
MIT /LCS/TM-69

IMPROVED BOUNDS

ON THE COSTS OF OPTIMAL

AND BALANCED BINARY SEARCH TREES

Paul J. Bayer

November 1975

Il1PROVED BOUNDS ON THE COSTS OF

OPTIMAL AND BALANCED BINARY SEARCH TREES

by

Paul J. Bayer

November 1975

This research was supported by the National
Science Foundation under research

grant GJ-43634X, contract number DCR 74- 12997

2

IMPROVED BOUNDS ON THE COSTS OF

OPTIMAL AND BALANCED BINARY SEARCH TREES

by

Paul Joseph Bayer

Submitted to the Department of Electrical Eng ineering and Computer Science
on May 9, 1975 in partial fulfillment of the requirements for the Degree of
Master of Science.

ABSTRACT

A binary search tree can be used to store data in a computer system
for retrieval by name. Different elements in the tree may be referenced
1-1ith different probabilities. If 1-1e define the cost of the tree as the
average number of elements 1-1hich must be examined in searching for an
element, then different trees have different costs. We show that t1,.10

particular types of trees, 1-1eight balanced trees and min-max trees, 1-1hich
are easily constructed from the probability distribution . on the elements,
are close to optimal. Specifically, 1-1e sho1-1 that for any probability
distribution with entropy H,

1-1here COpt' C118 , and C1111 are the optimal, 1-1eight balanced, and min-tnax
costs. We gain some added insight by deriving an expression for the
expected value of the entropy of a random probability distribution.

THESIS SUPERVISOR: Ronald L. Rivest
TITLE: Assistant Professor of Computer Science and Eng ineering

3

Ackno1-1ledgements

1-1ould I ike to gratefully ackno1-1ledge the assistance of some

friends. My supervisor Ron Rivest allo1-1ed me to find my 01-1n 1-1ay through

this research and offered valuable criticism, Bob Cassels assisted in the

preparatio~ of this manuscript. Fred Hennie has been invaluable in helping

direct the last four years of my education. And Terry, thank you for

helping make this a sanely executed endeavor.

This research 1-1as supported by the National Scien~e Foundation

under research grant GJ-43634X.

Table of Contents

Ackno1--1ledgements

Table of Contents

1. 0 Introduction

2.0 Preliminaries

2.1 Definitions

2,2 Tree Lemma

2.3 Entropy Lemma

4

3.0 Lo1--1er Bounds on the Cost of the Optimal Tree

4. 0 Upper Bounds for Ba I ance·d Trees

4.1 Generally Balanced Trees

4.2 Min-max Trees

4,3 Weight Balanced Trees

5.0 The Expected Value of the Entropy

6.0 Conclusions

References

3

4

5

10

10

13

15

16

22

28

31

33

35

38

40

5

1.0 Introduction

Binary search trees can be used for data storage in a computer

system when each piece of data is to be referenced by a name from some

ordered set of names. Informally, a binary search tree is a binary tree in

which each node is labelled with a name, such that in any subtree, the

names in the left subtree are all less than the root name, and the names in

the right subtree are greater than the root name.

For examp I e, we can have a tree of an i ma I names ordered

alphabetical I y:

The algorithm for finding a name>< in the tree is:

1) If the tree is empty, then the search fails.

2) Compare>< with the root name.

3) If they are equal, then>< has been found.

4) If >< comes ear Ii er a I phabet i ca 11 y, then recursive I y search the I ef t

6

subtree for x.

5) If>< comes later, then recursively search the right subtree for x.

So to find "bat" in the above tree, it is compared 1,.1ith "cat" and found to

come earlier. Then it is compared 1.1ith "ant" and found to come later.

Finally, it is compared 1.1ith "bat", and Is found. More information on .

binary search trees including applications can be found in Knuth (8),

Severance (13], and Nievergelt [10]. The last has a good bibliography of

· the area.

One quantity that is important in determining Mhether a binary

search tree should be used in a particular application is the average time

needed to find a name. We Mill be dealing 1.1ith trees abstractly, and so

1,.1i 11 be interested in a cost measure defined on the trees, 1,.1hich is

independent of implementation. This measure, 1.1hich accurately reflects the

average search time for most implementations, is the average number of

nodes 1.1hich must be examined to find an element. We call this quantity the

cost of the tree. The cost depends not only on the structure of the tree,

but also on the probability distribution on the names, Mhich indicates

their frequency of reference. The cost also depends on the possibility

that -a name searched for is not in the tree. Note, also, that the actual

names and the data stored 1,.1i th the names have no effect on our cost

measure, so 1.1e 1.1i I I assume that the names are 1, 2, 3,

From a set of n names it is possible to construct <2n> !/ (n! (n+l) !)

7

or about 4n different trees, The optimal tree is the one of I01-Jest cost

(actually there may be many such trees), We are also interested in the

weight balanced tree, in 1-Jhich the root of each subtree is chosen to most

equally balance the probabi Ii ties contained in each of its subtrees, and in

the min-max tree, in 1-Jh i ch each root is chosen to minimize the I arger of

the probab i Ii ti es in each of its subtrees. The best a Igor i thm kno1-Jn for

constructing optimal trees runs in time O(n2) (Knuth [7]). Hu and Tucker

[5] have an a Igor i thm for a restricted case, 1-Jh i ch bu i Ids an optima I tree

in time O(n log n). Fredman [21 has recently discovered an algorithm which

can be used to build weight balanced and min-max trees in time O(n). Since

we wi I I show that weight balanced and min-max trees are close to optimal,

it might often be better to use Fredman's algorithm to bui Id one of these

trees instead of using the optimal tree. Walker and Gotlieb [141 and Bruno

and Coffman [ll have empirically sho1-Jn that 1-Jeight balanced trees are close

to optimal.

