Growing Music from Seeds:
Parametric Generation and Control of Seed-Based Music
for Interactive Composition and Performance

by
Alexander Rigopulos

B.S. Music
Massachusetts Institute of Technology
1992

Submitted to the Program in Media Arts and Sciences,
School of Architecture and Planning
in partial fulfillment of the requirements for the degree of

Master of Science in Media Arts and Sciences

at the Massachusetts Institute of Technology
September 1994

© Massachusetts Institute of Technology, 1994
All Rights Reserved

Signature of Author i u e g D
Program in Medid/Arts and Sciences
) August 5, 1994
C -
Certified by

/ .

/ M Tod Machover, M.M.
Associate P ssor of Music and Media
Information and Entertainment Section

MIT Program in Media Arts and Sciences
. N Thesis Supervisor

Accepted by ST

Stzepheﬁ A. Benton, Ph.D.
Chairperson
Departmental Committee on Graduate Students
MIT Program in Media Arts and Sciences

Rofek
MASSACHUSETTS INSTITUTE

OF TERHNMAL O

1 0oCT 12 1934
CRARES

Growing Music from Seeds:
Parametric Generation and Control of Seed-Based Music
for Interactive Composition and Performance

by
Alexander Rigopulos

Submitted to the Program in Media Arts and Sciences,
School of Architecture and Planning
on August 5, 1994
in partial fulfillment of the requirements for the degree of

Master of Science in Media Arts and Sciences
at the Massachusetts Institute of Technology

Abstract

Conventional musical instruments are low-level interfaces for music control:
one action or combination of actions on the instrument is required to
produce a single musical event (a note). Facile manipulation of such an
interface requires considerable expertise. Higher-level interfaces, in which
each controlling gesture elicits a complex series of musical events, could grant
non-expert musicians the opportunity to experience improvisatory music
composition and performance. The primary obstacle in developing such
interfaces is a the lack of a versatile high-level computer representation for
music. The current ubiquitous representation, the MIDI sequence, is a low-
level representation which is poorly suited for feature-based manipulation.
This document describes a new, higher-level musical representation scheme,
the parametric "seed", which is a versatile medium for real-time, feature-
based transformation of music. Discussion includes the conversion processes
to and from this seed format, details of existing implementations, related
musical interface design issues, and the many implications of this technology.

Thesis Supervisor: Tod Machover, M.M.
Associate Professor of Music and Media

This work was supported in part by the Yamaha Corporation, Sega of
America, and Interval Research Corporation.

Growing Music from Seeds:
Parametric Generation and Control of Seed-Based Music
for Interactive Composition and Performance

by
Alexander Rigopulos

Thesis Readers:

Certified by -

Mitchel Resnick, Ph.D.

Assistant Professor of Media Arts and Sciences
Learning and Common Sense Section

MIT Program in Media Arts and Sciences

Certified by ——— e —

7 1 ’ Evan Ziporyn, Ph.D.

Associate Professor of Music
Music and Theater Arts Section
MIT Department of Humanities

Acknowledgments

I am indebted to my advisor, Tod Machover, for his extraordinary support
and guidance throughout the past two years.

Secondly, I must thank Eran Egozy and Damon Horowitz, who did all of the
programming for this project, as well as much of the conceptual design.
Without their help, this project quite literally would not have been possible.

Additional thanks go to...

My readers, Mitch Resnick and Evan Ziporyn, for offering their valuable
perspectives.

My "wife", Jane, and my son, Adrian, for patiently tolerating two years of my
excessive absence from the homestead.

My parents, for all of the moral and culinary support.

All the boys of the Hyperinstruments Group, for reinforcing my suspicion
that, in fact, there is no line beyond which puerile humor goes too far.

Fumi Matsumoto, for all of those productive "business lunches".
Suzanne McDermott, for taking care of business. A lot of it.

Au Bon Pain, for an inexhaustible supply of caffeine, refined sugar, and
saturated fat.

General Chuck Yeager, for his high-altitude compahionship throughout the
past year, and for his novel ideas about joystick interfaces. In his sagely words:
"It's the man, not the machine."

Contents

1 INEPOAUCHON ...ttt s e 11
1.1 Hyperinstruments: Enhanced Expressivity for Experts................... 12
1.2 Enhanced Expressivity for Amateurs.........ccoveervicrncrrenincnsnnnnnnnns 14

2 Related WOTK.......uiiititttt s 15
2.1 Clarence Barlow ... 15
2.2 RODErt ROWE.......ciuimnnriiinininnnniiiisinssinstsssisesssssesssssssssssssssssaes 17
2.3 GeOIZe LeWIS....cvrieeeiieeetttectst et s 19
2.4 David COope......couirerrniniiiiiininsessssssesessssene 20

3 System DESiGM......ccuumiiricriiireteiietiieet bbb 21
3.1 The GeNerator..........ccoceeereriieniiiierciicce s seseses 23

3.1.1 Rhythm Generatorccviriririsnssissisisisissisisisienns 23
3.1.1.1 Temporal Framework..........ccccouvvvviriinnnrvcvrnenrncnnes 24
3.1.1.2 ACHVItY oottt 24
3.1.1.3 Syncopation.........cccueeeeereereeerereeesenenienirereseeienneens 26
3.1.1.4 Cross-Rhythm.........cocoerrriiriniciiiicincccn 28
3.1.1.5 Cross-Metrics.......cccouevrvirevrrirerernreriiinnnennnenseesosenessnnnens 31
3.1.1.6 Alternative Rhythmic Feels.......c...cccccoeervurivincnnnnen, 31
3.1.1.7 DUIatioNu......ceceeveeieiieiiictecteecteieecee v 32

"3.1.1.8 Procedure SUMMATIYcccceruermererrienririnrenereninninenns 32

3.1.2 Melody Generator...........ccciemivenirisessssnsesessisessssmesssseesessesees 33
3.1.2.1 Harmonic Framework..........ccooevvcurvnurincnnnnnee. 33
3.1.2.2 Pitch Classes........cccouvmcrerenveriercrcriisniicsenssensiiseneaens 35
3.1.2.3 Melodic Motion........oeviimniiiiiiniiriiiceicnicicinine 36
3.1.2.4 DYNAMICScevrriirrriereririiitereseitete et sese s 37
3.1.2.5 Duration.......cceeivnieiecririiniceeesrcnecenseeenens 37
3.1.2.6 Procedure SUMMATYccovvuviiererireriinrereniincnens 39

3.1.3 Chord Generatorccccevererureemrereemrirnrinnenssesesssesesssesessssssenns 40
3.1.3.1 Harmonic Framework..........cccoovevvvvrvennirvnenenns 41
3.1.3.2 Chord Range...........ccceveueuiemriicrrcnnicisiccicnicnennens 41
3.1.3.3 Chord Voicingcccccevvuruevrrrverrriericrcrcrcrcciceeerencnne 41
3.1.3.4 Harmonic Coloration.........cececeemvmrvirisininiiriiisniseneans 43
3.1.3.5 DyNamiCsccevuvivirirrereiiinietetiineerereieeneesesese s 44
3.1.3.6 Duration........ccoveiveriniereriiniiiinciiereeeeesennnes 44
3.1.3.7 Procedure SUMMATYcccceerererermrererenenreneneennanne. 44

3.2 The Input SEQUENCE.........coevvriririeiiireeetete ettt 45
3.2.1 The Note Sequence..........cccoeeereeneerninierereninreceeesseernas 45
3.2.2 The Harmony Track......ccouirenirnseeeretirieeceeneesneaas 46
3.3 The ANALYZEr ...ttt 46

3.3.1 Rhythm Analysis.......cccocevvuervireneerrnnierniesenese e 47

3.3.2 Chordal Analysis......ccccceuereerernrnrnererneereseeeieissse s 48

3.3.3 Melodic ANalYSiS......cocoruvirriirrurereunereriressisesesnesnnsesnissesssesensens 49

3.4 The SEEd......ocoomriiiririiiiiic s s e 50
3.4.1 Why the Seed Representation?cccouveiniveineieisinnennenens 50
3.4.2 The Seed's Harmony Trackcocvrvriivnuireeiennncncnncncnnnenen, 50

3.5 Real-Time CONtrol.......ccovvimiiiiiiiiniiiicciiccetsseseesee e 51

3.5.1 Range Calibrationccoeiiviviiiciniciinienenecicssenecnnes 51

3.5.2 Parameter Combination.........ocececvvuireiercureririnenccrenneccneneenes 52

3.5.3 Parameter Modulation and Seed Interpolation.................. 53

3.5.4 Stable and Unstable Transformation............cccocvuveueurereuencnes 55

3.5.5 Automated Pattern Variation..........cccocoeoevererrvcennencnccinienes 56

3.5.6 High-Level and Low-Level Control..........c.cccoeuruverrvcrereenenenne 57

3.5.7 Initial Experiments with Interfaces.........c.ccccoeerrueureecununnnee. 59

3.5.7.1 Joystick Interface 1: Chord-Control Model............ 60

3.5.7.2 Joystick Interface 2: Melody-Control Model.......... 61

3.5.7.3 Keyboard Interfacecccocoerureveeurninenenieeninirieennas 62

4 FULUTE WOTK ottt besens 63
4.1 Timbre Parameters..........ocierviniueinceescnirecinecienesiseesssssesesesenas 63

4.2 Ensemble Parameters...........ccoueveierreverenerrrneusieeesisenssnisesisesssssnsenensns 64

4.3 Percussion Parameters.............covviivicecnnninieininnnrinenesiesssesesesssssennns 65

4.4 Harmonic Parameters...........ccovuvrieemninicrseneeneninencessessesesssssesesesssenes 65

4.5 Seed Length Parameterscococeeveveveeiverenessrsnesnssssssessesesse s 66

4.6 Database NaVigationcoccccvcuiirnerniurecnnernineisrereieesisesssessessessns 66

4.7 Performance Parameters..........coccocoovvcceeerrenernerensininsnninesninseesesissesenens 67

4.8 Musical Intelligence ... 67

5 Applications: Reaping the Harvest..........ccccoeveeenerveinerinsrecsinesisesscsnseses e 68
5.1 A Palette of Seeds for a Compositional Canvas..........coccevureereureureunee 68

5.2 Subservient Recordings: Playing Your CD-Playerc.cceeuuunee.. 69

5.3 Responsive Accompaniment for Instrumentalists.............ccccc......... 70

5.4 Music Teaching Systems..........cccccouviviericrrinerrenneinessineensnessisessesesnnns 71

5.5 Sensitive SOUNALIACKScocuimieiiviviecicicriecreicieisee et 71

5.6 BEYyONd MUSICovrvieriireiecnicn et sese et sasans 72

5.7 CONCIUSION ...ttt s st bnes 72
ADPPENIX oottt ettt ettt st s s 73
BIbLIOGTAPNY ..ottt 78

10

1 Introduction

The MIDI sequence is the ubiquitous modern representation for computer
music scores. The development of MIDI was an important step towards
abstracting the computer music score, because it eliminated timbral
specification. The MIDI sequence instead preserves only a list of performance
events, such as the timing and velocity of key presses and releases. The
sequence can thus be reconstituted into sound through any MIDI tone
generator or sampler using any desired timbre.

This abstraction was quite powerful in context; no universal computer score
representation had preceded it. But although the MIDI protocol was a leap
forward, it is still a comparatively low-level representation. Each datum in
the note sequence corresponds to a single, specific event in "note-space”.
Thus, the MIDI sequence is an even more low-level representation than a
conventional written score, in which each symbol represents a whole body of
implications governed by the relevant performance practice.

A low-level representation of this kind is useful when absolute specificity is
desired by the individual who is manipulating the data within the
representation. However, absolute specificity can also be encumbering. Often,
manipulation of a complex system of low-level variables can be quite vexing,
as changing one of the variables does not affect any salient features of the
system's behavior. Alternatively, a far more intuitive control paradigm
under many circumstances is "feature-based" control, in which the accessible
system variables do control the salient features of a system's behavior. These
high-level variables are normally composed of webs of the system's hidden
low-level variables.

The resulting interface requires only that a user is capable of expressing a
desired qualitative change in the state of the system. The user need not be
capable of expressing each of the incremental low-level modifications
necessary to achieve that change. This type of feature-based interface has vast
unrealized potential in music.

11

There is an enormous population of people who are not skilled musicians,
but for whom music is deeply important. For these people, the experience of
improvisatory music composition and performance has thus far been utterly
inaccessible. Adept performance and composition requires literally years of
training. But with the advent of high-level musical instrument interfaces,
this barrier will slowly deteriorate.

To facilitate a feature-based interface, a more abstracted music representation
system is needed. The purpose of the research described in this document was
to build just such a representation system. This system describes music
sequences as a fluctuating set of parameters, each of which corresponds to
some salient musical property. This set of parameter data, the "seed", is the
"parameter-space” equivalent of the input sequence; it will contain all of the
information necessary to regenerate the original sequence. The benefit of this
design is that any of these parameters can then be manipulated in real-time to
dynamically shape features of the music being generated. The resulting
interfaces to such a system could offer real-time feature-based control of
music to provide non-expert musicians with a form of liberated musical
performance and experimentation which they could never experience
otherwise.

