
Economic Analysis of Product-Flexible
Manufacturing System Investment

Decisions

by
Charles H. Fine
Robert M. Freund

Working Paper #1757-86 March 1986

Sloan School of Management
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Comments are welcome.



Economic Analysis of Product-Flexible
Manufacturing System Investment

Decisions

by

Charles H. Fine
Robert M. Freund

ABSTRACT

This paper presents a model of the tradeoffs involved in
investing in flexible manufacturing capacity. Our model assumes
that the firm must make its investment decision in manufacturing
capacity before the resolution of uncertainty in product demand.
Flexible capacity provides to the firm the ability to be responsive
to a wide variety of future demand outcomes. This benefit is
weighed against the increased cost of flexible manufacturing
capacity vis a vis dedicated or nonflexible capacity.

We provide a general formulation of the two-product version of
this problem where the firm must choose a portfolio of flexible and
nonflexible capacity before receiving final demand information.
Under the assumption that demand curves are linear, our model is a
two-stage convex quadratic program. Our results characterize the
optimal profit function and the optimal investment policies.
Furthermore, we present general sensitivity analysis results that
show how changes in the acquisition costs of flexible and
nonflexible capacity affect the optimal investment decisions.
Finally, we present a numerical example where we compute the optimal
investment decisions and the value of flexibility in the context of
an automibile engine plant investment decision.
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Introduction

Advances in microprocessor-based manufacturing technologies

have hastened the development of automated manufacturing systems

that are being noted for their flexibility. Compared with the

less automated systems they are designed to replace, flexible

manufacturing sytems often cost more to acquire and install, but

yield lower variable costs, higher product conformance (quality),

and greater flexibility. Management analysts have a great deal

of knowledge and experience in how to evaluate investments that

reduce operating costs, a moderate amount of knowledge and

experience in evaluating cost and quality tradeoffs, and much

less knowledge and experience in evaluating investments that

enhance flexibility.

The model in this paper contributes to the knowledge base on

analyzing investments in manufacturing flexibility. The subject

of the economics of flexibility has been of interest to

economists for a long time (see, e.g., Stigler [1939], and the

many references in Jones and Ostroy [19841), but has become of

significant interest in the OR/MS community only recently,

following the increasing viability of flexible, computer-

controlled manufacturing systems. This new interest has spurred

a large amount of work in a very short time. (See, e.g., Stecke

and Suri [1984], Adler 1985], Kulatilaka 1985]).
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The fundamental structure of the flexibility investment

decision problem is quite simple. The central issues are the

timing of investment and production decisions and the resolution

of uncertainty. Our model assumes that firms must invest in

plant and equipment before they receive their final information

on product demand. Thus, firms will prefer plant and equipment

with manufacturing flexibility so that they can set production

optimally once the final demand information becomes available.

This desired flexibility can be obtained at the investment stage,

but only at a cost. Herein lies the tension in the model (and in

the real-life decision problem).

We provide a general formulation of the two-product version

of this problem where the firm must choose a portfolio of

flexible and nonflexible capacity before receiving final demand

information. Our results characterize the optimal profit

function and the optimal investment policies. Furthermore, we

provide a sensitivity analysis to show how changes in the

acquisition costs of flexible an.d nonflexible capacity affect the

optimal investment decisions.

Our model focuses on investments in product-flexible

manufacturing systems (PFMS). By a product-flexible

manufacturing system, we mean one that can produce a number of

different products with very low changeover costs and times.

This definition of flexibility is consistent with Mandelbaum's

(1978] and Buzacott's [1982] state flexibility and Browne's

[1984] production flexibility. (See also Adler [1985] Section 4

for a review of the often confusing, non-standardized flexibility

classifications and definitions).

2
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In this paper, we concentrate on investments in PFMS under

uncertainty. Even in a world of certainty, product-flexibility

is valuable, because equipment downtime for changeovers is

affected favorably by the use of flexible equipment. Tradeoffs

of this sort are appropriately analyzed by comparing total costs

of system operation after optimizing the scheduling rules for

both flexible and nonflexible systems. In order to focus our

paper at a more aggregate level, we assume away the scheduling

complexities for PFMS. We think that these scheduling issues are

very important, but this modelling choice allows us to

concentrate on the effects of uncertainty in product demand and

the (short-term) irreversibility of investment decisions on the

optimal mix of flexible and nonflexible

In the

derive some

properties

examine the

nonflexible

these resul

compute the

flexibility

manufacturing capacity.

next section we present our model formulation and

basic properties of the model. Section 2 presents

of the optimal value function. In Section 3 we

optimal investment levels for flexible and

technologies and provide a sensitivity analysis for

ts. Section 4 presents a numerical example where we

optimal investment decisions and the value of

in an automobile engine plant investment setting.

Section 5 contains a discussion of extensions and implications of

the model.

1. PFMS Model Formulation and Basic Properties of the Model.

We assume that the firm can produce two different products,

A and B. Before producing, the firm must make capacity

investment decisions. Three types of capacity are available:

dedicated A-capacity, dedicated B-capacity, and flexible AB-
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capacity. We denote by KA, KB, and KAB, the amounts of each of

these types of capacity invested in by the firm. The per unit

purchase costs for these capacity types are rA, rB, and rAB,

respectively. Before making production decisions, but after

making capacity investment decisions, the firm observes a random

variable that provides information about the state of the world

for market demand for products A and B. We assume there are k

states of the world and the probability that state i occurs is

Pi, where Pi > 0 for all i and £ Pi = 1. After observing state
i

i, the firm chooses its production levels XAi and XBi of products

A and B, subject to the capacity constraints imposed by the

earlier investment decisions.

The firm faces a linear demand curve for each product. In

state i, the price consumers pay for each unit of product A is

ei-fiXAi. Similarly, the demand curve for product B is gi-hiXBi.

For simplicity, we assume there is only one period in which the

firm makes production decisions. Finally, we assume that the

variable cost of production of a unit of product A (or product B)

is the same whether a unit is produced with flexible or

nonflexible capacity. Thus, without loss of generality, we

assume that the variable costs of production are zero. The

implications of relaxing this and other assumptions are

discussed in section 5 of the paper.

With this notation, we can formulate the PFMS investment

decision problem as PFM1:

4
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k

maximize -rAKA-rBKB-rABKAB + E Pi(XAi(ei-fiXAi) + XBi(gi-hiXBi))
i=1

KA,KB,KAB

XAi,XBi,i=, ... ,k

subject to: XAi-KA-KAB < 0 i=l ... ,k () (6i)

XBi-KB-KAB < 0 i=l,...,k (ii) (ei)

XAi+XBi-KA-KB-KAB < 0 i=l,...,k (iii) (Xi)

XAi,XBi 0 i=i, ... ,k (iv) (qi,ri)

KA > O, KB > O, KAB > 0 (v) (m,n,p)

The notation for the Lagrange multipliers for each of the

inequalities (i)-(v) is given to the far right of each line. We

make the following assumptions:

Al. ei > 0, gi > 0, i.e., the intercept of each demand curve is

positive.

A2. fi, hi > 0, i.e., each product's demand curve is strictly

downward sloping.

A3. rA > 0, rB > 0, rAB > 0, i.e., there are positive purchase

costs for all capacities.

A4. rAB > rA, rAB > r B, i.e. the per unit cost of flexible capacity

strictly exceeds the per unit cost of nonflexible capacity for

either product. (Note that if rAB < rA and rAB rB, then the

PFMS problem simplifies significantly because no firm would

ever purchase any nonflexible capacity.)