We shol-J that these trees are good by deriving a I01-Jer bound on the

cost of the optimal tree and an upper bound on the cost of the 1-Jeight

ba I anced and min-max trees. As is typ i ca I in information theory, our

bounds are in terms of the entropy Hof the probab ility distr ibutfon.

Melhorn (9) derived a lo1.1er bound on the cost of the optimal tree of

H/log 3, and an upper bound on the cost of the 1-Jeight balanced tree of

3.42 H + 2. Rissanen [12] treated a special case correspond ing to al1-Jays

8

having an unsuccessful search, and proved an upper bound on the cost of the

ueight balanced tree of H + 3. Our upper bound proofs are improvements on

his. We improve on al I previous bounds ~ith

uhere C0pt' CMB' and C"" are the optimal, ~eight balanced, and min-max costs

respective I y.

Our results are also applicable to some coding problems in

information theory. If ~e consider encoding source messages using a prefix

code over the ternary alphabet {0,1,s}, ~ith the restriction that s can

appear only at the end of a code ~ord, then every binary search tree

corresponds to such a code. For example

9

corresponds to the code tree

Our lo~er bounds hold for all such codes. Our upper bounds hold for codes

constructed as our trees are constructed. See Gal lager [3] for more

information on coding applications.

The remainder of this thesis is organized as fol lo~s. Chapter 2

contains definitions and some useful preliminary lemmas. The lo~er bounds

are presented in Chapter 3. Chapter 4 gives the upper bounds. Added

Insight is given in Chapter 5 by sho~ing ho~ large the entropy can be

expected to be.

10

2.0 Preliminaries

In this section we formally define binary search trees, and define

the notations to be used. Then we prove a simple but useful lemma about

trees and a lemma about entropy.

2.1 Definitions

Define a bi nary search tree T with n nodes (D, . . . ,@ and n+l

leaves[!), ~ as a binary tree such that if Q) is the root of a

subtree t then al I nodes® and leaves [E] in the left subtree of t satisfy

k < i, and all nodes® and leaves [EJ in the right subtree of t satisfy

k ~ i. The level of Q), Ii, is the number of nodes from the root of T to

0, counting the root and Q). The I eve I of OJ, Ii', is the I eve I of the

parent of OJ. A probability distribution over the nodes and leaves is a

sequence of non-negative real numbers p1 , ... ,Pn,q8 , ... ,q
0

such that

I: p + L qk = 1. The entropy of a probabi Ii ty distribution
l!:.k!:.n k 8~k~n

by H(x
1

, 'x1n) L X
1 (Unless otherwise specified, ... - I og / x •

l!:.k~III k k

in this thesis are to the base 2. Define 0

probabi I ity distribution and a tree T, we define:

(1) CT• the cost of T

log 11
0 - 0.)

is defined

al I log's

Given a

11

• the expected number of comparisons made ~hen searching for

an element

·LP I +Lql'
l!k!n k k 8!1:!n I: k

(2) HT• the entropy of T (We ~ill often omit the subscript Ton

CT and HT.)

• L P1c I og 1 /p + L q1: I og 1 /q •
1!1:!n k 8!1:!n le

In our formal definitions the nodes correspond to the elements

stored in the tree. The leaves represent the positions in the tree ~here

unsuccessful searches terminate. That is, [I) is the termination po int of

a search for some name bet~een the kth name in the tree and the k+ltl name

in the tree. The levels correspond to the number of nodes ~h ich must be

exam ined before a search terminates, either successfully or unsuccessfu ll y.

The probability P1c is the probability that a search is for the k.!..b_ element

in the tree. The probability qk is the probability that a search is for a

name that fal Is bet~een the k!!J. and k+l,tl elements in the tree. With these

definitions, then, the cost as defined is indeed the average number of

comparisons made during a search.

12

For example:

13 • 1

12 - 17 - I •
2

.. I •
7

• 2

I l • 's . I ' e - I ' l - 3

'• . 16 • I ' 3
.. I •

4 - Is•. • 's ' - 4

If P P 1; q .. q7 • 1;16 then C • 19;14 + 26;16• and . l "' ' '' • 7 • 14• 8 • . ' ''

H,. (log 14)
12

+ (log 16l;
2

,

For the sum of the probabilities of the nodes and leaves in the

sequence ~, (D, ,@,[6] bet1-1een (D and (D including the endpoints, 1-10

1-1i I I use the notation P((D,(Dl • I: Pi: + I: qi:• and analogously for
· l!,k~j i:.k~j-1

PCQJ,[I]l, P(Q),Q]l, P!QJ,(Dl. Also, for each subtree t of T 1-1ith nodes

and leaves (G],0, ... , (D, [JJ define:

(1) rt is the root of t,

(2) Lt is the left subtree of t,

(3) Rt is the right subtree oft,

(4) st is the set of al I subtrees of t, including t, but not including

the subtrees composed of single leaves,

(5) Pt ""PCl8J,Q]l is the total probabi I ity in t,

(6) Lt<®l = P((GJ,Bl- is the value that PL 1-1ould have if® 1-1ere the
t

13

root of t.

(7) Rt<®> • P<[),(]) is analogous to (6).