1.1 Hyperinstruments: Enhanced Expressivity for Experts

Since 1987, the goal of the Media Lab's Hyperinstruments Group under the
direction of Tod Machover has been to enhance human expressivity in music
performance through the use of technology. This research effort has been
conducted through a diverse series of projects collectively known as
"hyperinstruments" [Machover92].

During the first several years of development, hyperinstruments were
designed exclusively for virtuoso musicians. The hyperinstrument model
consists of three basic parts:

* A physical instrument, played by a performer. Sensors on the

instrument/performer gather as much data as possible about what the
performer is doing physically. Common data types are: (a) a MIDI

12

stream, (b) an audio signal produced by the instrument, and (c) output
from sensors designed to measure some physical aspect of the
instrumental technique (e.g., sensors on a cellist's bow for measuring
bow position with respect to the bridge).

e A computer which analyzes this data to extract higher-level musical
information about the performance (e.g. bowing technique from bow
position data). The computer then uses this information to control
some aspect of either the sound being produced by the computer or the
sound being produced by the instrument itself. The manner in which
the performance gestures control the computer output is determined
by the composer.

e The actual sound-generating or sound-altering devices: synthesizers,
computers for sample playback or audio processing, external effects
processors, etc. The output from these devices is dynamically shaped by
the computer's interpretation of the performance.

One typical result is a concerto-type situation is which a solo performer on a
hyperinstrument is accompanied by a computer "orchestra". Consider, as a
simple example, a passage in which a hypercellist's bowing technique controls
the articulation of accompanying material in the computer score: if the
cellist's technique is particularly marcato, the computer may exaggerate this
gesture by doubling with percussive attacks; or, if the bowing technique is
more legato, the computer may complement this gesture by doubling with
softer, sustained tones.

The hyperinstrument, then, effectively has two general stages: an analyzer
stage for determining the performer's musical gestures, and a generator stage
for mapping these gestures onto the output from the computer. A parametric
music generator could play an important role in the function of the latter
stage: given a front end which could effectively extract important features of a
player's performance, the parametric generator could then amplify the
performer's gestures in the accompanying music by using these features to
shape parameter envelopes over time. The challenge is to define a parameter
hierarchy such that the transformations in the generated music exhibit

13

qualities which bear a transparent relationship to musical ideas being implied
by the performer.

1.2 Enhanced Expressivity for Amateurs

Until recently, hyperinstruments have been designed only for expert
instrumentalists. The premise was that a virtuosic performer who is in
complete control of his/her instrument can have expanded expressivity
when given the power to effectively control a greater spectrum of musical
sound and activity than is accessible through a conventional instrument.

During the last two years, however, the Hyperinstruments Group has
investigated the possible application of hyperinstrument technology to non-
expert musicians. The first such project was an interactive percussion system
called DrumBoy [Matsumoto93]. Our goal with DrumBoy was to give non-
expert percussionists tools for creating and manipulating complex drum
patterns. In previous hyperinstruments, high-level musical gestures were
analytically extracted from an instrumental performance. In DrumBoy,
however, the high-level musical intentions could be directly expressed by the
user. Several keys on a keyboard interface were labeled with adjectives
describing salient features of drum patterns (complex vs. simple, energetic vs.
calm, mechanical vs. graceful, hard vs. soft, etc.).

Fumi Matsumoto and I then developed transformation functions for all of
these adjectives. For each adjective-based transformer, a generalized
algorithm was needed which could modify any drum pattern in a manner
consistent with the implications of that adjective. To accomplished this, we
used an agent-based architecture. Each agent performed a very simplistic
operation, such as displacing a note in time or determining a note's position
with respect to the beat. Multiple agents were then linked together into
hierarchical networks. Transformer networks were used to effect complex
pattern alterations. Analyzer networks assisted the system in determining
which transformer networks would be most effective under a given set of
conditions. The challenge was to design these networks such that the
resulting transformations would evoke the musical properties implied by a
given adjective.

14

When completed, these simple controls permitted the user to qualitatively
express a desired effect without needing to specify the countless discrete edits
that might be necessary to achieve that effect. The seed music research is a
direct outgrowth of this high-level control principle which was initiated in
DrumBoy. The logical extension was to add real-time, feature-based control of
pitched instruments as well as (non-pitched) percussion.

In order to do this, however, it was necessary to overcome the most
fundamental obstacle in the development of DrumBoy: the unsuitability of
the MIDI score representation for feature-based manipulation. This
inadequacy results from the fact that while two drum patterns in different
musical contexts can sound qualitatively quite similar, their underlying low-
level activities might be quite different. While designing the adjective-based
transformers, it became obvious that creating broadly applicable music
transformation algorithms within a low-level, note-space representation
would be extremely elusive. Thus, for the considerably more challenging task
of real-time control of pitched instruments, a higher-level representation was
clearly needed.

2 Related Work

In addition to the hyperinstrument projects, a substantial body of pertinent
work in related fields has already been done as well. Some of the most
relevant contributors include Clarence Barlow, who has set the most
significant precedents in the parametrization of music; Robert Rowe and
George Lewis, who have advanced the general state of feature-driven
interactive music systems; and David Cope, who has had much success at the
task of extracting stylistic traits from a sample of music in order to generate
more stylistically similar music.

2.1 Clarence Barlow

Barlow's "Bus Journey to Parametron (all about Cogluotobiisisletmesi)”
[Barlow81] is a magnificently creative document in which he meticulously
details an elaborate system he crafted for parametric composition of music.

This system was initially utilized in his seminal work, Cogluotobiisisletmesi,

15

a piece for piano which was produced entirely through parametric textural
shaping of a pre-defined harmonic framework.

His objective when commencing the project was to investigate the
implications of composing a piece based upon the dimensions of musical
texture. He expands upon the "weaving" implications of the word texture
(from Latin, textura) by describing a musical texture as containing a number
of "strands" running parallel in time. Each of these strands consists of a series
of "monochronous events", i.e., events succeeding each other without
overlapping . (The strand concept should not be confused with the concept of
a "voice" in classical counterpoint; a chord is one monochronous event.)

He defines two temporal realms of musical behavior: the microscopic, in
which repeating periods are perceived in the pitch domain, and the
macroscopic, in which repeating periods are perceived in the rhythm domain.

The consistency of each strand is governed by eight parameters. The first six
are three pairs of two (microscopic and macroscopic equivalents):

1 & 2) harmonic & metric cohesion, "dealing with the extent of
harmonic or metric agreement between the individual pitches
or spans".

3 & 4) melodic & rhythmic smoothness, "dealing with the non-
angularity of the melodies (increasing angularity leads to
pointillism) or non-syncopatedness of the rhythms involved".

5 & 6) chordal & tactile density, "dealing with the number of notes
forming one event, or the average number of events in a unit
time".

The last two are auxiliary parameters:

7) articulation, "dealing with the duration of events independent of
timing".

16

8) dynamics, "dealing with their loudness".

Finally, an additional parameter, conformity, "deals with sameness or near-
sameness of the micro- or macro-temporal material in the streams
concerned".

The theoretical purity and simplicity of these control axes is attractive, and for
Barlow this system was compositionally powerful. It allowed him to compose
by independently governing the evolution of the surface features of a
generated piece.

However, the parameter set he defined does not embody a complete
representation for a broad class of musics, because there is no "transform”
that exists between note-space and Barlow's parameter-space that can be
reciprocated to regenerate the original object in note-space. So there is no
mechanism by which any existing score can be degenerated and regenerated
parametrically to allow feature-manipulation of that original score.
Consequently, the applicability of Barlow's system was more or less restricted
to his own compositional turf.

2.2 Robert Rowe

Robert Rowe classifies interactive music systems along three dimensions
[Rowe93]:

1) The first dimension addresses the linearity of the system response.
Score-driven systems are linearly driven. The system anticipates the
performance of a specific musical score as its input. System response is
guided by the procession of this score.

Performance-driven systems are non-linearly driven. No fixed score is

anticipated. System response is guided solely by perceptual features of
the input.

17

2) The second dimension addresses the system's method of generating its
output.

Transformative systems employ transformation algorithms to produce
variants of the input material.

Generative systems use small amounts of pre-stored material and rules
for algorithmically generating new material.

Sequenced systems playback pre-stored sequences which are triggered
by the input.

3) The third dimension addresses the system's role in the interactive
performance.

Systems using an instrument paradigm amplify musical gestures made
by a soloist into the output material. The output can be thought of as
an elaborated extension of the solo performance.

Systems using a player paradigm are not subordinate to the soloist. The
computer player has a musical voice of its own, which may choose
either to reinforce or to disrupt the musical directions of the soloist.

As an example, consider Rowe's own interactive music system, Cypher. It
consists of a listener stage and a generator stage. The listener is a real-time
performance analyzer which gathers simple perceptual features of the input
performance ("density, speed, loudness, register, duration, and harmony").
The listener does not compare the input to a stored score, thus Cypher is a
performance-driven system. Each of these perceptual features is then mapped
to an output function; when a particular feature of the input exceeds some
threshold, the appropriate output function is called. These output functions
either transform the input stream, generate material algorithmically, or
playback sequences. Thus Cypher combines transformative, generative, and
sequenced playback. Finally, Cypher uses the player paradigm, by which
features of the system's responses can either combat or comply with the
features of the input.

18

Cypher's usefulness is more or less restricted to the trained composer who is
committed to developing functionally interesting "webs" of connections
between the input features and output functions. A considerable amount of
expertise is needed to use the system effectively, and even under ideal
circumstances, the musical relationship between a performer's input and
Cypher's output is often quite opaque. Additionally, any one web which relies
on generative or sequenced playback is only likely to be useful within the
context of a specific piece designed by the composer. I am more concerned
with a system that is more generally applicable.

The seed music system, with an accompanying high-level interface of some
kind, falls into the categories of a performance-driven system using an
instrument paradigm. Its output methods, however, are a hybrid of
transformative, generative, and sequenced types: the seed is pre-stored, like a
sequence; it is converted into a MIDI stream generatively; and it is subject to
transformation in the process. Here Rowe's classification scheme is
inadequate to completely describe the seed music system. His scheme only
addresses scenarios in which the input to the system is a stream of music
event data (MIDI) from an instrumentalist. This classification is inadequate in
that it neglects the possibility of the input consisting of an entirely different
type of performance data. The interface to the seed music system allows a user
to directly manipulate the transformative processes of the system, without
the barrier of a conventional instrument in the chain.

2.3 George Lewis

George Lewis attacks the challenges of interactive music systems from the
perspective of a jazz trombonist. Not surprisingly, he is primarily concerned
with developing systems that can participate as equal contributors--not
subordinates--in the context of group improvisation; he thus champions the
player paradigm almost exclusively [Lewis85].

Similarly, his systems are performance-driven and entirely generative. There
are no pre-stored sequences whatsoever. Instead, each system has a battery of
(highly probabilistic) algorithmic composing routines which define that
system's particular compositional style. The input streams from external

19

performers are only used to help determine which of these distinctive
compositional routines are chosen at a given time. Consequently, the
system's output is responsive to the input, but the system will also defiantly
retain its own distinctive characteristics at all times [Rowe93].

Lewis's systems are limited by the fact that his compositional algorithms are
only useful in the musical context which he primarily cares about: freeform
jazz. His systems also have limited versatility in that they do not make any
accommodation whatsoever for the instrument paradigm; they are rather
recalcitrant ensemble players.

Yet this same stubbornness might have interesting implications for a high-
level control interface: instead of giving a user complete freedom to take the
music in any direction, the user is only given the freedom to operate within
the stylistic boundaries of a pre-defined musical personality. So for example, a
user might have a high-level interface for controlling a Thelonious Monk-
esque piano performance. That user could wrestle the performance in a
variety of directions, but the output would always be distinctively Monk.

2.4 David Cope

David Cope's work is not concerned with interactive systems, but instead
with the problem of representing musical style. Specifically, he has addressed
the challenge of extracting a specific composer's distinctive features, or
"signatures"”, through analysis of a large sampling of that composer's works
[Copedl].

Cope's EMI (Experiments in Music Intelligence) systems are essentially huge
pattern induction engines. The EMI system performs an exhaustive search of
number sequences contained in the input sampling of scores, trying to find
recurring patterns. A sequence that recurs (even in an approximate form)
with sufficient frequency is then said to be a stylistic signature of the given
composer. The success of such a system, of course, depends entirely upon how
these "number sequences” are derived from the input scores. Some of the
sequences are just linearly explicit in the score, e.g., a series of intervals in a
melody. But these linearly explicit sequences are not useful for anything other

20

than, say, gathering an inventory of melodic fragments or cadential patterns
to which a composer is partial.

So additionally, the EMI system performs a temporally hierarchic score
deconstruction (loosely rooted in Schenkerian analysis). Then, sequences on
each temporal tier of that hierarchy can be analyzed. Such analysis is clearly
necessary for identifying a composer's higher-level signatures, such as
proclivities in the treatment of formal structural.

The quality of Cope's methods, of course, can be measured by the success with
which his stylistic representation can be used to regenerate music bearing the
features of a given composer. This is achieved by superimposing a composer's
signature patterns upon a pre-existing structural framework, such as a generic
classical sonata form. And in fact Cope's system does indeed perform this task
with considerable success.

