired between -14-50

m. These results may suggest that the increase in mixed layer NCP during Phase 2 did not

immediately generate an increase in export below the mixed layer. However, because we

applied the same swimmer correction to all trap measurements, the apparent absence of a

change in POC export during our time series must be interpreted with caution.

4.8 Implications and future directions

Coastal regions impacted by upwelling are a challenging environment in which to quantify

oceanic productivity for a variety of reasons. By comparing the results of multiple methods

we demonstrate the conditions under which productivity can be reliably determined by each

method. To our knowledge, this is the first published study that has attempted to compare

all of these methods from concurrent measurements in a coastal region.

Monterey Bay, like most of the ocean, is a N-limited system (Kudela and Dugdale, 2000;

Moore et al., 2013). Some investigators have provided evidence that 15N additions can per-

turb N cycling and stimulate N uptake in incubations with low-nutrient water, especially for

ammonium uptake experiments (Glibert and Goldman, 1981; Allen et al., 1996; Ward, 2005).

Our results demonstrate that NCP calculated from 15 NO uptake and from 02 /Ar can give

comparable results even in N-limited conditions, when the system is at steady state. The
15 NO addition increased total NO concentration by -51 %, which is significantly higher

than typical recommendations to limit tracer addition to <10 % of ambient concentrations

(Dugdale and Goering, 1967). Despite the higher nutrient loadings, the two methods gave

nearly identical results in Phase 1, when NO concentrations were lower than in Phase 2,
but the system was at steady state with respect to 02.

In Phase 2, our results demonstrate the advantages and disadvantages of different ap-

proaches. The incubation-based methods are better at recording short-term changes in

productivity, while the high-frequency 02 /Ar method integrates over longer timescales and

enables the detection of submesoscale variability. We showed the importance of establishing

whether a system is at steady state when using gas tracer-based approaches (Hamme et al.,
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2012; Tortell et al., 2014; Wilson et al., 2015). If we only had a single time point measure-

ment of 0 2 /Ar and 17 A, and did not have productivity estimates from other methods, we

would have to assume that the system was at steady state despite having no evidence to

support or refute this assumption. Instead, our high-resolution time-series measurements of

0 2 /Ar revealed spatial and temporal variability over the scale of a few km or a few hours

during Phase 2 (Figures 4-4, C-1, and C-2). These results provided evidence that the sys-

tem was not at steady state and that multiple, biogeochemically unique water masses were

present within our study area. Additionally, the incubations yield instantaneous, small-scale

measurements of productivity and showed that productivity in the recently upwelled waters

in Phase 2 was higher than productivity in Phase 1, but incubations were not performed

with any water from Phase 2 that had higher 02 and lower nutrients.

At open ocean time-series sites, incubations conducted infrequently (e.g., monthly) can

miss sporadic, short-term blooms and periods of high export, whereas investigators have ar-

gued that these blooms will be recorded more often by measurements of 02, which integrates

over weeks in the open ocean (Karl et al., 2003; Juranek and Quay, 2005). However, in this

field study, the phytoplankton bloom during Phase 2 was evident from the incubations but

not the 02-based methods. During Phase 2, we sampled both inside and outside a filament

of recently upwelled water where 02 was out of steady state. The higher nutrient concentra-

tions in this filament initiated a phytoplankton bloom which pushed 02 further from steady

state. The longer integration time of the 02-based method relative to the length of the time-

series and the submesoscale variability in surface water properties made it challenging to

accurately quantify the increase in NCP and GPP in Phase 2 from these methods. A longer

time-series would help to resolve these uncertainties. Also, if the different water masses had

unique physical and/or biogeochemical properties that were continuously sampled in the un-

derway record (e.g., if the recently-upwelled water was significantly higher in salinity and/or

if we had continuous underway measurements of [NO3]) we could potentially separate the

time-series into different water parcels and separately quantify productivity in each parcel

using our 02 -based methods. In summary, we have demonstrated that "N03 incubations

and gas tracer-based productivity estimates can give comparable results in an N-limited sys-

tem and that by conducting time-series measurements of productivity by multiple methods,

we can evaluate whether the system is at steady state.
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Chapter 5

Changes in gross primary production, net

community production, and air-water gas exchange

during seasonal ice melt in the Bras d'Or Lake, a

Canadian estuary

The supplemental information for this chapter can be found in Appendix D.
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5.1 Abstract

Sea ice is an important control on gas exchange and primary production in polar regions.

We measured net oxygen production and gross oxygen production using near-continuous

measurements of the 0 2/Ar gas ratio and discrete measurements of the triple isotopic com-

position of 02 in the Bras d'Or Lake, an estuary in Nova Scotia, Canada, as the bay

transitioned from ice-covered to ice-free conditions. The volumetric gross oxygen produc-

tion was 5.4(+2) mmol 02 m-3 d- 1 , similar at the beginning and end of the time-series,

and likely peaked at the end of the ice melt period. Net oxygen production displayed more

temporal variability and the system was on average net autotrophic during ice melt, and

net heterotrophic following the ice melt. We performed the first field-based dual tracer re-

lease experiment in ice-covered water to quantify air-water gas exchange. The gas transfer

velocity at >90 % ice cover was 6 % of the rate for nearly ice-free conditions. Published

studies have shown a wide range of results for gas transfer velocity in the presence of ice,
and this study indicates that gas transfer through ice is much slower than the rate of gas

transfer through open water. The results also indicate that both primary producers and

heterotrophs are active in Whycocomagh Bay while it is covered in ice.

5.2 Introduction

The annual cycle of sea ice formation and melt regulates primary production and CO 2 uptake

and ventilation in polar regions. Ice alters the rate of air-water gas exchange, reduces the

penetration of light into surface water, changes stratification and mixing processes, and

harbors microbes and biogenic gases including CO 2 (Cota, 1985; Loose et al., 2011b; Loose

and Schlosser, 2011).

The issue of whether climate change will increase or decrease Arctic Ocean carbon uptake

is a topic of considerable debate (Bates et al., 2006; Bates and Mathis, 2009; Cai, 2011).

Global warming is causing dramatic reductions in sea ice cover and increases in freshwater

inflow into the Arctic, which impacts Arctic ecosystems (ACIA, 2004; Vaughan et al., 2013).

Because conducting field work in the Arctic is challenging, measurements of productivity and

gas exchange are limited. Biogeochemical time-series observations resolving seasonal changes

in productivity are particularly scarce in the Arctic (MacGilchrist et al., 2014; Stanley

et al., 2015). Measurements at Palmer Station in Antarctica show a strong seasonality in

biological productivity and carbon uptake associated with changes in light, physical mixing,
and grazing and demonstrate the benefits of high-frequency sampling for quantifying CO2

uptake (Ducklow et al., 2013; Tortell et al., 2014; Goldman et al., 2015).

Parameterization of gas exchange in the presence of ice also remains highly uncertain.

Many investigators have assumed that there is negligible gas transfer through ice and there-
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fore the gas transfer velocity can be linearly scaled as a function of the fraction of open water,

multiplied by the open water gas transfer velocity (Takahashi et al., 2009; Legge et al., 2015;

Evans et al., 2015; Stanley et al., 2015), however, this assumption is not well verified. A

recent study by Butterworth and Miller (2016) concluded that gas transfer velocities in the

Southern Ocean at 0-100 % ice cover approximated the expected linear relationship with ice

cover, but other studies report that gas exchange is reduced or enhanced in the presence of

sea ice relative to a linear scaling based on the fraction of open water, including some studies

measuring higher transfer velocities in ice-covered waters than in open water (Fanning and

Torres, 1991; Else et al., 2011; Papakyriakou and Miller, 2011; Rutgers van der Loeff et al.,

2014). Additional studies show that gas exchange in ice-covered waters cannot be predicted

from wind speed alone, which may be a cause of the wide range of results (Loose et al.,

2009a; Lovely et al., 2015).

In this study, we measured productivity and gas exchange over a 1-month period during

and following ice melt in the Bras d'Or Lake, an estuary on Cape Breton Island in Nova

Scotia, Canada. The Bras d'Or Lake consists of several interconnected channels and basins

and has a surface area of 1070 km2 and an average depth of ~30 m (maximum 280 m)

(Petrie and Raymond, 2002; Petrie and Bugden, 2002). The Bras d'Or Lake exchanges

water with the Atlantic Ocean ocean primarily through the Great Bras d'Or Channel at the

northeastern region of the estuary; this channel has a shallow (16 m deep) and narrow (0.3

km) restriction at the mouth (Petrie and Raymond, 2002). We conducted the work for this

study in Whycocomagh Bay, an enclosed embayment approximately 13 km long and 3 km

wide, at the western end of the estuary, approximately 60 km from the open ocean (Figure

5-1). Whycocomagh Bay is separated from the rest of the Bras d'Or Lake by Little Narrows,

a channel which is approximately 0.2 km wide and 0.5 km long. The bay is up to 40 m deep

and Little Narrows channel is -15-20 m deep (Gurbutt and Petrie, 1995). Maximum ice

cover is typically reached in early March and ice disappears most rapidly in April and has

usually disappeared completely by the first week of May (Petrie and Bugden, 2002).

Nitrogen availability limits productivity in the Bras d'Or Lake for most of the year. N:P

ratios are typically 6:1 or less, compared to the Redfield ratio of 16:1 (Redfield et al., 1963;

Strain and Yeats, 2002). Inflowing water from Sidney Bight (Atlantic Ocean) is the most

significant source of nutrients in all seasons (Strain and Yeats, 2002). Nutrient concentra-

tions, especially nitrate, are thought to build up over winter due to mixing with deeper water

and low phytoplankton growth rates, leading to a short phytoplankton bloom in spring as

the water warms and ice melts, similar to the spring bloom in the nearby oceanic waters

(Petrie and Raymond, 2002; Strain and Yeats, 2002; Greenan et al., 2004; Parker et al.,

2007). However, a spring phytoplankton bloom in the Bras d'Or Lake has never been ob-

served directly and nutrient concentrations have not been measured during winter (Parker

et al., 2007). Concentrations of nitrate+nitrite in late spring 1996 were below 0.14 p.M
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Figure 5-1: (a) Map of Whycocomagh Bay showing the locations of Injections 1 and
2 and the sampling equipment at Little Narrows. For Injection 1, the injection location
is shown with a red star and the location where initial samples were collected is shown
with a red circle. The colored lines labeled 26 Mar, 7 Apr, and 12 Apr show the loca-
tion of the ice edge on these days. (b) Map of Cape Breton Island, showing the loca-
tion of Whycocomagh Bay and Eskasoni (where wind speeds were obtained). (c) Map
of Canada showing location of Cape Breton Island. Panels (b-c) were modified from
an image created by Hanhil (https://commons.wikimedia.org/wiki/File:CanadaNova_
Scotialocation-map..2. svg), "Canada Nova Scotia location map 2" as permitted under
the CC-BY-SA 3.0 license, https://creativecommons.org/licenses/by-sa/3.0/legalcode.
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(the analytical detection limit) for 98 out of 114 samples and above 2 RM in only 2 of

114 samples collected throughout the estuary (Strain, 2001). Ammonia concentrations had

a median of 1.3 iM during the same period (Strain, 2001; Strain and Yeats, 2002). The

low chlorophyll and nitrate concentrations in these samples led Strain and Yeats (2002) to

conclude that the spring bloom had already occurred. Nutrient concentrations remain low

in summer and then increase due to mixing in fall. Given the low nutrient concentrations

in spring and summer, regenerated nutrient sources drive the primary production in these

seasons. For example, Geen and Hargrave (1966) demonstrated with incubation experiments

that excretion of nutrients by zooplankton is needed to maintain the autotrophic biomass

in summer.

We performed two dual tracer release experiments to quantify air-water gas exchange

by adding 3 He and SF 6 to the mixed layer. The first tracer release experiment (Injection

1) occurred under near-complete ice cover and the second experiment (Injection 2) occurred

in nearly ice-free conditions. We measured net oxygen production (NOP) and gross oxygen

production (GOP) at Little Narrows while Whycocomagh Bay transitioned from completely

ice-covered to ice-free conditions. GOP is the total amount of 02 generated by autotrophic

microbes as a result of photosynthesis. NOP is GOP minus respiratory consumption of

02 by autotrophs and heterotrophs. The ratio of these two terms provides an estimate of

the export efficiency, i.e. the fraction of autrophic production available for export from the

mixed layer. The time-series approach allowed us to quantify non-steady state 02 fluxes,

which can be a significant portion of the total 02 flux in many regions (Hamme et al., 2012;

Tortell et al., 2014; Manning et al., 2016b). We quantify GOP with discrete measurements

of the triple oxygen isotopic composition of 02 (Juranek and Quay, 2013) and NOP with

near-continuous measurements of the O2/Ar saturation anomaly (Cassar et al., 2009). The

advantages of the oxygen mass balance technique are that it is an in situ technique that

does not perturb the system and integrates over larger spatiotemporal scales than bottle

incubations. The challenge of the method is that physical 02 fluxes, including air-water gas

exchange, must be quantified in order to separately quantify the biological 02 fluxes.

To our knowledge, this study is the first field-based experiment where the dual tracer

technique is conducted in the presence of ice, and it adds to a limited number of in situ

measurements of NOP and GOP during ice melt (Goldman et al., 2015; Stanley et al., 2015;

Eveleth et al., 2016).

5.3 Field work and analytical methods

5.3.1 Setup at Little Narrows

We continuously sampled water at Little Narrows channel (Figure 5-1) over a 1-month period

(25 March-28 April 2013). We moored a Goulds SB Bruiser 5-18 GPM submersible pump
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with intake at -0.5 in depth, placed inside a mesh filter bag to prevent large particles from

clogging the pump, and a conductivity and temperature (CT) sensor (Sea-Bird Electronics

SBE37) at -0.5 m depth. From the submersible pump, water flowed through flexible high-

pressure PVC tubing submerged underwater to a 3-port pressure-relief valve (on shore) and

was then pumped along shore (~50 m) to our sampling apparatus. The water passed through

three 10" canister filters (100, 20, and 5 pLm nominal pore size) and then into a sampling

manifold containing three valves for distributing water for measurement of 02 /Ar (by mass

spectrometry), SF6 (by gas chromatography) and for discrete sampling. As discussed below,

we sampled discretely for SF6 , 3He, and 02 /Ar and the triple oxygen isotopic composition of

02. Excess water flowed through tubing back into the bay. We covered the tubing on shore

and the filter canisters in foam insulation to minimize temperature changes in the water.

Due to the limited cable lengths, the CT sensor was initially were placed closer to shore

than the water pump, but after obtaining a longer cable, we were able to co-locate the CT

sensor with the water pump (beginning 12 April). We deployed a Nortek acoustic doppler

current profiler (ADCP) at 4 m depth in the middle of the channel beginning on 7 April

through the end of the time-series. The ADCP measurements are not used to interpret the

results below because our measurements did not display any correlation with tidal cycles.

However, a figure of the ADCP data is provided in Appendix C.

Salinity and temperature are needed to calculate the equilibrium concentration of each

gas. For the discrete samples, we used the CT sensor temperature and salinity measurements

beginning on 12 April (when we moved the CT to the same location as the pump). Prior

to 12 April, we collected measurements with a YSI temperature and salinity probe from the

water on shore and used these measurements as the temperature and salinity for the discrete

samples. We determined the average warming through the underway line to be 0.37(0.22)

'C based on comparisons between the temperatures from the CTD (in situ) and the YSI (on

shore) and applied this offset to all YSI temperature measurements. Additionally, for the

continuous 02 /Ar data we used a temperature record from a thermocouple in the bucket

because it had fewer gaps in time. We calibrated the thermocouple using an Aanderaa 4330

optode sensor which contains a temperature sensor (accuracy 0.03 'C), which decreased

the thermocouple temperature by 0.92 'C and then adjusted it by 0.37 'C to correct for

warming.

We installed the gas chromatograph and mass spectrometer inside a garage connected to

the Little Narrows Ferry building. The majority of the wet equipment was set up outside the

garage adjacent to a window on the garage, which was used for transferring equipment and

power cables between the outdoors and indoors. We deployed all equipment in the water to

the east (oceanward) of the Little Narrows cable ferry which periodically crosses the channel

and operates 24 hours per day. There were no trends in the data consistently correlated to

the position of the ferry within the channel. We collected conductivity, temperature and
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depth (CTD) profiles with a SBE 19Plus sensor at Little Narrows, usually by boat using a

winch, but occasionally by lowering the CTD by hand on a rope from the Little Narrows

cable ferry. The GPS-equipped boat enabled us to map out the location of the ice edge

nearest to Little Narrows, to perform the second tracer injection, and to sample after the

tracer injection.

5.3.2 Tracer injections

Our approach was to dissolve the tracer mixture (3He/SF6 ) in Whycocomagh Bay, and

sample continuously at Little Narrows, a constriction at the mouth of the bay. The net

surface flow within Whycocomagh Bay, Little Narrows, and St. Patrick's Channel is toward

the ocean due to the substantial freshwater inputs to the bay (Gurbutt and Petrie, 1995;

Yang et al., 2007) and therefore tracer dissolved within the bay at the surface will eventually

pass through Little Narrows (or be ventilated to the atmosphere). We conducted two tracer

injections, resulting in an estimate of the gas transfer velocity for two extremes: near-

complete ice cover, and essentially ice-free conditions.

The first injection occurred through a hole in the ice from 30-31 March, near Maclnnis

Island (Figures 5-1a and D-3). Approximately 0.11 mol SF6 and 4.0 x 10-4 mol 3 He was

diluted by a factor of 50 with N2 and then bubbled using a manifold, over a 21-hour period

within the mixed layer. We sampled for initial 3He and SF 6 concentrations after terminating

the tracer addition, by drilling a separate hole near the injection site. Subsequently, we

sampled the tracer as it flowed through Little Narrows from 7-11 April. From 31 March-11

April, the bay was nearly completely full of ice, with a small opening near Little Narrows.

The second injection occurred by boat on the morning of 19 April. By this time, the bay

was nearly ice-free and all tracer from the previous experiment had passed through and/or

been ventilated to the atmosphere such that the tracer concentrations at Little Narrows were

below detection. While the boat was moving, we used the same manifold as for Injection 1

to bubble approximately approximately 4.4 mol SF6 and 0.021 mol 3He, diluted by a factor

of four with N 2 into the mixed layer (Figure 5-1a). The injection lasted 40 min. We detected

the tracers at Little Narrows beginning on 20 April 23:30 and measured the change in the

ratio between 20 April-23 April. We collected samples within the tracer patch by boat on

19 April in the afternoon, but all 3He samples had air contamination or were lost during

sample extraction.