(8) H .. ~ P1:/p log pt/p + ~ qt/p log pt/q is the normalized
t i~l:~j t I: 1-l~t~j t k

entropy of t,

the cost

of t when viewed as an isolated, normalized tree,

{10) Et .. H (Pr/p , PL/p , PR:/ p) is the entropy of the sp Ii t at t.
t t t

If Pt .. 0, then Ht• Ct =Et .. 0. Note that if t is OJ then rt. Lt, Rt, Et

are undefined, St= ti, P, = q
1

, and Ht= Ct= 0.

From the above definitions with some algebraic manipulat i on, we get
p

CL
p

CR (1) Ct • 1 + L/p + R/p
t t t t

p
HL

p
HR (2) Ht • Et + L/p + R/p

t t t t

un I ess Pt .. 0, in which case Ct• Ht= 0.

2.2 Tree Lemma

The following simple lemmas about trees are useful:

Lemma 2.1 If flt) is a function defined on al I subtrees of T by

f(t)
{

0 if

- g (t)

t is a leaf or Pt• 0

otherwise

for some function g, then

14

{

0 if t is a I eaf or Pt • 0
f{t) •

1tp L Pt,g(t') other1-1ise.
t t'(St

Proof (by induction on the structure of the tree)

Basis If t is a leaf then the lemma is clearly true.

Induction If Pt s 0 then it is clear ly true.

and PR • 0 then

I f Pt it 0 and i f PL ,. 0
t

t

f(t) •g(t) +PL/p_f(L,) +PR/p f<R,)
t t

• 11 p (Pt g < t) + L Pt, g < t' J + L Pt, g (t'))
t t'<S t'<S

Lt Rt
(by the induction hypothesis)

1 • /p
t

L Pt,g(t')
t ' (st

(since St .. { t} u SL u SR) •
t t

If PL . • 0 (PR • 0), then for all t'cSL
t t t

(t t CSR) '
t

lemma i s true,O

Pt, • 0, and the

Lemma 2.2 If f is defined as in Lemma 2.1 then f(T) • :Z::Ptg(t).
t(ST .

Proof This is Lemma 2.1 1-1ith PT• 1,0

Lemma 2.3 C .. LPt, H"' LPtEt.
• t<ST t<ST

Proof See equations (1) and (2) above and Lemma 2.2,D

15

2.3 Entropy Lemma

The fol lowing lemma about entropy is useful:

Lemma 2.4 (1) If x1+x2+x3 • 1, then H(x
1
,x

2
,x

3
) ~ H(x

1
+x

2
,x

3
).

(2) If x S 112, then H(x,1-x) ~ 2x.

Proof The proof is straightforward, See Gal lager [31,0

16

3.0 Lower Bounds on the Cost of the Optimal Tree

The problem of determining a good lower bound on the cost of a

binary search tree seems not to have been studied in great deta i I. Melhorn

H [9) derived the bound C ~ /log 3 , with a proof involving complex

manipu lations. In fact, we can get the same bound by noting, as 1-1e did

before, that every binary search tree corresponds to a ternary code tree

1-1ith the same cost and entropy. Then a theorem from information theory

yields the same bound (Gallager [3], p. 50), (Note also that this theorem

a lso y ields C ~ H 1-Jhen LP1: • 0,) What seems to have discouraged further

1-1ork i s that this bound is achievable. However, It is achievable only for

H < 3 log 3 as ~e shall see later,

We present next an easy lower bound which is better than the bound

above. The proof is easier than that for our best bound, and we can give

an argument for its plaus ibility.

The average amount of information which must be learned in f i nding

an element in the tree is H bits. Each of the C comparisons, except the

last, results in an ans1-Jer of< or>, This gives one bit of information

per comparison, or C - 1 bi ts tot a I. The I ast comparison indicates that

the sear ch has ended. In other words, it tells how many levels had to be

searched. In the optimal tree, the average number of levels is less than

17

or equal to log (n+l). This means that the last comparison yields

essent i ally log log (n+l) bits of information. Therefore, H is about

(C-ll + log log (n+l). In fact "'e prove that C~H-P (log log (n+ll-1},

~here P .. L ·P1:·

As a lemma, ~e prove a Kraft-like inequality for this type of tree.

Lemma 3.1 In any b inary search tree T

I: 2-'i:' s 1
8StSn

L 2-'1: s (log (n+l)) lz,
lStSn

Proof (by induction on n)

Basis If n = 0 then Tis~ and

""'" 2- '1:' 8 L '" 2- = 1
8~tS8

-1 i: 2 1: = 0.
1SkS8

Induction (n > 0) Tis made up of the root node©, the left

subtree, "'ith r-1 nodes and r leaves, and the right subtree, "'ith n-r

nodes and n-r+l leaves. The values of It and 1/ are one greater in

the "'ho I e tree than the corresponding va I ues in the sub trees. Thus,

inductively ~e have

L 2-'t s (log r) / 4
lSk!r-1

i: z-'/ s 112
rSkSn

L 2-•t !i (log {n- r+l)) /
4

•
r+lStSn

18

_, 1
Also, 2 ,. .. 1

2
• So

1, L 2-'1.: s (1 + (log r + log (n-r+ll}/2)/2 • (log (2 (r(n-r+l)} 2))/2
Hk!Sn

But (n+1} 2 - 4 (r(n-r+ll} • n2 - 4nr + 2n - 4r + 4r2 + 1

2 ((n-r} - (r-1}} 2 ~ 0.