The analytic portion of Cope's methods are not directly relevant to the seed
music system. His analysis relies upon exhaustive analysis of large volumes
of music, and thus would be ineffective when used to analyze a single seed.
The generative portion of his methods, however, is potentially quite
applicable to the seed system. Recall the "Monk filter" described in section
2.3. Cope's signature representation might be abstractable into a parametric
form, in which it could be used to guide and constrain the seed regeneration
process. This would be an essential step towards realizing a system that could
restrict its output behavior in such a way as to mimic the characteristic traits
of a specific composer.

3 System Design

The primary design principle for the seed music system was that it should
provide a platform to facilitate the rapid development of real-time, feature-
based musical control interfaces. This required a model which would generate
music in real-time as a function of a set of feature-based parameters. These
parameters also had to be easily abstractable into higher-level parameters for
the sake of interface versatility.

21

Because the applications of such a system are most relevant in a dynamic,
improvisatory context, we initially concentrated upon musical genres in
which repetition and improvisation play major roles, namely pop and jazz.
Consequently, the parameters described below were chosen specifically to
provide a flexible and robust representation for short repeating cycles (on the
order of one or two measures) within these genres. (Issues regarding the
parametrization of a more universal body of musics are discussed at length in
chapter 4.)

Below is an overview of the system's basic architecture:

Analyzer : Generator
Input Sequence 7 > Palgaer:gtnc —» Output

Real-Time
Controllers

The input sequence is a MIDI file containing the music which the user wishes
to manipulate. The analyzer then extracts several musical parameter values
from this input as they change over the course of the sequence, producing a
set of parameter envelopes, the seed. This seed is the parameter-space
representation of the input sequence. The generator then converts this seed
back into MIDI output. Real-time controllers are used to tweak parameters
settings in order to dynamically change musical features of the generated
output.

All of the software for this project was written by Eran Egozy and Damon
Horowitz. The development environment was Hyperlisp, created by Joe
Chung at the MIT Media Lab [Chung91]. Hyperlisp is an extension of
Macintosh Common Lisp that includes a scheduler and a MIDI input/output
handler.

22

3.1 The Generator

The generator is the heart of the system. It consists of three independent
components: a thythm generator, a chord generator, and a melody generator.
Twenty-four times per beat, the rhythm generator decides whether or not a
note/chord should be played at that instant. If the rhythm generator does
decide that a note/chord should be played, it calls upon the melody or chord
generator to produce output:

Rhythm
Generator

—P> Melody — play note

Generator

or

Rhythm
Generator

> Chord — play chord

Generator

It would have been possible to generalize the melody and chord generators
into a single generator. This might be powerful for emulating behavior such
as a pianist's rapid shifts between melodic and chordal activity. However, for
the sake of simplicity, it was desirable to keep the two generators separate
during development .

Several generators can run in tandem, which allows many instrumental
layers to be generated concurrently as an ensemble. For example, in a simple
jazz context, a rhythm/melody generator can produce a bass line, while a
rhythm/chord generator produces a pianist's left hand, while another
rhythm/melody generator produces the pianist's right hand.

3.1.1 Rhythm Generator

The rhythm generator is responsible for deciding when a note/chord will be
played, as well as the duration of that note/chord and how much dynamic

23

accentuation should be applied to it. The rhythm generator makes these
decisions as a function of the following parameters:

* activity

* syncopation

* syncopated-accent
¢ cross-thythm

¢ cross-accent

¢ cross-meter

Each of these parameters is an integer between 0 and 127 to facilitate control
via MIDI, which also uses 7-bit controller values. The rhythm generator also
requires some supplementary variables:

* tempo

* simple-compound

¢ simple-cross-ratio

¢ compound-cross-ratio
* swing

¢ half-shuffle

3.1.1.1 Temporal Framework

The tempo variable specifies the number of beats per minute during playback.
A beat (at any tempo) is represented as 24 temporal subdivisions, or "slots".
The time period between slot increments, then, is 1/ (tempo*24). At each slot,
the rhythm generator decides, as a function of its parameters, whether or not
to call upon the melody/chord generator to produce a new note/chord at that
instant. (I will refer to slots as "full” or "empty" depending upon whether the
rhythm generator has or has not decided to request a new note/chord in that
slot.)

3.1.1.2 Activity

The activity parameter governs the average frequency with which slots are
filled. The definition of the activity parameter depends upon the state of a flag

24

variable, simple-compound, which determines whether the metric mode is
simple (primary subdivision of beats into two parts) or compound (primary
subdivision of beats into three parts). For each of these modes, five activity
"tiers" are defined. An activity tier is an activity parameter value at which a
single rhythmic pulse level is consistently generated:

SIMPLE MODE ACTIVITY TIERS COMPOUND MODE ACTIVITY TIERS
Activity Pulse Full Activity Pulse Full
Parameter Level Slots Parameter Level Slots
0 ! || none 0 ! ‘l none
32 J i 0+24n 32 J 0+24n
64 | 0+12n 64 > 0+8n
96 d 0+6n 96 > 0+4n
127 N 0+3n 127 »1 0+2n

In each table, the third column contains what I refer to as a "slot series",
which takes the form ® + Tn. The n simply represents the series of integers
from 0 to infinity. Thus, ® + Tn represents a series of slots spaced at intervals
with a period, T, and starting at a phase, ®. Each activity tier has a slot series
with a phase of 0 and a period equaling the number of slots between attacks
for the rhythm value at that pulse level. (Note that the slot series are only
displayed here in tabulated form for the sake of clarity. In the software, the
series are derived from a formulaic generalization, as opposed to being
retrieved from a table.)

When the activity parameter is at an intermediate value between two tiers, it
must temporarily commit to one of the adjacent pulse levels before
determining whether or not the current slot will be filled. This selection is
made probabilistically as a linear function of the parameter's position
between the two tiers. For example, at an activity value of 48 (halfway
between 32 and 64), there is a 50% chance that the lower (quarter-note) pulse
will be selected and a 50% chance that the upper (8th-note) pulse will be
selected. Once a pulse level has been chosen, the slot is tested to see if it is a
member of the slot series for that level. If so, the slot will be filled; otherwise,
the slot will remain empty.

25

The result is that the onbeat slots of the upper pulse level will always be
filled, but the offbeat slots of the upper pulse level will only be filled
probabilistically as a function of the activity parameter's relative position
between the upper and lower tiers. For example, given a sufficient window of
time, an activity value of 48 (halfway between the quarter-note and 8th-note
tiers) will produce and equal distribution of beats with a quarter-note rhythm
(d) and beats with an 8th-note rhythm (JJ).

3.1.1.3 Syncopation

Parametric syncopation is achieved in two ways. First, the syncopation
parameter probabilistically inhibits the occurrence of notes at onbeat slot
positions and encourages the occurrence of notes in offbeat slot positions.
Second, the syncopated-accent parameter softens notes at onbeat slot positions
and accents notes at offbeat slot positions. (The syncopated-accent parameter
can also be used to subdue syncopation by accenting onbeat slots and softening
offbeat slots.)

Syncopation does not have identical meaning at all activity levels or meters,
s0 a complimentary pair of syncopated slot series is needed for each pulse
level and metric mode:

SIMPLE MODE SYNCOPATION SLOT SERIES'

Pulse Syncopated Onbeat Slot Series for Offbeat Slot Series for
Level Pulse Inhibition /Softening Encouragement/Accent
e | none none

J) 0+48n 24 +48n

> 1) 0+ 24n 12+ 24n

> DK 0+12n 6+12n

ﬁ || q ﬁ ’l 0+6n 3+6n

26

COMPOUND MODE SYNCOPATION SLOT SERIES'

Pulse Syncopated Onbeat Slot Series for Offbeat Slot Series for
Level Pulse Inhibition/Softening _ Encouragement/Accent
o] none none

J td 0+48n 24 +48n

o 733 1 0+24n 16 +24n

d ;3} 1 0+8n 4+8n

A Y 0+4n 2+4n

At each pulse level, an onbeat slot series exists that contains the slots which
are eligible for inhibition. If the current slot is full, and it is a member of the
onbeat slot series for the current pulse level, the syncopation parameter
determines the probability of emptying the slot: Plempty slot] =

syncopation/127.

At each pulse level, an offbeat slot series also exists which contains the slots
which are eligible for encouragement. If the current slot is empty, and it is a
member of this offbeat slot series for the current pulse level, the syncopation
parameter determines the probability of filling the slot: P[fill slot] =

syncopation/127.

The syncopated-accent parameter is used to either induce or subdue
syncopation through dynamic inflections at the appropriate slot positions. An
accent equaling the parameter's distance above the center (syncopated-accent -
64) is added to all slots in the offbeat slot series and subtracted from all slots in
the offbeat slot series at the current pulse level. Thus, no accents result when
the parameter is centered at 64. When the parameter is increased, offbeat slots
are accented and onbeat slots are softened, which induces syncopation. When
the parameter is decreased, onbeat slots are accented and offbeat slots are
softened, which subdues syncopation.

The accent/softening for each slot caused by syncopation is summed with the
accent/softening for each slot caused by cross-rthythm (see section 3.1.1.4).
The result is passed as a key velocity offset to the melody and chord
generators.

27

3.1.1.4 Cross-Rhythm

The term cross-rthythm refers to rhythmic oppositions achieved by
superposition of repeating temporal periods of different lengths. In my
opinion, these rhythmic oppositions fall into three broad classes:

Type 1
Two phrases of different lengths repeat simultaneously:

|"J Jd JTId ‘I — efc.
[J J | — ete.

Type 2

Two simultaneous beats of different lengths can be perceived. For example,
the following two figures represent two different ways of hearing a single
pattern:

3
N [
N R Fd J J J

Type 3
Simple and compound beat subdivisions are superimposed:

el
Frrl

One could view all of these cases simply as manifestations of the same effect:

* In type 1, the repeating periods are 3 beats and 4 beats, producing a
mutual period of 12 beats.

* In type 2, the repeating periods are 1 beat and 3/4 of a beat (or the
reciprocal, if you wish), producing a mutual period of 3 beats (or, again,
4 beats if you wish).

* In type 3, the repeating periods are 1/4 of a beat and 1/3 of a beat,
producing a mutual period of 1 beat.

28

Yet each of these cases also has a very different qualitative effect, and so I have
chosen to represent them differently within this system:

¢ Type 1, in which rhythmic oppositions occur between phrases of several
beats in length, has no parametric representation. It is accomplished
instead by parallel generation, looping multiple seeds of different
lengths simultaneously.

e Type 2, in which rhythmic oppositions occur between the beat and
another competing period of comparable scale, will be henceforth
referred to as cross-rhythms and will be addressed by the cross-rhythm
parameter.

e Type 3, in which rhythmic oppositions occur between simple and
compound subdivisions of a beat, will be addressed by the cross-meter
parameter.

Cross-rhythms are produced in an identical manner as syncopation, both
through slot inhibition/encouragement and accentuation. Again, cross-
rhythm does not have identical meaning at all activity levels or meters, so a
complimentary pair of phased slot series is needed for each pulse level and
metric mode:

SIMPLE MODE CROSS-RHYTHM SLOT SERIES'

Pulse Slot Series for Phase Difference for
vel Inhibition i Encor A

] none none

J none none

Dl 0+ 48(simple-cross-ratio)n 24

d 1 0+24(simple-cross-ratioyn 12

A 0+12(simple-cross-ratio)n 6

29

COMPOUND MODE CROSS-RHYTHM SLOT SERIES'

Pulse Slot Series for Phase Difference for
Level Inhibition/Softening Encouragement/Accent
! ‘l none none

J || none none

j) ‘I 0 + 24(compound-cross-ratio)n 12

d 0+ 12(compound-cross-ratio)n 6

A ‘l 0 + 6(compound-cross-ratio)n 3

The variables simple-cross-ratio and compound-cross-ratio are ratios used to
define the relationship of the desired cross-rthythm to the beat in each metric

mode. So, for example, a 3:4 cross-rhythm in simple mode would have a
simple-cross-ratio of 0.75. At the 16th-note pulse level, this would produce a
dotted-8th feel. At the 8th-note pulse level, this would produce a dotted-
quarter feel.

Note that no cross-rhythm slot series are defined for the quarter-note pulse
level. This is because cross-rhythms at this pulse level depend upon whether
the seed is in duple, triple, etc. meter, and there is no system representation
for this aspect of meter. This form of rhythmic opposition is "type 1", as
described above.

At each pulse level, one slot series exists which contains the slots which are
eligible for cross-rhythmic inhibition. If the current slot is full, and it is a
member of this slot series, the cross-rhythm parameter determines the
probability of emptying the slot: Plempty slot] = cross-rhythm /127.

At each pulse level, a second slot series (out of phase with the first) also exists
which contains the slots which are eligible for cross-rhythmic
encouragement. If the current slot is empty, and it is a member of this slot
series, the cross-rhythm parameter determines the probability of filling the
slot: P[fill slot] = cross-rhythm /127.