5.3.3 Measurement of 0 2 /Ar and the triple oxygen isotopic composition

of 02

We set up an equilibrator inlet mass spectrometer (EIMS) for measurement of 0 2/Ar simi-

larly to the system described in Cassar et al. (2009). However, we used a larger membrane
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contactor cartridge (Liqui-Cel MiniModule 1.7 x 5.5) because the design was more robust

(less prone to flooding the headspace) than the Liqui-Cel MicroModule 0.75 x 1 used by

Cassar et al. (2009). The water flow rate through the cartridge was -1.5 L min- 1 . We

attached a custom fitting with a female Luer-Lok cap and a capillary adapter to the upper

headspace sampling port and the lower sampling port was left capped (closed). From 15-28

April we also measured the concentration of 02 using an Aanderaa optode, model 4330. The

optode was not calibrated because equipment for Winkler titrations was not available in the

field and the optodes drift during storage/transport (Bittig and Kdrtzinger, 2015; Johnson

et al., 2015). Although the profiling CTD had an 02 sensor, it was malfunctioning during

the time-series and the data from it could not be used.

For 02 /Ar and the triple oxygen isotopic composition of 02, we collected samples in

pre-evacuated, pre-poisoned glass flasks from a spigot in the water pumped to shore, or for

shipboard sampling, using a small submersible water pump. Analysis occurred within ~6

months of flask evacuation and 4 months of sample collection at the Woods Hole Oceano-

graphic Institution with a Thermo Fisher Scientific MAT 253 isotope ratio mass spectrom-

eter, following the method of Barkan and Luz (2003) with modifications as described in

Stanley et al. (2010, 2015).

The precision of the discrete samples, calculated based on the standard deviation of

equilibrated water samples run daily along with the environmental samples was 0.011 and

0.020 %o for 6170 and 6180 respectively, 5.6 per meg for 17 A, and 0.07 % for 0 2 /Ar. The

mean difference between the EIMS and discrete samples was 0.05 %, and the mean magnitude

of the difference was 0.35 %. Because the mean difference between the EIMS and discrete

samples is smaller than the precision of the discrete samples, the EIMS measurements are

not adjusted to match the 0 2 /Ar measurements.

5.3.4 Measurement of SF6

For SF 6 , we collected ~20 mL water samples in 50 mL glass gas-tight syringes, then added

-20 mL of nitrogen and allowed the samples to be shaken for 10 min to achieve equilibration

between the headspace and water (Wanninkhof et al., 1987). After the water equilibrated to

room temperature, we injected 1 mL of the headspace into an SRI-8610C gas chromatograph

with an electron capture detector, heated to 300 'C (Lovely et al., 2015). We calibrated the

detector response using a 150 ppt SF 6 standard (balance N2 ). Unfortunately, a gas cylinder

filled with a lower concentration of SF6 (10 ppt) arrived to the field site empty and could

not be used as a second calibration standard.

We also operated an automated gas extraction system at Little Narrows which sampled

nearly every hour. The system recirculated a 118 mL loop of water through a membrane

contactor, and the headspace of the membrane contactor was under vacuum, causing the gas

to be extracted from the water into the headspace. This system enabled determination of
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when the tracer was flowing through Little Narrows and helped inform the timing of discrete

sample collection.

SF 6 equilibrium solubility concentrations are calculated following Bullister et al. (2002)

and diffusivity is from King and Saltzman (1995). Precision of the system, based on the

standard deviation of measurements of the 150 ppt standard, was 7 %. We assume a dry

atmospheric mole fraction of 8 ppt for SF 6 (Bullister, 2015).

5.3.5 Measurement of 3 He

For 3 He analysis, we collected samples in copper tubes, mounted in aluminum channels and

sealed the samples at each end using clamps. Sample analysis occurred at the Lamont Do-

herty Earth Observatory, using a VG5400 mass spectrometer for 3He and 4 He concentration

(Ludin et al., 1998). We used He solubility from Lott and Jenkins (personal communication,

2015) and diffusivity from Jihne et al. (1987a). The Lott and Jenkins is solubility -2 %

higher than published data from Weiss (1971). The He solubility is for bulk He and we

calculate the 3He solubility using an atmosperic mole ratio M(3He)/M(4He) - 1.399 x 10-6

(Mamyrin et al., 1970; Porcelli et al., 2002), although some more recent results indicate the

current ratio may be slightly lower, -1.390 x 10-6 (Brennwald et al., 2013b). We use the He

equilibrium isotopic fractionation as described in Benson and Krause (1980b). Error for 3 He

sample analysis (combined precision and accuracy) was <2 % of the measured 3 He excess

concentration above equilibrium.

5.4 Calculations, results, and discussion

The three goals of our experiment were to 1) quantify gas transfer velocity by dual tracer re-

lease, 2) quantify gross oxygen production from the triple isotopic composition of 02, and 3)

quantify net oxygen production from 0 2 /Ar. We begin by discussing the hydrographic char-

acteristics of the study area and then describe the calculations, results, and interpretation

for each of the three goals, in sequence.

5.4.1 Hydrography

We began sampling 02 at Little Narrows on 25 March, when Whycocomagh Bay was nearly

(>95 %) full of ice, and completed sampling on 28 April, when the bay was completely ice-

free (Figure 5-2). The surface ice cover retreated most rapidly between 16-18 April and was

completely gone by 22 April or perhaps even earlier. Figure 5-2 shows 18 April and 23 April;

MODIS images on 22 April were also ice-free (but more blurry, so are not shown in the figure)

and we estimated ice cover to be <10 % in the bay during surveys by boat during daytime

on 20 April. The ice was likely melting even at the beginning of the time-series since the

surface water temperature was always above the freezing temperature of water. Changes in
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surface ice cover and total ice volume are both important factors during the study; changes

in ice volume will affect stratification and convection in the mixed layer and the surface ice

cover controls the rate of gas exchange (Smith and Morison, 1993; Butterworth and Miller,

2016)

CTD profiles at Little Narrows channel near the water pump intake showed substantial

changes in stratification during the time-series (Figure 5-3). From 25 March through 8 April

the water column was strongly stratified and we estimated the mixed layer depth to average

0.8(0.3) m. During this period, it was often difficult to determine the exact mixed layer

depth because the mixed layer depth was similar to the length of the CTD and obtaining a

stable CTD response so close to the surface was challenging. Following 8 April, the mixed

layer deepened and warmed and its salinity increased, likely due to convection and heating

following sea ice melt. For this period, we defined the mixed layer depth as the first depth

where the density is 1 kg m- 3 greater than the value at 1 m. The mixed layer reached a

maximum of 3.0 m on 23 April and then shoaled by the end of the time-series on 28 April.

On most days, the density profile and mixed layer depth were driven by stratification in

salinity, but for the final profile on 28 April the mixed layer depth was determined by a

combination of temperature and salinity stratification due to heat uptake by the surface

water following the ice melt. These changes in mixed layer depth must be considered in

order to interpret the 02 measurements and to quantify the gas transfer velocity.

5.4.2 Gas transfer velocity

Calculation

We calculate the gas transfer velocity using the dual tracer approach (Watson et al., 1991b;

Wanninkhof et al., 1993). For each experiment, we dissolved a mixture of 3He and SF 6 in

the water, both of which are normally present at very low ambient concentrations, and then

measured the change in the ratio of the two gases as a function of time. Measuring two

tracers enables correction for dilution and mixing, which reduces the excess concentrations

of both gases (relative to air-water equilibrium) but does not change their ratio. Over time,

the concentrations of both gases decay toward air-water equilibrium as gas is ventilated to

the atmosphere through gas exchange. Because the molecular diffusivity of 3He is 8-9 times

higher than SF6 , 3 He is lost to the atmosphere more rapidly than SF 6 and therefore the
3 He:SF6 ratio decreases with time. The ratio of the gas transfer velocity for the two gases

is expressed as

kIHe SCSF) -n (5.1)
kSF6 6~S~

where k is the gas transfer velocity (m d- 1 ) and Sc is the Schmidt number (unitless), defined

as the kinematic viscosity of water divided by the molecular diffusivity of the gas in water,
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Figure 5-2: MODIS Terra true color images showing changes ice cover during the time-
series between 31 March to 23 April. Little Narrows is indicated with a yellow circle on all
images. Ice cover retreated most rapidly between 12 April-20 April. Shoreline data (blue
lines) is from GeoGratis/Natural Resources Canada (http://geogratis.gc.ca) and satellite
data is from NASA Worldview (http://worldview.earthdata.nasa.gov).

and n is an empirical exponent, typically between 0.5-0.67 (Jihne et al., 1984; Liss and

Merlivat, 1986). Using a time-series of measurements of the two gases, the gas transfer

velocity for 3 He is calculated as

k3He h d (ln([ (Heexc/[SF6]exc)]
He 1g - (geSF6 /SC3He)-

(5.2)

Here [ 3He]exc = [3He]meas - [3He]eq where [3He]exc is the 3 He excess concentration, [ 3He]meas

is the measured concentration and [ 3He]eq is the equilibrium concentration (calculated as a

function of temperature and salinity). [SF6]exc is defined analogously.
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We can write the analytical solution to equation 5.2 as (Ho et al., 2011b)

( [3 He]exc [3 He]exe

[SF1exc' = [SF 6 exclti
exp ( k3 A t [1 - .-n]

h ScHe

Using this equation and a cost function, we can find the value of k3He that minimizes the

error between the measured and modeled [3Hejexc/[SF6 ]exc. Once k3He is known, we can

calculate k for any other gas using equation 5.1 by substituting SCSF6 for the Schmidt

number of the gas of interest. For example, for Sc = 600 (the Schmidt number for CO 2 at

20 'C in freshwater)

k600 = k3 He (600) -n (5.4)
(SC3He

For this study, we use a Schmidt number dependence of n = 0.5 which is appropriate

for wavy, unbroken water surfaces (no bubble entrainment) (Jihne et al., 1984; Liss and

Merlivat, 1986; Jdhne et al., 1987a; Ho et al., 2011b). At Little Narrows, we observed that

tidal currents generated surface waves, even at low wind speeds. These waves produce near-

surface water turbulence which is the ultimate driver of air-water gas exchange (Jdhne et al.,

1987b; Wanninkhof et al., 2009).
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Results

We obtained significantly different gas transfer velocities for Injection 1, which was sampled

while the basin was essentially full of ice (31 March-10 April) and Injection 2, which was

sampled when the basin was nearly ice-free (20-23 April).

We used equation 5.3 to model the measurements. We started the model at the time

of the first measurement, initialized it with an initial excess concentration ratio and ran

it through time for the duration of the injection. We selected the value of k3He yielding

the smallest root mean square deviation (RMSD) between the measured ratio and modeled

ratio for each injection. We ran the model 1000 times using a Monte Carlo simulation where

the measured excess concentration ratios, including the initial condition, are varied with a

Gaussian distribution, with the standard deviation being the estimated measurement error

in the ratio (7.3 %).

We assume a constant Sc3He/ScSF and mixed layer depth (h) for each injection. In

actuality, during each injection SC3He varies by -1 % and the ratio of the Schmidt numbers

varies by less than 0.2 %, so this is a small source of error.

We assume a mixed layer depth of 0.8(0.3) m for Injection 1. This depth is consistent

with the salinity profiles at Little Narrows (Figure 5-3a) between 31 March and 8 April

(between 0.6-1.0 m depth), as well as measurements with a hand-held temperature probe

at the site of Injection 1 which indicated that the mixed layer depth was between 0.75-1 m.

For Injection 1, the excess SF6 and 3He concentrations were reduced by two orders of

magnitude by the time the tracer reached Little Narrows (7-11 days after injection). The

tracer ratio did not display a consistent decrease over the three days we sampled it at Little

Narrows, likely in part due to the substantially lower gas transfer velocity. The best fit to

all the measurements was k600 = 0.0457(0.0051) m d- 1, with the uncertainty the standard

deviation of the distribution of k600 from the Monte Carlo simulation (Figure 5-4). We

avoided collecting discrete tracer samples when the tides were flowing into Whycocomagh

Bay, based on visual observation of surface currents, to ensure that the gas transfer velocity

reflected the ice coverage within the bay and was not skewed by the open water east of Little

Narrows.

The mixed layer appeared to deepen between the CTD profiles on 8 April 16:08 and 12

April 19:13, and it is possible the mixed layer depth on 9-10 April may have been deeper than

the estimate of 0.8(0.3) m. However, if this were the case we would expect k6 00 (calculated

assuming a constant mixed layer depth) to be lowest when calculated over the longest time

period, using the sample collected on 10 April. Instead, the gas transfer velocity was actually

the lowest when integrated to 9 April (the excess tracer ratio appears above the best-fit line)

and second lowest on 8 April. Since the gas transfer velocities for Injection 1 integrate over

7-10 days, any change in mixed layer depth during the last 1-2 days will have a small effect

on the calculated k.
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Figure 5-4: Measured and modeled ratio of excess 3He/SF6, normalized to the initial
measured ratio for each injection. The modeled excess ratio is calculated using the k3He,
that minimizes error between the model and measurements. Model results are shown for

the model initialized with the initial measured concentration (solid lines), and starting one
standard deviation above or below the measured initial concentration (based on an error of

7.3 % in the tracer ratio, dashed lines).
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Table 5-1: Data for determination of the gas transfer velocity

Injection 1

Salinity' Temperature' 63He ISF 6  [ 3 Helexc/[SF6IexcDate Time (PSS) (OC) (%) (10-12 mol L- 1) (mol mol- 1)

31 March 15:00 0.9 2.1 17176 66.6 0.00788
7 April 18:00 13.2 2.6 13.8 0.152 0.00411
8 April 17:27 8.4 2.0 56.9 0.423 0.00480
9 April 12:47 9.0 2.1 39.0 0.289 0.00553
10 April 11:02 9.3 1.8 12.6 0.115 0.00405

Injection 2

Time Salinity' Temperaturea j 3 He [SF6I [3Helexc/[SF 6 excDate (PSS) (0 C) (%) (mol L- 1 ) (mol mol- 1)

20 April 23:30 11.18 5.64 310.3 3.96 0.00227
21 April 20:00 14.91 6.49 91.8 1.60 0.00176
22 April 12:27 14.64 7.16 43.6 0.938 0.00150
23 April 10:40 11.01 5.73 6.5 0.299 0.000799

a For Injection 1,
one decimal place

we measured temperature and salinity with a YSI probe to a precision of
(because the CTD was not yet co-located with the water pump and could

not be used to sample under ice). For Injection 2, we measured temperature with a calibrated
thermocouple and salinity with the in situ CTD, to a precision of two decimal places.

For Injection 2, we use a mixed layer depth of 2.7(0.3) m based on CTD profiles at

Little Narrows on 20 April and 23 April, which had mixed layer depths of 2.4 and 3.0

m, respectively (Figure 5-3a). Calculation of the gas transfer velocity for Injection 2 was

relatively straightforward as the ratio of excess 3 He/SF6 steadily decreased over the five

measurements (Table 5-1). The best fit to all four measurements was k600 = 0.71(0.13) m

d- 1 (Figure 5-4).

If we use published helium solubility from Weiss (1971) instead of the unpublished data

of Lott and Jenkins (2015, personal communication) we calculate a transfer velocity that is

8 % lower for Injection 1 and 0.4 % lower for Injection 2.

Discussion

The gas transfer velocity calculated for Injection 1 is the effective gas transfer velocity (keff);

it averages the gas transfer velocity through ice (kice), weighted by the time the tracer spent

under ice, and the gas transfer velocity for open water (k), weighted by the time the tracer

spent in open water (Loose et al., 2014). In partially-ice covered waters, the effective gas

transfer velocity is sometimes calculated as

keff = (f)k + (1 - kice (5.5)

115



where f is the fraction of open water (Loose et al., 2014; Lovely et al., 2015). If kice is

negligible, then keff = (f)k (Takahashi et al., 2009; Evans et al., 2015; Butterworth and

Miller, 2016). For Injection 2, we determined k, the value for open water. We expect kice to

be lower than k because the ice acts as a physical barrier to gas exchange. The rate of gas

molecular diffusion in water (Jihne et al., 1987a; King and Saltzman, 1995) is higher than

gas diffusion through ice (Gosink et al., 1976; Ahn et al., 2008; Loose et al., 2011a; Lovely

et al., 2015). However, the exact rate of gas diffusion through saltwater ice (and by extension

the value of kice) is not well constrained and likely varies based on the physical properties of

the ice such as brine volume and temperature (Golden et al., 2007; Loose et al., 2011a; Zhou

et al., 2013; Moreau et al., 2014; Lovely et al., 2015). An additional factor reducing air-water

exchange in ice-covered waters is that ice significantly reduces fetch for wave generation and

therefore wind-driven near-surface turbulence (Squire et al., 1995; Overeem et al., 2011).

However, other processes may enhance near-surface turbulence in the presence of sea ice

including convection associated with heat loss and brine rejection (Morison et al., 1992;

Smith and Morison, 1993), boundary layer shear between ice and water (McPhee, 1992;

Saucier et al., 2004), and wave interactions with drifting ice (Kohout and Meylan, 2008).

To evaluate these results within the framework of equation 5.5, we must estimate the

fractional ice cover during Injection 1. During surveys by car along the shoreline of Why-

cocomagh Bay and satellite data indicated that the bay was nearly fully covered with a

continuous sheet of ice from 31 March-10 April, except for an opening close to Little Nar-

rows (Figure 5-2a-b). Beginning between 7 April and 12 April, a small region of water

appeared to open up along the shoreline northwest of the site of Injection 1, however, by

this time the tracer patch had moved eastward, close to Little Narrows and likely was not

significantly affected by this open water (Figure 5-2c). We mapped out the location of the

ice edge closest to Little Narrows by boat on 26 March, 7 April, and 12 April (Figure 5-la).

Using these surveys and shoreline data, we calculate that for the surface area of the bay

between the injection site and Little Narrows, f = 0.01 on 26 March, 0.05 on 7 April, and

0.08 on 12 April. The f experienced by the tracer patch during Injection 1 is likely between

0.05-0.08 because the tracer flowed through the open water near Little Narrows between 6

April - 11 April. If k for open water is the same for both injections, then our results are

consistent with keff = (f)k with f = 0.064, which is consistent with the fraction of open

water we estimate for Injection 1. Thus we conclude that kice was negligible, compared to

k. For example, if kice was even 10 % of k for open water, then keff for Injection 1 would

have been ~0.11 m d- 1, more than double the observed value of 0.0457(0.0051) m d- 1 .