So L 2-'1.: s (log {n+l})lz,D
l:Sk!Sn

Theorem 3.2 In any binary search tree

C ~ H - P (log log Cn+l}-1}

Proof With Lemma 3.1 ~e can prove the theorem in the same ~ay as the

var i ab I e Ieng th source coding theorem is proved in Ga I I ager [3]

(p. 50). That is:

_, .
} ' I (2 k /) I og {n+l)} + e~:sn qt og qk

. (since log z s (z-1) log e}

2 '2-lk '2-t/ .. (/log (n+l) L -1 + L. -1} loge

s ((1 - 1) + (1 - 1)) I og e

(from Lemma 3.1)

/ q - 1)) log e
k

19

We i.,i I I see in section 5.0 that H io almost al1,.1ays close to

I og (2n + 1). H Therefore, this bound is generally better than /log 3•

Another attack on the lo1,.1er bound comes from Lemma 2.3. Using

H(x1 , ••• ,x.) S log m, 1,.1e get E
1

S log 3 for al I t, so

H • L P1E1 S L P1 log 3 • C log 3,
t<ST t<ST

giving sti 11 another proof of the information theoretic bound. We can do

better as fol lo1,.1s:

Lemma 3,3 For any real number band any x
1
,x

2
,x

3
~ 0 such that

><1+><2+><3"' 1, H(x1,><z,><3) S log (2+2-b) + b><1·

Proof The function H!x1,x2,x3) is a concave function (Gal lager (3), p. 85)

and is l ess than or equa l to f(x
1

) .. _H(x
1
, 1-><1I

2
, 1-><11

2
) (Gallager (3),

p. 508). The graph of the function f(x1) can be bounded from above by

a line 1,.1ith slope b tangent to f. So-lving df/dx • -(log x
1

+ loge) +
1

(log <l-x1) +loge) - l • b gives x1 • l/(2b+1+1)• t< 1 lczb+l+l)) •

log C2+z-b) + blczb•l+l)• The equation of the line with slope b tangent

at that point y i elds the lemma,0

Theorem 3,4 For any b, C ~ (H - b P)/ (Z+z-b)• where P • L Pi:•
I og lStSn

Proof From Lemma 3.3 1,.1e get

P p p
E • H(r /p , L/p , R/p)

t t t I t

So H • L P lt s L P
1

1 og !2+2-b) +
l<ST l<ST

S log (2+2-b) + b pr/p •
t

LP1 b Pr/p. And from Lemma 2.3
t<ST t

20

H s C I og (2+2-b) + b L p •
r

t(ST t

But each node is the root of one subtree, so L Pr • L pk and the
tEST t l:5t:5n

theorem is proved,0

The bound of Theorem 3.4 i s tight for all b since there exist trees

which come arbitrarily close to the bound. Specifi cally, the complete tree

with 2t-l nodes, in which a l I occurrences of three nodes in the form

• Pi/ .. 2 + 2-b, and in which the q's are 0,
pin

C .. a-1 L i 2 1-1 x- i 1-1here
l:5i:5t

x • 2 + z-b, a • L 21- 1

1:51:Sk

- 1
)(-

and log a .. b + log {1-(1+2-b-l) -t), Also,

This yields

H = L 2'-1 x- 1 a-1 log {ax1)
l:Si:Sk

• a-1 log a L 21-1 x-1 + a-1 log >< L i 21-1 ><-1
l:5i :5t l:51 :5t

• log a+ C log x.

C .. {H - b - log (1 - <1+2-b-l) -t)l;
. I og {2+2-b)

has

which approaches the bound of Theorem 3.4 as l<.➔oo, But log a< b, and

C .. {{1<. - 1}2t + xt+l) (xt - 2t)- 1 {x-2) - l < zb+l + 1, so H < b +

(2b+1+1) I og (2+2-bl. For any va I ue of b for 1-1h i ch H exceeds this bound,

the corresponding lo1-1er bound for C in Theorem 3.4 cannot be achieved.

This leads us to try to find the val~e of b {as a function of H)

21

(H-bP) I 1-1hich maximizes the bound f(b) .. /log (2+z-b)' f 1-1e look at

f • (b) • ((H- bP) / (zb•l+l) - p I og (2+2-b)) / (I og (2+2-b)) 2

there seems to be no good closed form solution to f' (b) • 0. The va l ue

b • log H12p is close to the solution, so 1-1e get:

Theorem 3.5 If H ~ 1, then C ~ H - P (log Hip+ loge - 1).

Proof Subst i tuting log H12p for bin Theorem 3.4, 1-1e get

C ~ (H - p log Hip+ P)/Cl + log (H + P)/H)

• IP - H log (H+P)/H + P log Hip log (H+P)/H)/(l (HP)
+ log + /H) +

. H
H - P log /p

By using log z !> {z - 1} loge (Gal lager [3], p. 23), 1-1e have

log (H+P) /H s p/H loge. Also, P log Hip log (H+P) /H .!! 0. This gives

C .!! H - p log Hip+ IP - p log e)/(1 + log CH+P)/H)'

Since loge> 1, P - P loge< 0, and since log {H+P}/H ~ 0, 1-1e get

C ,!! H - P log Hip+ P - P log e,O

Note that if P • 0, 1-1e get the classical information theoretic

bound C .!! H. The bound is least 1-1hen P • 1 and

C ~ H - log H - loge+ 1.