The cross-accent parameter is used to induce cross-rhythm through dynamic
inflection of the appropriate slot positions. An accent equaling the parameter

30

value is added to all slots in the first slot series and subtracted from all slots in
the second slot series at the current pulse level. Thus, no accents result when
the parameter is centered at 64. When the parameter is increased, one cross-
rhythmic slot series is accented and the other cross-rhythmic slot series (out of
phase with the first) is softened, producing a cross-rhythm.

The accent/softening for each slot caused by syncopation (see section 3.1.1.3)
is summed with the accent/softening for each slot caused by cross-rhythm.
The result is passed as a key velocity offset to the melody and chord
generators.

3.1.1.5 Cross-Metrics

Transition between simple and compound meters is accomplished with the
cross-meter parameter. This parameter simply determines the probability that
the rhythm generator will temporarily use the metric mode not indicated by
the simple-compound flag: P[swap mode] = cross-meter. In other words, the
cross-rhythm parameter controls the likelihood of inducing triplets when in a
simple meter and duplets when in a compound meter.

There is one additional restriction on these metric transitions: they can only
occur in slots which fall in the activity slot series for the pulse level below the
current slot's pulse level. This is to prevent the possibility of awkwardly rapid
transitions between metric modes.

3.1.1.6 Alternative Rhythmic Feels

The swing flag, when enabled, "swings" offbeat 8th-notes by delaying the
execution of full slots in the series 12 + 24n by four slots (i.e., JJ becomes T])).

Similarly, the half-shuffle flag, when enabled, adds a half-shuffle feel by
delaying the execution of full slots in the series 6 + 121 by two slots (i.e., 379
becomes 53}5 s:b).

31

3.1.1.7 Duration

Note duration is managed by the melody and chord generators. However, in
order for the melody and chord generators to manage duration dynamically,
they must constantly be aware of the current pulse level (see section 3.1.2.5).
To accommodate this need, the rhythm generator passes the activity value
and slot number for every slot, full or empty, to the melody or chord
generator.

3.1.1.8 Procedure Summary

The rhythm generation procedure can be summarized in the following
pseudo-code:

choose mode as f(simple-compound, cross-meter)
choose pulse level as f(activity)

choose activity slot series as f(pulse level, mode)
fill slot as f(slot #, slot series)

choose syncopation slot series as f(pulse level, mode)
fill or empty slot as f(slot #, syncopation, slot series)
adjust accent as f(slot #, syncopated-accent, slot series)

choose cross-rhythm slot series as f(pulse level, mode, cross-ratio)
fill or empty slot as f(slot #, cross-rhythm, slot series)
adjust accents as f(slot #, cross-accent, slot series)

delay output as f(swing, half-shuffle)
pass activity to melody/chord generator
if (slot is full)
request new note/chord
pass velocity offset to melody/chord generator

increment slot #
repeat loop

32

3.1.2 Melody Generator

When called by the rhythm generator, the melody generator chooses a pitch, a
dynamic, and a duration using the following parameters:

chord-tone-weight

scale-tone-weight

ripe-tone-weight

direction
* leap-probability
* leap-size
¢ dynamics
* duration

It also requires the following supplementary variables:

¢ chord-root

¢ chord-type

* key-root

¢ key-type

e force-chord-tone
e force-root

¢ ceiling

e floor

3.1.2.1 Harmonic Framework

The melody generator begins by deciding which pitches are eligible to be the
chosen as the next pitch. In order to do this, the melody generator must first
check the current harmonic status of the system, which is represented as a
chord-root and a chord-type. This status is never determined by the melody
generator. Instead, it is either determined by the seed or specified in real-time
by the user (see section 3.4). In either case, the harmonic status is then
accessible to the melody generator, which makes its choices as a function of
that data.

33

A chord-root is simply the pitch class upon which the current harmony is
rooted.

A chord-type is a list of lists, containing the following elements:

* A list of the required scale degrees which define a particular type of
chord. These scale degrees are listed as semitone intervals with
respect to the root note, 0. For example, in a dominant 7th chord
type, the required scale degrees would be the major third (4) and the
minor 7th (10).

* A list of auxiliary scale degrees which define this type of chord. These
scale degrees are typically included as part of the specified chord type,
but are not essential to categorizing a chord as being one of that type.
For example, in a dominant 7th chord type, the auxiliary scale degree
would be the perfect 5th (7).

* A list of scale degrees to define a modal-non-chord harmonic
coloration for that chord type. For example, this category of
coloration for a dominant 7th chord type might be the scale degrees
which complete the mixolydian mode around that chord: the major
9th (2), the perfect 11th (5), and the major 13th (9).

* A list of scale degrees to define a chromatic-non-chord harmonic
coloration for that chord type. For example, this category of
coloration for a dominant 7th chord type might be the minor 9th (1),
the augmented 9th (3), the augmented 11th (6), and the minor 13th

8).

* Lists for any additional groups of scale degrees which a designer
believes to be functionally similar in the desired context.

As described here, the method of defining chord-type is inadequate for tonal
music. For example, in the key of C major, a D minor chord should have a
different set of modal scale degrees in its chord-type than an E minor chord.
Otherwise, colorations which would be diatonic over D minor might be

34

chromatic over E minor. Thus, a single minor chord-type does not suffice.
Instead, several minor chord-type's must be defined, each of which has
coloration lists reflecting the harmonic role of that particular minor chord
within a tonal structure. For example, the following three minor chord-type's
would be needed within a diatonic context: minor-dorian, minor-phrygian,
and minor-aeolian. The required and auxiliary scale degrees for these chord-
type's would be identical, but the modal-non-chord and chromatic-non-chord
scale degrees would be different.

To relieve the user of having to select chord-type's manually, an additional
structure, a key-type, is used. A key-type is a list of chord-type's corresponding
to all scale degrees within a particular mode. The key-root specifies the actual
pitch class upon which the key-type is based. Given the key-root, then, any
chord-root will correspond to some position in the key-type list. That position
contains the chord-type associated with the specified chord-root. To put it in
simpler terms, if a D chord (chord-root) of unspecified type is requested the in
key of C (key-root) major (key-type), the table would return a minor-dorian

chord-type.
3.1.2.2 Pitch Classes

The melody generator interprets a chord-type list by dividing it up into three
groups of melodic tones: chord tones, scale tones, and "ripe" (dissonant)
tones.

e The chord tone group combines the required and auxiliary scale
degrees plus the chord-root. It is useful for melodies which behave
like arpeggios, reinforcing the harmony.

¢ The scale tone group uses the modal-non-chord scale degrees. When
combined with the chord tone group, the scale tone group fills out
the mode, enabling normal stepwise melodic motion. The scale tone
group also introduces the possibility of mild dissonances caused by
non-chord tones occurring on beats.

35

* The ripe tone class group used the chromatic-non-chord scale
degrees. When combined in equal proportions with both of the other
tone groups, it is useful for chromatic stepwise motion. In greater
proportions it is useful for dissonant harmonic inflection of the
melody.

The melody generator first designates one of these tone groups as the group of
"eligible" pitches for the next note. It makes this decision probabilistically.
The role of the chord-tone-weight, scale-tone-weight, and ripe-tone-weight
parameters is simply to weight the respective likelihoods of each tone group
being selected.

Normally, at least one of these three parameters should remain constant. If
all three are changing, some unintuitive behavior may result. For example, if
all three parameters are at 10, and then all three parameters are moved to 100,
there is no change in the system's output. The balance between them must
change to achieve an effect. One simple implementation is to fix the chord-

tone-weight parameter at 64 and allow the scale-tone-weight and ripe-tone-
weight to change freely.

Two additional variables affect the selection of the tone group: the force-
chord-tone flag and the force-root flag. At slot 0, the force-chord-tone flag is
checked. If it is set to 1, the chord tone group is forced for that slot, regardless
of the probabilistic tone group selection. This is useful for making melodies
"safe" from the dissonances induced by non-chord tones falling on beats.
Similarly, if the force-root flag is set to 1 in any slot, the chord-root pitch is
chosen as the only eligible pitch, and no tone group is used. This is useful
when the melody generator is being used to produce bass lines, and the line is
required to reinforce the harmony with roots on chord changes.

3.1.2.3 Melodic Motion

Once the group of eligible pitches has been determined, the melody generator
must choose a specific note. First, the direction of motion is determined by
the direction parameter: P[move up] = direction/127. Then, the leap-
probability parameter determines whether the new note will move by step or

36

by leap away from the previous note: P[leap] = leap-probability/127. Motion by
step involves moving to the nearest eligible pitch in the chosen direction.
Motion by leap involves leaping by some interval in the chosen direction and
then selecting the nearest eligible pitch. The size of this interval, in
semitones, is equal to the value of the leap-size parameter. A leap-size of 0 is
used to produce repeated notes. (Note that if the eligible pitch group is chord
tones, "stepwise" motion to the nearest eligible pitch might actually result in
a small leap.)

Additionally, it is usually desirable for safety's sake to establish some registral
boundaries for the melody generator. Otherwise, a careless (or over-zealous!)
user could easily lead the melodic line right out of bounds. To do this simply

requires specifying a ceiling note number and a floor note number. If any
| steps or leaps attempt to cross either of these boundaries, they are "reflected"
back into play by a temporary reversal of direction.

3.1.2.4 Dynamics

The rhythm generator passes a dynamic offset to the melody generator which
is a function of the syncopated-accent and cross-accent parameters (see
sections 3.1.1.3 and 3.1.1.4). The melody generator simply sums this offset
with the dynamics parameter to determine the key velocity of the new note.

3.1.2.5 Duration

Duration in the context of this system is defined not as an absolute property,
but instead as a relative property, equivalent to the duty cycle of a square
wave. Absolute duration will be referred to as note length, and the time
between successive attacks will be referred to as the rhythm period:

37

Note Note Note
On Off On

R

]

note length
l |

! rhythm period

The duration parameter is defined as 64(note length/rhythm period). Thus, a
duration value of 64 corresponds to a legato succession of attacks, i.e., the ratio
of note length to rhythm period is exactly 1. Lower duration values will
produce detached phrases, whereas higher duration values will result in note
overlap.

A system designed for responsive real-time manipulation of music inherits
certain complexities when dealing with note length. Determining a note's
length as a function of a duration parameter requires knowledge of the
arrival time of the subsequent note's attack (the rhythm period). In a
probabilistic, real-time system, it is not possible to know this information for
certain, because it is subject to change at the whim of the user. Consequently,
the system cannot make a final decision about the length of a note at the time
that the note is turned on.

For example, consider an activity of 64, corresponding to an 8th-note pulse
level which has a rhythm period of 12. At the start of the beat, slot 0 is filled. If
the activity remains constant, the next attack should arrive at slot 12. Thus, a
duration value of 32 (50%) would produce a note length of 6 slots. But what if
the user suddenly changes the duration or activity values? The note length of
6 slots becomes obsolete.

To compensate, the melody generator must first of all remember all lingering
notes. Secondly, the melody generator must monitor the changing duration
and activity. The activity, which determines the rhythm period, is passed
from the rhythm generator in every slot (see section 3.1.1.7). Finally, the
melody generator must terminate lingering notes when they expire according

38

to the following relationship: note length = (rhythm period*duration)/100. A
simple loop for managing note lengths is expressed in the following pseudo-
code:

if (activity or duration has changed)
compute new note lengths for each note in stack
for (each note in stack)
if ((time since note-on) > note length)
send (note-off)

remove note from stack

Note that at a quarter-note pulse level with maximum duration, the greatest
possible note length is a 30 slots (1.27*24), or a quarter-note tied to a sixteenth
note. In order to generate larger note lengths, the lowest activity level is used
(no pulse). Because the lowest activity level has an infinitely large rhythm
period, indefinitely long sustained tones can also be generated.

3.1.2.6 Procedure Summary

The melody generation procedure can be summarized in the following
pseudo-code:

choose tone group as f(chord/scale/ripe-tone-weights)
if (slot = 0) and (force-chord-tone = 1)

reset tone group to chord-tone
if (force-root = 1)

reset tone group to chord-root

choose direction of motion as f(direction)
choose motion by step or leap as f(leap-prob)
if (stepwise)
move in chosen direction to nearest pitch in tone group
if (new note > ceiling) or (new note < floor)
move in opposite direction to nearest pitch in tone group

[continued on next page]

39

if (leapwise)
leap by (leap-size) in chosen direction
if (leap destination > ceiling) or (leap destination < floor)
leap in opposite direction
move to nearest pitch in tone group in either direction

choose velocity as f(dynamics, rhythm generator offset)
send note-on
send note-off's for expired notes as f(duration, activity, slot #)

3.1.3 Chord Generator

When called by the rhythm generator, the chord generator constructs a chord
and chooses a dynamic and duration for that chord using the following
parameters:

* size

¢ register

¢ density

¢ density-scaling

¢ chord-tone-weight
* color-a-weight

* color-b-weight

* dynamics

* duration

It also requires the following supplementary variables:

* chord-root

* chord-type

¢ key-root

* key-type

¢ force-root

* force-required

40

3.1.3.1 Harmonic Framework

Before attempting to build a chord parametrically, the generator must first
have information about the function of all pitch classes within the current

harmony. This is determined by the chord-root, chord-type, key-root, and key-
type variables.