In calculating GOP and NOP by oxygen mass balance, we apply the tracer-based gas

transfer velocities determined by dual tracer release throughout the time-series, rather than

a traditional wind speed-based parameterization because the gas transfer velocities deter-

mined at the same time as the productivity estimates are most accurate, since there is no
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consensus on the best treatment of gas transfer in lakes and estuaries (Clark et al., 1995;

Cole and Caraco, 1998; Crusius and Wanninkhof, 2003; Ho et al., 2011a), nor on the pa-

rameterization of gas transfer in the presence of ice (Else et al., 2011; Lovely et al., 2015;

Butterworth and Miller, 2016). If bottom-derived turbulence (e.g., from tidal flow) is a

significant contributor to air-water gas exchange, a parameterization based on wind speed

alone may not be appropriate. Our method of calculating one average k600 for each injec-

tion does not enable the calculation of wind speed-dependent parameterization for the gas

transfer velocity.

Because the k6 00 for Injection 1 and Injection 2 are so different, the treatment of the gas

transfer velocity in between the two injections strongly affects our productivity estimates

for this period. We use k600 = 0.0457(0.0051) m d- 1 from the beginning of the time-series

until midnight 16 April, the day when Figure 5-2d was collected. This image is the first

satellite image showing substantial open water within Whycocomagh Bay, but the open

water is primarily in the western half of the bay, far from Little Narrows. We use k600

0.71(0.13) m d- 1 from midnight 20 April until the end of the time-series on 28 April. Our

surveys by boat on 19 April and 20 April indicated <10 % ice cover on these days and we

collected the first tracer measurements following Injection 2 on 20 April 23:30. Between 16

April and 20 April, we apply a linear interpolation of the k6 00 for Injection 1 and Injection

2 as a function of time. The gas transfer velocity is most uncertain during the period when

the ice cover rapidly decreased because we do not have any measurements of gas transfer at

intermediate ice cover. However, because the ice cover retreated rapidly, only four days of

the productivity estimates (out of a 33-day time-series) are affected by the uncertainties in

gas transfer at intermediate ice cover.

Comparison with other estimates

To compare the gas exchange estimates with other published studies, we use wind speed

data measured at 10 m height (ulo) at Eskasoni Reserve, 27 km northeast of Little Narrows

(Figure 5-1) and archived by the Government of Canada. The archived data are two-minute

averages measured once per hour. For Injection 2, between 20 April 23:00 and 23 April

11:00 the average wind speed was 2.6(1.4) m s--1, the median was 2.2 m s-1, and the

calculated k600 over this time period from dual tracer data is 0.71(0.13) m d- 1 . Cole and

Caraco (1998) find k6 00 = 0.636(0.029) m d- 1 (95 % confidence interval) and their estimate

is independent of wind speed in a lake with daily wind speeds of 1.39(0.06) m s-1 (95 %

confidence interval); this k600 is consistent within uncertainty with our result. Standard

open ocean parameterizations that use a quadratic dependence on wind speed predict k60 0

- 0.5-0.6 m d 1 with uncertainties of ~20 % or -0.10 m d- 1 (Ho et al., 2006; Sweeney

et al., 2007; Wanninkhof, 2014).
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Crusius and Wanninkhof (2003) find that in a lake gas exchange can be estimated nearly

equally well using three different parameterizations. Using their equations with our wind

speed record, we calculate transfer velocities of 0.32-0.66 m d- 1 and the velocity is most

similar to our result when we use a constant gas transfer velocity k600 = 0.24 m d-' for

ulo < 3.7 m s- and k60 0 = 1.23ui1 - 4.30 for ulo > 3.7 m s-1. However, in their study

they parameterized the gas transfer using instantaneous (e.g. one-minute averaged) winds

measured throughout the time-series, not once per hour, and emphasize the importance of

including the variability in short-term winds when quantifying gas exchange at low wind

speeds. If gas transfer velocity has a nonlinear dependence on wind speed then short-term

measurements will more accurately represent the gas transfer than wind speeds averaged

over longer periods (Livingstone and Imboden, 1993; Crusius and Wanninkhof, 2003). Since

we only have two-minute averages measured once per hour (for a total of 60 measurements

during Injection 2) the wind record we use may not fully represent the variability in winds

during the period when we sampled Injection 2.

A source of error in comparisons with published results is that the wind speed data come

from a different location than the study area. Although Eskasoni Reserve is adjacent to the

Bras d'Or Lake, the local topography and bathymetry is different near the reserve and in

Whycocomagh Bay. Thus, it is likely that the wind speed and momentum stress at the air-

water interface differs at Whycocomagh Bay compared to Eskasoni Reserve (Ortiz-Suslow

et al., 2015).

The measurements are in agreement with other studies showing gas transfer velocity is

significantly reduced under near-complete ice cover (Lovely et al., 2015; Butterworth and

Miller, 2016) and contrast with studies showing enhanced gas transfer under >85 % ice

cover (Fanning and Torres, 1991; Else et al., 2011). We find that keff = (f)k for >90 %

ice cover but we cannot evaluate whether the same equation holds at intermediate ice cover

because there was no injection at a lower fractional ice cover. In our study, the ice cover

was near-continuous across the entire bay during Injection 1 and likely did not contain the

polynyas and leads that are prevalent in the Arctic and Antarctic; differences in gas transfer

behaviour are expected based on the nature of the ice pack.

5.4.3 Gross oxygen production

Calculation

The triple oxygen isotopic composition of 02 is an effective tracer of gross photosynthetic 02
production (Juranek and Quay, 2013). Due to reactions in the upper atmosphere that impart

a small mass-independent isotopic signature on atmospheric oxygen, 02 derived from air-

water exchange (from the atmosphere) has a unique triple isotopic signature compared to 02
generated by photosynthesis (from H2 0) and 02 consumed by respiration. To characterize
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the oxygen isotopic composition, we define

6180 = X18 /X1 - 1, (5.6)

and express the 6180 in %o by multiplying by 1000. Here X 18 = r(180/ 160) is the measured

ratio and X'1 = r( 180/ 16 0) td is the ratio of the isotopes in the standard. We calculate 6170

analogously. In this study, we use 02 in air, collected in Woods Hole, MA, as the standard

for isotopic measurements of 02 and VSMOW (Vienna standard mean ocean water) as the

standard for isotopic measurements of H 20. For clarity, we distinguish between the isotopic

composition of the two substrates (02 and H20) as 6180-02 and 6180-H20.

We use the term 17 A to quantify the triple isotopic composition of dissolved 02

17A = 11(6170_ 02 + 1) - A ln(3180-0 2 + 1). (5.7)

We report 17 A with A = 0.5179, the ratio of the fractionation factors for respiratory 02

consumption in 170 relative to 180 (i.e. A = 17E/18f, where E is the isotopic fractionation

of 02 due to respiratory consumption) (Luz and Barkan, 2005). We select this value for

A so that 17A is not altered by respiratory 02 consumption and reflects the proportion of

02 that is derived from photosynthesis relative to air-water gas exchange (Hendricks et al.,

2005; Juranek and Quay, 2013; Nicholson et al., 2014).

Two key constraints in the calculation of GOP from measurements of the triple isotopic

composition of 02 are the isotopic composition of 02 derived from air-water exchange, and

the isotopic composition of photosynthetic 02. If the isotopic composition of one or both of

these endmembers is defined incorrectly, it will cause systematic biases in the GOP estimate

(Barkan and Luz, 2011; Kaiser, 2011; Luz and Barkan, 2011; Nicholson et al., 2011). The

composition of photosynthetic 02 is dependent on the triple oxygen isotopic composition

of H20, the substrate for photosynthetic 02, and the isotopic fractionation associated with

photosynthetic 02 production. In oceanic studies, investigators typically assume, implicitly

or explicitly, that H20 has an isotopic composition equivalent to VSMOW (Hamme et al.,

2012; Nicholson et al., 2012; Manning et al., 2016b), which is a standard based on the average

isotopic composition of deep ocean water (500 to 2000 m) from a variety of locations (Epstein

and Mayeda, 1953; Craig, 1961a). To determine the isotopic composition of photosynthetic

02, they apply a photosynthetic fractionation factor to VSMOW (Helman et al., 2005;

Eisenstadt et al., 2010; Luz and Barkan, 2011). Using A = 0.5179, 02 that is purely biological

in origin, derived from VSMOW, and generated by "average phytoplankton" (defined in

Luz and Barkan (2011) Table 1) has 17A ~ 294 per meg, and 02 derived from air-water

equilibrium has 17 A _ 8 per meg from near-freezing to 25 'C (Reuer et al. (2007); Stanley

et al. (2010), and R.H.R. Stanley, unpublished data). We report 17A in per meg (1 per meg

- 0.001 %o) due to the small range of values.
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Despite the typical assumption in these studies that the water isotopic composition is

equivalent to VSMOW, surface ocean waters can differ from VSMOW by up to 7 %o for 180-

H20 on a regional basis, though are most commonly within 2 %o of VSMOW (LeGrande and

Schmidt, 2006). Even more importantly for our study, in brackish and freshwater systems

the isotopic composition of H20 can be substantially different from VSMOW (by up to ~40

%o for 618 0-H20) because the isotopic composition of meteoric (precipitation-derived) water

has substantial regional and seasonal variability (Epstein and Mayeda, 1953; Craig, 1961b;

Vachon et al., 2007; Feng et al., 2009; Jasechko et al., 2013).

In the Bras d'Or Lake, in order to accurately quantify the rate of gross oxygen produc-

tion from 6170-02 and j180-02 measurements, we must know or estimate 6 170-H 2 0 and

6 18 0-H20 throughout the time-series. Because we did not measure the triple oxygen isotopic

composition of H20, we use published measurements of 618 0-H20 and published relation-

ships between 61 7 0-H2 0 and 6180-H20 to estimate the values of 6180-H20 and 617 0-H20
during the time-series. Measurements of S170-H20 are currently much more scarce than

6 18 0-H 20 and methods achieving similar precision to measurements of 02 dissolved in wa-

ter have only been available for about 10 years (Barkan and Luz, 2005).

In this study, the majority of our near-surface measurements had a salinity ranging

from 5-15 PSS. Thus, the waters represent a mixture of local seawater and local meteoric

(precipitation-derived) water. A common approach in evaluate mixing between different

water types is to plot salinity versus 6 18 0-H2 0. In estuaries, both tend to behave con-

servatively and mix as a function of the two endmembers: seawater and meteoric water

(Macdonald et al., 1995; Surge and Lohmann, 2002; Wankel et al., 2006). We estimate

salinity and 618 0-H20 for the two endmembers and then calculate 618 0-H20 for each water

sample collected during our time-series as a linear function of salinity.

For the seawater endmember, we use compilations of 6180-H20 and salinity (Schmidt,

1999; Bigg and Rohling, 2000) available from an online database (Schmidt et al., 1999). We

included all near-surface samples (<5 m depth) between 44-48 'N and 58-64 'W in the

database, for a total of 19 samples collected between 1973-1985. For these samples, the

average 61 8 0-H20 = -1.68(0.26) %o and salinity = 31.25(0.30) PSS.

For the meteoric endmember, we use an 8-year time-series of 6 18 0-H 20 measured in

Truro, Nova Scotia (200 km southwest of our study area, 40 m elevation) and archived in

the Global Network of Isotopes in Precipitation (GNIP) database (IAEA/WMO, 2016). The

amount-weighted value of 618 0-H 20 over the time-series was -9.3(3.1) %o versus VSMOW,
using precipitation measurements from Truro NS over the same time period from the Gov-

ernment of Canada historical weather database (http://climate.weather.gc.ca). Also, Timsic

and Patterson (2014) measured 6180-H20 = -8.8(0.1) %o on a water sample collected in July

2009 from the Skye River, within the Whycocomagh Bay watershed (Parker et al., 2007),
consistent with the average Truro, NS value.
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Using the two endmembers, S - 0 PSS, 618 0-H 20 - -9.3 %, (local meteoric water) and

S - 31.25 PSS, 618 0-H 20 = -1.68%o (local seawater), we calculate a relationship of 6180-

H20 = 0.2439S - 9.30 (Figure 5-5). This linear relationship is consistent with published

618 0-H20 measurements from within the estuary (Figure 5-5). Mucci and Page (1987)

collected water samples from the Bras d'Or Lake in November 1985 and found a salinity of

S = 26.42(1.12) PSS and 6180 = -2.99(0.32) %o for samples at 17 different stations (albeit

none within Whycocomagh Bay). Timsic and Patterson (2014) measured 618 0-H 20 = -

4.6(0.1) %o in a near-surface water sample from the southern shore of Whycocomagh Bay

in July 2009, however, salinity was not measured on this sample, so it is not included in

Figure 5-5 (S. Timsic, personal communication). The lower 618 0-H 20 value of this sample

is likely reflective of the lower salinity within Whycocomagh Bay and near the shorelines

(Yang et al., 2007), compared to samples collected by boat in other, more ocean-influenced

regions of the Bras d'Or Lake by Mucci and Page (1987). Using a two-point linear regression

for the local meteoric water and the Bras d'Or measurements from Mucci and Page (1987),

for S = 0-23 PSS, we obtain 6 18 0-H 20 values within 0.12 %o of the regression based on

local meteoric water and seawater. A regression using all three values gives results within

0.06 %o over the same salinity range. For simplicity, and because the results are very similar

regardless of whether the Bras d'Or data is used in the regression, we apply the 2-endmember

mixing equation for local seawater and meteoric water to estimate 6180-H20 throughout

the time-series. Notably, VSMOW (S = 34.5 PSS) plots 0.9 %o above the mixing line, which

demonstrates the importance of accurately defining both endmembers.

Then, for the two endmember values of 618 0-H 20, we calculate 6170-H20 using the

following equation:

170 -excess = ln(6170-H20 + 1) - Aw ln(6180-H20 + 1) (5.8)

with Aw = 0.528 and all isotopic compositions referenced to VSMOW. Note that equation

5.8 has a similar form to equation 5.7. The value of Aw = 0.528 is well established for

meteoric waters and seawater (Meijer and Li, 1998; Landais et al., 2008; Luz and Barkan,

2010). Spatial variability in the 17 0-excess of natural waters is less well understood due to

the currently limited observations at sufficient accuracy to resolve the small excess (Luz and

Barkan, 2010; Li et al., 2015). Relative humidity at the evaporation site is an important

driver of the 17 0-excess of meteoric waters (Angert et al., 2004; Barkan and Luz, 2007;

Landais et al., 2008). To calculate the freshwater and seawater endmembers for J17 0-H20

we use the average values of 17 0-excess from Luz and Barkan (2010) of 33 per meg for

meteoric water and -5 per meg for seawater. The endmembers are J17 0-H 20 = -4.888 %C

and -0.908 %o for meteoric water and seawater respectively, and the linear regression is 6170-

H20 = 0.1274S - 4.89. These 6 values for H20, referenced to VSMOW, are subsequently
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Figure 5-5: Measurements of j18O-H20 in local surface seawater, the Bras d'Or Lake, local
precipitation, and Skye River (within the Whycocomagh Bay watershed). The regression is
calculated using the local precipitation and seawater values. The local precipitation value is
plotted as 9.3(3.1) %o, with the uncertainty the standard deviation of the amount-weighted
annual average.
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referenced to atmospheric 02 using results from Barkan and Luz (2011). In this study, the

choice of 618 0-H2 0 is more important than the 170-excess because 17 0-excess varies by less

than 0.1 %o between samples whereas the freshwater 618 0-H 20 differs from VSMOW by

9.1 %o. We discuss the sensitivity of the GOP calculations to the assumed 17 0-excess and

j 18 0-H20 below, and the effect of other processes on the isotopic composition of H 20 in

section 5.4.6.

We calculate GOP using equation S8 from Prokopenko et al. (2011)

[X7-X A ] q,1
X17 Xe h[02] aGOP = ko 2 [O2]eq XXx _ X x18Xx1X h[_2]&_A . (5.9)

X17 X18 1 X1 X18

Here ko2 is the gas transfer velocity for 02 (m d-1), [02] is the 02 concentration (mol

m-3), h is the mixed layer depth (M), X 17 = r( 170/160) and the subscripts eq and p refer

to 02 at air-water equilibrium and produced by photosynthesis, respectively, and A = 0.5179

(equation 5.7). Oxygen terms without a subscript ([021, X 17 , and 17 A) are the measured

mixed layer values. The first term on the right side of equation 5.9 is the steady state GOP

term, and the second term is the non-steady state GOP term. If there is no change in 17A

with time (steady state with respect to 17A), then the second term on the right side of

equation 5.9 equals zero.

We calculate X,1 8 based on Benson and Krause (1980a, 1984), and X, using 17Aeq = 8

per meg (Reuer et al., 2007; Stanley et al., 2010), which is consistent with the daily measure-

ments of distilled water equilibrated at room temperature that were analyzed along with the

environmental samples (8.1 per meg with standard error of 1.6 per meg, n = 12), as well as

prior measurements of distilled water equilibrated at <5 'C (R.H.R. Stanley, unpublished

data). We calculate X18 and X1 7 using the salinity-dependent isotopic composition of H2 0

defined above, and isotopic fractionation factors for photosynthetic 02 with respect to H20

based on data in Luz and Barkan (2011) for average phytoplankton. The Matlab code used

to calculate GOP and the triple oxygen isotopic composition of water (from two-endmember

mixing of j 18 0-H 20 and salinity) is available online (Manning and Howard, 2016).

We calculate gross oxygen production using samples collected at Little Narrows from 25

March-27 April (Figure 5-6). Visual inspection of the 1 7 A data indicated that 17A changed

during the time-series and therefore the calculation includes a non-steady state GOP term.