A5. rAB < rA + rB , i.e. the per unit cost of flexible capacity is

strictly less than the per unit cost of purchasing nonflexible

capacity for both products. (Otherwise, flexible capacity is

obviously never economical. When assumption A5 is violated,

the PFMS problem splits into separate investment decision

problems for each product, and each problem has a closed form

solution, see Freund and Fine [1986].)
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For notational convenience, we will substitute bi = iei, ai = P i f i ,

di = Pigi, ci = Pihi, i=l,...,k in PFM1. Assumptions Al and A2 then

are equivalent to ai, bi, ci, di > 0, i=l,...,k.

Under assumptions A1-A5 the PFMS problem is a convex quadratic

program. The Karush-Kuhn-Tucker (K-K-T) conditions ensure that

XAi, XBi, i=l,...,k, KA, KB, KAB constitute an optimal solution to

the PFMS problem if and only if there exists nonnegative multipliers

m, n, p. Si, ei, Xi, qi, ri, i=l,...,k, for which the following

conditions hold:

bi - 2 aiXAi = i + Xi - qi i= ... ,k

di - 2ciXBi = ei + Xi - ri i=l,...,k

k

rA = E (Si + Xi) + m
i=1

k

rB = E (ei + Xi) + n
i=1

k

rAB = E (Si + ei + Xi) + P
i=1

together with the complementary slackness conditions:

6 i(XAi - KA - KAB) = O

ei(XBi - KA - KAB) = O

Xi(XAi + XBi - KA - KB - KAB) = O

and qiXAi = O, riXBi = 0, i=l,..,k, mKA = O, nKB = , PKAB = 0.

6
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Theorem 1. (Existence and Uniqueness of Solutions) Under

assumptions A1-A5, the PFMS problem has a unique optimal solution

XAi, XBi, i=l,...,k, KA, KB, KAB.

PROOF: The proof is straightforward and is presented in the Appendix.

Corollary 1: Under assumptions A1-A5, the optimal values KA, KB,

KAB, and XAi, XBi, i=l,...,k are piecewise-linear continuous functions

of the capacity cost data rA, rB, and rAB.

PROOF: From the theory of parametric quadratic programming

(see, e.g., Van de Panne 1975]), the set of optimal solutions is a

piecewise-linear upper semi-continuous mapping of the linear

coefficients in the objective function. By Theorem 1, this mapping is

single valued, and so is a piecewise linear function and is

continuous. [X]

Assumptions A4 and A5 play a critical role in guaranteeing the

uniqueness of the solution in the PFMS problem. The necessity of

these assumptions is illustrated in the following example. Costs of

nonflexible capacity are rA = rB = 10, and there are two future

states, with data:

State i ai bi c i di

1 1/2 60 1/2 30

2 1/2 30 1/2 60

The table below shows optimal solutions to the PFMS problem for three

different values of rAB. Figure 1 illustrates the optimal KAB as a

function of rAB-
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Solution

AR EA EA Af B1 E A , u m a a 2 

#1 10 0 0 80 55 25 25 55 0 0 5 0 0 5

#2 10 25 25 30 55 25 25 55 0 0 5 0 0 5

#3 15 27.5 27.5 25 52.5 27.5 27.5 52.5 5 0 2.5 0 5 2.5

#4 20 30 30 20 50 30 30 50 10 0 0 0 10 0

#5 20 50 50 0 50 30 30 50 10 0 0 0 10 0

Upon setting q = q2 = rl = r2 = m = n = p = 0, it is easily

verified that the solutions above satisfy the K-K-T conditions, and

so are optimal. When rAB = 10, rAB = rA = r, violating assumption

A4. Solutions #1 and #2 are each optimal in this state. The firm

is indifferent between building a mix of flexible and nonflexible

capacity (solution #2) and building all flexible capacity (solution

#1). When rAB = 20, rAB = rA + r, violating assumption A5.

Solutions #4 and #5 are each optimal. In this case, the firm is

indifferent between building a mix of flexible and nonflexible

capcity (solution 4), and building all nonflexible

capacity (solution #5). Figure 1 shows the optimal values of KAB

as a function of rAB in this example. Note that the optimal values

of KAB is a piecewise linear point-to-set mapping, and is a

continuous function over the range 10 < rAB < 20, i.e.,

rA = rB < rAB < rA + rB.

We now turn our attention to sensitivity analysis and

comparative statics for the PFMS problem. Our analysis is

facilitated by transforming the problem. For given production

levels XAi, XBi, these quantities can be split into XAi = YAi + ZAi,

XBi = YBi + ZBi, where YAi is that portion of total A production

being produced with nonflexible A-capacity, and ZAi is that portion

8
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Figure 1. Optimal values of KAB as a function of rAB
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of A production being produced with flexible AB-capacity (and

similarly for B production). With this change of variables, the

PFMS problem now becomes

PFM2:
k

maximize - rA KA - rB KB - rAB KAB + - [ai (YAi+ZAi)2 + bi (
i=l

KA, KB, KAB k

YAi, ZAi, YBi, ZBi + i [ci (Bi+ZBi) 2 + di=

i=l, .... k subject to: YAi - KA < i=l,.....k (i)

YBi - KB

ZAi + ZBi - KAB

YAi

YBi

ZAi

ZBi

KA, KB, KAB

0

0

0

0

0

0

0

i=l

i=l

i =1

i =1

i =1

, ... ,k (ii)

,... k (iii)

,...,k (iv)

,.... k (v)

... k (vi)

,...,k (vii)

(viii

YAi+ZAi) I

YBi+ZBi)]

((ai)

(si)

(Yi)

(si)

(ti)

(ui)

(vi)

(m,n,p)

straightforward exercise to verify

with the transformations:

XAi = YAi + ZAi

Xbi = YBi + ZBi

and YAi

YBi

= min

= min

(XAi,

(XBi,

that PFM2 is equivalent

KA),

KB),

ZAi

ZBi

= max (XAi

= max (XBi

i=l,...k.

Theorem 1 asserts that under assumptions A1-A5, the quantities

KA, KB, KAB, and (YAi + ZAi), (YBi + ZBi), i=l,...,k are uniquely

determined in an optimal solution.

10
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In the program PFM2, the strategic variables KA, KB, and KAB are

decoupled and appear in separate constraints. Furthermore, the shadow

prices a, Bi, and Yi are easier to interpret. For example, ai is the

marginal value of an extra unit of A-capacity in state i. Therefore,

k
we would expect that at an optimal solution, ai = rA, equating

i=1

marginal value and marginal cost of A-capacity. Similarly, we would

expect S B i = rB and Yi = rAB. Indeed, the optimality conditions
i=l i=l

for the problem bear out this intuition. The K-K-T conditions for

PFM2 ensure that a feasible solution KA, KB, KAB, YAi, ZAi, YBi, ZBi,

i=l,...,k, is an optimal solution to PFM2 if and only if there

exist nonnegative multipliers m, n, p, i, Bi, Yi, si, ti, ui, vi,

i=l,...,k, for which the following conditions hold:

k k

(I) bi - 2ai

(II) bi - 2a i

(III) di - 2ci

(IV) di - 2c i

k

(V) rA = E
i=1

k

(VI) rB = E
i=1

(YAi

(YAi

(YBi

(YBi

k
(VII) rAB = E

-=1

+ ZAi) = ai - Si

+ ZAi ) = Yi - Ui

+ ZBi) = Si - ti

+ ZBi ) = -i - Vi

Y + P

11

i=1, . . . k

i=1, . . . k

i=1' . . . k

i=1, . . . k

+ 



(VIII) i (KA - Ai) = 0

i (KB - Bi) = 0

Yi (KAB - ZAi - ZBi) = 0

(IX) Si YAi = O, ti YBi = 0, i ZAi = 0, v i i = 0, i=l,...,k,

m KA = , n KB = 0, p KAB = 0.