(For a complete discussion of these variables, see section 3.1.2.1.)

3.1.3.2 Chord Range

The size and register parameters determine the pitch range within which the
chord will be generated. The size parameter value corresponds to the
maximum distance in semitones between the lowest and highest notes of the
chord. The register parameter value corresponds to the MIDI note number of
the "center" pitch of the chord (the pitch that lies of the center of the chord's
range). So, for example, a C augmented triad rooted upon middle C would
have a gsize value of 8 (the distance in semitones between C and G#) and a
register value of 64 (the MIDI note number of the E above middle C).

3.1.3.3 Chord Voicing

The density parameter determines how densely the chord will be voiced
within this range. An "expected interval" value is derived from the density
parameter by inverting it (subtracting from 127) and adding 1. The expected
interval is the approximate distance, in semitones, between notes in the
chord. So, for example, an augmented triad would have an expected interval
value of 4 (a density value of 124). With an expected interval of 1 (a density of
127), then, every eligible note within the range would be included in the
chord. An expected interval of 128 (a density of 0) would force a one-note
"chord" by exceeding the maximum possible range achievable within the
MIDI protocol. (Similarly, whenever the expected interval value is greater
than the size parameter, a one-note chord will be generated.)

Chords are constructed from the bottom up. The chord generator starts at the
bottom of the range, adds the nearest eligible pitch to the chord, leaps upward

41

by the expected interval, adds the nearest eligible pitch, leaps upward, etc.,
until it reaches the upper limit of the chord range.

One important flaw in this algorithm as stated is that it assumes an equal
distribution of notes throughout the chord. Often, this is not the case in
music. Chords are typically voiced more densely in higher registers, so chords
with wide ranges often have unequal registral distributions of notes. For
example, a common voicing of a C major chord might look like this:

ﬁicb
)

—‘)——/:

[@]

In this example, the expected interval value of this chord decreases from
about 12 at the bottom of the chord to about 4 at the top. Since a single density
parameter is used to construct a whole chord, the expected interval must
change as a function of register as the chord is being constructed.

To accomplish this, each time a note is selected the expected interval value is
multiplied by a scalar that varies as a function of register. This function is
linear, and the slope of this line is controlled by the density-scaling parameter:

o 8.0 T--.
3 -~
o
> .. (o
° RN B
o .. @/g’
g %
g Ty
L \‘\ \\;
E NG
E ~~~~N
g (densi li 0) ‘
ensity-scaling = N
104 —— ST 29z _
127

MIDI Note Number
So as the chord generator leaps through the chord range choosing notes for

the chord, it constantly adjusts the expected interval to maintain more
spacious voicing in lower registers.

42

Often it is desirable to be able to require a root-position chord. This is the role
of the force-root flag. When the chord generator begins at the bottom of the
chord range, it checks the force-root flag. If the flag is set to 1, it will seek out
the nearest chord-root pitch and use that pitch at the bottom of the chord,
regardless of the which pitches are currently eligible.

3.1.3.4 Harmonic Coloration

As described above, the chord generator leaps through the chord range
selecting pitches with which to construct the chord. Each time the chord
generator selects a pitch, it first decides whether the pitch should be a chord
tone or a non-chord tone. The chord generator understands three classes of
pitches:

¢ Chord tones, which includes the required and auxiliary scale
degrees as defined in the chord-type, as well as the chord-root.

e Color A tones, which includes the modal-non-chord scale
degrees as defined in the chord-type.

e Color B tones, which includes the chromatic-non-chord scale
degrees as defined in the chord-type.

When a new pitch is chosen, the chord-tone-weight, color-a-weight, and
color-b-weight parameters weight the respective likelihoods of a pitch from

the corresponding tone group being selected. (This is identical to the function
of the melodic tone weighting parameters as described in section 3.1.2.2.)
Color A is used for mild, consonant coloration, whereas color B is for more
dissonant coloration.

Because the pitches are chosen entirely probabilistically, there is some chance,
even with very low (but non-zero) color-a/b weights, that none of the
required pitches for a particular chord-type will be selected for a chord. It is
desirable under some circumstances to prevent this occurrence. This is the
role of the force-required flag. If the flag is set to 1, once the chord has been
constructed, the chord generator sweeps back through the chord, surveying it

43

for the presence of the required pitches. If any of the required pitches is absent,
the nearest non-chord neighbor will be "nudged" over to the required chord
tone.

3.1.3.5 Dynamics

The chord generator uses the exact same method as the melody generator for
determining key velocities (see section 3.1.2.4).

3.1.3.6 Duration

The chord generator uses the exact same method as the melody generator for
managing durations (see section 3.1.2.5).

3.1.3.7 Procedure Summary

The chord generation procedure can be summarized in the following pseudo-
code:

for loop: from (register - 0.5(size))
to (register + 0.5(size))
step (expected interval as f(density, density-scaling, last key #))

if (first time through the loop) and (force-root = 1)
select nearest chord-root

else choose pitch group as f(color-a, color-b)
select the nearest note of that type

if (force-required = 1)
verify required notes in chord

choose velocity as f(dynamics, rhythm generator offset)
send all note-on's

send all note-off's for expired chords as f(duration, activity, slot #)

3.2 The Input Sequence

The input sequence is simply a MIDI sequence containing the basic musical
materials with which the user wishes to experiment. This sequence can be as
short as a measure, or as long as a whole piece.

In the case of a very short sequence, the probable intent is that once the
sequence is converted into a seed, the seed will "loop". So typically, short
input sequences are more "groove'-like in character. Then, as seeds, these
grooves may be cumulatively transformed and molded over a long period of
time. Additionally, different seeds may be rapidly recalled from a database.
Recalling a similar seed might nudge the music in a new direction, whereas
recalling a contrasting seeds could veer the music more abruptly. The user
thus has much control over the shape and evolution of the piece as a whole.

In the case of a very long sequence, the probable intent is that its seed will
reproduce the sequence only once. Thus, the user sacrifices control over the
large-scale form of the piece. Instead, the user concentrates upon expressively
inflecting this regeneration in order to evoke novel and personal realizations
of the piece.

The input sequence consists of two components: 1) the MIDI note sequence,
and 2) an accompanying "harmony track”, which demarcates the desired
harmony (chord root and type) underlying each portion of that MIDI
sequence.

3.2.1 The Note Sequence

The note sequence is simply a MIDI score: it contains a list of MIDI note
numbers, velocities, and on/off timings. The input sequence should not be a
human performance of a score. Namely, it is assumed that the tempo is
constant throughout, and that all rhythms are quantized.

Additionally, the musical content of the sequence should be homophonic,

i.e., it should contain a single musical "strand" as described by Barlow (see
section 2.4). Multiple strands in a single input sequence will result in a seed

45

which represents a musical texture containing multiple musical entities. In
order for each of these independent musical entities to have its own seed, the
various strands should be separated into multiple input sequences.

3.2.2 The Harmony Track

Parallel to the note sequence is another track containing note numbers which
mark changes in chord root and controller values which mark changes in
chord type. The role of the harmony track is to give the analyzer information
about the harmonic functions of all pitches in the sequence so that it can
extract envelopes describing the relative balance of chord tones and non-
chord tones. Without a chord root and type as a harmonic reference for each
region of the input, this analysis is not possible. For example, imagine that
the following chord appears in the input sequence:

\J
V.4

[[anY O
A\NVJ 24

This chord could be interpreted as a C major chord with no non-chord tones.
Or it could be interpreted as an Ab major 7th chord with chromatic coloration
and no root. Or it could be interpreted a hundred other ways. Thus a chord
root and type are necessary for determining the harmonic make-up of a group
of pitches. (Of course, expert systems exist which can make intelligent guesses
within a specific genre and context about probable chord root and types given
a set of pitches. But such heuristics are beyond the scope of this thesis.)

3.3 The Analyzer

The role of the analyzer is exclusively to convert an input sequence into an
equivalent parametric seed. The analyzer does not perform in real time; it
operates off-line. Thus, the analyzer is used in preparation for interaction
with the seed music system, not as part of that interaction.

In theory, the analyzer could be adapted to work in real-time. This would

allow, for example, a keyboard performer to constantly send a stream of MIDI
notes through the analyzer, resulting in continuous generation of new seeds.

46

But for this system I have been more concerned with real-time manipulation
of music, not real-time accumulation of the music to be manipulated.

In the first stage of analysis, the harmony track of the input sequence is
directly transmitted to the seed so that it may later be reused during the
regeneration process. The second stage of analysis is rhythmic parameter
extraction. The final stage of analysis is the melodic or chordal parameter
extraction.

If any simultaneous note-on's occur in the input sequence, the sequence must
be converted into a chordal seed. In the absence of any simultaneous note-
on's, the user must specify whether the input sequence should be converted
into a chordal seed or a melodic seed.

3.3.1 Rhythm Analysis

The rhythm analyzer extracts envelopes for the activity, syncopation, and
cross-meter parameters. No envelopes are extracted for cross-rhythm, as any
cross-thythm in a given meter can be "manually” reproduced by activity and
syncopation envelopes. The cross-rthythm parameters are thus only used in
the control stage of the system, not in the seed representation itself. (Note that
the correct activity envelopes alone could produce syncopation, but in the
control stage, the seed is more intuitively responsive when it does contain
syncopation envelopes.) No envelopes are extracted for cross-accent or
syncopated-accent, because dynamic contours are handled entirely by the
melody and chord analyzers. The metric mode (simple or compound) for
analysis can be specified by the user, or it can be determined automatically
through a comparative tally of note-on's occurring in the simple and
compound activity slot series.

Most configurations of rhythm parameter settings generate rhythms
probabilistically. Thus, there is not a one-to-one correlation between most
coordinates in parameter-space and the resulting rhythms in note-space.
Although the "cloud" of resulting rhythms will be qualitatively quite similar,
the exact rhythm cannot be predicted.

47

However, there is a small number of parameter-space coordinates for which
the generator does behave 100% deterministically. For example, on the
activity axis, these deterministic nodes are the activity tiers, where the
corresponding pulse level will always be produced. On the syncopation axis,
these nodes are the upper and lower boundaries of that axis, where a
syncopation will be induced with a "probability” of exactly 1 or 0. It is these
deterministic sites which the analyzer uses to create a seed which will reliably
reproduce the rhythms in the input sequence. In order to perform the
parameter extraction, the rhythm analyzer needs only to sequentially parse
the input into fragments, each of which can be reproduced by a deterministic
set of parameters nodes. This process is simply a pattern-matching operation
using the activity and syncopation slot series.

3.3.2 Chordal Analysis

The chord analyzer can extract chord parameter envelopes which will
reproduce chordal figurations which are extremely similar to those in the
input, but it cannot exactly reproduce some chords reliably. This is because of
two significant limitations in the chord generator: probabilistic selection of
non-chord tones, and a linear density scaling function.

When the color-a and color-b parameters are at 0, a stationary set of chord
parameters will exactly reproduce the same chord repeatedly. When
coloration is used, however, some randomness enters the generation
algorithm. As each pitch of a chord is selected from the bottom up, the color
"dice" are rolled to determine whether a chord-tone or color tone will be
chosen next. Thus, given a stationary set of chord parameters that includes a
non-zero coloration parameter, repeated chords will have approximately
equivalent proportions of chord and non-chord tones, but the voicings of
those tones will fluctuate.

Additionally, the spatial distribution of notes within a chord is governed by a
linear scaling function. Thus, the density distribution can either be constant
throughout the chord, or the distribution can linearly increase in higher
registers. Any chord containing a density distribution which is not of this type
cannot be exactly reproduced by the generator.

48

All other chordal parameters (size, register, density, dynamics, and duration)
are deterministic and versatile, and can thus reliably reproduce the
corresponding features of any chord. The randomness of coloration voicing
and the density distribution limitations discussed above are not significant
drawbacks in musical contexts which do not rely deeply upon voice leading,
e.g., most pop music. These limitations are, however, significant drawbacks in
musics in which voice leading plays a central role, e.g., Western classical
music (see section 4.3).

3.3.3 Melodic Analysis

The melodic parameters chord-tone-weight, scale-tone-weight, ripe-tone-
weight, direction, leap-probability, leap-size all have deterministic nodes at
the extreme boundaries of their axes, and the melodic parameters dynamics
and duration are uniformly deterministic. Thus, given a specific starting
pitch, melodic parameter can reliably reproduce an input melody.

One problem, however, is that the melody parameters only describe a
melody's shape; they do not describe the registral position of this shape. Thus,
in order to exactly reproduce an input melody, the seed must somehow
contain the note number of the first note in the melody.

This problem is solved by the analyzer in the following way: Because the
melody parameters only address melodic motion, no melodic parameter
information is needed for the first note of the seed, because it has not moved
from anywhere. This property of a melodic seed can be exploited to provide
an absolute reference point on which the melody can begin. The analyzer can
place a "fictitious" note before the input sequence, and use that note as a
reference point from which the melody parameters can deterministically
reproduce the first "real” note.

So, the leap-probability parameter for the first real note is 127, and the
direction parameter for the first real note is 127. If the fictitious note has MIDI
note number 0, then the desired MIDI note number for the first real note of
the melody is simply equal to the leap-size parameter.