The non-steady state term in equation 5.9 is h[O21917 A/&t. To calculate the rate of change

in 17A with time, we first averaged the data into 24-hour bins (beginning and ending at

19:30, local sunset) to avoid over-weighting times when samples were collected at higher

frequency. We calculated the average 17 A and sampling time for all samples collected each

day. Next, we separated the data into two periods: one period began on 25 March and ended

19 April 07:30, and the second period covered the remainder of the time-series (ending 27
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April). We then applied a linear regression of "7A versus time for the two time periods,

which yielded a slope of 0.67 per meg d- (r2 = 0.47) for the first period and -2.99 per

meg d- 1 (r 2 = 0.94) for the second period. The approximate timing for the change between

periods was determined by visual inspection and then adjusted to maximize the r2 and so

that the equations of the two lines gave very similar 17A values at 19 April 00:00 (within

1 per meg). We also tested splitting the period from 25 March-19 April into two separate

regressions (or one period where 17 A increased and one period where it was constant) but

found that this yielded much lower r2 values and a discontinuous 17A record (different 17A

values at the end of one period and the start of another).

The other two variables in the non-steady state GOP term are the mixed layer depth

(h) and [021. Because we do not have measurements of 1021 for every sample, we estimate

[02] as

[02] ~ [O2]eqq j2Qr. (5.10)
02/Areq

This estimate assumes that [Ar] = [Arieq. If [Ar] is, for example, 2 % supersaturated then

the estimated [02] and non-steady state GOP term will be 2 % too high (Cassar et al.,
2011).

Using equation 5.9, we calculate GOP for each sample, using an isotopic composition for

H20 based on the salinity of the sample, and a mixed layer depth, rate of change in 17A

with time, and gas transfer velocity based on the sampling time, and then calculate the daily

average GOP from all samples on a given day (beginning and ending at 19:30, local sunset).

A few days had no measurements and the remainder of days had between 1-4 samples. The

uncertainty in GOP on each day is calculated by propagating uncertainty in k0 2 (11 % for

Injection 1, 18 % for Injection 2), uncertainty in the mixed layer depth (from 10-38 %, 0.3

m), uncertainty in the rate of change in 17A with time (22 % and 9 % where 17A is increasing

and decreasing, respectively), and uncertainty in the photosynthetic endmember (discussed

below). Measurement uncertainty in the isotopic composition of 02 is excluded from the

error calculation because it is a random error, rather than a systematic error (meaning that

by taking many measurements of 17A over several days, the measurements with high and

low 17A will average out) and because the measurement error is smaller than most other

sources of error. All uncertainties are expressed as the standard deviation.

The isotopic composition of H 2 0 one of the largest sources of error: if we shift the
18 0-H 2 0 endmembers for meteoric water and local seawater to the minimum values of

-12.4 %o and -1.94 %o (one standard deviation below the mean value) and then re-calculate
18 0-H 2 0 and 17 0-H2 0 for each sample, GOP is on average 48 % higher. If we shift the
18 O-H 2 0endmembers for meteoric water and local seawater to the maximum values of -6.2

%c and 1.42 %c, respectively, GOP is on average 23 % lower. The calculated GOP increases

nonlinearly as the isotopic composition of photosynthetic 02 becomes more different from
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Figure 5-6: Gross oxygen production at Little Narrows and data used in the calculation.
17 A measurements from (a) all samples and (b) daily averaged values with the two linear
regressions shown. Gross oxygen production in (c) mixed layer-integrated and (d) volumetric
units. The green diamonds and blue squares show the values of the two terms in the GOP
calculation (steady state, SS and non-steady state, NSS), and the yellow circles show the
total GOP (the sum of the two terms). Error bars are only shown on the total GOP for
clarity. The SS and NSS terms are slightly offset in time to make it easier to see both terms
at the start of the time-series. (e) cumulative GOP in mixed layer-integrated and volumetric
units; error (pink shaded range of values) is only shown for the volumetric GOP for clarity.
(f) gas transfer velocity for a gas with a Schmidt number of 600 (blue line), and for 02
(yellow circles), which has a variable Schmidt number based on temperature and salinity).
The grey shaded area in all plots is the period where gas exchange and the non-steady state
GOP term are most uncertain.
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the isotopic composition of equilibrated 02. If we increase or decrease the 17 0-excess of

H20 by 20 per meg, GOP changes by an average of 10 %.

GOP calculated with the local isotopic composition of H20 is 46-97 % higher (mean

74 %) than GOP calculated assuming the water's isotopic composition is equivalent to

VSMOW. Using the local isotopic composition of water instead of VSMOW is particularly

important in this study because the system is not pure seawater. However, even in some

oceanic regions such as the Arctic, the isotopic composition of H20 can be substantially

different from VSMOW (LeGrande and Schmidt, 2006). The definition and importance

of the photosynthetic endmember for GOP calculations in different environments warrants

further review.

We calculate the mixed layer-integrated GOP (mmol 02 m- 2 d- 1 ) and the volumetric

GOP (mmol 02 m-3 d-1), which is the mixed layer-integrated GOP divided by the mixed

layer depth. For this time-series GOP is only calculated for the mixed layer because there

are no 02 measurements below the mixed layer. The average errors in the daily GOP are

+7 % and +52 % for the volumetric and mixed layer-integrated GOP, respectively. We

also calculate the cumulative GOP (the sum of the daily GOP estimates, from the start

of the time-series until a given day) which provides an estimate of the total amount of

photosynthetic 02 produced by autotrophs during our time-series (Figure 5-6e) (Fassbender

et al., 2016).

Results and discussion

GOP is most uncertain from 16 April through 19 April (grey shaded area in Figure 5-6).

During this period, the ice cover was retreating and we do not have an estimate of k0 2 at

intermediate ice cover, nor do we have estimates of ice cover on 17 April or 19 April, because

clouds obscured the satellite images on those days. Additionally, the exact timing of the

change in the sign of the non-steady state term is unclear. For example, in Figure 5-6b,
18 April is the final day where 91 7 A/Ot is positive and the calculated GOP is 58 mmol 02

m~ 2 d- 1 . If 18 April is included in the period where 17 A is decreasing, the calculated GOP

is 27 mmol 02 m~ 2 d-1 on 18 April. The concentration of photosynthetic 02 is highest

during this time (17A = 48-54 per meg on 16 April, 18 April, and 19 April), despite the

increasing gas transfer velocity. Therefore it is likely that GOP peaked at the end of the ice

melt period and then declined to values similar to the beginning of the time-series, but the

uncertainties in GOP from 16-19 April are large.

Overall, the rate of volumetric mixed layer GOP was relatively constant throughout the

time-series (excluding the period from 16 April-20 April, when values are most uncertain) at

5.5(2.) mmol 02 m-3 d- 1 . The mixed layer-integrated GOP showed larger changes with

time that are related to the influence of changes in the mixed layer depth on the non-steady

state term. From 25 March through 8 April, mixed layer-integrated GOP was 4.6(3.)
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mmol 02 m-2 d- 1 . Beginning after 8 April, the mixed layer depth began to increase and

the non-steady state calculation showed a substantial increase in mixed layer-integrated

GOP, to 7.2(+'.) mmol 02 m- 3 d 1 on 14 April, a 56 % increase. The non-steady state

GOP term is multiplied by the mixed layer depth, and therefore it increases linearly as the

mixed layer deepens, causing the total mixed layer-integrated GOP to decrease. However,

the non-steady state GOP term is constant in volumetric units because the mixed layer

depth cancels out of the equation. After the ice is gone, 17 A begins to decrease and so does

the mixed layer-integrated GOP. On the last four days of the time-series, the mixed layer-

integrated mixed layer GOP is 8.7(t3.) mmol 02 m- 2 d-1, 89 % higher than the average

value prior to 9 April, but the mixed layer is also more than twice as deep at the end of the

time-series compared to the beginning.

The influence of mixed layer depth on the GOP calculations is demonstrated with the

cumulative GOP (Figure 5-6e). The volumetric GOP is roughly constant with time and

therefore the cumulative volumetric GOP increases in an approximately linear fashion, ex-

cept during the period from 16-19 April, where GOP is most uncertain. The mixed layer-

integrated GOP is slightly lower than the volumetric GOP at the start of the time-series

(because the mixed layer is slightly less than 1 m deep) and then as the mixed layer deep-

ens, the cumulative mixed layer-integrated GOP increases rapidly. In the last few days of

the time-series the mixed layer shoals and the rate of increase in cumulative mixed layer-

integrated GOP is lower.

Overall, the result that volumetric GOP was similar at the beginning and end of the time-

series indicates that ice-free conditions are not a pre-requisite for phytoplankton growth in

this system. Currently, ecosystem dynamics within and below freshwater ice are not well

understood, and algal communities in ice formed at intermediate salinities (such as in the

Bras d'Or Lake) are even less well studied (Salonen et al., 2009; Bertilsson et al., 2013;

Hampton et al., 2015). Other investigators have shown that photosynthetic microbes can

inhabit the interior, upper surface, and lower surface of ice, and tend to be most concentrated

on the bottom surface (Welch et al., 1988; Cota et al., 1991; Frenette et al., 2008; Boetius

et al., 2013). Traditionally, investigators have argued that ice-associated communities are

most prevalent in ice formed from seawater; as salinity increases, the volume of unfrozen

brines within the ice that the microbes can inhabit increases, and the bottom surface of

the ice becomes more uneven, increasing bottom algal settlement efficiency (Legendre et al.,

1981; Gosselin et al., 1986). However, more recently, investigators have also found algae

growing within and on the bottom of freshwater ice in lakes and rivers, including locations

in Canada such as the Great Lakes and the St. Lawrence River (Bondarenko et al., 2006;

Frenette et al., 2008; Twiss et al., 2012; D'souza et al., 2013).

Phytoplankton can also grow in the water column beneath ice, especially thinner first-

year ice (Legendre et al., 1981; Mundy et al., 2009; Arrigo et al., 2012). Bare ice transmits
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more light to surface waters than snow-covered ice, and melt pond-covered ice transmits 4

times as much light as bare ice (Light et al., 2008; Arrigo et al., 2012; Light et al., 2015).

First-year ice in the Arctic (0.5-1.5 m thick) transmits ~47-75 % of incident light through

melt pond-covered ice and -13-25 % of incident light through snow-free ice (Arrigo et al.,

2012; Light et al., 2015). The ice in the Bras d'Or Lake near the site of Injection 1 was ~0.3

m thick on 29 March and therefore likely similar or greater fractions of light were transmitted

through the ice. Ice transmitting just 2 % of surface irradiance may support high rates of

photosynthetic activity, if the microbes are acclimated to lower light levels (Cota, 1985).

We observed melt ponds on the Bras d'Or Lake during tracer injections on 31 March and

frequently during visual surveys in April. The shallow mixed layer prior to ice melt (-0.8 rn

from the beginning of the time-series until 8 April) would have kept phytoplankton in the

mixed layer close to the surface and therefore receiving light.

Our 02 mass balance techniques will record GOP by free-floating phytoplankton in the

water column below the ice, as well as GOP by ice-associated phytoplankton if the 02 they

produce diffuses into the water rather than into the ice surface. Bottom-associated algae

likely release much of their 02 into the water column, especially for filamentous forms such

as the diatoms frequently observed in Lake Erie and the Arctic (D'souza et al., 2013; Boetius

et al., 2013).

5.4.4 Net oxygen production and export efficiency

Calculation

We quantify non-steady state NOP, incorporating the observed changes in 02 /Ar during

the time-series. We calculate NOP as

NOP = ko2 A(0 2 /Ar)[0 2 ]eq + hO9(02/Ar) [O2Ieq (5.11)
09t

where ko2 is the real-time gas transfer velocity (m d- 1 ), O2Ieq is the equilibrium 02 con-

centration (mol m- 3 ) and h is the mixed layer depth (in) (Hamme et al., 2012). The first

term on the right side of equation 5.11 is the steady state NOP term, and the second term

is the non-steady state NOP term, which is dependent on the rate of change in A(0 2 /Ar)

with time. To calculate the rate of change in A(0 2 /Ar) with time, we resampled the data

to a fixed 5 s interval (each scan of all masses took 5-6 s) and filled in gaps with a linear

interpolation. Then we applied a third order lowpass Butterworth filter with a cutoff fre-

quency of 0.3 d- 1 to generate a smooth 02 /Ar record (Roberts and Roberts, 1978) (Figure

5-7). We selected the cutoff frequency to remove the short-term variability from tides and

diel changes in photosynthesis and respiration, and to minimize the number of times the in-

flection of the curve changed while capturing the overall trends in 02 /Ar. Below we discuss

the sensitivity of the calculated NOP to the choice of cutoff frequency. Finally, we calcu-
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lated the derivative of A(0 2 /Ar) with respect to time using the filtered record. We applied

the same filtering method to the in situ salinity and thermocouple temperature data and

used the filtered data to calculate the [O2]eq and k02, to prevent short-term fluctuations in

salinity and temperature from producing apparent changes in NOP. We calculate the daily

NOP (from 19:30 to 19:29 local time) using the average aA(02/Ar)/at based on the filtered

record and the average A(O 2 /Ar) (using the raw, unflitered data).

To calculate the uncertainty in NOP, uncertainty in k 0 2 (11 % for Injection 1, 18 %

for Injection 2), mixed layer depth (0.3 m, 10-38 %), and the non-steady state term are

propagated. Uncertanty in the non-steady state term is based on the results using different

filtering methods. For the cumulative NOP over the whole time-series, the non-steady state

NOP changes by 3-13 % if we double or halve the cutoff frequency. A conservative 13 %

error associated with the cutoff frequency choice is included in the estimates of daily and

cumulative NOP. Uncertainty in A(0 2/Ar) (<0.1 %, based on the mean offset between the

EIMS and the discrete samples) has a negligible impact on NOP, relative to the other sources

of error. The average errors in the daily NOP are 0.8 mmol 02 m- 2 d- 1 (34 %) and 0.3

mmol 02 m- 3 d-1 (23 %) for the mixed layer-integrated and volumetric NOP, respectively.

All uncertainties are the standard deviation.

Finally, we calculate the ratio of NOP to GOP for each daily estimate (the export

efficiency). This ratio is similar to an f-ratio or an e-ratio (Dugdale and Goering, 1967;

Laws et al., 2000) and provides information on the fraction of GOP that is available for

export out of the mixed layer (Figure 5-7f). The uncertainties in the NOP/GOP ratio on

each day are quite large. In a steady state NOP and GOP calculation, the gas transfer

velocity k 0 2 cancels out of the equation for the NOP/GOP ratio and therefore it is not a

source of uncertainty; however, in the non-steady state term the k02 does not cancel out.

NOP results and comparison of of NOP and GOP

Based on the non-steady state NOP estimates, the ecosystem was on average net autotrophic

as the ice was melting, from the beginning of the time-series through 15 April (mean vol-

umetric NOP of 1.9(2.1) mmol 02 m-3 d- 1 , median 2.5 mmol 02 m- 3 d- 1 ). During the

(nearly) ice-free period from 20 April through the end of the time-series, the community

was on average net heterotrophic but with a smaller magnitude than during the start of the

time-series (mean volumetric NOP of -0.7(0.9) mmol 02 m- 3 d- 1 , median -0.7 mmol 02

m 3 d-1). When the bay was nearly full of ice cover (from the beginning of the time-series

until ~16 April), NOP was dominated by the non-steady state term and this term was

positive except for between 31 March-3 April when it was negative but small in magnitude.

As the ice cover decreased, the non-steady state term decreased and became negative on 18

April. From 18-22 April the steady state term is roughly equal in magnitude but opposite

in sign to the non-steady state NOP term. The NOP is more strongly negative from 23-25
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Figure 5-7: Net oxygen production at Little Narrows and data used in the calculation.
(a) A(02 /Ar) and (b) temperature measurements. The blue lines are the raw data and
the black line is the filtered data. NOP in (c) mixed layer-integrated and (d) volumetric
units. The yellow diamonds and pink triangles show the values of the two terms in the GOP
calculation (steady state, SS and non-steady state, NSS). (e) cumulative NOP in mixed
layer-integrated and volumetric units. (f) export efficiency ratio (NOP/GOP). The shaded
grey area is the period where ice cover was decreasing rapidly and NOP is most uncertain.
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April (volumetric NOP of -1.6(0.5) mmol 02 m- 3 d- 1 ) and then on the last two days of

the time-series A(0 2 /Ar) was close to 0 and so was the rate of change in A(0 2 /Ar) with

time (volumetric NOP of -0.7 mmol 02 m- 3 d- 1). If the time-series were extended, we

could determine whether the NOP value eventually stabilized near 0 following the dynamic

ice melt period, or if it continued to oscillate between periods of net autotrophy and net

heterotrophy.

Similarly to GOP, NOP is most uncertain between 16-19 April due to uncertainties in the

fractional ice cover and the parameterization of gas exchange. However, the rate of change

with time term is more certain for NOP during this period, compared to the same period

in the GOP calculation, because the high-frequency measurements allowed us to calculate

a smoothly varying non-steady state term, rather than an abrupt change in the non-steady

state term based on a linear fit. The NOP appears to be decreasing during the period where

the ice cover is changing most rapidly.

When summed over the entire time-series, the magnitude of the cumulative volumetric

NOP (37.6(6.3) mmol 02 m- 3) is greater than the cumulative mixed layer-integrated NOP

(28.8(4.4) mmol 02 m- 2 ). Volumetric NOP is negative in the second half of the time-series

and the mixed layer is deepest during this period, causing the cumulative mixed layer-

integrated NOP to decrease substantially. The cumulative NOP contrasts with cumulative

GOP; the mixed layer-integrated GOP exceeds the volumetric GOP because GOP is always

positive and the mixed layer was on average > 1 m deep.

The ratio of NOP/GOP has large uncertainties but qualitatively follows the trends of

NOP, since GOP was relatively constant throughout the time-series (except during and

immediately following the ice cover reduction). At the start of the time-series there are

two dates where NOP/GOP > 1 which by definition is not possible. The high NOP/GOP

values could be due to uncertainty in the isotopic composition of water, which enters into

the GOP calculation but not the NOP calculation, and/or the non-steady state terms for

GOP and NOP. Vertical mixing is another possible cause of the estimated NOP/GOP ratios

exceeding 1; we cannot correct the calculations for vertical mixing because we do not have

measurements below the mixed layer. The gradients in 17 A and A(O2 /Ar) are likely different

with depth, leading to different magnitudes of the entrainment correction for NOP and GOP

which could potentially lead to errors in the NOP/GOP ratio (section 5.4.6).

The different trends in GOP and NOP warrant some discussion. Volumetric GOP was

relatively constant throughout the time-series except briefly at the end of the ice melt period

where it was likely somewhat higher, whereas NOP decreased during and following the end

of the ice melt period, and was negative from 23-27 April.