Note that si, t i, u i, vi, m, n, and p represent shadow prices on

the nonnegativity conditions (iv) - (viii) of the problem PFM2. If

production with each capacity is positive in each state, then by

the complementary slackness conditions (IX), Si = ti = ui = Vi = m = n

= p = O, i=l,...,k. Condition (V) states that the sum of the marginal

contributions of nonflexible capacity for product A must be less than

or equal to the cost of nonflexible A-capacity, with equality holding

when A-capacity is purchased, (by (IX)). Conditions (VI) and (VII)

are interpreted in similar fashion for nonflexible B-capacity, and for

flexible AB-capacity.

The PFMS problem has a natural interpretation as a two-stage

program, where the capacity variables KA, KB, KAB are the first-stage

variables, and the production variables YAi, ZAi, YBi, ZBi are the

second-stage variables. Given optimal values KA, KB, KAB for KA, KB,

and KAB, in the PFMS problem, the k independent second-stage programs

P(i) are:

12
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maximize - ai (YAi + ZAi)2 + bi (YAi + ZAi)

YAi, ZAi, YBi, ZBi - ci (YBi + ZBi) 2 + di (YBi + ZBi)

subject to: YAi KA (ai)

YBi KB (8i)

ZAi + ZBi KAB (Yi)

YAi > 0 (si)

YBi > 0 (t i )

ZAi > 0 (u i )

ZBi 0 (vi)

An optimal solution YAi, ZAi, YBi, ZBi to P(i), i=l,...,k, together

with KA, KB, KAB will constitute an optimal solution to the PFMS

problem, and under assumptions A1-A5, the total production quantity

(YAi + ZA1) in program P(i) will be unique.

For notational convenience, let K = (KA, KBg, KAB) represent the

vector of optimal capacity values. By K > we mean KA > 0, KB > 0,

and KAB > 0.

Lemma 1. Let K be optimal capacity levels for the PFMS problem

satisfying assumptions A1-A5, and let YAi, ZAI, YBi, ZBi, be optimal

solutions to P(i), i=l,...,k. Then the set of multipliers defined in

(1) below is an optimal set of K-K-T multipliers for the PFMS

problem. Furthermore, if K > 0, then these K-K-T multipliers are

the unique K-K-T multipliers for the PFMS problem.
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i = [bi - ai (YAi + ZAi)]+ ,

Si = [bi - ai (YAi + ZAi)- ,

Si = [di - ci (YBi + ZBi)] +

ti = [di - ci (YBi + ZBi)]-

Yi = max (i, Si)

Ui = Yi - i + i (1)

Vi = i - i + ti , i=...,k.

k
= rA - E ~i

i=1

k

n = rB - E si
i=l

k

p = rAB - £ Yi
i=1

PROOF: The quantities YAi, ZAi, YBi, ZBi are an optimal solution

to P(i) if and only if they form a solution to the PFMS problem

together with the optimal capacity levels KA, KB, and KAB. By

Theorem 1, the quantities (YAi + ZAi) = XAi and (YBi + ZBi) = XBi

are uniquely determined, and so the multipliers defined in the

theorem are uniquely specified by the formulas as functions of

YAi + ZAi and YBi + ZBi, i=l,...,k. All multipliers are obviously

nonnegative with the possible exception of m, n, and p. Furthermore,

these multipliers satisfy (I) - (VII) of the K-K-T conditions for the

PFMS problem. It thus remains to show that the complementarity

conditions (IX) of the K-K-T conditions are met, as well as that

m, n, p are nonnegative.

If i, BSi, Yi, i, ti, , ui, vi, i=l,...k, m, n, p are a set

of optimal K-K-T multipliers, then from the uniqueness of

14
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(YAi + ZAi), we must have that ai - Si = i - si. But ai-si = 0

and all quantities must be nonnegative, whereby ai > ai, si > si,

i=l,...,k. Similarly, we can show that i > i, ti ti, Yi > Yi,

u i ui, vi > v i, i=l,...,k. Thus, because s i YAi = 0, then

Si YAi = 0, and similarly ti YBi = 0, u i ZAi = 0, v i ZBi = 0. Also

k k 

m = rA - E ai > rA - E ai = > 0, and so m > 0 and m > m, and

so m KA = 0 implies that m KA = 0. Similarly, n > 0, p > 0, and

n KB = 0 and p KAB = O. Thus the multipliers specified in the

theorem are optimal K-K-T multipliers, and indeed are the smallest

values that any set of multipliers can take.

k k ~
If K > O, then m = 0, and so ai ai = rAB . Thus,

i=l i=l

since ai < i, ai = ai, i=l,...,k. Similarly, Si = Bi, Yi = Yi,

and it then follows that si = si, ti = ti, ui = ui, vi = vi,

i=l,...,k, and m = m = n = n = p = p = O, establishing the

the uniqueness of the optimal K-K-T multipliers in this case. X]

Corollary 2. There exists a unique set of optimal K-K-T multipliers

that satisfy Yi = max (ai, Bi), i=l,....,k. [X]

Note that, in particular, if K > O, then the optimal K-K-T

multipliers are unique and hence must satisfy Yi = max (ai, Bi),

i=l,...,k.

The economic significance of this corollary is clear. The

ai and Si represent the marginal values of A-capacity and B-capacity,

respectively, in state i, i=l,...,k. Furthermore, i represents the

marginal value of AB-capacity in state i, i=l,...,k. The condition

15



Yi = max (ai, i), i=l,...,k asserts that in each state the marginal

value of AB-capacity is the larger of the marginal value of A-capacity

or of B-capacity.

In the absence of flexible capacity, the firm faces the decision

of how much A-capacity and B-capacity to build by solving the two

independent manufacturing investment problems AMS and BMS:

AMS: BMS:

k 2 k
max - rA KA + E [-ai(XAi) + bi XAi] max - rB KB + [-Ci(XBiJ +di XBi]
KA,XAi i=1 KB,XBi i=l
i=1 .... k i= .. ,k

subject to: XAi - KA < 0 (i) subject to: XBi - KB < 0 (i)

XAi > 0 (si) KBi > 0 (ti)

KA > 0 (m) KB > 0 (n)

As is discussed in a companion paper (Freund and Fine [1986]), these

two problems possess unique solutions and unique K-K-T multipliers,

and can be solved analytically. In view of corollary 2, we have the

following theorem:

Theorem 2 (Necessary and sufficient conditions for purchasing

flexible capacity).

Let KA, XAi, i, Si, i=1,...,k, m, and KB, Xgi, Bi, ti, =1 ... ,k, n

be optimal solutions and K-K-T multipliers for the independent

manufacturing investment problems AMS and BMS, under assumptions

A1-A5.

Then KAB > 0 in the optimal solution to the PFMS problem if

k
and only if rAB < E max (ai, i).

i=1

16

11



The economic interpretation of Theorem 2 should be clear. In the

respective problems AMS and BMS, ai and Bi represent the marginal

values of extra A- and B-capacity in state i. Thus max(ai, Bi)

represents the marginal value of capacity that can be used in

production of either A or B, i.e., the marginal value of flexible

capacity. The theorem states that in order for flexible capacity to

be economical, its cost rAB must be less than the sum, over all

states, of the marginal value of the capacity's most valuable use in

that state.

k
PROOF: If rAB > E max (i, Si), define Yi max (i, Bi),

i=l

k

ui Yi - ai + si, vi Yi - Bi + ti, and p rAB - Yi.
i=1

Then the K-K-T conditions for the PFMS problem are satisfied with

KAB = 0.

k
On the other hand, if rAB < ~ max (i, Si), then the above

i=l

solution is the unique solution to the K-K-T conditions satisfying

k
(1). However, (rAB - E Yi) < 0, and so by lemma 1, the solution

i=l

KA, KB, XAi, XBi, i=l,...,k, and KAB = 0 cannot be optimal. [X]

2. Properties of the Optimal Value Function

We now turn our attention to the sensitivity of the PFMS

problem to the costs of capacity, namely rA, rB, and rAB. Let

z*(rA, rB, rAB) be the optimal value function of the PFMS problem

for given capacity costs rA, rB, and rAB. Our concern with

17



z*(rA, rB, rAB) lies in ascertaining the properties of this optimal

value function, to predict the savings or costs due to decreased or

increased capacity costs.