49

3.4 The Seed

The seed is the consolidated rhythm, melody, and chord parameter
envelopes, as well as the underlying chord changes, which will reproduce the
input sequence when fed to the generator.

3.4.1 Why the Seed Representation?

What, you may wonder, is the purpose of going to all of this trouble to
convert a sequence into a representation which, when reconstituted, will
simply reproduce the sequence? The purpose and the power of the seed
representation is that, unlike a score, music in this form is extremely
susceptible to easy transformation. Simply changing a number, like the
syncopation value, will elicit an expected musical response. Performing such
operations on a score is a far more complicated task. (Parameters such as
syncopation represent "mid-level” musical properties. In order to have direct,
simple control over higher-level adjectival properties, such as "quirkiness",
additional parameter abstraction is necessary (see section 3.5.2).)

An additional benefit of the parametric representation is that it lends itself to
inter-seed interpolation. Instead of using "adjectival" axes for transforming a
musical pattern, a user may wish instead to make a musical pattern "more
like" another pattern. This mechanism suggests a powerful model for
"navigation" within musical space. A feature-based representation is ideal for
this sort of transitional blending (see section 2.5.3).

3.4.2 The Seed's Harmony Track

Normally, the harmony track contained in the seed (as defined in the input
sequence) will sequentially update the chord-root and chord-type variables
automatically as part of the generation process. Under some circumstances, a
user may wish to have harmonic control independent of the harmony
changes contained in the seed. In such a cases, harmony changes can be
specified in real-time by a user. These user-specified harmony changes can be
superimposed upon the seed's internal harmony track. Or, alternatively, the

50

seed's internal harmony track can be disabled completely, and the user-
specified harmony changes can be used exclusively.

Similarly, in the cases in which multiple seeds are generating in tandem, the
parallel harmony tracks will either be superimposed upon each other, or all
but one seed's harmony track will be disabled.

3.5 Real-Time Control

The parametric system I have described comes to fruition in the control stage.
One of the many powerful features of the system is the flexibility with which
it can be adapted to virtually any type of command interface. An interface
could be as low-level as knobs for direct manipulation of parameters, or as
high-level as, say, a dance performance analyzer which tunes parameters in
response to a dancer's performance. The role of the interface designer is to
find an intuitive set of control axes for a specific context, and then define the
mappings between these axes in the interface and parameter groups in the
system, such that gestures expressed by the user will effect intuitive responses
from the system.

3.5.1 Range Calibration

Many of the parameters used by the analyzer/generator are defined such that
any parameter value will correspond explicitly to some dimension in the
output. For example, the value of the size parameter (see section 3.1.3.2)
corresponds exactly to a maximum semitone span for a chord.

However, the ranges of the parameters, defined for conceptual clarity, often
do not correspond to ranges which are practical for manipulation in a user
interface. For example, consider the density parameter (section 3.1.3.3).
Under normal circumstances, a practical use of this parameter would only
include densities ranging from about 111 (a very sparsely voiced chord, with
an expected interval of 1.5 octaves between notes) to 127 (a densely voiced
block chord).

51

Consequently, the first task in any user interface design is to calibrate the
range scales for the parameters which will be addressed by that interface. For
example, a comfortable user interface for controlling chord density would not
give the user control over a range from 0 to 127, but instead over a range from
111 to 127 as described above.

3.5.2 Parameter Combination

Under some circumstances, a user might want direct control over a single
parameter. For example, a composer might use this system to tweak specific
features of region of a composition.

Under many circumstances, however, direct control over a single parameter
is not desirable. A user might simply want one interface axis that corresponds
to a qualitative effect in the generated music. This effect would be induced by
simultaneous manipulation of several parameters. For example, a user might
want to add a bit of "quirkiness" to the music by moving a joystick in one
direction. Increased "quirkiness" might be defined as an increase in both
dissonant harmonic coloration (color-b) and metric irregularity (syncopation,
syncopated-accent, cross-rhythm, cross-accent, cross-meter). Additionally, each
of these parameters may need to be added in different proportions to achieve
a specific effect.

Part of the task of interface design, then, is to group parameters into
combinations which will yield intuitive musical effects. Typically this
involves categorizing parameters into different adjectival groups. For
example, consider an extremely high-level interface, which abstracts all
control onto only three axes. Given only three axes with which to work, the
designer must make an effort to find underlying similarities between
otherwise unrelated parameters. One realization might be the following three
groupings:

* A discordance axis, along which parameters governing syncopation,

cross-rhythm, cross-metrics, harmonic coloration, and timbral
percussiveness and inharmonicity are increased.

52

e An activity axis, along which parameters governing rhythmic activity
and harmonic rhythm are increased.

e A magnitude axis, along which parameters governing dynamics,
ensemble size, and the grandiosity of the orchestration

(For parameters describing timbre, harmonic rhythm, and ensemble qualities,
see chapter 4.) Each of these axes contains a group of parameters which will
collectively elicit an intuitive, characteristic system response. Thus, a user
will quickly learn to understand the consequences of displacing the interface
along one of these axes.

3.5.3 Parameter Modulation and Seed Interpolation

Manipulation of seeds falls into two broad classes: transformation through
direct parameter modulation, and transformation through inter-seed
interpolation.

The simplest method of transforming a seed is to directly modulate (boost or
cut) the value of some parameter or group of parameters to "compositionally
filter" the generated output. The result is the emergence of "adjectival”
control axes: one control axis elicits a qualitatively common transformation
on any seed ("more/less syncopated").

A more subtle method of transforming a seed is to interpolate its parameter
values with those of another seed. This is another of the many great benefits
of a parametric system. In addition to wanting to boost or cut the values of
specific parameter groups within a seed, and user may also express the desire
to make one seed "more like" another seed.

Interpolation between any two seeds is by no means a simple problem,
however. Of course, it is relatively easy for a human to listen to two
dissimilar musical patterns and internally imagine a hybrid pattern which
contains the salient features of both source patterns. But this sort of operation
involves intelligent, sophisticated recognition and manipulation of those
features and underlying patterns. Simple parametric interpolation (say, a

53

linear weighted average of parameter values as a function of "position"
between two seeds) often will not produce an intuitive hybrid pattern if the
source patterns are dissimilar. However, the parametric representation does
take us substantially closer to this goal.

Let us take as an example the following two relatively dissimilar figurations
of a C dominant 7th chord. The first is an Alberti-like figure, and the second is
a march-like figure:

1)

L)
9

[£anY
A\NV.EK:

2)

e

1 |
1 1

NN

| 10N

A median linear interpolation of the activity, size, and register parameters
would yield the following hybrid figuration:

=== = i

While this is certainly a plausible interpolation, it is hardly an interesting
one, as the salient features of both source patterns have been "watered down".
A more powerful interpolation model can be used instead, which combines
the pure interpolation and a type of parameter-interleaving.

N

>

The first step of this process simply involves linear interpolation of the
thythm parameter envelopes of the two boundary seeds, producing a blended
rhythm profile for the intermediary seed. The second step involves inter-

54

leaving chord /melody parameter values from the boundary seeds within the
intermediary seed.

On the onbeat slot positions of the intermediary seed's current pulse level,
the chord/melody parameter values from the boundary seed having lower
activity are copied directly into the intermediary seed. Likewise, on the offbeat
slot positions of the intermediary seed's current pulse level, the
chord/melody parameter values from the boundary seed having higher
activity are copied directly into the intermediary seed. This process avoids
diluting the salient chord/melody properties of the boundary seeds during
rhythmic interpolation.

This parameter-interleaving method usually produces a more interesting
blend of two boundary patterns than would a pure interpolation. For
example, a median interpolation using this method on the march and Alberti
figures from above would look like this:

A b._ o
¢ =

5)

) — L{ %

Most people would agree that this is a more natural composite of the two
boundary seeds than was the result obtained through pure interpolation.
Naturally, this method will not work perfectly with all seeds, but the
interleaving technique is a powerful initial model for superior interpolation.

3.5.4 Stable and Unstable Transformation

Additionally, two distinct modes of transformation, "stable" and "unstable",
apply to both the modulation and interpolation control types.

Consider a joystick interface. When the user applies no force to the joystick in
any direction, it rests in the center position. An applied force in any lateral

55

direction will displace the joystick in that direction. When the force is
removed, the joystick returns to center.

An unstable transformation is only sustained for as long as the control
gesture expressed by the user. So, for example, when the user displaces the
joystick along the "quirkiness" axis, the appropriate parameters are
modulated by an amount proportional to the magnitude of the displacement.
When the joystick is returned to center, the "quirkiness" parameter offsets
disappear, and the seed returns to its default stable state. (In other words, a
position vector in the interface corresponds to a position vector in parameter-
space.) Unstable transformation is most useful for "inflection" gestures,
where the user only wishes to depart briefly from the central musical
materials for expressive effects.

A stable transformation is preserved even after the control gesture has ceased.
So, for example, when the user displaces the joystick along the "quirkiness"
axis, the magnitude of the displacement determines the rate at which the
appropriate parameters will be modulated. When the joystick is returned to
center, the "quirkiness" parameter offsets are preserved, and the stable output
of the seed is now, well, quirkier. The seed has departed from its default state.
(In other words, a position vector in the interface corresponds to a velocity
vector in parameter-space.) Stable transformation allows cumulative
transformation, gradual or abrupt, over long spans of time. Thus is most
useful for "musical navigation", i.e., the traversing of musical spaces, guided
by a set of feature-based axes.

3.5.5 Automated Pattern Variation

One of the glaring inadequacies of most automated computer accompaniment
systems is their use of looping accompaniment sequences. Sequence
repetition has limited utility. For example, in improvisatory musics, a
performer will constantly insert minute variations into a repeating groove
pattern: an added riff here, a small fill there. In such contexts, strict pattern
repetition has a blatantly artificial quality.

56

Another of the attractive features of the seed system is the ease with which
strict repetition can be eliminated. A seed is composed entirely of parameters
resting on deterministic nodes. Displacement from these nodes, even a very
slight displacement, moves the generator into a state of probabilistic
generation. The randomness, however, is constrained by the algorithms
employed by the generator. The parametric representation is sufficiently
sound that two proximal coordinates in parameter-space produce two
qualitatively similar behaviors in note-space.

So under circumstances where automated variation is desirable, noise can be
added to a seed in order to "jiggle" the parameters off of their deterministic
sites, causing fluctuations in the output. The resulting fluctuations do not
contrast drastically with each other. In fact, these variations are remarkably
similar to the types of variations exhibited by human performers. Thus, even
in the absence of user-guidance, the seed system can exhibit some
musicianship of its own. In effect, the system takes up some of the real-time
control workload.

Under circumstances where several seeds are generating in parallel, often it
will not be desirable for the user to "pilot" all of the seeds simultaneously;
some of the seeds will be accompanimental. In such cases, automated
variation serves the function of maintaining interesting musical behavior in
the accompaniment.

3.5.6 High-Level and Low-Level Control

Before computers, there were essentially only two musical control interfaces.
The first, and by far the most ubiquitous, was the low-level interface: the
musical instrument. For an elite few, however, there was also a high-level
interface: orchestral conducting.

Since the advent of computers, this spectrum of control abstraction has
exploded in both directions. Now, at the lowest level, a musician or sound
engineer can, for example, precisely adjust the spectral characteristics of a
sound by tuning a synthesis parameter. The highest level is inhabited by

57

interfaces such as those discussed in this document, which can effectively
reduce musical control to a handful of axes.

Although I clearly advocate the exploration of high-level musical interfaces, I
also believe that it is important to consider the drawbacks of high-level
control. Every location in the control spectrum has its relative strengths and
weaknesses.

Some benefits of high-level control interfaces:

* They are easy to learn. A user can quickly develop mastery of the
smaller number of control axes. With a high-level musical interface, a
user can rapidly acquire expressive power that would literally require
years of training on a conventional instrument.

* They expand the realm of control. Because the underlying system is
doing much of the work, the user is free to govern a larger and more
complex system of variables. A high-level musical interface can allow a
single user to manipulate a vast musical palette by shaping the
behavior of a whole musical ensemble in real-time. Even a virtuoso
instrumentalist on a conventional instrument is confined to the limits
of that instrument.

Some benefits of low-level control interfaces:

* They allow specificity. A user can precisely adjust the most refined
detail of a system. High-level systems, by relieving the user of some of
the work to be done, also rob the user of the power of exactitude.

* They require, and thus teach, sophisticated understanding of a system's
mechanics. The process of learning to play a conventional instrument,
or learning to compose a piece one note at a time, gives a musician a
profound understanding of musical structures that could never be
acquired simply through the manipulation of a few high-level control
axes.

58

There is a danger, then, of developing high-level interfaces which function
as a musical "crutch", masking the subtleties and complexities of music
composition and performance from the user. There is a danger that such an
interface suppresses a user's individuality by automating too much of the
creative process. These hazards must be contemplated when designing
intelligent musical instruments.

One important criterion by which we can evaluate an interface for these
deficiencies is the degree to which the quality of the system's output is
determined by the skill of the user. A failure, by this criterion, would be a
system in which all users sound alike; a novice user will sound comparably
skilled to an experienced user.