This bound beats the bound H/log 3 for H .!! 11. We have found values for b

that result in a bound 1-1hich beats H1
109 3 for smaller H, but they exhibit

the same asymptotic behav ior (in H).

22

4.0 Upper Bounds for Balanced Trees

In this section 1,.Je sho1,.J that various balanced tree schemes are good

by establishing upper bounds on the costs of such trees. Balanced, here,

means balanced in probabi I ity. Knuth [7) first proposed 1-Jeight balanced

trees as an area for research. Me I horn [9) has pub I i shed an upper bound

for 1-Jeight balanced trees, but the bound presented here is better. The

discovery by Fredman [21 of an algorithm for constructing balanced trees in

I inear time has generated special interest in such trees. The best kno1-1n

algorithm for constructing optimal trees runs in time O(n2) (Knuth {7]).

Throughout this section 1,.Je 1,.Jill be talking about a subtree t made

up of 8],(I), ... ,(D,[I], and so 1,.Ji 11 omit subscripts 1,.Jhen the context is

clear.

We 1,.Jould I ike to formally capture the idea of balanced trees. A

logical starting point is to select as root the node® closest to the

center of the probability in P,. Unfortunately, even if® is exactly in

the center (that is R(®> S pt/2, U®> s pt/2), it might not be the node

1-Jhich gives the most even split bet1,.Jeen the left and right subtree

probabilities. For example, if n • 3, p
1

• 51
8

, p
2

• 1116, p
3

• 5116• and

a_l I the q's are zero, then (D fa II s in the center of the probab i I i ty, but

R!(Dl-LC(D> ..
6

_116 > LC@l - R(@) .. 5116 • (It is this anomaly 1-1hich

23

motivated the idea of min-max trees, in 1-1hich the same situation does not

occur .) We no1-1 define formally the notion of balanced, which avoids this

problem, and 1-1hich faci I itates the proofs which fol 101-1.

The middle leaf of t is the leaf closest to the middle in

probability. Formally,[§] is defined by

Let K • {k I i-lsksj and min(P<B,(E]>,PC[E),(JJ)) is maximum (or ,

equivalently, min(LCg),RC@» is maximum)}, Let a equal this

maximum. If there exists a k<K for which PC(E],[I]> • a, then m is the

smallest such k. 0ther1-1ise, m is the largest k<K for 1-1hich

PC~.~) .. a.

The node 0 is said to generally balance t, if r • m or r • m+l. A tree T

is genera I I y ba I anced if, for a 11 t<Sr, rt genera 11 y ba I ances t. Genera I I y

balanced trees are provably good in cost relative to the optimal cost, and

include weight balanced and min-max trees.

The following lemma describes the structural implications of this

definition. It will often be used implicitly in the proofs 1-1hich fol101-1,

espec i a I I y Cl) and (2) •

Lemma 4.1 If~ is the middle leaf then

(1) For al I k, i SkSm, R <®l > L<®>

(2) For al I k, m+lsksj, R!®l s L<®>

(3) For al I k, isksm, L<@> < pt/
2

24

(4) For al I k, m+lsksj, R<®> s pt/
2

(5) UGD> i:: (Pt - Pm+l) / 2

(6) _RC@) 2! (Pt - plll) '2

Proof Cl) If R<@l > LC@> then

RC®> 2! R <@> > L <(;DJ 2! L <®>.

So assume R <@> s L <@) and assume that R (@) s L <®) for

contradiction. Then

L <@> 2! L C0> 2! LC@> 2! R <@) 2! R <@>.

But then [I) would be the middle leaf.

(2) Analogous to (1).

(3} This fol lows from (1) and the fact that

(4} Analogous to (3).

(5} If UGD> 2! R <@l then, s i nee

U@) + R<@l 2! Pt,

U@) 2! ptlz 2! (Pt - P111+1) 1
2

•

So assume L <@ l < R <@), and for contradiction assume that

(Pt -p111+1} / 2 > U@l. We have

R(@) + L(@) + plll♦l • pt

so (using (4)),

L(~) 2! pt/2 2! RC@l > <P.-p .. 1) 1
2

> L(~).

But then lm+ll would be the middle leaf.

25

(6) Analogous to CS>.□

A node 0 is said to weight balance t if r minimizes

I L<0> - R<0> I· A node 0 is said to min-max balance t if 0 minimizes

rnax CL <0>, R <0>).

Theorem 4.2 Cl) At least one of the nodes which generally balances t

~eight balances t.

(2) At least one of the nodes which generally balances t min-max balances

t.

Proof (1) We ~i I I show that if r < m then

I U0) - R <0> I 2: I Ll@) - RC@) I
and similarly for r > m+l. Then one of@ or~ must weight balance

t. For r < m, from Lemma 4.1 (1) we get

I U0> - R C0> I • R <0> - U0>

and similarly for m. So

R<0> - L<0> - R<@> + LC@) •

PC~,@) + P<0,E!J> 2: 0

and so

I L<(E)) - R<(E)l I ~IL<@) - Rl@) I
The analogous argument holds for r > m+l.

(2) For rs m, max(LC0),R(0>> • RC©> by Lemma 4.1 (1). So ~e·

26

need to sho1-1 that for r < m, R((D) ~ R<@l, But this is clear ly true

since r < m. And analogously for r > m+l,O

We can therefore define the 1-1eight balanced root of t as@ if it

weight balances t, and othernise, @. Define the min-max root of t as

@ if i t min-max balances t, and other1-1ise (;D. Then the weight balanced

tree i s the tree in which the root of each subtree is the weight ba lanced

root. The min-max tree is the tree in 1-1hich the root of each subtree i s

the min-max root.