Let r = (rA, rB, rAB) be the vector of capacity costs. Let

ar = (rA, rB, rAB) denote a vector of changes in optimal capacity

costs. Then z*(r+Ar) = z*(rA + ArA, rB + ArB, rAB + ArAB) measures

the optimal value of the PFMS problem when capacity costs are r + r.

Theorem 3 (Characterization of the Optimal Value Function)

Under assumptions A1-A5,

(i) z*(rA, rB, rAB) is a convex piecewise-quadratic function,

with continuous first partial derivatives.

(ii) If K = (KA, KB, KAB) are optimal capacity values when

capacity costs are r = (rA, rB, rAB), then

rA = -KA

arA

arB = -KB

2rAB -KAB

(iii) If r = (rA, rB, rAB) is in the interior of a region

where z*(r) is a quadratic form, and r is sufficiently small, then

z*(r+Ar) = z*(r)-KA(ArA)KB(ArB)K-KAB(ArAB) - (1/2)(Ar)TM(Ar), where

M is a symmetric negative semi-definite matrix. If K > 0, then M

is negative definite, and so z*(r+Ar) is strictly convex.

This theorem gives us the structure of the optimal value function -

it is convex and piecewise-quadratic. Furthermore, it has

continuous first partial derivatives given by (ii) in Theorem 3.

The interpretation of these first partial derivatives is that profit

18
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declines with increases in capacity costs at a rate equal to the

optimal capacity value. The effects of small changes in capacity

costs on op2timal capacity levels and consequently on profits are of

second-order. The theorem also shows that the optimal value function

is decreasing in each capacity cost, because KA O, KB > 0, and

and KAB > O. The formula in (iii) gives us an explicit functional

form for z*(r+Ar) if we know the matrix M. In the next section, as

part of the proof of Theorem 4, we will show how to construct the

matrix M, and hence how to construct the functional form in part

(iii) of the above theorem.

PROOF: The proof of this theorem follows from the duality

properties of convex quadratic programming, see Dorn [1960]. The

standard quadratic programming dual of the PFMS problem PFPM2, which

we denote as the DFMS problem, can be derived as:

k k
minimize E (bi-ai+si)2 /(4ai) + E (di-8i+ti)2 /(4ci)

aiBii i=l i=l
si,t i k
i=l ... ,k subject to: E ai < rA (KA)

i=1

k

E si < rB (KB)
i=l

k

E Yi < rAB (KAB)
i=1
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i-si-Yi < 0 , i=l, ..,k (ZAi)

Bi-ti-Yi < 0 , i=l,...,k (ZBi)

S i > 0 , i=l,...,k (YAi)

ti > 0 ,i=l,...,k (Ygi)

ai > 0 , i=l,...,k

Si > 0 i=l...,k

Yi > 0V1 > 0 , i=1,...,k.

where the primal variables corresponding the dual constraints have

been written in to the right next to the appropriate dual constraint.

Note that the capacity costs rA, rB, and rAB now appear as RHS

coefficients of dual constraints whose optimal K-K-T multipliers

KA, KB, and KAB will form a solution to the primal problem. From

the theory of Lagrange duality, the optimal value function

z*(rA, rB, rAB) is a convex function. Also, from Lagrange duality,

(KA, KB, KAB) are optimal K-K-T multipliers for the first three

constraints of the DFMS problem if and only if (-KA, -KB, -KAB)

is a subgradient of z*(rA, rB, rAB), see Geoffrion [1971]. However,

by Theorem 1, KA, KB, KAB are uniquely determined, so (-KA, -KB, -KAB)

is the gradient of z*(rA, rB, rAB), and each component is a partial

derivative, obtaining formulas (ii) of the theorem. From corollary

1, these first partial derivatives are continuous in rA, rB, and

rAB. Finally, from the theory of parametric quadratic programming,

see Van de Panne [1975], the optimal value function is a piecewise

quadratic function of the RHS coefficients rA, r, rAB of the dual

problem.

In each region where z*(r) is a quadratic form, the Hessian of

z*(r) exists and is a symmetric positive semi-definite matrix, because
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z*(r) is convex, whereby the matrix M given in (iii) of the theorem is

symmetric and negative semi-definite. The formula given in (iii)

follows from Taylor's theorem and the fact that z*(r) is piecewise-

quadratic and therefore has no n-order terms beyond n=2. [X]

The proof that M is negative definite (and hence z*(r) is

strictly convex) when K > 0 is deferred until the next section, and

follows as part of the proof of Theorem 4.

One important point regarding Theorem 3 deserves further

elaboration. The theory of parametric quadratic programming, see

e.g. Van de Panne [1975], asserts that z*(rA, r, rAB) is a convex

piecewise-quadratic function. Furthermore, there are a finite

number J of closed polyhedral regions S 1 ,...,SJ in the space R 3 of

values of r = (rA, rB, rAB) for which the function z*(.) is a

quadratic form in each region Sj, j=l,...,J. Each of these regions

can be presumed to be 3-dimensional. The set of boundary points

B c R3 at which z*(.) has no Hessian, i.e., no second-partial

J
derivatives is given by B = u aSJ, and is a set of Lebesgue

j=1

measure zero in R3 . Thus the formula of assertion (iii) of Theorem

3 is valid for all r = (rA, r, rAB) except for those r B; and B

has measure zero.

3. Directional Properties of the Optimal Capacity Function

In this section, we examine the sensitivity of the optimal capacity

levels KA, KgB, and KAB to changes in capacity costs rA, r, rAB.

Under assumptions A1-A5, Theorem 1 ensures that KA, KB, and KAB are

functions of rA, rB, rAB, and so can be written as KA(rA, rB, rAB),

KB(rA, rB, rAB), and KAB(rA, rB, rAB), and the vector K = (KA, KB, KAB)
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can be written as K(rA, rB, rAB). We will refer to K = (KA, KB, KAB)

as the optimal capacity function, but will usually omit the

parenthesized form "(rA, rB, rAB)" for notational convenience. Our

interest lies in determining properties of the optimal capacity

function relative to changes in (rA, rB, rAB). In particular, the

matrix of optimal capacity/cost partial derivatives,

aKA 2KB aKAB
arA arA arA

SKA aKB aKA _ (2)
arB arB )rB

aKBKA 9K KAB

arAB arAB arAB

when it exists, will give valuable information regarding the

direction and magnitude of changes in optimal capacity levels

relative to changes in capacity costs.

Corollary 3 (Characterization of the Optimal Capacity Function).

Under assumptions A1-A5, if r = (rA, rB, rAB) is in the interior of

a region where z*(r) is a quadratic form, and K = (KA, KB, KAB) are

optimal capacity values for r = (rA, rB, rAB), then

K(r+r = K(r) + M(Ar), for r sufficiently small, where M

is the matrix given in (iii) of Theorem 3. In particular, M is

precisely the matrix of optimal capacity/cost partial derivatives

defined in (2).

PROOF: This result is an immediate consequence of Theorem 3,

parts (ii) and (iii). From part (ii), (-KA, -KB, -KAB) is the

gradient of z*(r), and-the matrix M is precisely the negative of the

Hessian of z*(r). Thus, for example,
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MAAB = z Az*/r r A _ KA and similarly,
MA,AB a rA BrAB arAB arAB

9KA
MA, A = , MB B = 9, MAB,AB 

MA B = r and MB,AB = AB Therefore, M is the9r B 'rA·

matrix of optimal capacity/cost partial derivates given in (2).