One possible explanation for the GOP results is that light may have limited productivity

at the beginning of the time-series and nutrients may have limited productivity at the end

of the time-series. In this case, the peak in GOP during the end of the melt period could
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indicate a reduction in light limitation causing enhanced growth rates, followed by the

onset of nutrient limitation. Although nutrient concentrations have not been measured in

the Bras d'Or Lake during winter or early spring, Strain and Yeats (2002) estimated a

maximum wintertime N0 3 concentration of -5 M, based on fall nutrient measurements

and assuming no primary production for 3 months. This N03- concentration should be

considered a maximum since the assumption of dormant phytoplankton in winter may not be

correct (Hampton et al., 2015). Five RM of N0 3 could support gross primary production of

33 mmol C m-3, using a Redfield ratio of 106:16 C:N (Redfield et al., 1963), and 46 mmol 02

m-3 , using a ratio of 1.4:1 02 :C for nitrate-based uptake (Laws, 1991). This concentration

of N0 3 would be consumed in 8 days at the average volumetric GOP of 5.5 mmol 02 m-3

d-1, or just 3 days using the average GOP rate of 15(8) mmol 02 m-3 d- from 16-19

April.

Another possible explanation for the GOP trends is that nutrients limited productivity

throughout the time-series, causing GOP to be similar at the start and end of the time-

series. In this case, the likely increase in volumetric GOP during the most rapid reduction

in ice cover could be due to changes in the water column that affected nutrient supply (e.g.,

nutrients were released from the melting ice, or the ice melt drove convection which entrained

nutrients from deeper waters into the mixed layer).

The decrease in volumetric NOP must be due to an increase in respiration and recycling

of organic carbon by heterotrophs (and possibly also autotrophs) within the mixed layer,

since autotrophic production (GOP) stayed relatively constant. One possible explanation

of the NOP trends is that zooplankton growth rates increased as the ice was melting and

water warmed, leading to an increase in respiration at the same time that GOP was decreas-

ing due to nutrient limitation. Zooplankton growth rates may increase more rapidly than

phytoplankton growth rates in response to increasing temperatures (Rose and Caron, 2007).

The water temperature in the system rapidly increased between 12-24 April from -2 to 7

C, as the ice cover retreated and the surface waters absorbed more heat and therefore it is

likely that growth rates also increased over this period (Figure 5-7b).

A second possible explanation for the decreasing NOP is that ice melt (and perhaps

riverine inflow) increased the organic carbon concentrations within the water column and

therefore increased grazing rates by heterotrophs. Zooplankton are thought to graze pri-

marily on free-floating phytoplankton and algae that are released from the ice, rather than

algae attached to the ice surface, and organic carbon sedimentation events associated with

ice melt have been observed in other environments (Michel et al., 2002; Boetius et al., 2013).

Concentrations of organic carbon in ice vary widely. Boetius et al. (2013) measured average

ice algal deposition to sediments of 750 mmol C m- 2 during summer in the Arctic. If a

similar amount of ice algae were released from the ice in the Bras d'Or Lake, it would be

more than sufficient to support the observed increase in respiration (decrease in NOP) of up
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to -7 mmol 02 m- 2 d- 1 (5-6 mmol C M- 2 d- 1, using a C:02 ratio of 1.1-1.4 (Laws, 1991;

Bender et al., 1999)) at the end of the time-series. Additionally, river flow on Cape Breton

Island typically peaks in April or May, and river flows in April are -40-100 % higher than

flows in March and -50-150 % greater than the average monthly flow. However, dissolved

organic carbon concentrations of rivers in Cape Breton during early spring have not been

measured and the bioavailability of terrigenous organic carbon to aquatic microbes is not

well known (Wiegner et al., 2006; Caissie and Robichaud, 2009; Guillemette and del Giorgio,

2011).

However, for both of these potential explanations of the NOP results, the increased res-

piration rates should also increase the nutrient supply available to autotrophs which would

counteract nutrient limitation of GOP. Therefore, we might expect the observed increase in

respiration (decrease in NOP) to favor an increase in GOP because the organic matter is

being more efficiently recycled and therefore available to support more autotrophic produc-

tion within the mixed layer. It is possible that the increase in mixed layer depth between

16-23 April diluted the autotrophic biomass and caused volumetric GOP to decrease.

Additionally, the uncertainties in GOP are relatively large, averaging +5 % for the volu-

metric GOP throughout the time-series, and therefore it is possible that there were moderate

differences in GOP between the beginning and end of the time-series that are not apparent

from our methods. For example, a systematic error in the gas transfer velocity at the end

of the time-series (the Injection 2 result) would cause us to systematically overestimate or

underestimate GOP at the end of the time series, if our calculated ko2 were too high or too

low, respectively. We discuss the potential impacts of other physical processes on our GOP

and NOP estimates below (section 5.4.6).

5.4.5 Comparison to other productivity estimates

To our knowledge, our data are the only published estimates of NOP and GOP in the Bras

d'Or Lake. Geen (1965) measured primary production by 14 C uptake in the Bras d'Or Lake

during summer 1962-1964 and found an average uptake rate at 5 m depth, the depth of

maximum photosynthesis, of -4 mmol C m- 3 d- 1 (50 mg C m- 3 d- 1 ) (Geen and Hargrave,

1966). These rates are based on 6-h daytime incubations and ignore nighttime respiratory

loss of 14 C, and therefore are likely measuring net primary production (NPP, gross primary

production minus autotrophic respiration) or something between NPP and gross primary

production (GPP) (Bender et al., 1999; Marra, 2002, 2009; Quay et al., 2010). If we assume

a C:02 ratio of 1.1-1.4 (Laws, 1991) we calculate an equivalent 02 production of 4.4-5.6

mmol 02 m 3 d-1 from the 14 C incubations. Thus, the 14 C-PP is between the average NOP

and GOP values, as expected.

Hargrave and Geen (1970) found, based on incubation,s that zooplankton grazing was

sufficient to consume all of the daily primary production, indicating the estuary ecosystem
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metabolism may be close to balanced (NOP ~ 0). We obtained a more dynamic record

of NOP, with an average volumetric rate of 1.1(2.0) mmol 02 m-3 d- 1 over the entire

time-series.

Comparisons with in situ gas tracer-based estimates in other environments are challeng-

ing because mixed layer-integrated rates are most commonly calculated, and the mixed layer

in many other systems is much deeper than 0.8-3 m. In the Beaufort Gyre (Arctic Ocean)

(Stanley et al., 2015) estimate a steady state GOP of 16(5) and 38(3) mmol 02 m- 2 d 1 in

summer 2011 (higher ice cover) and 2012 (lower ice cover), respectively and NOP of 3 mmol

02 m- 2 d-1 in both summers. Mixed layer depths were -10 m. Mixed layer-integrated

GOP increases as the mixed layer depth increases, but trends in NOP are less clear. In this

study we found that cumulative volumetric and cumulative mixed layer-integrated NOP

were similar when calculated over the entire time-series, but the result might be different if

we integrated to 10 m.

5.4.6 Effect of physical processes on productivity estimates

There are a number of additional environmental processes that may affect the 02 isotope

and 0 2 /Ar mass balance in the mixed layer but cannot be directly quantified from the

time-series. However, in some cases we can determine whether these processes would tend

to increase or decrease our NOP and GOP estimates.

The isotopic composition of freshwater within the bay may have varied during our time-

series, which would impact the GOP estimates. Using model results from Gurbutt and

Petrie (1995) we calculate that the residence time of water in Whycocomagh Bay is -0.7 y

for surface waters (0-10 m) with respect to freshwater input and -2 y for deep waters (10 m

to bottom) with respect to exchange with the surface waters. Thus we expect the isotopic

composition of the water in the mixed layer of Whycocomagh Bay to reflect some average

over multiple months. For example, if a substantial portion of the meltwater entering the

estuary is derived from snow rather than from ice that freezes from water within the bay,

its isotopic composition will be more reflective of seasonal precipitation. If we calculate an

amount-weighted 618 0-H20 for meteoric water at Truro, NS, using only the months when

ice was present in Whycocomagh Bay in 2013 (January-April), 6 18 0-H20 = -11.0(3.6) %o

versus VSMOW, which is within the uncertainty of our annually-averaged value (-9.3(3.1)

%o). In general, a lower value of 6180-H20 will increase GOP.

The freezing and melting of ice in saline waters will generate a non-linear salinity- 18 0_

H20 relationship because the 618 0-H20 value of sea ice is similar to the water from which

it formed (within -2-3 %c) (Tan and Strain, 1980; Macdonald et al., 1995, 1999), but the

salinity is substantially lower due to brine rejection (O'Neil, 1968; Weeks and Ackley, 1986).

We are not able to accurately quantify the triple oxygen isotopic composition of H20 in

the ice and in water, nor can we quantify the timing and volume of ice freezing and melt
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within Whycocomagh Bay (although we know when the ice cover decreased most rapidly,

the ice volume was decreasing throughout our time-series). The volume contribution and

isotopic composition of other sources of water inputs (e.g., riverine input and melting snow)

is another source of uncertainty in the calculations.

In addition to affecting the isotopic composition of H 20, ice melt and riverine inflow

may affect the NOP and GOP calculations in other ways. If the ice melted at the upper

surface (in contact with the atmosphere) and then drained through brine channels in the

ice, it likely had an isotopic composition and gas ratio similar to air-equilibrated water (17 A

- 8 per meg and A(0 2/Ar) ~ 0 %). Thus, water in melt ponds that was added to the

water column would tend to decrease GOP, as 17 A always exceeded 8 per meg in the mixed

layer (Figure 5-6 a) and either increase or decrease NOP, since A(O2 /Ar) transitioned from

negative to positive as the ice was melting. If the ice melted at the bottom (in contact with

the water) its effect on NOP and GOP estimates is less clear. During sea ice formation,

approximately 40-55 % of the 02 and Ar originally dissolved in the water is retained in the

ice matrix (i.e. within the ice itself, in gas bubbles, or in brine pockets) and the remainder

is excluded, generating supersaturations of the gases in the water below the ice (Top et al.,

1988; Hood et al., 1998; Loose et al., 2009a). Photosynthesis and respiration both occur in

sea ice (Loose et al., 2011b; Zhou et al., 2014) and will change the 02 /Ar and 17A signatures

within the ice and it is difficult to predict what proportions of the 02 within brine pockets

in the ice remained within the brines, migrated into the water column, or migrated into

the atmosphere prior to the complete melting of the ice. We measured an ice thickness of

~0.3 m near the injection site on 29 March, and thus if the mixed layer depth after ice

melt was 2.5 m deep, the ice could contribute -11 % of the mixed layer volume, or ~5 %

of the mixed layer 02 (assuming [021 in ice is -45 % of the equilibrium [021 in water).

Thus bottom ice melt would likely be a minor influence on the oxygen mass balance. We

observed bare ice and melt ponds at the surface of the ice (Figures D-3-D-5) and the water

temperature throughout our time-series was above freezing which would stimulate bottom

melt. Therefore, both surface and bottom melt likely occurred during the time-series. The

volume, 02 concentration and isotopic composition of runoff and river water during our

time-series is also poorly constrained and thus these water sources are another uncertainty

in our NOP and GOP calculations.

It is likely that GOP occurred below the mixed layer but was not quantified by our

methods because we only had measurements within the mixed layer. In open water, the

Secchi depth at the ice edge on 26 March (just west of Little Narrows) was 1.9 m, yielding a

euphotic zone depth of -5 m (defined as the depth where 1 % of surface photosynthetically

active radiation penetrates) and the Secchi depth at Little Narrows on 7 April was -4.5 m

giving an approximate euphotic zone depth of 12 m (Idso and Gilbert, 1974). Mixed layer

depths during our time-series ranged from 0.8-3.0 m. Even when 02 measurements below
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the euphotic zone are available, it is challenging to quantify this subsurface productivity

because the biological 02 fluxes below the mixed layer are small and the physical fluxes are

large and highly uncertain, as they are driven by lateral and vertical mixing rather than

air-water gas exchange (Giesbrecht et al., 2012; Munro et al., 2013; Manning et al., 2016b).

We also cannot correct our results for the effect of entrainment of deeper waters into

the mixed layer (Hendricks et al., 2004; Munro et al., 2013; Wurgaft et al., 2013). We

were not able to sample below the mixed layer but we hypothesize that 17 A and 02 /Ar

both likely decreased below the mixed layer when the ice was melting and the mixed layer

was deepening. Therefore, entrainment of these waters into the mixed layer would tend

to decrease NOP and GOP estimates. Respiration increases with depth, causing 102] and

A(O2 /Ar) to decrease with depth in oceanic systems (Spitzer and Jenkins, 1989; Emerson

et al., 1991). In some oceanic regions, photosynthesis below the mixed layer generates excess
17 A (because there is no process decreasing 17 A below the mixed layer), which can then be

entrained into the euphotic zone, where 17 A is lower because some of the photosynthetic

02 is ventilated to the atmosphere (Hendricks et al., 2004; Sarma et al., 2005; Juranek and

Quay, 2013). In this study, the gas transfer velocity out of the mixed layer was extremely

low up until 16 April, and therefore photosynthetic 02 (i.e., 1 7A) would also accumulate in

the mixed layer, likely at a greater rate than below the mixed layer due to photosynthesis

rates being higher closer to the surface. Once the gas transfer velocity increased to the open

water value (20 April), it is not clear whether we would expect to observe an excess of 17 A

below the mixed layer, and therefore whether entrainment would increase or decrease GOP.

Another source of error in our interpretation of the 02 data is that we must assume that

spatial variability in 02 has a negligible effect on our calculations. We interpret all changes

in 02 assuming that we are measuring the same water mass; this is an oversimplification

because the bay is within an estuary that experiences tidal flows. One reason we chose to

install the instruments in one location rather than conducting spatial surveys is that during

a pilot experiment in 2011 we found that spatial variability in 02 within the Bras d'Or Lake

was relatively low. We hypothesized that obtaining a longer near-continuous time-series

of 02 /Ar (at all times of day) throughout the ice melt period would be more scientifically

informative than periodic ship surveys which could only be conducted during daytime and

only over a restricted area until the ice was fully melted.

5.5 Conclusions

Using the dual tracer (3He/SF6 ) technique in the Bras d'Or Lake, we found that at >90 %

ice cover, the gas transfer velocity was 6 % of the open water gas transfer velocity. This

result indicates that kice is negligible.

The volumetric GOP was similar at the beginning and end of the time-series, when the
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basin was full of ice and when it was ice free, but likely increased in the middle of the

time-series as the last of the ice melted. Volumetric NOP was more variable with time;

Whycocomagh Bay was on average net autotrophic (NOP > 0) while the ice was melting,

and net heterotrophic (NOP < 0) but with a smaller magnitude after the bay was ice-free.

These results indicate that an algal bloom (increasing NOP) can occur in an ice-covered

estuary, similar to observations in the Great Lakes, Arctic, and Antarctic. The decrease in

NOP may be due to the onset of nutrient limitation and/or an increase in heterotrophic

respiration of organic carbon released from the ice and possibly also from rivers.

Obtaining a time-series of 02 data and obtaining simultaneous gas transfer velocity

measurements were both critical for quantifying productivity. The non-steady state term

was a significant contributor to NOP and GOP throughout the time-series, and time-series

measurements are needed to quantify the non-steady state 02 flux. Additionally, because

the gas transfer velocity was -16 times higher at the end of the time-series than at the

beginning and the values of 17A and A(0 2 /Ar) changed with time, the relative importance

of the steady state term versus the non-steady state term changed substantially during our

time-series.
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Chapter 6

Conclusions and future directions
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6.1 Thesis summary

For this thesis, I developed a new noble gas analysis system and applied 02 and inert gas

tracers to study chemical, biological, and physical processes in coastal waters. In Chapter 2,

I described a new field-deployable system for measurement of four noble gases in water and

used the system to obtain high-frequency noble gas measurements in Waquoit Bay, MA. In

Chapters 3-4, I collected a six-day time series of dissolved 02 and five stable noble gases. I

evaluated the performance of four published gas exchange parameterizations in simulating

the noble gas data and showed that I could correct the gas mass balances for vertical mixing

by using vertical microstructure profiles obtained throughout the cruise. I compared gas

tracer-based measurements of net community production and gross primary production with

concurrent incubation-based (14 C, 1 5N03 , and l5NH 4+ uptake) and sediment trap-based

estimates of productivity. To my knowledge, this study is the first published data set

where all of these productivity techniques have been used simultaneously. In Chapter 5, I

quantified productivity and air-water gas exchange by dual tracer release during seasonal ice

melt in a Canadian estuary. I also demonstrated the importance of using the local isotopic

composition of H 20 in gross primary production (GPP) calculations and presented a new

method of calculating the triple oxygen isotopic composition of water in estuaries using two

salinity and 6180-H20 endmembers. This study is the first field-based experiment where

the dual tracer technique is used to quantify the gas transfer velocity in the presence of

ice. Together, the research in my thesis demonstrates that 02 and inert gases are effective

tracers of a variety of processes in coastal waters. Below, I outline a few of the many areas

for future research that would expand upon the results in my thesis, and I summarize the

broader implications of my work.

6.2 Future directions

6.2.1 Applications and modifications to the gas equilibration mass spec-
trometer

There are numerous applications for the portable noble gas analyzer (gas equilibration mass

spectrometer, GEMS) described in Chapter 2. The system is ideal for laboratory experi-

ments where high-frequency sampling is beneficial, for example in studies of gas exchange

and gas partitioning during ice formation and melt (Loose et al., 2009a; Lovely et al., 2015),

and studies of air-water gas exchange using wind-wave tanks or bubble plume generators

(Asher et al., 1996; Callaghan et al., 2014; Krall and Jdhne, 2014; Mesarchaki et al., 2015b;

Nagel et al., 2015). It could be used for continuous, high-frequency monitoring of sur-

face waters in order to improve understanding of physically-driven gas fluxes, and be used

alongside instruments measuring the fluxes of biologically-active gases (Cassar et al., 2009;
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Rafelski et al., 2015). In recent years, numerous sensors for measuring dissolved gases have

become available, including gas tension devices that measure the total gas pressure, and

can be used to derive N 2 concentration when paired with an 02 sensor (McNeil et al., 2005,

2006), and portable analyzers for individual dissolved gases including C0 2 , CH 4 , and N 20
(Gonzalez-Valencia et al., 2014; Grefe and Kaiser, 2014; Bastviken et al., 2015). Simultane-

ous measurements of noble gases and bioactive gases would assist in separately quantifying

the physical and biological fluxes for bioactive gases. It may be possible to determine con-

centrations of all four noble gases using the GEMS (in addition to their ratios) if the system

is used alongside a second mass spectrometer measuring 02 /Ar and a calibrated 02 sensor

(Kana et al., 1994; Cassar et al., 2009; Eveleth et al., 2014).