In general we are interested in specific sub-types of generally

balanced trees, defined by the rules for choosing between @ and 9 for

the root. Of greatest interest are those sub-types which have rules that

can be computed in constant time for each subtree, perhaps with the benefit

of some linear time pre-conditioning of the entire tree. In th·is case,

Fredman' s algorithm can be used for constructing the trees in linear time.

Both weight balanced trees and min-max trees are such trees.

We believe intuitively that, on the average, min-max trees are

better than 1-1eight balanced trees. The fol lo1-1ing is an argument for this

c laim. If, in any subtree t, the min-max and 1-1eight balanced roots d i ffer

(say@ is the min-max root), then R<@) $ ug) (by the min-max

definition and Lemma 4.1 (2)) , But it is also true that L<@) $ R(@)

or@ would be the we i ght balanced root. That is , each subtree of the

27

min-max tree has less total probability than the the subtree on the other

side of the l,Jeight balanced tree. Therefore, the probabi I ity that a search

of t 1:1i 11 stop at the root is greater in the min-max case than in the

~eight balanced case. If the cost of a subtree ~ere a monotone function of

the ~eight, then the min-max tree i.iould be uniformly better.

Unfortunately, there is not a strict hierarchy bet~een these ti.Jo

kinds of trees. Consider n • 3, p
1

• q
8

• 11;, p
2

• q
2

• 118, p
3

• q
1

• 0,

· q3 •
5 / 12• then the min-max tree is

and C • 45124. The ~eight balanced tree is

and C • 44124. The ~eight balanced tree has lo~er cost. But if p1 •

28

3

and C ..
21

112, 1,Jhile TR is the 1,Jeight balanced tree l,jith C - 221
12

• The

min-max tree is better. Finally, neither type is necessarily optimal,

since if p1 • p3 •
1

12 and all the others are zero. then TR is both the

min-max tree and the weight balanced tree "'ith C • 2. Hoi.Jever, T
8

is

optimal l,jith C = 31
2

•

4.1 Generally Balanced Trees

We can prove an upper bound on the cost of a generally balanced

tree.

Lemma 4.3 Let~ be the middle leaf oft l,jith root r.

If m .. r and m .- j then either

(A) P,/
2 > p + p > <Pt -L Ill -

(2q., + plll+l)) / ~

or (8) P,/
2 :! p > . (P ,-p l /

R - 111 2·

If m • r • j then either

(C) P,/2 > PL + p• :! <P,-q•) lz

29

or CD) pt I > P > <Pt -p) /
2 - R - 111 2•

And the symmetric formulas hold for m+l • r.

Proof {A), (8), (0) follol-leasily fromlemma4.1 (5), (6). {C) is easy

since ~hen m = r • j, PR .. q•, so

PL+ p• • P1 - PR• P1 - q• ~ {Pt-qml/2,0

Theorem 4.4 In a generally balanced tree Cs H + 3. And the bound is

tight,

Proof We 1-li I I bound E1 for each t. Assume {A) in Lemma 4.3 holds. Then

E, ~ Hc<PL+p'"l Ip .PRlp > ~ 2 <PL+P.> Ip ~ 1 - <2q.+p111+1> Ip
t t t t

by Lemma 2.4. Let bt • 2q• + p
111

in this case , Similarly I-le have

E1 ~ l - P1n/p
1

, letting b
1

s p
11

for CB) and (0)

E,~l-q1n/p, lettingbt•q
11

for CC),
t

and the symmetric formulas hold for m+l .. r. Then

H .. LP,E, ~ LPt - Lbt .. C - Lb ••
t(ST

Let us see ho1-1 qt can appear in Lb
1

, If® is higher in the tree

than §, then qt can appear in 2q1:+P1:+l (A) 1-1hen ® is the root, and

it can appear in qi: (Cl 1-lhen § is the root. If ® is I 01-1er than

(ED, the result i s symmetric. Thus the coefficient of qk in Lb, is

S 3. Examining Pi:• it can appear in (A) at most once 1-lhen 0 is the

root and at most once 1-1hen § is the root. And it can appear in one

of (8) or (0), but not both. So the coefficient of pt in L bt is s 3.

30

Therefore,

H ~ C - L bt ~ C - (3 L pk + 3 L qk) • C - 3.
lSkSn 8SkSn

The bound is tight, since ~e can define a family of generally

balanced trees as follo~s:

'-' i th P1 • P3 ,. q3 • 0, qe .. q2 .. 2(' ql • (' P2 • 1-5(•

T.:+1:

A
T ' T ' k k

1.Jhere the root probability is 0 and, T/ is Tk 1-'ith all probabilities

scaled do~n by 112• These trees are generally balanced since[!] is the

middle leaf of T
8

, and each Tk fork> 0 is perfectly balanced. Then

for Tk, C➔k+3, H➔k, as (➔0.Q

The upper bound of Theorem 4.4 is not especially interesting, since

1.Je can do better for ~eight balanced and min-max trees. The proof

technique is of interest, ho~ever, since it 1-'ill be used, 1-'ith· more

careful, detailed analysis of each subtree, to get upper bounds on these

31

t~o kinds of trees.

4.2 Min-max Trees

We can get an upper bound on the cost of min-max trees ~ith an easy

modification of the proof for generally balanced trees.

Lemma 4.5 Let~ be the middle leaf oft ~ith min-max root r.