From Corollary 1, K(r) is piecewise linear, whereby K(r+Ar) =

K(r) + M(tr) for r sufficiently small. [XI

As part of the proof of the next theorem, we will show how to

compute the matrix M. Hence, corollary 3 can be viewed as

constructive.

Our major result of this section is:

Theorem 4 (Optimal Capacity/cost Directions and Magnitudes). Under

assumptions A1-A5, if K(r) > 0, then

(1) (A) KA is strictly decreasing in rA

(B) KB is strictly decreasing in rB

(AB) KAB is strictly decreasing in rAB

(2) (AB) KA is strictly increasing in rAB

KB is strictly increasing in rAB

(A) KAB is strictly increasing in rA

(B) KAB is strictly increasing in rB
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(3) (A) KB is strictly decreasing in rA

(B) KA is strictly decreasing in rB

(4) (A) KA + KAB is decreasing in rAB

(B) KB + KAB is decreasing in rAB

(5) (A) KA + KAB is decreasing in rA

(B) KAB + KB is increasing in rA

(6) (A) KB + KAB is decreasing in rB

(B) KAB + KA is increasing in rB

Before proceeding to the proof of this theorem, we present an

interpretation of this theorem and its immediate consequences.

Taken together, statements ()-(AB) and (2)-(AB) assert that as

rAB increases, the firm will purchase less flexible capacity and

more of each type of nonflexible capacity. Statements (1)-(A),

(2)-(A), and (3)-(A) assert that as rA increases, the firm will

purchase less A-capacity, more AB-capacity and less B-capacity.

Statements (1)-(A) and (2)-(A) are quite intuitive. Statement (3)-(A)

follows because the substitution of flexible capacity for A-capacity

induced by an increase in rA also reduces the value, and hence the

need, for B-capacity, because flexible capacity also substitutes for

B-capacity. Statements (1)-(B), (2)-(B) and (3)-(B) are analogous to

the above statements, for product B.

Assertions (4), (5) and (6) of the theorem indicate a "ripple"

effect due to changes in capacity costs. According to statement (4),

as the cost of AB-capacity is increased, the decrease in flexible
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capacity is larger in magnitude than the increase in either type of

nonflexible capacity.

Statement (5) has a similar interpretation. For example, when

the cost of nonflexible A-capacity is increased, the magnitude of the

change (a decrease) in A-capacity is the largest, followed by the

change in AB-capacity (an increase), and then by the change in B-

capacity (a decrease). The A-capacity is the most affected, the B-

capacity is the least affected, with the AB-capacity falling between

the two nonflexible capacities. The "ripple" effect is A to AB to B.

Statement (6) of the theorem is analogous to statement (5), for

product B.

Before presenting the formal proof of Theorem 4 we first present

three antecedent lemmas, preceded by an explanation of the underlying

economic and mathematical concepts used in the proofs. Recall that

from corollary 3, K(r+ar) = K(r) + M(Ar) for r sufficiently small

(except for r E B, where B is the union of the boundaries of the

finitely many polyhedral convex sets sj in the space of rER 3 ).

Because K(r) is continuous in r under assumptions A-A5, it suffices

to prove Theorem 4 when rB, and hence the proof of Theorem 4

becomes a proof of certain properties of the matrix M of optimal

capacity/cost partial derivatives. For example, statement (1)-(A)

becomes MA,A < 0, statement (4)-(B) becomes MB,A + MAB,A < 0, etc. In

order to prove the theorem, then, we will explictly construct the

matrix M.

As a means toward computing the matrix M of optimal capacity/cost

partial derivatives, we will proceed by first solving the state

subproblems P(i), i=l,...,k, and then examining the parametric

solution to P(i) as K changes. We then will use this analysis to
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construct a matrix N that will satisfy -N(AK) = r, where

AK = K(r+Ar) ,- K(r) for all sufficiently small r. The matrix M of

Theorem 3 and corollary 3 is given by M = -N- 1. We then will examine

the sign and magnitude of specific elements of M.

Thus our first task will be to solve the state subproblems

P(i), i=l,...,k. Let K = (KA, KB, KAB) be the optimal capacity

values for capacity costs r = (rA, rB, rAB) satisfying assumptions

A1-A5. Note that the economics of subproblem P(i) implies that the

marginal profit from producing an extra unit of product A is

decreasing in XAi = (YAi + ZAi) and reaches zero at XAi = bi/2a i.

Similarly, for product B, the marginal profit is decreasing and

reaches zero when at XBi = di/2ci. The optimal solution to the

subproblem P(i) will depend on the quantities bi/2ai and di/2ci and

their relationship to the optimal capacity values KA, KB, and KAB-

Figure 2 plots six regions in the space of (bi/2ai) and (di/2ci),

bounded by the inequalities indicated in the figure. In each of the

regions numbered #1-#6, the optimal solution to the subproblem P(i)

is given according to Table 1, which also gives the optimal K-K-T

multipliers and the algebraic description of each region. As figure

2 indicates, the regions #1-#6 given by the inequalities in Table 1

are nonoverlapping. Each of the six regions of Table 1 has a

natural economic interpretation as follows:

Region 1. In this region there is enough capacity KA, KgB, and KAB

for A production to attain bi/2ai and B production to attain di/2c i.

Therefore, the capacity constraints in subproblem P(i) are not

binding, and there is no need to allocate scarce capacity.
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Region 2. In this region, there is ample A-capacity to attain zero

marginal profit from product A (ai = 0), but not enough B- and AB-

capacity for product B to attain zero marginal profit. Thus product

B uses up all of the B- and AB-capacity, which will have positive

shadow values at the optimum (i.e., Bi = Yi > 0).

Region 3. In this region, there is ample B-capacity to attain zero

marginal profit of B production (Bi = 0), but not enough A- and AB-

capacity for product A to attain zero marginal value (i = Yi > 0).

Thus product A uses up all of the A- and AB-capacity.

Region 4. There is insufficient A- or B-capacity to attain zero

marginal value of either product's production without resorting to

the flexible AB-capacity. Furthermore, the marginal profit of

A-production so dominates that of B-production that all flexible

capacity is devoted to A-production (ai = Yi > i > 0).

Region 5. There is insufficient A- or B-capacity to attain zero

marginal value of either product's production without resorting to

the flexible AB-capacity. Furthermore, the marginal value of

B-production so dominates that of A-production that all flexible

capacity is devoted to B-production (Bi = i > ai > 0).

Region 6. There is insufficient A- or B-capacity to attain zero

marginal value of either product's production without resorting to

the flexible AB-capacity. Both products share the AB-capacity and

the marginal value of A-production and B-production are the same

(lti = Bi = Yi > 0).
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It is straightforward to verify that the K-K-T conditions are

satisfied for each region in Table 1, and so the solutions given are

optimal for subproblem P(i). Furthermore, in each region in the

table, the K-K-T multipliers si, ti, ui, vi, ai, Bi and i satisfy

the formulas (1) of lemma 1.

With r = (rA, rB, rAB) given, let us assume that rB. Let

Ar = (ArA, ArB, rAB) be a vector of small capacity cost changes.

Let K = K(r+Ar) - K(r) be the change in the optimal capacity values

induced by the change in capacity costs r. According to corollary 3,

AK = M(ar), where M is the matrix of optimal capacity/cost partial

derivatives. Knowing K = (AKA, AKB, AKAB) allows us to easily compute

the per unit changes in the subproblem shadow prices ai, , Yi from

Table 1. For example, if the data for state i results in ( di )2a I 2c i

falling in region #4, then ai = bi-2aiKA - 2aiKAB, and the per

unit change in ai relative to a change in KAB is -2ai. These per

unit changes in i, Bi, Vi relative to changes in KA, KB, KAB

(derived from Table 1) are shown in Table 2.