Modifications could enable the system to measure He, a gas that is less soluble than Ne

and therefore more sensitive to differences in the treatment of bubble-mediated exchange

in gas exchange parameterizations (Machler et al., 2012; Visser et al., 2013), and/or to

measure discrete samples rather than a continuous water flow (Kana et al., 1994; Visser

et al., 2013). Discrete samples would reduce the water volume requirements for analysis and

enable samples from a wider range of locations to be analyzed, such as locations where power

and shelter for the instrument is unavailable. Furthermore, analysis of discrete samples

would likely make it possible to determine individual gas concentrations rather than their

ratios (Machler et al., 2012; Visser et al., 2013). Building a vibration-isolating housing or

support system for the mass spectrometer would improve the instrument's performance on

ships and in other environments where vibrations are present (Aldrich et al., 1999; Volpe

et al., 2001; Dub6 et al., 2006; Pratt et al., 2009).

6.2.2 Parameterization of air-sea exchange and other physical processes

Accurate parameterization of gas exchange in the presence of ice remains a controversial

topic, with some studies showing high rates of gas transfer and others showing low rates

(Fanning and Torres, 1991; Papakyriakou and Miller, 2011; Lovely et al., 2015; Butterworth

and Miller, 2016). In Chapter 5, I showed that at >90 % ice cover, the gas transfer velocity

for 3He was -94 % lower than the open water transfer velocity. This result is consistent

with a linear scaling of the gas transfer velocity in the presence of ice as a function of the

fraction of open water (Takahashi et al., 2009; Butterworth and Miller, 2016). To determine

whether this relationship holds at lower fractional ice cover, more tracer release experiments

should be conducted.

In many studies (including the ones in this thesis), only one method of measuring gas

exchange is used at a time (Else et al., 2011; Rutgers van der Loeff et al., 2014; Lovely

et al., 2015). Given the wide range of estimates of gas transfer velocity in the presence

of ice, future gas exchange studies using multiple methods simultaneously in ice-covered

environments would be highly informative. For example, the dual tracer release method
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could be combined with measurements of radon, stable noble gases at natural abundances,

and/or eddy covariance gas fluxes (Rutgers van der Loeff et al., 2014; Butterworth and

Miller, 2016; Loose et al., 2016). If the different methods agree, this will improve confidence

in the study's results. If the different methods provide contrasting results, the data may

may help us to understand biases inherent in different methods and assist in interpreting

the results from published studies where only one method is used.

Furthermore, even in open water there is no consensus on the most accurate gas exchange

parameterization to use for gases such as 02 that have a large portion of their air-sea flux

driven by bubble-mediated exchange (Stanley et al., 2009b; Liang et al., 2013; Emerson

and Bushinsky, 2016). In Monterey Bay, I showed that daily measurements of five stable

noble gases can be used to evaluate gas exchange parameterizations in coastal waters and

that the parameterization of Liang et al. (2013) displayed the most skill in simulating the

observations. Using 02 sensors on autonomous Bio-Argo floats, moorings, and gliders,

it is possible to quantify net community production throughout the oceans at low cost

compared to ship-based time-series (Emerson et al., 2008; Nicholson et al., 2008; Emerson

and Bushinsky, 2014; Nicholson et al., 2015; Plant et al., 2016). However, autonomous

sensors for dissolved noble gases are not currently available and NCP estimates derived

from 02 alone are strongly dependent on the choice of gas exchange parameterization (Plant

et al., 2016; Emerson and Bushinsky, 2016). Measurements of natural abundance inert

gases are an effective tool for developing and distinguishing between different gas exchange

parameterizations, which can subsequently be used in studies where noble gas measurements

are not available (Spitzer and Jenkins, 1989; Hamme and Emerson, 2006; Stanley et al., 2006,

2009b).

Because traditional methods of measuring multiple noble gases are very labor- and cost-

intensive, many studies using field-based measurements of multiple noble gases to study

physical processes are based on a monthly time-series at one location, or on a single profile

(or average profile) at one or multiple locations (Hamme and Emerson, 2002; Hamme and

Severinghaus, 2007; Stanley et al., 2009b; Ito et al., 2011; Emerson and Bushinsky, 2016).

These studies typically focus on processes operating on weekly to decadal timescales. The

gas equilibration mass spectrometer is a valuable tool for studying a wide range of physical

processes that affect dissolved gases on short timescales, such as the response of gases to

diurnal temperature changes and variable wind speeds.

6.2.3 Lagrangian studies of gases and productivity

In Chapters 3-4, I presented a six-day time series from Monterey Bay of 02 concentration

and isotopic composition and noble gas concentrations, along with productivity estimates

by other methods. I successfully quantified productivity and air-sea exchange using the gas

data. However, a longer, fully Lagrangian cruise would likely produce even more valuable

142



results.

The duration of the cruise in Monterey Bay was short in relation to the physically

dynamic nature of the mixed layer. An upwelling event in the middle of the cruise required

us to reset our vertical model for the noble gases, which made it more difficult to see how

the various gas exchange models diverged from one another. Furthermore, the fact that we

were sampling multiple biogeochemically distinct water masses during the second half of the

cruise (because the time-series was not Lagrangian with respect to the mixed layer) made it

challenging to quantify productivity by 02 mass balance. In the future, a longer continuous

time-series (e.g., multiple weeks) that was Lagrangian with respect to the mixed layer and

where the same suite of measurements was collected (noble gases, 02, bottle incubations,

and particle export) would be highly informative in understanding the longer-term impacts

of physical dynamics on productivity.

An additional challenge in comparing productivity estimates by different methods is

that each method integrates over a different spatiotemporal scale (Juranek and Quay, 2005;

Hamme et al., 2012; Juranek and Quay, 2013). In Chapter 4, we observed an increase in
14 C and 15N0 3  uptake immediately following the arrival of recently upwelled water, but

no increase in productivity by 02 mass balance, nor an increase in particle export. We

hypothesized that the lack of a detectable response in 02 may have been due to the longer

integration time of the 02 mass balance technique and/or the fact that the 02 measurements,

which were performed at all times of the day throughout the cruise track, sampled a wider

range of conditions compared to the incubations, which were done with water sampled once

per day. A longer cruise that was Lagrangian with respect to the mixed layer would have

enabled us to determine whether the increase in C and N uptake was coupled to an increase

in NCP and particle export flux over longer timescales.

Monthly, multi-year time-series measurements of productivity by multiple methods at the

Hawaiian Ocean Time-series site (HOT) and Bermuda Atlantic Time-series Study (BATS)

have resulted in improved scientific understanding of the controls on gross, net, and export

production in the oligotrophic open ocean (Lohrenz et al., 1992; Karl et al., 1996; Emerson,

2014). Longer duration cruises where productivity is measured at higher frequency would

enable scientists to better understand the importance of episodic, high export events in

determining the annual or seasonal export flux and the timescales of decoupling between

net community production and export production (Burd et al., 2016; Siegel et al., 2016).

Such measurements would greatly improve scientists' understanding of the controls on on

export production in the ocean and ability to improve satellite- and ecosystem-based models

of productivity (Hamme et al., 2012; Emerson, 2014; Burd et al., 2016; Palevsky et al., 2016b;

Siegel et al., 2016).
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6.2.4 Characterization of the isotopic composition of photosynthetic 02

One promising area of future research is paired measurements of the triple oxygen isotopic

composition of H20 and 02. In Chapter 5, one source of error in our work was uncertainty

in the triple oxygen isotopic composition of H20, which is the substrate for photosynthetic

02. At the time we conceived and conducted this study, very few labs worldwide analyzed

H20 using methods with sufficient precision to resolve the 17 0-excess in H20. Published

methods involved the generation of hazardous chemicals (hydrofluoric acid) and required

the conversion of H20 to 02 prior to analysis, precluding the simultaneous measurement of

6170 and 621H (Luz and Barkan, 2005). The recent development of commercially-available

laser-based sensors that simultaneously measure the 170-excess and 621H of H20 directly,

without complicated sample processing (Berman et al., 2013; Steig et al., 2014), will greatly

increase the number of laboratories making this measurement and reduce analytical costs.

Laboratory experiments (e.g. with microbial cultures) could be performed to verify how

the isotopic composition of photosynthetic 02 changes as a function of the isotopic compo-

sition of H20 (Eisenstadt et al., 2010; Luz and Barkan, 2011). These experiments would

help to verify the approach used in Chapter 5 and also serve as an additional method of

evaluating the equations used for quantifying GPP from the triple oxygen isotopic compo-

sition of 02; if the 17A of photosynthetic 02 does not vary with the isotopic composition

of H20 in the expected manner, this result may indicate some inaccuracies in the equations

and/or constants used to calculate GPP. Furthermore, although the ratio of respiratory

fractionation factors for 180-02 and 170-02 appears to be nearly constant among a variety

of organisms (including autotrophs and heterotrophs) (Luz and Barkan, 2005), the photo-

synthetic isotopic fractionation varies between classes of phytoplankton and also with the

ambient 02 concentration (Helman et al., 2005; Eisenstadt et al., 2010; Barkan and Luz,

2011). More experimental work is needed to better characterize the isotopic composition of

photosynthetic 02 in a variety of systems.

I recommend that in the future, when the triple oxygen isotope tracer of photosynthesis

is used in locations where the isotopic composition is expected to differ significantly from

VSMOW, the 17 0-excess of water should ideally be measured. Furthermore, I concur with

other authors that all data needed to calculate productivity (e.g., 6170-02, j180-02, 17 A,

[021, temperature, salinity, and depth, as well as the wind speed record used and/or gas

transfer velocity) should be archived so that productivity can be recalculated in the future

based on new consensus and information about the most accurate equations and constants

to use in these calculations (Hamme et al., 2012; Juranek and Quay, 2013). To this end, I

have made the field data from Monterey Bay publicly available (Manning et al., 2016b,c)

and also provided the MATLAB code that I used to calculate air-sea gas fluxes and gross

primary production (Manning and Nicholson, 2016; Manning and Howard, 2016). The data

associated with Chapter 5 will be provided when it is submitted to a journal for peer review.
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Public databases of 17 0-excess and 61 7 0-H 20 and spatiotemporal isotope models (iso-

scapes), similar to the references used to estimate 6 18 0-H20 in Chapter 5, would also

be highly beneficial to the community of scientists working with triple oxygen isotopes

(Schmidt et al., 1999; LeGrande and Schmidt, 2006; Bowen, 2010; Bowen and Good, 2015;

IAEA/WMO, 2016).

6.3 Broader implications

Improved understanding of gas exchange mechanisms and biological productivity in coastal

zones is needed to reduce uncertainty in carbon cycling near air-sea and land-sea interfaces.

These interfaces are dynamic regions where carbon fluxes are large and poorly quantified.

Although the field measurements in this thesis focussed on small regions, some of the results

of this thesis have improved our broader understanding of the chemical, biological, and

physical processes affecting the carbon cycle.

In Chapter 3, I presented a six-day time-series of noble gases in an upwelling-influenced

coastal zone and showed that the gas exchange parameterization of Liang et al. (2013)

displayed the most skill in simulating the He and Ne observations. These results indicate

that gas exchange parameterizations not explicitly developed for the coastal ocean may be

applicable in such environments. Recent studies have indicated that the parameterization

of Liang et al. (2013) is also appropriate for simulating 02 in the northeast Pacific Ocean

(Emerson and Bushinsky, 2016; Plant et al., 2016). All of these studies demonstrate that a

parameterization with no bubble flux and too much bubble flux will both result in errors in

the calculated air-water flux for low solubility gases. These and other studies provide insight

into the most appropriate gas exchange parameterization to use in global biogeochemical

models, and when interpreting data sets where inert gas measurements are not available,

such as measurements of 02 from moorings and BioArgo floats (Hamme and Emerson, 2006;

Emerson and Stump, 2010; Plant et al., 2016).

In Chapter 4, I demonstrated, for the first time in a coastal nitrogen-limited system, that

0 2 /Ar and 15NO3 uptake-based methods of estimating net community production can give

equivalent results in a steady state system. Furthermore, the 15N0 3 tracer loadings rep-

resented 51(8) % of the ambient nutrient concentrations, which is substantially higher than

the typical recommendation to limit tracer loadings to <10 % of the ambient concentration

(Dugdale and Goering, 1967). This result indicates that 15N0 3 ~ uptake incubations are an

effective method of estimating productivity in low nitrogen environments. Comparisons of
15N0 3  uptake and 02 /Ar-based net community production in a wide range of environ-

ments would advance our understanding of the benefits and limitations of both methods,

and provide more accurate recommendations on the optimal tracer loading. Additionally,

I demonstrated that we obtain a fuller understanding of the carbon cycle by using multi-
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ple methods of estimating productivity simultaneously. For example, incubations provide

real-time estimates of productivity once per day, whereas the 02 mass balance technique

provides information on submesoscale variability in productivity but requires corrections for

physically-driven 02 fluxes, which can be challenging to estimate.

In Chapter 5, I showed that at >90 % ice cover, the effective gas transfer velocity can

be calculated by multiplying the open water gas transfer velocity by the fraction of open

water. This result is significant because the few existing field-based measurements of gas

transfer velocity in the presence of ice gave a wide range of values. Recent estimates of

the gas transfer velocity for CO 2 from eddy covariance measurements at 0 to >90 % ice

cover in the Southern Ocean also support a linear scaling of gas transfer velocity based

on ice cover (Butterworth and Miller, 2016). Some earlier eddy covariance studies using

open path sensors that showed high CO 2 fluxes in partially ice-covered waters may be have

overestimated the flux due to water vapor interference on the CO 2 signal (Blomquist et al.,
2014; Butterworth and Miller, 2016). Accurate parameterization of gas exchange in partially

ice-covered waters is needed because ice cover in polar regions is rapidly changing. In order

to understand whether the Arctic Ocean carbon sink is decreasing or increasing, we must

understand how changes in ice cover affect the gas transfer velocity. The results in this thesis

and those of Butterworth and Miller (2016) indicate that the rate of gas transfer through

ice is negligible relative to gas transfer through water and that gas transfer is not enhanced

in the presence of ice, which suggests that an ice-free Arctic Ocean will have substantially

higher gas transfer velocities than an ice-covered Arctic Ocean. However, more field-based

measurements of the gas transfer velocity at intermediate ice cover by a variety of methods

would help to validate these results.

Another important implication of this work is the importance of determining whether a

system is at steady state when quantifying productivity from gas tracers. In many studies,
time-series measurements are not available and it is necessary to assume the system is at

steady state in order to estimate GPP and NCP from gas tracer measurements. In Chapter

5, we measured the rate of change in the gas tracers with time and found that the non-steady

state terms were a significant contributor to the overall GPP and NCP. In Chapter 4, we

found that the system was in steady state at the start of the time-series, and at the end of

the time-series our measurements indicated that the system was not at steady state, but we

were unable to quantify the non-steady state term, in part because we sampled a variety of

different water masses with different biogeochemical properties, rather than only sampling

one water mass. Although we were not able to quantify the non-steady state term at the end

of the time-series, having the time-series helped us to interpret the data more accurately.

Specifically, the time-series measurements indicated that the steady-state GPP and NCP

were lower than the true GPP and NCP.

In summary, the results in this thesis provide insight into which gas exchange parame-
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terizations are most accurate to use in coastal and ice-covered waters, which can be applied

in future studies. They demonstrate that 15N incubation- and gas tracer-based estimates

of export production can give equivalent results in a steady state nitrogen-limited system,

which validates both approaches. Additionally, they show that time-series measurements

improve the accuracy of GPP and NCP estimates in dynamic coastal systems, which will

help inform the design of future field campaigns.
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Appendix A

Supplemental Information for Chapter 2:

Continuous measurements of dissolved Ne, Ar, Kr,

and Xe ratios with a field-deployable gas

equilibration mass spectrometer
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A.1 Introduction

In the this appendix, we present ancillary information that will be useful to researchers who

plan to build a gas equilibration mass spectrometer (GEMS) and/or modify the method

described in the main paper. We describe alternate configurations that were tested, and

the instrument settings used for the mass spectrometer. We provide photos of the GEMS

(Figures A-5-A-7), a schematic of the custom-made getter chambers (Figure A-8), and tables

of the parts used (Tables A-1 and A-2). We show the field data collected in Waquoit Bay

before and after calibration with discrete samples, along with the calibration curves used.

Additionally, we discuss the effect of vibrations on the data quality.

A.2 Alternative configurations tested

Water flow configuration: On a research vessel, we tested a setup where the underway

seawater stream flowed directly from the filter canisters into the membrane contactor (avoid-

ing the need for overflowing water, thereby simplifying the setup). However, we found that

the gas mole ratios measured were inaccurate in this configuration, based on comparison

of the GEMS data with discrete samples. We hypothesize that back pressure within the

underway line may have altered the equilibration kinetics within the membrane contactor.

By pumping the water into a bucket, which is open to the ambient air, and then sampling

from the bucket, we allow the water to depressurize before it enters the membrane contactor.

We minimize gas exchange within the bucket by using a high water flow rate, so that the

residence time of water in the bucket is <30 s, and we pump water from the bottom of the

bucket into the membrane contactor.

Cartridge selection: We tested smaller membrane contactor cartridges from Liqui-

Cel (MiniModules and MicroModules) but found that they did not achieve full equilibrium,

even with a much longer capillary. The LiquiCel ExtraFlow configuration includes a center

baffle that diverts the water flow radially (perpendicular to the lumens), which improves

gas transfer efficiency compared to a design in which the water flow is parallel to the lumen

orientation (e.g., LiquiCel MiniModule). Additionally, the ExtraFlow cartridge has a low

headspace to water volume ratio (150 cm 3 headspace, 400 cm 3 water) compared to the Mini-

Module, which improves the e-folding response time. We also tested a nonporous silicone

membrane contactor (PermSelect PDMSXA-8300) but found that it did not fully equilibrate

and its performance was substantially worse compared to a similarly-sized porous membrane

contactor.