If m = r and m,. j then either

(A) pt/2 >PL+ Pm~ (Pt-q•)/2

or (8) pt/
2

> P > {Pt-pa)/
- R - 2'

If m "' r a j then either

(Cl pt/2 > PL + p ~ <Pt-q) / • • 2

or (0) pt/
2 ~ PR ~ (Pt-pl/

.. 2·

And the symmetric formulas hold for m+l a r.

Proof (8), (Cl, (0) are the same as in Lemma 4.3. To get (A), assume

m • r, . p / p d m ,. J, t 2 > L + p
11

, an , for contradiction,

PL+ p• < (Pt-qml/2• Then max(PL,PR) m PR> (Pt+qml/2• But

max(L(§l.R(§)l = L(§l = PL+ p• + q
11

< (Pt+q.>12•

Ho~ever then§ ~ould be the min-max root of t.O

assume

32

Theorem 4.6 In a min-max tree CS H + 1 + L qt' And the bound is tight.
8:!:k:!:n

Proof As in Theorem 4.4 1-1e define

b 1 • q
111

for (A) and (C), b
1

• p• for (8) and (0) •

Looking at L b1, for each k, qk can appear at most once in (A) and at

most once in (C), 1-1hile pk can appear at most once in (8) or (0). This

gives

t~Tbt s 1f:s/k + 2 ef:snqk.

And H ~ C - (1 + L qk) •
8:!:k:!:n

If Lqk = 0, then the bound is tight, s ince the complete tree

1-1 i th 21e-l nodes, 1-1here p1 .. p3 pn .. 21-k and a 11 the other p's

and q's are 0, is a min- max tree and has C • k, H • k-1. To get the

bound 1-!hen L qi(= a, I-le replace about zk-la of the nodes having

non-zero probability with

1-1here qi ~ 21
-1e, and the others have zero probability. Then the entropy

stays the same, and the cost increases by Q.o

33

4.3 Weight Balanced Trees.

We can prove an upper bound for ~eight balanced trees ~hich is

similar to that for min~max trees. Using the same scheme as before:

Lemma 4.7 Let[!] be the middle leaf oft ~ith ~eight balanced root r.

It m c r and m ~ j then either

(A) pt/ > PL + P11 2:
(P - (qm + P111+1/z)) /~

2 t

or (8) pt/
2 2: PR 2:<Pt - p'")'2·

If m .. r "' j then either

(C) pt/
2 > p L + P111 2: (P t-qlll} '2

or (0) pt/
2

> p > (P t-p) /
- R - 111 2·

And the symmetric formulas hold for m+l • r.

Proof (8), (C), (0) are from Lemma 4.3. For (A), ~eight balanced means

Collecting terms:

or

P(ji-ll,@> + qll! - (Pt - P<(G},@l - q. - pm+l} -

(P, - P<[G),@ll + P<[G),@l - P
111

i! 0

4 (PL + p11) 2: 2P, - 2q111 - P1n+l + P11

PL+ P11 2: <P, - (qm + Pm+llz)}lz,□

34

Theorem 4.8 In a weight balanced tree, CS H + 2. And the bound is tight.

Proof As in Theorem 4.4 we have:

b1 • q• + P111+1l 2 for CA), b_
1

• p• for (8) and CO},

b 1 • q• for CC).

In L bt, for each k, qt can appear at most once each in CA) and (C),

while pt can appear at most twice in CA) and at most once in CB) or

CO}. This g ives

And H ~ C - 2.

The tree of Theorem 4.6 in which Q • 1 is weight balanced and

has C • k+l, H • k-1.□

This bound is equal to the min-max bound in the worst case, Q • 1.

In fac t , one easily proved consequence of the weight balanced definition is

that if Q • 1, then the weight balanced tree is the same as the min-max

tree . Since · we have not shown that the bound of Theorem 4.8 can be

achieved for al I values of a, we might conjecture that the bound can be

lowered to the min-max bound for all Q, This is not the case. Namely, the

tree TA from before, with p1 • 213 - c, p3 • 113 + c and al I the others

zero , has Cu 2, H ➔ log 3 - 213 as c➔0, In this case C - H is about 1.08.

35

5.0 The Expected Value of the Entropy

In this section we try to get some idea of what value we can expect

for the entropy. It wi 11 be easiest to talk about entropy measured i:ii th

natural logarithms. That is,

H (p, • • • , p) • L -p In p • H (p
1

, • • • , pn) In 2.
• n l~k~n k .k

~e are interested in knowing how large the entropy of a random

probab i lity distribution can be expected to be. To learn thi s, we derive

an expression for the expected value of the entropy, g i ven that a l I

distributions are equally likely. Specifically, we show that t he expected

value of the entropy is

H (P1, • • • , p) • H - l n n

where H • L 11k. Our first proof of this involved integrating the value
n l!t~n

of the entropy over a l l probability distributions, and then d ividing the

result by the volume of the region of integration. Rona ld L. Rivest

suggested thi simple proof that appears here.

One integration formula that we need is:

b
Lemma 5.1 / x 111 In x (b-x)" dx

8

(n! m! b"'+n+l)/ . (In b - ' 11)
• (hl+n+ll ! L (m+ i J •

l~i~n+l
Proof (Induct ion on n)

36

Basis If n • 0 then

'8\ra In x dx .. x"'•l ((In x)/(m+l) _ 1/(m+l)2) leb

(CRC Cl2J, integral 390, p. 334)

blll+l 1
• I (m+l) (In b - / (m+l)).