For each subproblem P(i), let the matrix Ni denote the negative

per unit changes in ai, Bi, and vi relative to a change in KA, KB,

,KAB- For example, the element n,AB of Ni is the negative of the per

unit change i relative to a change in KAB. This denotation appears

in the bottom row of Table 2. Define the matrix N by

k
N = E Ni . (3)

i=l

By definition, nB,AB, for example, represents the sum (over all states

i) of the negative per unit change in Bi relative to a change in KAB,
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k
i.e., nBAB is the negative change in the £ Bi relative to a

i=l

k

change in KAB. If KB > 0, then £ Bi = rB, and so nB,AB is the
i=1

negative per unit change in rB relative to a change in KAB. Using

similar logic for the other components of N, we have:

Lemma 2. Under assumptions A1-A5, if r = (rA, rB, rAB) B, and

K(r) > 0, then the matrix N defined by Table 1, Table 2, and (3),

satisfies

N(AK) = -(ar) . [xl

If the matrix N is invertible, then aK = (-N- 1 )(Ar), whereby we

must have M = -N- 1. Thus, our next task is to prove

Lemma 3. Under assumptions A-A5, the matrix N defined by Table 1,

Table 2, and (3) has a positive determinant. Furthermore, the

matrix N can be written as

e+b e e+a

N = e e+d e+c , (4)

e+a e+c e+a+c

where

a = E 2ai
iER 3 UR 4

b = E 2a i

iER 3 UR4 UR 5

c = £ 2Ci
R2 uR 5

d = E 2ci
iER 2 uR 4 uR 5

e= E 2aici

iER 6 ai+c
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and R denotes the set of state i that are in region j as defined in

Table 1 (or Figure 2), j=1,...,6.

PROOF: See Appendix. [XI

By Cramer's rule, we obtain:

Lemma 4. Under assumptions A1-A5, if r = (rA, rB, rAB) B, and

K(r) > O, then

nB,AB nB,AB -nB,B nAB,AB nA,B nAB,AB -nA,AB nB,AB nB,B nA,AB -nA,B nB,AB

det(N) nA,B nAB,AB -nA,AB nB,AB nA,AB nA,AB -nA,A nAB,AB nA,A nB,AB -nA,B nA,AB

nB,B nA,AB -nA,B nB,AB nA,A nB,AB -nA,B nA,AB nA,B nA,B -nA,A nB,B

[X]

With the formula for M given in lemma 3, we are in position to prove

Theorem 4, which describes how optimal capacity levels change as a

function of the capacity costs.

Proof of Theorem 4: Given the formula for the matrix M from lemma 4

and from equation (4), the proof of Theorem 4 is accomplished by

verifying certain inequality relationships among the elements of the

matrix M. The details of this procedure are in the Appendix [X].

Theorem 4 is conditioned on the supposition that all optimal

capacity values are positive. When one of the optimal capacity

values, say KA, is zero, we obviously can no longer assert that KA

is strictly decreasing in rA. Furthermore, the computation of the

matrix M cannot be accomplished as in the proof of Theorem 4,

k 
because we may not have £ a i = rA, i.e., m could be positive.

i=l

However, using logic similar to that in Theorem 4, we can prove:

Corollary 4: Under assumptions A1-A5, the six assertions of Theorem

4 remain valid, without the strict monotonicity in assertions (1)-(3).
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4. Example with Calculation of the Value of Flexibility

Consider a firm that produces two basic product lines, A and B,

and faces uncertainty about the future demand for each product line.

If this firm must make its investment decisions on flexible and on

nonflexible capacity levels before the demand uncertainty is resolved,

then our model provides a useful tool for analysis of the investment

decision problem. One instance of such a setting occurs in the auto

industry. In their engine plants, automobile manufacturers face the

choice of building nonflexible machining lines that can only produce

one size engine block or flexible lines that can switch, for example,

between four and six cylinder engines. Since engine plant

construction lead times and useful lives are long relative to the

frequency of oil price movements (which affect consumer demand for

cars with small or large engines), automobile manufacturers may have

an incentive to build some flexible engine line capacity that can be

used for either large or small engines.

The following example illustrates the calculations that such an

automobile manufacturer could perform to analyze its product-flexible

manufacturing system investment decision. We will also illustrate,

for this example, a calculation of the value of flexibility as a

function of the per unit cost of flexible capacity. The value of

flexibility as a function of rAB is measured by z*(rA, rB, rAB) -

z*(rA, rB, ), the additional profits obtained when flexible capacity

is available at a cost of rAB per unit. The numerical data presented

do not reflect actual industry conditions. They are only used for

purposes of illustration.

Suppose there are four possible future states of the world,

depending on whether oil prices are high or low, and whether the U.S.
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gross national product growth is high or low. Further, suppose demand

for products A and B (small and large engines) is linear in the prices

of A and B, respectively, and that the state of the world only affects

the vertical intercept of the products' demand functions. Thus, in

the notation of the previous sections, the random variables are

bi=Piei and di=pig i, for i=1,2,3,4. For simplicity, we assume the

product demand slopes are unity, i.e., fi=hi=l for all i (so that

ai=ci=Pi). The data for the example are as follows:

Small engine Large engine Large a
(Product A) (Product B) Small E

ate Oil GNP demand demand demand
i Prices Growth Pi intercept, e i intercept, gi fi, h

1 High High .10 18 10 1

2 High Low .30 16 6 1

3 Low High .40 8 18 1

4 Low Low .20 4 16 1

nd
ngine
slope

i

Further, we assume the per

rB = 2.2, rAB = 3.8.

The table below shows

unit capacity costs are rA = 2.6,

the data for each state expressed in

terms of the quantities ai, bi, ci, di.

State i ai i ci di

1 .10 1.8 .10 1.0

2 .30 4.8 .30 1.8

3 .40 3.2 .40 7.2

4 .20 .8 .20 3.2

Clearly, the assumptions Al A5 are satisfied, and so this PFMS

problem exhibits a unique solution. This optimal solution is
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KA = 3, KB = 4, KAB = 3. Since non flexibile capacity costs less

than flexible capacity, the firm optimally chooses to hold some

nonflexible capacity. However, the uncertainty in the demands for

the two products make purchase of 3 units of the more expensive

flexible capacity efficient. The dual prices a i , Bi, and Yi, as

well as the region (from Figure 2 in the previous section) for each

state are given below.

State a i i i Region #

1 .6 .2 .6 4

2 1.2 0 1.2 3

3 .8 1.6 1.6 5

4 0 .4 .4 2

Straightforward calculation shows that z*(2.6, 2.2, 3.8) = 52.5. In

order to compute the value of flexibility, we compute z*(2.6, 2.2,

+c) = 50 1/12 by solving the PFMS problem will rAB = +. Therefore,

the value of flexibility (when rAB = 3.8) is 52.5 - 50 1/12 = 2 5/12.

In order to obtain N, the matrix of negative per unit changes

in the capacity shadow prices relative to the capacity levels, we

use Table 2 to first calculate Ni for each state i. Following this

procedure, we obtain
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.2

.2

0 .2 .6

.2 O , N2 = O

0 .2 .6

o .6

0o 

o .6

.8 0 0

, N3 = 0 .8 .8

J LO .8 .8 

N4 = 0i

and M = -N - 1 =

0 0[ 1.6

.4 .4 , and N = 0

.4 .4 _ .8

-17/16 -3/4 7/8

3/4 -2 1 .5

7/8 1.5 -1.75

Thus,

z*(2.6+ArA, 2 .2 +ArB, 3 .8 +ArAB) = 52.5 - 3 (ArA) - 4(ArB) - 3 (ArAB)

+ 1/2 rA T -17/16

ar B 3/4

\&rAB 7/8

In particular, for example

-3/4

-2

1 v 

7/8 / rA

1.5 ar B

-1.75 ACrAB /1. rB

az* aKA 7= -3 and A 7
arAB arAB 8

That is, with an incremental increase in the cost of flexible capacity,

optimal profits decrease at the rate of three units, and optimal

dedicated A-capacity increases at the rate of .875 units.