Clearly, this must be avoided. When under the command of an
inexperienced (or lazy!) user, the system must not continue to produce good
music. Otherwise, what skill is there to be acquired? What expressive channel
does the instrument provide? None.

In other words, the system's learning curve must not plateau too quickly.
While it is important for initial, rudimentary skills to be accessible
immediately, it is equally important for more sophisticated skills to be
accessible only through sustained, attentive effort. The system must not do
too much of the work.

3.5.7 Initial Experiments with Interfaces

Three simple performance interfaces have been developed in order to
demonstrate some of the basic principles of the system. Each of the first two
employs a pair of joysticks. The third is purely keyboard-based.

The two-joystick interface was chosen as a starting point because of the ease
with which many axes can be rapidly varied in a precise and unambiguous
fashion, and because the dexterity required to do so is not beyond the bounds
of most people's comfortable skills. The keyboard interface was chosen simply
to investigate the implications of using a conventional instrument as a front-
end to the seed music system.

59

3.5.7.1 Joystick Interface 1: Chord-Control Model

The intent of the first joystick model was to give the user control of both types
of seed transformation (interpolation and modulation) in a groove-type
context, where the user could shape various chordal figurations over a
repeating accompaniment.

In this model, the chord generator continuously produces chordal figurations
in a piano voice. An accompaniment sequence (bass and drums) loops
beneath these generated chordal figures. Additionally, a simple harmony
track swaps the chord root and type back and forth between Bb7 and Eb7 every
other measure.

In this model, the left joystick is used for seed interpolation. Four different
seeds are assigned to the four joystick directions (forward, back, left, right).
These four seeds have distinct characters: one is a low-register march
figuration, one is a high-register Alberti-type figure, one is a wide sweeping
arpeggio, and the other is a more restrained and lyrical figure. When the
joystick is centered, a "flat" seed applied to the generator. By rotating the
joystick around the periphery, the user interpolates rapidly between these
various seeds in order to create novel figurations improvisationally.

The right joystick is used for direct parameter modulation. Rhythmic effects
are assigned to one axis: pulling back boosts syncopation and syncopated-
accent, and pushing forward boosts cross-rhythm and cross-accent (with a
simple-cross-ratio of 0.75). Harmonic effects are assigned to the other axis:
pushing left boosts color-a, and pushing right boosts color-b. Two thumb
triggers on the joystick boost the cross-metric parameter. (The triggers also
adjust activity, so that one trigger yields rapid cross-metrics of the higher
pulse level, and the other trigger yields cross-metrics of the lower activity
level.) (For an interface schematic, see the Appendix.)

Both the interpolation and the modulation controls are unstable; any
position of the left joystick always corresponds to the same interpolation
balance, and any position of the right joystick always corresponds to the same
parameter adjustments.

60

3.5.7.2 Joystick Interface 2: Melody-Control Model

In the first joystick interface, the user is limited by the small selection of seeds
which are assigned to the joystick axes. With the second joystick interface, the
intent was to have a much wider range of musical possibilities available to
the user, set in the context of jazz piano melodic improvisation.

The second joystick interface is interesting in that it uses no seed. Or, rather,
the seed it uses contains only a harmony track (12-bar blues) and no
parameter envelopes. All of the control is based upon direct modulation of
the melody parameters. A bass and a drum sequence, as well as a chordal left-
hand piano sequence, serve as an accompaniment. The generator is used to
produce a pianist's right-hand improvisation.

The left joystick is used to affect rhythm. Forward displacement increases
activity, and backwards displacement decreases activity. Displacement to the
right adds syncopation. Displacement to the left adds cross-rhythm. Thumb
triggers are used to induce cross-metrics (triplets) and glissandi (induced with

a large activity spike).

The right joystick is used to affect melodic shape and pitch inflection. The
forward /back axis controls melodic direction. The left/right axis controls tone
group balance, with chord tones being at the left-most extreme, ripe tones
being at the left-most extreme, and scale tones being centered. A finger trigger
is used to induce leaps. A thumb trigger simply starts and stops the generator.
A second thumb trigger uses a unique feature designed especially for this
interface. When this trigger is pressed, the generator finds the most recent
leap. Until the trigger is released, the generator then loops the parameter
envelopes which were performed in the window between when that leap
occurred and when the trigger was pressed. This allows the user to
indefinitely repeat a "lick" which he/she is happy with. (For an interface
schematic, see the Appendix.)

All parameter modulation is, of course, unstable. Because of the absence of

any seeds, this interface requires considerably more practice to control
comfortably than does the first joystick interface. The benefit, of course, is that

61

mastery of this interface gives a user a greater variety of available expressive
gestures than is accessible through the first joystick interface.

3.5.7.3 Keyboard Interface

The third interface is purely keyboard based. The intent of this interface was
to demonstrate the power of feature-based control within the context of
existing keyboard-based automated accompaniment systems.

First of all, it includes keys for changing the harmony track in real-time. This
is a standard feature in all existing auto-accompaniment products.

Second, it includes keys for database recall. Seeds in the database are sorted
into "clusters". One cluster contains a group of compatible chordal seeds, a
group of compatible melody seeds (bass grooves), and a drum sequence. By
"compatible”, I mean that frequent transition between these seeds through
database recall will be relatively smooth. Rapid recall of different seeds within
a cluster will be used for improvisatory inflections of the accompaniment.
Recall of a new cluster produces a greater contrast, and is used for procession
from one section of a piece to the next.

Third, it contains transformer keys, which are used to directly modulate
parameters. the velocity with which these keys are stuck determines the
magnitude of the modulation of the corresponding parameters. (High key
velocities boost values. Low key velocities cut values.) Normally, this
modulation is unstable. The transformation disappears as soon as the
transformer key is released.

Fourth, it includes keys for database storage. A recording mode can be
enabled, in which the transformer keys are stable, i.e., transformations are
cumulative. When the user is pleased with a stably transformed seed, it may
be stored for future real-time recall.

Finally, it includes a real-time keyboard performance analyzer. Normally,

when a pedal is depressed, the keyboard is simply used for improvisatory
melodic playthrough over the accompanimental seeds. When the real-time

62

analyzer mode is enabled, however, parametric "tendencies" in the melodic
performance are translated into automated seed transformation. Thus, when
the soloist gets more excited or more calm, more "in" or more "out", the
accompaniment follows. (This mimicry, although often a lot of fun, is hardly
an adequate model for interactive automated accompaniment. This is
addressed in section 4.2.)

Another feature of the database is that the seeds used contain parameter
envelopes which are not on deterministic parameter nodes. Thus, they work
quite well as autonomous accompanists.

4 Future Work

The system described in this document is not yet a complete platform for
realizing its countless potential applications. An abundance of additional
work must be done.

4.1 Timbre Parameters

One conspicuous omission from this document is any attention whatsoever
to timbre. Control of timbre, as pertinent to this project, falls into three broad
classes:

1) Orchestration, in which generator output is continuously redirected to
different instruments as a function of the relevant timbre parameters.
Different synth patches are methodically organized into a
multidimensional timbre space which indexes properties such as
percussiveness, sustain, brightness, inharmonicity, etc.

2) Tone, in which the timbral properties of a single synth patch are fine-
tuned in real-time as a function of the relevant timbre parameters.
This type of control is used to achieve expressive effects through the
shaping tone color.

63

3) Effects, in which the properties of ubiquitous signal processing effects
(reverberation, delay, flange, etc.) are tuned in real-time as a function of
the relevant timbre parameters.

[avoided the issue of timbre during development of the seed music system
for several reasons. First of all, timbre is a large enough problem, even in this
restrained context, to be a thesis topic of its own. I wanted to concentrate
exclusively on the problem of codifying pitches and rhythms. Additionally, to
date, there is no ubiquitous high-level model for sound synthesis. Any timbre
parameters I had defined would simply have been mappings designed to
accommodate the idiosyncrasies of a specific synthesis algorithm. However, a
complete parametric music generation system will eventually require a
comprehensive timbre representation of some kind.

4.2 Ensemble Parameters

All of the parameters discussed in this document deal with musical behavior
within a single seed. None of them addresses the many aspects of musical
relationships between the respective constituents of an ensemble. Barlow
tried to address this issue by defining "strand conformity" (see section 2.4),
i.e., the "sameness" or "differentness" of two strands at any moment. A more
complete system will include a parametric representation for these
relationships.

Under many circumstances, ensemble conformity is desirable. A single
control gesture can be amplified by accordant responses in all strands. But
many musical properties depend upon lack of conformity between ensemble
constituents: Increased rhythmic activity in one strand has unique properties
when contrasted by decreased activity in another strand; contrary melodic
motion unifies a melodic structure; polyrhythm relies upon rhythmic
oppositions between strands; harmonic departure in one strand functions in
the context of harmonic grounding in another. This abundance of inter-seed
relationships must be codified.

4.3 Percussion Parameters

The seed system has not yet been applied to ensemble percussion. I believe
that a parametric representation will greatly improve the quality of the high-
level control of ensemble percussion which was developed in the DrumBoy
project (see section 1.1.2). The size of the ensemble, the character of the
instrumentation, the complexity and activity of the patterns, could all be
controlled parametrically.

The main new task in developing a percussion generator would be to define
rules for the cases in which multiple instruments function as a single
instrument. For example, the kick and snare drums in a rock kit function as a
single strand. Knowledge of their complimentary behaviors within a meter
would have to be built into the rhythm generator, so that when, say, the
activity is increased within a kick/snare strand, the generator will know
whether the kick or snare should be selected to play the additional notes.

4.4 Harmonic Parameters

Other than the simple model for harmonic coloration (see section 3.1.3.4),
there is no current method for parametrically governing harmonic behavior.
The harmonic lattice of the generator is defined either by the harmony track
present in the seed or by harmony changes given explicitly by the user.

A framework for defining genre-specific harmonic heuristics should be
constructed, so that a harmony track can be transformed parametrically. For
example, a parameter for harmonic rhythm should be capable of accelerating
or retarding harmonic pacing by adding chord changes to the harmony track
or removing chord changes from the harmony track which are idiomatically
appropriate. The role of various progressions of chords (e.g., harmonic
departure or grounding) must similarly be defined parametrically.

Another major inadequacy of the current system is that voice-leading within
a seed is impossible. The chord generator has no knowledge of the preceding
chord that was generated. Once given memory of the preceding chord, then
the generator would need a framework for defining idiomatic voice-leading

65

rules. Chordal continuity could also be represented parametrically, so that the
degree to which the chord generator seeks "paths of least motion" for its
pitches could be controlled.

Additionally, there is currently no inter-seed communication which would
allow pitch choices in one seed to affect those chosen in another seed. For
example, voice-leading between a pair of melodic seeds is not possible.
Similarly, block chord voicing as a function of the melody pitch (common
practice in jazz) pitch is not possible. This type of strand interdependency is
essential in many musics, and it must be incorporated into the generators for
the seed system to be versatile in many musical contexts.

4.5 Seed Length Parameters

None of the existing parameters addresses the stability of seed length. Often it
is desirable for a repeating figure to stretch or compress itself for rhythmic and
melodic interest. Some representation is needed to govern this type of
instability.

4.6 Database Navigation

The power of the seed music system would be greatly expanded if it were to
operate in conjunction with a sophisticated database recall system. The
database could be organized as a multidimensional music space into which
seeds are automatically sorted by an indexer. Unfortunately, the problem of
designing an effective sorting method for the indexer is a complicated one.
Simplistic sorting methods, such as deriving coordinates from the average
values of parameter envelopes, are clearly inadequate. "Meta-parameters”
must be defined: high-level parameters which describe the shapes of the
lower-level parameter envelopes. These interdependent parameter contours
determine the salient features of a seed, and so these contours must be the
primary concern of the indexer.

If a convincing feature-based sorting method were developed, however, the

resulting axes would provide a powerful model for navigation through
musical space. A database could contain seeds that would function as nodes in

66

the space. Smooth transition between these nodes would simply employ seed
interpolation.

4.7 Performance Parameters

The current seed music system is primarily designed to make compositional
decisions; it determines which pitches and rhythms should be played at a
given instant. These compositional decisions are guided improvisationally,
so the compositional act does have a performance dimension to it. But the
current parameters almost entirely neglect the issues associated with
expressive performance.

A note generator is only half of an ideal interactive music system. A more
complete system would also include a sort of output filter that would be
guided by a set of parameters designed for expressive performance of any
score. These parameters would govern the innumerable degrees of freedom
in musical performance, such as pitch inflection, vibrato, tone color, and the
microscopic and macroscopic uses of tempo, dynamic, and articulation. A
control mechanism of this type would have applications not only in
expressive performance of pieces composed in real-time, but also in
expressive performance of pre-composed pieces.

4.8 Musical Intelligence

The current system has no real musical intelligence or musical identity of its
own. In the absence of a person to control it, it lacks an agency for generating
interesting transformations of parameter envelopes. For example, the so-
called "melody generator" cannot actually compose a melody. It can only
reproduce a melody from a seed. Without a seed, and in the absence of
human guidance, it will generate truly loathsome (or truly comical,
depending upon your mood) melodies.