Induction (n > 0) Integrating by parts ~ith

u • {b-x)n, du• -n(b-x)n-l dx

V • ><111+1 ((In x) 1 11 2
)

(m+ll - {m+l) • dv • x• In x dx

~e get
b

/ x 111 In>< (b-x)n dx
8

• x"'•l({ln x}/(m+ll - l1(m+l)2) (b-x)n I b +
8

l \ll+l { {In x) / _ 1 / 2) n (b-x) n-1 d><
8 (m+l) (m+l)

b b
• n/ / x111•J In x {b-x)n-l dx - n/ 2 [x••l (b-x)n-l d>< {m+l)

8
{m+l)

8

«n-1} ! (m+l) ! b11+n+l)
• n/(m+ll 1 <m+n+l) !

(In b - L 1
t(m+i+l)) -

l~ifn

n ((n-1) 1 (m+l) ! b11+n+l) 1
cm+1> 2 1cm+n+ll !

(by induction and Gradshteyn [4],

integral 3.191.1, p.284)

• (n! m! b"'♦n+l)/(1)1 (In b - L 1,(')>•D
m+n+ · ls 1 ~n+l m+ 1

The main theorem is:

37

Theorem 5.2 H(p1, ... ,p) • H - 1.
n n

Proof For the uniform distribution over all n-tuples (p
1

, ... ,pn) such

that LPk "'1. the density function for pk is (n- UU-pk)"-2 • That is,

Prob(pk S x) = /<n- ll Cl-pk)n-2 dpk.
e

Using this density and summing over al I k, we get
- l .
H • n(n-1) ~ U- pk)n-2 (-pk In pk) dpk.

Then if we apply Lemma 5.1, we get

The consequences of this theorem are interesting. First, from

Knuth {[6), p.74), we know that

H • Inn+ Y + O(n-1)
n

where Y = 0.577 ••• is Euler's constant . From Gallager ((3) p. 23} we kno~

that

H
1

{p1, ••• ,pn) S Inn.

So the average entropy is always within 0.61 bits of the maximum possible

entropy. This means that in a situation where the probability distribution

ls not known, the entropy is probably high.

38

6.0 Conclusions

To summarize, 1,.1e have sho1,.1n that 1,.1eight balanced and min-max trees

are near optimal by proving:

As a result, 1,.1e have

CUB < COpt + log H + 2.45

Cnn < COpt + log H + 2.45.

These t1,.10 bounds can probably be improved, either by improving the lo1,.1er

bound on COpt' or by trying a different approach, such as bounding CUB and

Cn11 in terms of C0pt" We conjecture that C"" s COpt + constant is possible.

A number of other problems are open for research. One of these

problems is the analysis o~ the average case, in the sense of 1,.1hat can be

expected 1,.1i th a real application. One aspect of this analysis could be

more empirical testing. An associated problem is that of comparing 1,.1eight

balanced and min-max trees, since only in the average could there be a

strict relation bet1,.1een them. More generally, the question of the best

39

scheme for choosing be t"'een the t"'o genera I I y ba I anced roots is open for

research. A lo"'er bound on the complexity of building the optimal tree

uould also be of interest.

40

References

Ill Bruno, J., and E. G. Coffman. "Nearly optimal binary search trees."

Proc. IFIP Congress 71, North-Ho I land Pub I ishing Co., Amsterdam,

1972, pp. 99-103.

[2] Fredman, M. L. "T~o applications of a p~obabilistic search technique:

sorting x + y and building balanced search trees." Proc. 7th Annual

ACM Symp. on Theory of Computing, 1975, .PP• 240-244.

[3] Gal lager, R, G. Information Theory and Reliable Communication, Wiley,

Ne~ York, 1968.

(41 Gradshteyn, I. S., and I. M. Ryzhik. Table of Integrals, Series, anC:

Products, Academic Press, Ne~ York, 1965.

{5] Hu, T. C., and A. C, Tucker. "Optimum binary search trees," SIAM J.

Applied Math. 21, 4, 1971, pp. 514-532.

[6] .Knuth, D. E. The Art of Computer Programming, Volume 1: Fundamental

Algorithms, Addison-Wesley, Reading, Mass., 1968.

(7) Knuth, O. E. "Optimum binary search trees." Acta Informatica 1, 1971,

pp. 14-25.

{8] Knuth, □. E. The Art of Computer Programming, Volume 3: Sorting and

Searching, Addison-Wesley, Reading, Mass,, 1973.

(9) Melhorn, K. "A note on binary search trees." Technical Report,

41

University of Saarbrucken, 1974.

£10] Nievergelt, J, "Binary search trees and file organization . "

Computing Surveys 6, 3 (Sept.), 1974, pp. 195-207.

[llJ Rissanen, J. "Bounds for 1-1eight balanced trees." IBM Journal of

Research and Development, March 1973, pp. 101-105.

[12] Selby, S. M. Ced.), Standard Mathematical Tables, The Chemical Rubber

Co., 1965.

£13J Severance, 0. G. "Identifier search mechanisms: a survey and

generalized model." Computing Surveys 6, 3 (Sept.), 1974 ,

pp. 175- 194.

£14] Walker, W. A., and C. C. Gotlieb, "A top do1-1n algorithm for

constructing nearly optimal lexicographic trees." R. C. Read Ced,),

Graph Theory and Computing, Academic Press, Ne1-1 York, 1972,
pp. 303-323.