5. Discussion

Our model provides the beginnings of a conceptual framework for

evaluating investments in product-flexible manufacturing systems.

To ease the analysis of the model, we have assumed that the firm

produces only two different products and can invest in only three
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different technologies. An alternate formulation, due to Kulatilaka

[1985], allows M different types of nonflexible technologies, each

of which may be optimal in certain states; and analyzes the optimal

use over an infinite horizon of a flexible technology whose "mode"

can be switched each period (at a cost) so as to emulate any of the

M nonflexible technologies. The modelling cost of this richer

formulation is that Kulatilaka makes a very specific assumption on

the distribution of the sequence of random variables relevant to the

optimal single-period technology choice. (The random process is a

discrete version of mean-reverting Weiner process.) Kulatilaka is

able to calculate optimal policies for specific numerical examples.

In contrast, our model, which we restrict to only two products,

assumes that the firm may invest in a portfolio of flexible and

nonflexible technologies and that the switching costs are either

zero (for the flexible technology) or infinite (for the nonflexible

technologies.) Our model formulation PFMI can easily accommodate

multiple time periods by adding a time index to XA i, XBi, Pi, ei,

fi, gi, hi, summing the profits over the time periods in the

objective function, and adding a discount factor. The analysis

remains the same, assuming the firm does not carry inventories from

period to period. If we permit inventories, then the analysis of

the model becomes significantly more difficult. Our intuition is

that the presence of inventories would reduce the value of flexible

capacity to the firm since holding inventories provides flexibility

for firms in meeting demand. We think that an extension of the

model, exploring this conjecture, warrants further analysis.

Another extension of our model would be to assume that the per

unit variable cost of production differs, depending on whether the
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unit is produced with the flexible or nonflexible capacity. Many

analysts claim that automated flexible manufacturing systems have

lower per unit variable costs than do their less flexible

substitutes. When this is the case, the firm will obviously buy

more flexible and less nonflexible capacity than would be the case

for the formulation analyzed here. Suppose, in addition, we

generalize the form of the acquisition cost to include a fixed

component if any positive level of a certain technology is chosen.

For example, assume that investing in KAB > 0 units of flexible

capacity costs RAB + rAB.KAB, where RAB > 0. Similarly, assume

nonflexible capacity investment costs are RA + rAKA and RB + rBKB.

In this case, if we look at the optimal levels of KA, KB, and KAB as

we increase the difference between the variable cost of producing

with the flexible versus the nonflexible technology or as we

increase RA, RB, and RAB, then at some point the optimal levels of

KA and KB will become zero and only flexible capacity will be

purchased. Thus, a more realistic production cost and acquisition

cost structure can yield a solution where the option of investing in

nonflexible capacity is abandoned completely in favor of investment

solely.in flexible capacity. We think that an exploration of this

extension merits further work.

A final direction for further exploration of this model is to

look at how competition affects firms' optimal investment in

flexible capacity. In one two-firm extension of our model, suppose

that firm 1 is a monopolist in product markets A and B. If firm 2

is viewed as threatening to enter market A (only) then firm 1 may

want to hold some excess A-capacity to deter entry. (See, e.g.,

Spence [1977], Dixit [1979], Bulow et al. [1985].) The question of
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interest is whether firm 1 can deter entry by holding product-

flexible (KAB) capacity. Holding KAB to deter entry is less costly

than holding only KA to deter entry because unused KAB capacity has

an alternate use. However, because of this alternate use, holding

KAB may not be a credible threat to potential entrants.

The crucial issue here relates to the conflicting effects of

commitment and flexibility. To deter entry, an established firm

must appear to the entrant to be committed to behavior that will be

detrimental to a new entrant. Such a commitment can be made

credible, for example, by having already invested in capacity so

that marginal costs of production are low (as in Dixit 1980]).

Alternatively, a firm may demonstrate commitment by investing early

in a new market (as in Spence [1979], and Fudenberg and Tirole

[1983]). Holding product-flexible capacity would appear to reduce

the credibility of commitment to high post-entry production. This

is because, once entry has occurred, the flexible capacity might

have a higher marginal product if deployed elsewhere. Therefore a

multimarket monopolist who is threatened by potential entrants may

not wish to hold flexible capacity because it detracts from the

credibility of commitment to defend the threatened market.

Countering this effect, however, a multimarket monopolist will

prefer to hold some flexible capacity if demand is uncertain (as in

the previous sections) or if entry is uncertain. (Entry may be

uncertain because the potential entrant's costs are not observable

by the incumbent as in Saloner [1983], Kreps and Wilson [1982], and

Milgrom and Roberts [1982a].) Further analysis is required to

resolve how flexible technology affects equilibrium capacity

investment when these two conflicting forces are present.
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Similar questions revolve around how product-flexible capacity

might be used by potential entrants. In particular, purchasing

product-flexible capacity for entering a new market may be a less

risky way to enter a market controlled by an incumbent with unknown

costs. That is, low exit costs may reduce the costs of entry. (See

Eaton and Lipsey [1980] for additional perspective on this issue.)

However, an incumbent might play tougher against an entrant who is

known to have product-flexible capacity that can be used in other

markets. (This is especially likely if the incumbent has an

opportunity for reputation formation as in Kreps and Wilson [1982]

or Milgrom and Roberts [1982b]). Obviously, there is much work to

be done to determine how the existence of product-flexible capacity

affects competition and entry in this multi-market oligopoly entry

game.
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Appendix

PROOF of Theorem 1: The PFMS problem is always feasible, since

XAi=XBi=, i=l,...,k, KA=KB=KAB=O is feasible. By assumption A2,

the PFMS problem is a convex quadratic program, and by assumptions

A2 and A3 it is bounded from above. It thus attains its optimum.

Because the objective function is strictly convex in

XAi and XBi, i=l,...,k, XAi, XBi are uniquely determined for each i.

It remains to show that KA, KgB, KAB are uniquely determined.

1 1 1 2 2 2
Assuming the contrary, suppose KA, KB, KAB and KA, KB, KAB are

1 1 1alternative optimal values of KA, KB, and KAB, and (KA, KB, KAB) *

2 2 2 1 1 1 2 2 2
(KA, KB, KAB). Then rAKA + rBKB + rABKAB = rAKA + rBKB + rABKAB.

We have two cases:

1 2 1 2 1 2
Case 1. KAB = KAB. Then KA KA and KB * K, and we can assume

1 2 2 1
that KA > KA > 0, and hence KB > KB > 0. Let (i, ei, Xi, qi, ri,

i=l,...,k, m, n, p) be any optimal K-K-T multipliers.

Then XAi KA < KA, whereby i = 0, i=l,...,k. Similarly XBi < KB

2 1 2
< KB, and so ei = , =1,...,k. Also, since KA > 0, and KB > 0,

k k
m = O and n = O. Thus rA = Xi, and rB = X, and

i=1 i=1

k

rAB = E Xi + P-
i=l

If p = 0, then rAB = rA, violating assumption A4. Thus p > 0.