Capillary dimensions and material: We tested a wider diameter and/or shorter cap-
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illary, which would increase the flow rate and therefore the the signal measured by the mass

spectrometer, but were unable to achieve full equilibrium at a higher gas flow rate, based on

tests with equilibrated water. We found the data was most consistent with time, and had

less of an offset between air and headspace, when we used deactivated fused silica capillary

as compared to untreated fused silica. The untreated silica adsorbs water vapor from the

gas stream, whereas the deactivated tubing (in this case, phenyl methyl deactivation) has

an interior coating surface that makes the capillary inert to water and other chemicals con-

taining -OH groups.

Vacuum pumping speed: Since we could not increase the flow rate into the mass

spectrometer, we opted to reduce the speed at which gas was pumped away after entering

the mass spectrometer by including an orifice in the design of the manifold, between the

mass spectrometer and the vacuum pumps. We created the orifice by replacing a standard

4.5" CF flange gasket with a blank off gasket drilled with a 1" diameter hole. This orifice re-

duces the pumping speed by a factor of 25. Vacuum is provided by an Agilent TPS-Compact

with IDP-3 dry scroll pump and Turbo-V 301 Navigator turbomolecular pump; we selected

this system due to its small size (46 cm L x 33 cm W x 12" H, 18 kg). We also tested the

Turbo-V 81 MacroTorr turbomolecular pump, which has a slower pumping speed compared

to the 301 Navigator model, but found this vacuum pumping system to be more prone to

failure and therefore did not use it in our final configuration.

Getters: Other investigators have used SAES Getters alloys St101 and St707 to purify

gas for the measurement of noble gases in water and ice samples (Visser et al., 2013; Stanley

et al., 2009a; Hamme and Severinghaus, 2007; Severinghaus et al., 2003; Beyerle et al., 2000).

We did not test alloy St101 because its activation temperature is 750 'C, which makes the

system less safe to operate outside of the lab. Instead, we tested alloys St707 and St2002,

which have activation temperatures of 450 and 400 'C respectively. We selected alloy St2002,

which contains Zr, V, Mg, Fe, and rare earth elements, due to its improved removal efficiency

for N 2 (Figure A-1). Nitrogen is the most difficult gas to remove, due to its strong triple

bond. The long, cylindrical design of the getter cans (Figure A-8) increases the exposure of

the gas stream to the getter surface, thereby improving the removal efficiency.

We use SAES Getters alloy St2002 pieces (cylindrical pellets, 6 mm diameter x 2 mm

long), with approximately 100 g of getter in the first, heated chamber, and 30 g of getter

in the second, room temperature chamber. The long, cylindrical design of the getter cham-

bers (1" diameter x 4" long and 3/4" diameter x 3" long) increases the contact between

the gas stream and the getters, thereby improving the removal efficiency. After placing the

getter pieces into the chambers, the initial activation of the getters is done on a vacuum

pumping system without the mass spectrometer installed, due to concerns that the mass
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Figure A-1: Mass spectra of air with a) no purification, b) St707 getter, and c) St2002

getter, normalized to 40 Ar. Note the changes in the N 2 /0 2 /Ar ratio.

spectrometer could be contaminated by the large quantities of gas released, and any loose

getter particles in the cans. Subsequent re-activations release much smaller quantities of gas

and can be performed with the getters attached to the mass spectrometer, as long as the

mass spectrometer is turned off. The getters are reactivated any time that the getters have

been exposed to air at atmospheric pressure, or when the peak height for N 2 (m/z = 28)

becomes greater than the peak height for Ar (m/z - 40), which occurs approximately once

per month when the system is in continuous use. Replacement of the getters is performed

roughly once per year, when reactivation fails to reduce the N 2 peak height to a satisfactory

level, because the getters are saturated with gas.

Mass spectrometer: We selected the Hiden Analytical HAL 3F RC 201 quadrupole

mass spectrometer due to its unique capability to vary the electron energy during an ex-

periment, without a loss of instrument stability. The manufacturer's software (MASsoft

Professional 7) allows a different electron energy to be used for each mass measured in

a multiple ion detection experiment. Preliminary method development was done using a

Pfeiffer PrismaPlus 200 QMS, which requires the same electron energy to be used for all

masses within an experiment. In this case, we measured all masses with an electron energy

of 35 V, which enabled accurate measurement of 22 Ne, but degraded the precision for ra-

tios with Xe to be worse than 2 %, in comparison to 0.7 % or better using the Hiden QMS.

The disadvantage of the Hiden QMS is that it is more sensitive to vibrations than the Pfeiffer.

Measurement of other gases: We have used the GEMS, with the getter chambers

removed, to obtain high-accuracy, high-precision measurements of the dissolved 0 2 /Ar ra-

tio. We have also attempted to measure N2 /Ar, but found there was a systematic offset

between the GEMS and discrete samples run on an isotope ratio mass spectrometer. We

do not believe this offset is caused by incomplete equilibration, since the GEMS is able to
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equilibrate Ne, which is 30 % less soluble than N2 . We hypothesize that matrix differences

between the headspace and air (e.g., pressure and/or humidity differences) may cause this

offset. These matrix differences would be reduced or eliminated for the noble gas GEMS

since the getters purify the air and headspace gas, removing nearly all of the non-noble gas

content before the gas stream enters the ion source. Further testing of the equilibration

components and the GEMS for measurement of other gases should be conducted.

A.3 Details on water pumps, dessicant, and membrane con-

tactor

A.3.1 Choice of water pumps

To pump the water from the bucket through the membrane contactor, we use a suction

shoe gear pump from Micropump. The pump is the same type used by Cassar et al. (2009),

however, we selected a head that would produce a higher flow rate (1.17 cm3 /revolution, or

up to 3500 cm 3 min- 1 ). Pumping the water through the gear pump (which is typically at

a different height than the bucket water level, though within ~1 m) could potentially alter

the dissolved gas content. Therefore, when we collected discrete samples to determine the

accuracy of the method, we collected these samples from a separate sampling port, using

water that did not pass through the gear pump. Since, as shown in the main paper, the two

methods agree well, we do not think that the gear pump affects the gas mole ratios.

For the field experiment, we used a Goulds submersible well pump (SB Bruiser 5-18

GPM), capable of flow rates from 20 000-70 000 cm3 min-1, along with a pressure regulating

valve. This submersible pump is ideal for dissolved gas measurements when the water needs

to be pumped long distances and when the height of the water changes, since it pushes,

rather than pulls, the water along its flow path. Pushing the water helps to ensure the gas

content is not altered and prevents cavitation.

A.3.2 Maintaining a dry environment in the headspace

The headspace gas is continuously recirculated and dried to reduce the condensation of

water vapor on the headspace side. We use two desiccants: a Nafion tube surrounded by

molecular sieves, followed by a Drierite tube. Using the two desiccants in sequence improves

the water removal efficiency and reduces the replacement frequency. Both desiccants have

color-changing indicators to alert when the desiccant is saturated and should be reactivated,

which is typically every 2-7 days. The frequency of replacement depends greatly on the

temperature of the water flowing through the cartridge (condensation forms more rapidly

for warmer water). Although the desiccants reduce the formation of condensation, there is
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still some accumulation of water on the headspace side. During operation, we orient the

membrane contactor at a 450 angle (Figure A-5), so that liquid water does not enter the

recirculation loop.

When the desiccants are replaced, the membrane contactor is dried to remove conden-

sation by flowing a dry gas, such as N 2 , through the contactor. Gas enters one of the

headspace ports, and the second headspace port is plugged. This setup forces the dry gas

to pass through the pores in the membrane and out the water ports, thereby flushing out

any liquid water that has clogged the pores. The membrane contactor is oriented so that

water can drain out the water ports. After drying the cartridge for -30 min, the contactor

is inverted and gas is flushed through the other headspace port. To reduce downtime, we

have a second membrane contactor and desiccant set available, so that the new set can be

installed as soon as the old set is removed. When the new cartridge is installed, we allow

water to flow through the membrane contactor for at least 1 h before sampling from the

headspace of the membrane contactor, to ensure all bubbles have been flushed out.

The Drierite and molecular sieves can be reactivated by heating in an oven at 210 and

250 'C, respectively, until the indicator has turned from pink to blue. Both dessicants should

be allowed to cool in closed, gastight containers.

A.3.3 Potential permeation of He and Ne

One concern with measurement of the lighter noble gases is the potential for permeation

of the gas through the membrane housing and the capillary. We confirmed that the mass

spectrometer housing and the getter chambers were leak tight, by spraying He along these

components while the system was isolated from air (capillary valve was closed) and observing

that the peak height at m/z = 4 did not increase. However, He gas was detected by the mass

spectrometer within minutes when sprayed near the capillary and the membrane contactor.

Other investigators have reported on permeation of He through fused silica capillaries (Cahill

and Tracy, 1998; Swets et al., 1961). We concluded that accurate measurement of He with

the GEMS would require changing the materials used for the capillary and/or the membrane

contactor (e.g., to stainless steel). Machler et al. (2012) used a Liqui-Cel membrane contactor

for equilibration of He, with accuracy of 3 %, but the capillary had a greater wall thickness

(0.73 mm versus 0.16 mm) and was made of PEEK rather than fused silica.

We sprayed pure Ne gas at various points along the sample pathway (the tubing, the

capillary, the sample cartridge, the getters, etc.) for 15 min. We continuously monitored

the signal for Ne on the mass spectrometer. No change was observed in the Ne peak height.

We conclude that the sampling system can be considered leak tight with respect to Ne, for

the residence time of Ne in the sampling system.
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A.4 Mass spectrometer settings

The typical ion source settings and the acquisition settings for an experiment measuring

the noble gases are summarized in Tables A-1 and A-2. Each noble gas is measured with

a different amplifier (range) based on its abundance, and we keep the range fixed for each

mass during the experiment by deselecting the auto range setting. We deselect the auto

zero setting to speed up the acquisition; the auto zero would perform a zeroing function

before measuring each gas during each measurement cycle to correct for leakage currents

and amplifier offsets, and this zeroing function lasts at least as long as the measurement.

Disabling the auto zero function does not affect the accuracy of the method, since we are

measuring the noble gas mole ratios rather than their absolute abundances. For Xe, we

measure both 12 9Xe and 132Xe for 10 s each and take the average of the two peak heights.

Xe is the least abundant of the gases we measure and the software limits the acquisition

to 16 s per mass; therefore, by measuring 129Xe and 132 Xe for 10 s each we improve the

precision of the method.

The mass spectrometer settings for an experiment to measure noble gas mole ratios are

shown in Table A-2. For m/z = 22 we use an electron energy of 35 V and emission current

of 500 pA. The rest of the ions are measured with an electron energy of 55 V and emission

current of 1000 pA. For m/z = 22, the lower electron energy is used to avoid formation of

doubly charged C0 2 , which has the same m/z as 22 Ne (Hamme and Emerson, 2004b), and

the lower emission current is necessary when operating at reduced electron energy to avoid

overloading the filament. The settle time describes how long the instrument waits before

starting the next measurement, and we use a longer settle time for 2 2Ne and Ar to allow

the instrument to stabilize after a change in electron energy. Each scan (measurement of

all six masses) takes approximately 1 min. Note that in some experiments in the main text

(notably the lab accuracy test) we measured 36 Ar at a range of 10-8 (typical intensity 2 x

10 -9 Torr) rather than measuring 38Ar at a range of 10-10. We found 38 Ar was preferable

as it could be measured on the same range as 84 Kr. Minimizing the number of amplifiers

used during the scan helps to minimize nonlinearities in the detector response.

Table A-1: Ion source settings

Variable Setting

focus -65 V
cage 3 V
electron energy 35 or 55 V
emission current 500 or 1000 pA
multiplier 1100 V
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Table A-2: Acquisition settings for MID (multiple ion detection) experiment

Gas Mass Dwell time Settle time Range Electron Emission Typical
(m/z) (ms) (ms) (Torr) energy (V) current (pA) intensity (Torr)

Ne 22 10000 4000 10-" 35 500 8 x 10-12

Ar 38 2000 4000 10-10 55 1000 4 x 10-10
Kr 84 5000 1000 10~10 55 1000 1 x 10-10
1 29Xe 129 10000 1000 10-" 55 1000 3 x 10-12

132Xe 132 10000 1000 10-" 55 1000 3 x 10-12

A.4.1 Elimination of doubly-charged CO 2

In order for doubly-charged CO 2 to be formed in the QMS, the energy of the electron beam

must be at least 37 V, which is the minimum energy required to eliminate two electrons

from CO2 . We measure 22 Ne at an electron energy of 35 V to prevent doubly-charged CO 2

from forming. To verify that doubly-charged CO2 is not formed at the reduced electron

energy, we sampled from a gas cylinder of 360 ppmv CO 2 in 99.9990 % purity He using the

same capillary used for sampling air. We found that when the ionization energy was 35 V,

the signal at m/z = 22 was not distinguishable from the baseline at m/z = 23.5, indicating

that doubly-charged CO 2 was not detected. When the ionization energy was 70 V, m/z =

22 had a substantial peak that was 11 times the background and 75 % the height of the

peak for singly-charged CO 2 at m/z = 44. Thus we conclude that 2 2Ne can be accurately

measured with the Hiden QMS at an ionization energy of 35 V.

We do not measure 20Ne (which is 10 times more abundant than 22 Ne) due to the

isobaric interference from singly-charged H2 0 at m/z = 20 (180-H2 0, 0.2 % abundance). If

we were able to completely remove H20, we could measure 20Ne by reducing the electron

energy below 43 V, the minimum required to form doubly-charged 40 Ar. In the current

configuration, at an electron energy of 40 V, H20 will contribute -10 % to the peak height

at m/z = 20 (based on the peak height at m/z = 18), and the peak height will vary with

time, making it impossible to achieve measurements of 20 Ne with better than 1 % accuracy

and precision.

A.5 Field data

A.5.1 Data from Waquoit Bay, MA

In the main manuscript (Figure 2-5), we show data from a field experiment where the

instrument was installed on land and water was pumped to shore. We achieved similar

accuracy in the lab and field for Ne/Kr, Ne/Ar, and Ar/Kr when air was used as the only

calibration standard (field accuracy of 0.7 %Y or better, compared to lab accuracy of 0.9 %

or better). However, we achieved worse accuracy for the ratios with Xe (Ne/Xe, Ar/Xe,
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and Kr/Xe) in the field when air was used as the only calibration standard (field accuracy

of 2.0-2.5 %, compared to lab accuracy of 0.8 % or better). However, after calibration with

discrete samples, the accuracy for the ratios with Xe improved to 0.6 % or better. We did

not calibrate the measured Ne/Kr, Ne/Ar, and Ar/Kr ratios with the discrete sample data

since the accuracy with air calibration only was very good. Here we show the calibration

curve that was used to calibrate the GEMS data (Figure A-2). We also show the data before

calibration (Figure A-3) and after calibration (Figure A-4). In these figures, the uncertainties

in the gas ratios are estimated at 2.0, 1.0, 0.4, 2.0, 1.0, and 2.0 % for Ne/Xe, Ne/Kr, Ne/Ar,

Ar/Xe, Ar/Kr, and Kr/Xe, respectively. This is because the published seawater solubilities

of Kr and Xe have large uncertainties compared to the solubilities of Ne and Ar, which were

redetermined more recently (Hamme and Emerson, 2004a; Hamme and Severinghaus, 2007;

Stanley et al., 2009b).
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Figure A-2: We constructed a calibration curve for Ne/Xe, Ar/Xe, and Kr/Xe by plotting
the measured ratio, normalized to equilibrium, that was measured using the discrete samples
versus the GEMS at the time of sample collection.

A.5.2 Data on a moving vessel and the impact of vibration-induced noise

We have installed the instrument on two research vessels, the R/V Tioga (-60 ft, single hull)

and the R/V Western Flyer (~117 ft, twin hull). On both vessels, we observed an increase

in noise when the ship's motor was on and the ship was moving, compared to when the ship

was docked. On the R/V Tioga, which can travel at speeds up to 18 kt, we observed spikes
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in the signal intensity, particularly for Ne and Xe, when the ship's speed rapidly increased.

From discussions with staff at Hiden Analytical, we suspect that the slightly piezoelectric

materials used to insulate the amplifiers in the mass spectrometer's electronics cause the

instrument response to be sensitive to the high-frequency vibrations of the ship's motor. We

do not believe the issue is associated with power fluctuations, since we connected the mass

spectrometer to an uninterruptible power conditioning and supply unit (Eaton 9130). We

also tested connecting the instrument to the ship's battery power, instead of the main power

system, and it did not improve the noise in the data.

We replaced the hard plastic feet on the TPS-Compact with rubber vibration-isolating

feet, and took care to keep power cables from leaning on the mass spectrometer. These

changes reduced vibration-induced noise and improved the data quality; however, the data

measured on both ships was still more noisy than data on a fixed platform (i.e., in the lab).

Other investigators have used more robust vibration isolation apparatuses (e.g. pneumatic

vibration isolation platforms) to successfully isolate mass spectrometers and optical instru-

ments from vibrations on ships and aircraft,(Pratt et al., 2009; Dub6 et al., 2006; Volpe

et al., 2001) and such an apparatus could potentially be used for the GEMS.

We determined the accuracy of the GEMS by comparison with 12 discrete samples

collected during a research cruise in Monterey Bay, CA on the R/V Western Flyer. The

relative percent accuracy of the Ne/Xe and Ar/Kr ratios was 1.9 and 1.5 %, respectively.

The remaining gas ratios had accuracies of 4.4-5.7 %. We suspect that the wide range in

accuracy is partially related to the different amplifiers used to measure the different masses.

Ne and Xe are the least abundant gases and are measured on the same amplifier (range 10-11

Torr), thus we expect them to be the most sensitive to, but affected similarly by vibration-

induced noise in the amplifier output. Ar was measured with an amplification range of

10-8 Torr (we measured 36 Ar in this experiment). Kr was measured with a range of 10-10

Torr. Therefore, Ar and Kr will be less sensitive to noise in the amplifiers, since the signal

is greater and amplification is less. For gas ratios where one gas has a high amplification

range setting (10-11 Torr), and the other has a low amplification (10-10 to 10-8 Torr), the

measured ratio is less reliable. Therefore, Ar/Kr is the most accurate ratio, and Ne/Xe is

the second most accurate ratio.

For applications on ships and other environments where the instrument may experience

vibrations, we strongly recommend further testing of vibration-isolating equipment.