A possible future direction for the seed music system is the development of
compositional facilities which are designed to exploit the implicit musical
materials contained within a seed. A composing agency would recognize
implications of certain envelope behaviors, and automatically induce

67

musically plausible and interesting cumulative transformations of those
envelopes. The machine would thus become capable of composing music of
its own. Needless to say, intelligence of this sort is beyond the current
compass of this system.

5 Applications: Reaping the Harvest

The seed music system I have described is just the beginning of a model for
music generation which I believe will eventually transform people's
relationship with music. Although the scope of the existing system is still
somewhat limited, the inherent principles are solid, and the system will
serve as an effective platform for future expansion. I am confident that a
system of this type will eventually pave the way for an inestimably large
variety applications.

5.1 A Palette of Seeds for a Compositional Canvas

Composition is a labor-intensive process. A composer can easily spend
several hours milling over the details of a few seconds of music. This
piecemeal assembly of a musical passage gives the composer the power of
absolute specificity. This specificity, however, is also a form of confinement. It
prohibits the composer from having the freedom to experiment quickly and
liberally with broad gestures in large volumes of music.

One immediately obvious outgrowth of the seed concept is an entirely new
model of the compositional process. Consider a "parametric sequencer”, if
you will. A composer could start simply by assembling a collection of musical
materials which he/she wishes to employ within a composition: small
snippets of MIDI sequences containing rhythms and textures of interest.
These scraps would then be converted into a palette of seeds. Small groups of
these seeds could be placed sequentially in time to demarcate regions of a
piece, creating a sort of compositional canvas. Transformation envelopes
could be sketched in by the composer. The composer could then experiment
with different implications of the seed materials by dynamically massaging
these envelopes into new shapes. The interpolation techniques alone have
powerful implications as a compositional device for gradual blending from

68

one musical space into another. A few minutes of assembly would yield a
vast and complex musical landscape with which to dynamically experiment.
An environment of this sort would encourage a new compositional
paradigm, in which the composer--expert or amateur--is free to construct a
piece not one note at a time, but one compositional conception at a time.

5.2 Subservient Recordings: Playing Your CD-Player

During this century, audio recordings have become the central medium
through which people hear music. The act of listening to a piece of music
launches a complex set of internal processes is the ear of the listener. Abstract
musical structures are churned about, built up and broken down, as the
listener's mind forces itself to construct an internal representation of the
experience. In this sense, listening to music is an active process. Nonetheless,
the audio recording is a fixed object over which the listener has no external
control. And thus in another sense listening is a purely passive experience.

In the future, however, the audio recording will cease to be a fixed object. The
CD-player will become a musical instrument. Consider, for example, a pop
composer working on his/her new album. After completing all of the tunes,
that composer then works with his/her favorite music interface designer in
post-production. The designer converts all of the arrangements into their
equivalent parametric representations, and the composer and designer work
together to define the control axes which the composer wants to become, in
effect, part of the piece. By defining these control axes, the composer is
defining the breadth and type of improvisational freedom he/she will be
transferring to the listener: which alternative instrumentations might merit
exploration, which harmonic liberties can be probed, which "rooms" are "off-
limits". In this sense, another new compositional paradigm is implied: the
role of the composer is not to choose all of the notes, but to construct the most
interesting musical spaces for exploration.

If you pop this CD into your player and simply press "play”, the CD flies on
auto-pilot. It will play the "core" realization of the album that the composer
intended the from start to finish. But as soon as you pick up the joysticks, or
whatever physical interface is plugged into the back or your player, you can

69

perturb this core and become an improvisational contributor to the
compositional act.

Let us consider another scenario: Suppose a composer does not want to
relinquish any compositional freedom to his/her listeners. (You can be
certain that this will often be the case.) Instead, the CD-player will not allow
the user to compositionally alter a recording, but instead the CD-player will
accept real-time performance parameters from the user and use them to re-
interpret the performance of that composition. So, for example, when a fan of
Metallica buys the group's latest clarinet concerto, that person will not just be
the passive listener, but the conductor as well.

There is no reason that this sort of experience needs to be restricted to a single
user, either. Imagine several separate interfaces connected to a single CD-
player. An ensemble of several users could jam with each other, with each
individual piloting some portion of the recorded ensemble.

5.3 Responsive Accompaniment for Instrumentalists

The seed music system does not entirely neglect trained instrumentalists! For
example, consider Machover's hyperinstrument paradigm (see section 1.1.1).
Machover has designed at least a half-dozen hyperinstruments for virtuoso
musicians. Most of the accompanying compositions take the form of concerti
for the hyperinstrument soloist and a computer "orchestra" (plus, in some
cases, a chamber orchestra). Real-time performance analyzers use various
sensor data to interpret high-level performance gestures made by the soloist
through his/her instrument. These performance gestures then control
various aspects of the computer's performance of its score.

However, to date, in none of these pieces does the computer actually compose
any music. All of the possible realizations of the piece exist in the computer
in one form or another, and the performer coaxes out the most fitting
fragments of these realizations through features of his/her playing. If the
computer's score were instead represented as seeds, and real-time
performance analyzers were mapped to control axes of a generator, the

70

breadth of possible expressive realizations of that score could be expanded
dramatically.

5.4 Music Teaching Systems

One of the features of the parametric generator is that when some parameter
is modulated, it will transform a specific property of the active seed, regardless
of the contents of that seed. This feature has potential applications in
interactive music education. For example, a student could rapidly gain an
intuitive grasp of the meaning of rhythmic syncopation by using a knob to
add syncopation to and remove syncopation from a wise variety of musical
textures. Hopefully, a high-level controller of this type would not function as
a buffer between the student and the mechanics of syncopation, but instead it
would function as an intuitive and inviting entryway into these lower-level
processes.

5.5 Sensitive Soundtracks

Interactive environments will eventually require music systems which are
capable of responding dynamically to changes in these environments. Pre-
composed music is inadequate for this task, as no finite set of sequences can
effectively accompany the essentially limitless set of environment states in
sophisticated interactive contexts.

To solve this problem, one need only define a thorough set of mappings
between the relevant environment variables and the seed music system. Any
combination of the seeds can be transformed over time as a function of these
environment variable in order to change desired qualities of the music being
generated.

Consider a video game in which the player navigates his/her way through
some non-linear narrative. The player might pass through an inestimably
large number of plot permutations: alternating tension and release, climax
and resolution, success and failure, etc. The pace of these changes is governed
the user. The direction of these changes is governed by the user. The
accompanying music must also (indirectly) be governed by the user if the

71

entire experience is to remain cohesive, accordant, and unified. Parametric
music systems will inevitably play an increasing role in interactive
environments which include important real-time sound components.

5.6 Beyond Music

The interface ideas suggested within this document are by no means relevant
only to the problems of musical control. Consider the basic model: a complex
system of low-level variables is abstracted into a high-level parameter
representation. These parameters correspond to salient perceptual features of
that system, and can even be combined further to describe higher-level
properties of the system. Feature manipulations in parameter space then elicit
the desired low-level changes in the system to achieve the desired output.

This basic principle has broad applications in a number of contexts. For
example, consider a digital graphic art system. An artist, expert or amateur,
would begin by sketching some primitive graphic materials. Salient
properties of that image (colors, textures, shapes) could then be freely
manipulated. Dozens of complex, transformed images could be quickly
generated, allowing the artist to rapidly navigate through a landscape of
visual aesthetics. Such a system might also be used for improvisatory real-
time manipulation of animated computer graphics. Real-time gestural
control of images ("image conducting") could spawn a wholly new artistic
medium for improvisatory graphic performance.

Additionally, parametric representations in different mediums would
promote inter-medium communication. For example, perceptual variables in
a music system might be mapped to perceptual variables in an animated
computer graphics system to construct a sort of synthetic synaesthesia.

5.7 Conclusion
As a composer in the computer age, I am affected by the lure of machine-
assisted composition. I have watched dozens of composers spend months or

years of their lives fidgeting with their computers so that the computers
might compositionally emancipate them in one way or another. Often, these

72

systems indeed prove to be quite useful to those individuals. Unfortunately,
much of their endless tinkering is effectively wasted labor, because many of
them are working in isolation to achieve a common goal: high-level
expressive control of their musical ideas. I am hopeful that the seed music
system described in this document will eventually evolve into a platform
which offers liberated, enriching compositional pathways to a large number
of musicians. Additionally, as an only marginally skilled instrumental
performer myself, I am admittedly rather seduced by the prospect of finding a
more expressive mode of improvisational composition and performance in
which I can excel. I am confident that I share this need with many others for
whom music is a centrally important part of life.

Appendix

The diagrams on the following pages illustrate the features of the two joystick
interfaces described in sections 3.5.7.1 and 3.5.7.2.

The model of joystick used for these interfaces is the MouseStick®II, by
Advanced Gravis Computer Technology Ltd. The joystick images shown on
the following pages are bitmaps copied directly from PICT resources in the
MouseStick II Control Panel, Copyright © Advanced Gravis Computer
Technology Ltd.

A video demonstration of both joystick interfaces is available from:

Hyperinstruments Group
Room E15-496

MIT Media Laboratory

20 Ames St.

Cambridge, MA 02139
(617) 253-0392

73

Joystick Interface 1:
Chord-Control Model

LEFT HAND:

"Lyric"
Seed

"Alberti"

"Arpeggio"
Seed

eed

74

RIGHT HAND:

Cross-Rhythm

Dissonant
Harmonic
Coloration

Consonant
Harmonic
Coloration

Timbral ——
Accent

Fast Triplets ——
Slow Triplets ——

75

Joystick Interface 2:
Melody-Control Model

LEFT HAND:

High
Rhythmic
Activity

Syncopation

Low
Rhythmic
Activity

Triplets ——
Glissando —

76

RIGHT HAND:

Upward Motion

Consonant Dissonant
Tones Tones
Downward Motion
Lcap —
Play Notes ——
Repeat Window ——

77

Bibliography

[Arom91]

[Barlow81]

[Chung91]

[Cope90]

[Coped1]

[Dannenberg87]

[Lerdahl88]

[Lewis85]

[Loy89]

[Machover92]

[Matsumoto93]

Arom, S., "The notion of relevance" African Polyphony
and Polyrhythm, Cambridge, England: Cambridge
University Press, 1991, pp. 137-157.

Barlow, C., "Bus Journey to Parametron (all about
Gogluotobiisisletmesi)" Feedback Verlag, 21-23, 1981.

Chung, J., Hyperlisp Reference Manual, available from the
Media Laboratory, Massachusetts Institute of Technology,
1991.

Cope, D., "Pattern Matching as an Engine for the
Computer Simulation of Musical Style" Proceedings of
the ICMC 1990, pp. 288-291.

Cope, D., Computers and Musical Style, Madison, WI: A-R
Editions, 1991.

Dannenberg, R.B., and Mont-Reynaud, B., "Following an
Improvisation in Real-Time" Proceedings of the ICMC
1987, pp. 241-247.

Lerdahl, F., "Cognitive Constraints on Compositional
Systems" Generative Processes in Music: The Psychology
of Performance, Improvisation, and Composition,
Sloboda, J., ed. Oxford: Clarendon Press, 1988, pp- 231-259.

Lewis, G., "Improvisation with George Lewis" Composers
and the Computer, ed. Roads, C., Los Altos, CA: William
Kaufmann, Inc., 1985.

Loy, G., "Composing with Computers -- a Survey of Some
Compositional Formalisms and Music Programming
Languages" Current Directions in Computer Music
Research, Matthews, M.V. and Pierce, J. R., eds.
Cambridge: MIT Press 1989, pp. 291-396.

Machover, T., Hyperinstruments: A Progress Report,,
available from the Media Laboratory, Massachusetts
Institute of Technology, 1992.

Matsumoto, F., Using Simple Controls to Manipulate
Complex Objects: Applications to the Drum-Boy
Interactive Percussion System, Master's Thesis, MIT
Media Lab, 1993.

78

[McMullen87]

[Minsky?75]

[Rosenthal92]

[Rowe91]

[Rowe93]

[Wessel91]

[Wu94]

[Zicarelli87]

McMullen, Neil., Seeds and World Agricultural Progress ,
Washington, D.C. : National Planning Association, c1987.

Minsky, M., "A Framework for Representing Knowledge"
(1975) Readings in Knowledge Representation, Brachman,
R.]J. and Levesque, H.J., eds. Los Altos: Morgan Kaufman
Publishers, Inc., 1985, pp. 245-262.

Rosenthal, D., Machine Rhythm: Computer Emulation of
Human Rhythm Perception, Ph.D. Thesis, MIT Media
Lab, 1992.

Rowe, R., Machine Listening and Composing: Making
Sense of Music with Cooperating Real-Time Agents,
Ph.D. Thesis, MIT Media Lab, 1991.

Rowe, R., Interactive Music Systems, Cambridge, MA:
MIT Press, 1993.

Wessel, D., "Improvisation with Highly Interactive Real-
Time Performance Systems" Proceedings of the ICMC
1991, pp. 344-347.

Wu, M., Responsive Sound Surfaces, M.S. Thesis, MIT
Media Lab, 1994.

Zicarelli, D., "M and Jam Factory" Computer Music
Journal 11:4 1987, pp. 13-29.

79