1 2 2 2
But then KAB = KAB = 0. For each index i=l,...,k, XAi < KA + KAB =

2 1 2 1 1 1
KA and XBi KB + KAB = KB, and so XAi + XBi KA + KB < KA + KB =

KA + KB + KAB, and so Xi = , i=l,...,k. Thus rA = O, a

contradiction.
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Case 2: KAB KAB. Without loss of generality, we can assume that

1 2 1 1 2 2
KAB > KAB > 0, and so p = 0. Suppose that KA + KAB KA + KAB, in

k
addition. Then i = 0, i=l,...,k, whereby rAB = E (Si + ei + Xi) =

-. ~~~~~~ j~~~~i=1
k

£ (ei + Xi) = rB - n. This
i=l 1

assumption A4. Therefore KA +

argument, it must be true that

2 1 1 2 1 2
KAB - KAB KB KB = KA - KA.

rAB (KAB - KAB) = rA (KA KA)

rAB = rA + rB, which violates

implies that rAB rB, violating

1 2 2
KAB = KA + KAB, and by an identical

KB + KAB = K + KAB. Therefore,

However, it is also true that

1 2
+ rB (KB - Kg). This forces

assumption A5, proving the theorem. [X]

PROOF of

of Table

Lemma 3: We note the following inequalities as a consequence

2:

i i i
nAA nA,AB > nA,B >

i i i
nBB > nB,AB nB,A >

i i
nAB,AB > nA,AB 0

i i
nAB,AB > nB,AB > 0

i i
nA,B = nB,A

i i
nAB,A = nA,AB

i i
nAB,B = nB,AB

- which imply:

nAA

nB,B

nAB,AB

nAB,AB

nA,B

nAB,A

nAB,B

> nA,AB >

> nB,AB >

> nA,AB >

> nB,AB >

- nB,A

= nA,AB

= nB,AB

nA,B

nB,A

0

0O
O

0

0

0

0
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Note, in particular, that N is symmetric and nonnegative. Now let Rj,

j=i,...,6, denote the set of states i that are in region j as defined

in Table 1 (or Figure 2).

Define the following numbers:

a = E 2ai
iER 3 UR 4

b = E 2ai
iER 3 UR 4 UR 5

c = £ 2ci
R2 uR 5

d = _ 2ci
iER 2 UR 4 UR 5

2aicie = E 2asc
iER 6 ai+ci

Then the matrix N can be written in the form:

e+b e e+a

N = e e+d e+c (4)

e+a e+c e+a+c

The determinant of N is:

det(N) = ad(b-a) + bc(d-c) + e (b-a)(d-c) + a(b-a) + c(d-c) + ac].

Because a, b, c, d, e are all nonnegative, and b > a, and d > c, all

of the above terms are nonnegative, whereby det(N) > O. It remains

to show that some term is strictly positive.

Assuming the contrary, we will derive a contradiction. Therefore

we assume that ad(b-a) = 0 and bc(d-c) = O. Then one of the following

nine cases must be true:

Case 1. a = O, b = O. Thus all states must be in regions 1, 2,

or 6. But then, by Table 1, i = Yi for all i, whereby rB = rAB,

contradicting assumption A4.
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Case 2. a = 0, c = 0. Thus all states must be in regions 1 or 6.

By Table 1, i = Yi for all i, whereby rB = rAB, contradicting

assumption A4.

Case 3. a = 0, d = c. Thus all states must be in regions 1, 2,

5, or 6. By Table 1, B i = Yi for all i, whereby rB = rAB,

contradicting assumption A4.

Case 4. d = 0, b = 0. Thus all states must be in regions 1 or 6.

By Table 1, ai = Yi, for all i, whereby rA = rAB, contradicting

assumption A4.

Case 5. d = 0, c = 0. Thus all states must be in regions 1, 3,

or 6. By Table 1, i = Yi, for all i, whereby rA = rAB,

contradicting assumption A4.

Case 6. d = 0, d = c. This is identical to case 5.

Case 7. b = a, b = 0. This is identical to case 1.

Case 8. b = a, c = 0. Thus all states must be regions 1, 3, 4,

or 6. By Table 1, ai = Yi, for all i, whereby rA = rAB,

contradicting assumption A4.

Case 9. b = a, d = c. Thus all states must be in regions 1, 2,

3, or 6. If e = 0, then all states are in regions 1, 2, or 3, and

(i + Bi = Yi, for all i. This implies that rA + rB = rAB,

contradicting assumption A5. Thus, e > 0, and det(N) = eac. Thus

a = 0 or c = 0. If a = 0, then this implies all states are in

regions 1, 2, 5, or 6, and so rB = rAB, a contradiction. If c = 0,

this implies all states are in regions 1, 3, 4, or 6, and so

rA = rAB, a contradiction.

Thus det(N) > O. [X]
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Proof of Theorem 4: Without loss of generality, we can assume

det(N) = 1. We prove each of the six assertions separately.

(1) We must show that AA < 0, mBB < 0, and mAB,AB < 0.

Because nBB nB,AB and nAB,AB nB,AB, mA,A = (nB,AB nB,AB - nB,B

nAB,AB) < 0. If A,A = 0, then either (i) nB,B = 0, (ii) nAB,AB = 0,

or (iii) nB,B = nB,AB = nAB,AB- If (i), then all states are in

regions 1 or 3, implying rA = rAB. If (ii), then all states are in

regions 1, implying rA = rAB = 0. If (iii), then all states must be

in regions 1, 2, 5, or 6, implying rB = rAB. Since each case

results in a contradiction of assumption A4, mA,A < 0. Similar

logic can be used to deduce that mB,B < 0 and AB,AB < 0.

(2) We must show that A,AB > , B,AB > O, AB,A > 0, and

mAB,B > 0. Because nB,B > nB,AB and nA,AB nA,B, A,AB = (nB,B

nA,AB - nA,B nB,AB) > 0O If mAAB = 0, then either ng,gB = 0, n A ,AB =

0, or nB,B = nB,AB and n A,AB = nA,B- The first case implies that rA

rAB, the second implies thar rB = rAB, and the third implies that rB-=

rAB.

Thus we obtain a contradiction to assumption A4, and mA,AB > 0.

Similar logic can be used to show that mB,AB > 0. Furthermore, since

M is symmetric, m A,AB = mAB,A and mB,AB = mAB,B-

(3) We must show that A,B < 0 and B,A < 0. mA,B = (nA,B

nAB,AB - nA,AB nB,AB) = (e(e+a+c) - (e+a)(e+c)) = (-ac) < 0, because

a > 0 and c > 0, by (4). Furthermore, if a = 0, then all states must

be in regions 1, 2, 5 or 6, whereby rB = rAB, contradicting assumption

A4. Similarly, c > 0, otherwise rA = rAB, which again is a

contradiction. Thus -ac < 0, and so mA,B < 0.
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(4) We must show that mA,AB + mAB,AB < 0 and mB,AB + mAB,AB 0.

Note that + AB,AB + mA,AB = (- A,A nB,B + nA, B A,B + nB,B nA,AB -

nA,B nB,AB). But -nA,A nB,B + nA,B nA,B + nB,B nA,AB - nA,B nB,AB =

nB,B(- nA,A + nA,AB) - nA,B(nB,AB - nA,B) = -(e+d)(b-a) - e(c) < 0

O because b > a. Thus mAB,AB + mA,AB > 0. A parallel argument

shows that mB,AB + mAB,AB < 0.

(5) We must show that -mA,A mA,AB > -mB,A . First, -mA, A

mA,AB = nB,B nAB,AB - nB,AB nB,AB + nA,B nB,AB - nB,B nA,AB =

nB,B (nAB,AB - nA,AB) + nB,AB (nA,B - nB,AB) = (e+d)(c) + (e+c)(-c) =

c(d-c) > 0, because d > c. Thus -mA,A > mA,AB. Second, mA,AB + mA,B

(nB,B nA,AB - nA,B nB,AB + nA,B nAB,AB - nA,AB nB,AB). But this

second term is equal to e(d-c) + ea + a(d-c), all components of which

are nonnegative. Thus mA ,AB + mA,B > 0, i.e., mA,AB > - mA,B-

(6) This proof is identical to that of (5). [X]
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