A.6 Other potential applications

In addition to the field experiment described in the main text, there are many other attractive

applications for the GEMS. The GEMS could be used for lab-based tank experiments to

quantify air-sea gas exchange fluxes under varying wind speeds (Mesarchaki et al., 2015a)
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and varying levels of ice cover (Lovely et al., 2015). For this type of study, the GEMS has

clear advantages over discrete sampling: first, since the data is displayed in real time, the

user would be able to ensure steady state gas distributions were established for all four noble

gases at a specific set of forcing conditions, and then the forcing conditions could be changed.

Second, the GEMS would enable many more measurements to be collected at a wide range

of forcing conditions, without dramatically increasing the cost of the study, which would

result in a more complete data set. Third, the water could be recirculated back to the tank

after flowing through the membrane contactor, meaning that the sampling process would

not perturb the water (or ice) level in the tank or change the total volume of water in the

tank.

The GEMS could also be used for tank experiments aimed at characterizing the timescale

and extent of gas partitioning between water and ice during freezing and melt. The contin-

uous measurements and response time of 90-410 s would be effective for this type of study,
whereas discrete gas sampling would provide less information (Loose et al., 2009b).

Furthermore, the GEMS could be used for introduced tracer studies to measure ground-

water flow, glacial meltwater transport, and/or stream rearation (Benson et al., 2014; Visser

et al., 2013). A tracer such as Xe would be added to the water and the GEMS would be

installed downstream of the addition site. Since the GEMS operates continuously, unat-

tended, users would be assured that high-frequency data is collected when the tracer passes

through the sampling site, without the need for a worker sampling around the clock. The

live display would ensure that the experiment would continue until all of the tracer had

passed through the sampling site, and then be stopped.

The system could be used in tandem with sensors measuring bioactive gases, such as

CO2 and 02, and other chemicals. Since the four noble gases we measure span a wide range

in diffusivity, solubility, and dependence of solubility on temperature, they can be used to

parameterize the physical processes controlling the distributions of other, non-inert gases and

chemicals (Stanley and Jenkins, 2013). Thus, the GEMS could be used in marine and aquatic

systems to improve determinations of net ecosystem metabolism using 02 measurements,

net ecosystem calcification using CO2 and other carbonate parameters, and denitrification

using N2 measurements. For many biologically active gases and chemicals, sensors capable

of continuous measurements are already available, enabling the determination of daily cycles

in biological fluxes. Thus, the GEMS enables determination of physical fluxes on the same

time and spatial scales as the biological fluxes. As shown in the main manuscript, the GEMS

can achieve the precision and accuracy that is needed for measurements in natural waters,
where the noble gas concentrations are typically within 10 % of equilibrium (Hamme and

Severinghaus, 2007; Stanley et al., 2009b).
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A.7 Parts list and photographs

We provide tables of parts used, and photographs of the system, on the following pages.

Table A-3: Measurement components

Description Supplier Part number

quadrupole mass spectrometer with triple mass filter, Hiden Analytical HAL 3F RC201,
Faraday and SCEM detectors, 1-200 amu range 553010/200

quadrupole mass spectrometer ion source control module Hiden Analytical 304800

direct source inlet flange for QMS Hiden Analytical custom
with 1/4" female VCR nut

vacuum pumping station (TPS-Compact with Turbo-V 301 Agilent X3580A#011#024#120
Navigator turbomolecular and IDP-3 dry scroll pump)

vibration-isolating stud mount feet for TPS (order five) MSC Industrial Supply 36691178

full range pressure gauge kit for TPS-compact Agilent 9699201

manifold/housing for quadrupole Sharon Vacuum custom

solid blank gasket for 4.5" CF flange, copper Ideal Vacuum Products P104352

heating jacket, adjustable set-point, including controller MKS custom, from series 48with communications and display module

power adapter for heating jacket MKS 48PWRCORD04

extension cable for heating jacket MKS 100014811

St2002 getter, cylindrical pieces, 6 mm diameter, 2 mm long SAES Getters 5F0542

getter chamber custom See Figure A-8

manual valve, modified with capillary inlet custom See Figure A-8

manual 900 valve between getters and mass spec inlet Swagelok SS-4BAG-V13-CU

heating element and shroud for getter can,
1" diameter, 4" long Chromalox MTB1OE40 120V 750W

heating element and shroud for getter can,
3/4" diameter, 3" long Chromalox MTB7E30 120V 600W

variac transformer (order two) ISE, Inc. 3PN1O1OB

uninterruptible power supply (UPS) and power conditioner Eaton PW913OL-1000T-XL

capillary ferrules for Swagelok fitting Agilent 5062-3508
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Figure A-5: The equilibration components (wet side) are attached to a board for orga-

nization. The board can be assembled before it is transported to the field site, to speed

up the installation time. This photograph shows the front of the equilibration components

board. The water flow direction is shown with blue arrows, and the gas flow direction is

shown with yellow arrows. The water tubing is normally covered with foam insulation to

reduce temperature change. The vertical board is ~40 cm wide x 50 cm tall.
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Figure A-6: The remainder of the equilibration components (wet side) of the GEMS. These

components are on the opposite side of the board shown in Figure A-7.
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Figure A-7: The measurement components. See Figure A-8 for a schematic of the getters
and valves. The combined apparatus (mass spec, pumps, and getter chambers) is ~40 cm
wide (perpendicular to the quadrupole), 85 cm long (parallel to the quadrupole), and 64 cm
tall, from the capillary inlet to the top valve, including -51 cm tall above the counter and

13 cm below the counter. The total weight is ~30 kg.
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0.75" long, F01330075NCEW (flange)
0.75 to 1" OD adapter

4.5" long,
1" OD,
0.035" wall

circular wire screen, 3/4" diameter

6LV-4-HVCR-1-6TB7 (body) AV I

SS-4-VCR-1 (female nut) -
SS-4-VCR-2-60M (fritted gasket)

SS-4-VCR-3-4MTW (gland)

SS-4BK-TW (valve)
with SS-4BGO-K5-SV (gasket) and
SS-4B-CU-K5-VA (stem tip)

SS-100-R-4 (tube fitting reducer, -
modified by cutting 1/4" OD tube to 3/8" long)

Figure A-8: Schematic of the getter cans, including dimensions and parts numbers. The

parts are welded and leak-checked, the two getter cans are filled with getter, the flange

connections are tightened, and then the heater jackets are attached so that the heating coils

terminate at the bottom of each getter can.
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Table A-4: Equilibration components

Description

membrane contactor, Extra-Flow 2.5 x 8, X40 fiber

nylon hose barb to NPT adapters for
membrane contactor ports

nafion dessicant box

micro diaphragm pump for gas recirculation

patch cable to connect gas pump to power supply

water flow meter, 1-5 L/min range, 3/8" acetal fittings

gas flow meter, 40-200 mL/min range, 1/4" acetal fittings

power supply for flow meters (order two)

DC power supply with variable voltage

water pump head, A-mount suction shoe, 1.17 mL/rev

water pump drive, 150-4000 rpm

felt filter socks, 2-layer, 5 pm inner, 100 pm outer
pore size, 12 in long x 1.5 in wide

10" filter canisters

pleated and/or string-wound filters (100, 20, 5 pm)
deactivated fused silica capillary, 0.05 mm ID, 0.36 mm OD
capillary tubing cutter

Valco multi-position valve with flow selector

ferrules for Valco valve

capillary adapter for sampling headspace in recirculation loop

t-shaped fitting for gas recirculation loop
and thermistors (order three)

stainless steel 1/4" NPT to 1/8" hose barb adapter
for gas recirculation (order two)

stainless steel 1/4" NPT to 1/4" hose barb adapter
for thermistors (order four)

flexible PVC tubing, 1/4" ID x 3/8" OD (for water)

flexible PVC tubing, 1/8" ID x 1/4" OD (for gas)

foam rubber insulation for flexible PVC tubing

foam rubber insulation for membrane contactor

thermistors (order two)

thermocouples for air and heater jacket

thermocouples for getter chambers (order two)

multi-sensor temperature and voltage measurement device

thermocouple and voltage measurement device

Supplier Part number

Membrana Liqui-Cel G420

McMaster-Carr 5372K112 (1/4" barb)
5463K439 (1/8" barb)

PermaPure DM-110-24

Parker/Hargraves Fluidics E191-11-060

McMaster-Carr 6927K42

McMillan 101-8-D-A6

McMillan 100-4-D-A4-GO

McMillan 110-00-08T

GW Instek GPS-2303

Cole-Parmer/Micropump EW-07003-04

Cole-Parmer/Micropump EW-07003-90

Universal Filters

Pentair/Pentek

Neo-Pure

Agilent

Agilent

VICI Valco

VICI Valco

Swagelok

PG5/100-1.5FX12

158643

PH-27097-100

160-2655-10

5181-8836

C5-1306EMH2Y

FS1.36 or FS1.3PK-5

SS-100-1-4

Swagelok SS-4-T

Swagelok SS-2-HC-1-4

Swagelok

McMaster-Carr

McMaster-Carr

McMaster-Carr

McMaster-Carr

OMEGA Engineering

OMEGA Engineering

OMEGA Engineering

Measurement Computing

Measurement Computing

SS-4-HC-1-4

5233K56

5233K52

4463K131

4463K145

TH-44032-1/4NPT

5TC-TT-T-24-72

KTSS-14U-12

USB-TEMP-AI

USB-TC-AI
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Appendix B

Supplemental Information for Chapter 3:

Quantifying air-sea gas exchange using noble gases

in a coastal upwelling zone
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B.1 Software and data

The MATLAB code that was used in this paper for calculating air-sea fluxes with a variety of

gas exchange parameterizations is available on Zenodo (Manning and Nicholson, 2016) and

GitHub (http://www.github.com/dnicholson/gastoolbox). The noble gas data is available

as a supplement to the original publication (Manning et al., 2016c).

B.2 Description of figures

The gas data and model results in the main paper are presented using the gas solubilties

of Lott and Jenkins (personal communication, 2015) for He, Kr, and Xe, and Hamme and

Emerson (2004a) for Ne and Ar. Here, we present the gas data and model results using the

published solubilities of Weiss (1971) for He, Weiss and Kyser (1978) for Kr, Hamme and

Emerson (2004a) for Ne and Ar, and Wood and Caputi (1966) fit following the procedure of

Hamme and Emerson (2004a) for Xe. We have provided a MATLAB function for calculating

Xe solubility using Hamme's fit to Wood and Caputi (1966) in our toolbox of MATLAB

functions (Manning and Nicholson, 2016). At the typical sea surface conditions during our

study (S = 34.4 PSS, T = 16 'C), the solubilities of Lott and Jenkins are 2.2 % higher for

He, 1.3 % higher for Kr, and 0.1 % less for Xe, compared to the published solubilities.

168



0-

20 -

_ 40-

60

1.75 1.8
He [10-9 mol kg-']

0-

E20 --

40 - -

60

0 2 4 6
A He [%]

7.2 7.4 7.6
Ne [10-9 mol kg 11

- V -

0 2 4
A Ne [%]

1.25 1.3 1.35
Ar [10-5 mol kg-1]

2 4 6 8
A Ar [%]

2.8 3 3.2
Kr [10-9 mol kg-']

- -

2 4 6 8
A Kr [%]

..- offshore
. . -0- 09/28 13:10

-y--09/29 02:20
-- 09/30 18:30
--- 10/01 00:30
-4- 10/02 18:20

.- model Initial

4 4.5
Xe [1010 mol kg"]

2 4 6 8
A Xe [%]

Figure B-1: Measured profiles and idealized initial profile of noble gas concentrations (a-e)

and saturation anomalies (f-j) during the cruise. The offshore cast was collected on Sept 30,

21:30 and its location is shown in Figure 1 in the main text. The black line is the idealized

profile that was used to initialize the model on Sept 28, 00:00. The horizontal black lines

show the estimated measurement error. This figure is equivalent to Figure 3-2 in the main

text, but uses published solubility functions for He, Kr, and Xe (Weiss, 1971; Weiss and

Kyser, 1978; Wood and Caputi, 1966).
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Figure B-2: Near-surface gas concentrations (a-e) and saturation anomalies (f-j), from

samples and model results. The gap in the models around midnight Sept 30 corresponds

to the upwelling event. Error bars reflect one standard deviation error in concentration

measurement and do not include solubility uncertainty. Maroon circles are samples during

the upwelling event that were not included in the Monte Carlo error analysis. The grey circle

is an unexplained outlier that was included in the error analysis. This figure is equivalent

to Figure 3-4 in the main text, but uses published solubility functions for He, Kr, and Xe

(Weiss, 1971; Weiss and Kyser, 1978; Wood and Caputi, 1966).
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Figure B-3: Near-surface He concentrations (a-b) and He saturation anomalies (c-d), from
samples and model results, using the published He solubility of Weiss (1971). Comparison
of model results with upwelling adjustment (a, c) and without upwelling adjustment (b,
d). Note that all parameterizations underestimate the He concentrations and saturation
anomalies. This figure is equivalent to Figure 3-4 (a, f) and Figure 3-5 (a, d) in the main
text, but uses published solubility functions for He (Weiss, 1971; Weiss and Kyser, 1978;
Wood and Caputi, 1966).
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Figure B-4: Air-sea gas fluxes of He (a-d) and Xe (e-h) during the time series modeled
using all four parameterizations. Positive fluxes are into the ocean. The flux is separated into
three components: diffusive flux (Fd), complete bubble trapping (Fe), and partial bubble
trapping (F,). The Sw07 parameterization only includes Fd. This figure is equivalent to
Figure 3-6 in the main text, but uses published solubility functions for He and Xe (Weiss,
1971; Wood and Caputi, 1966).
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Appendix C

Supplemental Information for Chapter 4: Impact of

recently upwelled water on productivity investigated

using in situ and incubation-based methods in

Monterey Bay
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C.1 Introduction

The supporting information contains figures showing maps of underway A(0 2 /Ar), tem-

perature, and chlorophyll data (Figures C-1-C-2) and additional calculations with 02 /Ar:

estimates of a time rate of change term for Phase 2 (Figure C-3) and model simula-

tions of the evolution of mixed layer A(0 2/Ar) during Phase 2 in the recently upwelled

water (Figure C-4). We also show the relationship between temperature, salinity, and

0 2 /Ar (FigureC-5). Data will be available as a supplement to the published paper. Code

for calculating gross oxygen production from triple oxygen isotope data is available at

http://github.com/caramanning and will be provided as a supplement to the published

paper.
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C.2 Supplementary figures
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Figure C-1: Underway shipboard measurements showing all data. Plots are (a) fraction of
cruise completed, (b) temperature, (c) A(O2/Ar) and (d) chlorophyll. Gaps in A(0 2 /Ar)
data are due to air calibrations. The white squares show locations of CTD casts and red
diamond shows the location of mooring M1. The black circle shows the main study area
used in the paper (within 5 km of the mean CTD profile location).
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Figure C-2: Same as Figure C-1 but zoomed in on the main study area. Plots are (a)

fraction of cruise completed, (b) temperature, (c) A(O2 /Ar) and (d) chlorophyll. Gaps in

A(O2 /Ar) data are due to air calibrations. The white squares show locations of CTD casts

and the red diamond shows the location of mooring M1. The black circle shows the main

study area used in the paper (within 5 km of the mean CTD profile location).
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Figure C-3: Modeled change in A(02 /Ar)
arrival of low-02, recently upwelled water at

following a perturbation (i.e. following the

the study site). The model is run with two

different initial conditions: (a, b) 0 % (the value on 30 September 00:00), and (c, d) 6 % (the

value on 30 September 10:00). Panels (a) and (c) show the evolution of A(0 2 /Ar) toward

steady state and panels (b) and (d) show the increase expected by the end of the cruise.

The model uses a gas transfer velocity, k = 1.8 m d-1, a mixed layer depth = 14 m, and a

vertical mixing flux of 3.5 mmol 02 m-2 d- 1 , consistent with the calculations in the main

text. The constant NCP is 47 mmol 02 m-2 d- 1 (the rate in Phase 1), the 57 % increase is

equivalent to the increase in 14C-PP in Phase 2 relative to Phase 1, and the 75 % increase

is equivalent to the increase in 11N03 uptake ( 1 5N-new P) in Phase 2 relative to Phase 1.
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Figure C-4: Calculation of a linear regression of A(0 2 /Ar) versus time in Phase 2. In

(a) the slope is calculated between 30 September 10:10 and 2 October 10:10, and in (b) the

slope is calculated from 1 October 00:10 to 3 October 00:10. All slopes calculated over 48-h

periods during Phase 2 give low R2 values (0.02 to 0.10) and the slope varies from 0.5 to 1.4

% d- 1 depending on the start time. One contributor to the low R2 values is likely diurnal

changes in 02, but the lack of a consistent slope with time indicates that we would have low

confidence in any term for the rate of change with time in A(O2/Ar) applied to the Phase

2 data.
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Figure C-5: Relationship between underway temperature, salinity, and A(O 2/Ar). Each
data point is the average of 5 min of data. In all plots it is clear that the data cannot
be easily separated into unique water masses. In (a), the majority of the points lie along a
linear temperature-salinity mixing line connecting the waters of Phase 1 and Phase 2. In (c),
deviations from the linear relationship between A(O 2 /Ar) and temperature could result from
either biological or physical processes. Panel (d) demonstrates that A(O2/Ar) does not show
a strong relationship with salinity. Similarly, in (b), A(0 2 /Ar) is generally uncorrelated with
temperature or salinity, however, the coldest waters have low A(02 /Ar) and are reflective
of the recently-upwelled water passing through the site on 29-30 September.
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Appendix D

Supplemental Information for Chapter 5: Changes in

gross primary production, net community

production, and air-water gas exchange during

seasonal ice melt in the Bras d'Or Lake, a Canadian

estuary
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D.1 ADCP data
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Figure D-1: ADCP measurements showing water velocity at the

channel. The velocity data are 20-min averages, measured every 0.1
center of Little Narrows
m from 0.3-4.2 m depth.
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D.2 Photographs of study area

A-

Figure D-2: Photograph of Whycocomagh Bay taken on 28 March 2013.
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Figure D-3: Photograph of the tracer injection that occurred through ice on 30 March

2013. The ice behind the injection site shows some bare areas and/or melt ponds, which

facilitate the transmittance of light through the ice to the water below. Photo taken by

Brice Loose.
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Figure D-4: Photograph of the ice edge in Whycocomagh Bay (close to Little Narrows)

taken on 7 April 2013.
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Figure D-5: Photograph of Whycocomagh Bay taken on 12 April 2013. The photo shows
that the ice is thin, with melt ponds in some areas, and allows some light to pass through
to the water below.
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