
HARBOR: An Integrated Approach to Recovery

and High Availability in an Updatable, Distributed

Data Warehouse

by

Edmond Lau

Submitted to the Department of
Electrical Engineering and Computer Science

in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in
Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2006

© Massachusetts Institute of Technology 2006. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 5, 2006

Certified by .
Samuel Madden

Assistant Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by .
Arthur C. Smith

Chairman, Department Committee on Graduate Theses

2

HARBOR: An Integrated Approach to Recovery and High

Availability in an Updatable, Distributed Data Warehouse

by

Edmond Lau

Submitted to the Department of Electrical Engineering and Computer Science
on May 5, 2006,

in Partial Fulfillment of the Requirements for the Degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

Any highly available data warehouse will use some form of data replication to en-
sure that it can continue to service queries despite machine failures. In this thesis,
I demonstrate that it is possible to leverage the data replication available in these
environments to build a simple yet efficient crash recovery mechanism that revives
a crashed site by querying remote replicas for missing updates. My new integrated
approach to recovery and high availability, called HARBOR (High Availability and
Replication-Based Online Recovery), targets updatable data warehouses and offers
an attractive alternative to the widely used log-based crash recovery algorithms
found in existing database systems. Aside from its simplicity over log-based ap-
proaches, HARBOR also avoids the runtime overhead of maintaining an on-disk
log, accomplishes recovery without quiescing the system, allows replicated data to
be stored in non-identical formats, and supports the parallel recovery of multiple
sites and database objects.

To evaluate HARBOR’s feasibility, I compare HARBOR’s runtime overhead and
recovery performance with those of two-phase commit and ARIES, the gold stan-
dard for log-based recovery, on a four-node distributed database system that I have
implemented. My experiments show that HARBOR incurs lower runtime overhead
because it does not require log writes to be forced to disk during transaction com-
mit. Furthermore, they indicate that HARBOR’s recovery performance is compara-
ble to ARIES’s performance on many workloads and even surpasses it on charac-
teristic warehouse workloads with few updates to historical data. The results are
highly encouraging and suggest that my integrated approach is quite tenable.

Thesis Supervisor: Samuel Madden
Title: Assistant Professor of Electrical Engineering and Computer Science

3

4

Acknowledgements

Many thanks to my advisor, Sam Madden, for his invaluable guidance in weaving

the underlying story to my work, for hammering out critical details regarding re-

covery and commit processing, and for suggesting methods of evaluation. It has

been a pleasure working with him. Thank you to Mike Stonebraker for inviting

me to join the C-Store team and for initially advising my research with the group.

Thanks to David Dewitt for his suggestion to add group commit to my evaluation of

commit processing protocols. George Huo helped by providing some code for run-

ning distributing queries. I’d also like to recognize Chen Xiao for listening to some

of my design issues and helping to bounce some of my ideas a few days before a

conference paper deadline. Last, but not least, thanks to Mom and Dad, without

whose sacrifices over the years none of this would have been possible.

This research is partially funded by the Deshpande Center and by a Siebel

Scholar fellowship.

5

6

Contents

1 Introduction 15

1.1 Updatable Data Warehouses . 16

1.2 Shortcomings with Traditional Recovery Mechanisms 17

1.3 An Integrated Approach to Crash Recovery and High Availability . . . 18

1.4 Thesis Roadmap . 20

2 Related Work 21

2.1 Single-site Crash Recovery . 21

2.2 High Availability in Distributed Systems 22

2.3 Online Recovery of Crashed Sites . 23

2.4 Data Replication Strategies . 24

3 Approach Overview 27

3.1 Data Warehousing Techniques . 27

3.2 Fault Tolerance Model . 29

3.3 Historical Queries . 30

3.4 Recovery Algorithm Overview . 32

4 Query Execution 35

4.1 Distributed Transaction Model . 36

4.2 Segment Architecture . 38

4.3 Commit Processing . 40

4.3.1 The Traditional Two-Phase Commit Protocol 41

7

4.3.2 An Optimized Two-Phase Commit Protocol 43

4.3.3 An Optimized Three-Phase Commit Protocol 45

4.3.4 Cost Summary of Commit Protocols 50

4.3.5 Additional Advantages of HARBOR 50

5 Recovery 53

5.1 Terminology . 53

5.2 Phase 1: Restore local state to the last checkpoint 55

5.3 Phase 2: Execute historical queries to catch up 58

5.4 Phase 3: Catch up to the current time with locks 62

5.4.1 Query for committed data with locks 62

5.4.2 Join pending transactions and come online 64

5.5 Failures during Recovery . 67

5.5.1 Failure of Recovering Site . 67

5.5.2 Recovery Buddy Failure . 68

5.5.3 Coordinator Failure . 68

6 Evaluation 71

6.1 Implementation . 71

6.1.1 Physical Data Storage . 73

6.1.2 The Lock Manager . 73

6.1.3 The Buffer Pool . 74

6.1.4 Versioning and Timestamp Management 75

6.1.5 Database Operators . 76

6.1.6 Distributed Transactions . 77

6.1.7 Recovery . 77

6.2 Evaluation Framework and Objectives 78

6.3 Runtime Overhead of Logging and Commit Messages 79

6.3.1 Transaction Processing Performance of Different Commit Pro-

tocols . 79

8

6.3.2 Transaction Processing Performance with CPU-Intensive Work-

load . 82

6.4 Recovery Performance . 85

6.4.1 Recovery Performance on Insert Workloads 86

6.4.2 Recovery Performance on Update Workloads 88

6.4.3 Analysis of Recovery Performance 90

6.5 Transaction Processing Performance during Site Failure and Recovery 92

7 Contributions 95

9

10

List of Figures

3-1 Sample table with timestamps. 31

3-2 Checkpointing algorithm. 33

4-1 Database object partitioned by insertion timestamp into segments. . 38

4-2 Two-phase commit protocol. 42

4-3 Optimized two-phase commit protocol. 44

4-4 Optimized three-phase commit protocol. 47

4-5 State transition diagram for a worker site using three-phase commit. 49

5-1 Sample run of recovery Phase 1. 57

5-2 Sample run of recovery Phase 2. 61

5-3 Sample run of recovery Phase 3. 65

5-4 Protocol to join pending transactions and come online. 66

6-1 Architecture diagram of implementation. 72

6-2 Transaction processing performance of different commit protocols. . 80

6-3 Transaction processing performance on a CPU-intensive workload. . 83

6-4 Recovery performance as a function of insert transactions since crash. 87

6-5 Recovery performance as a function of segments updated since crash. 89

6-6 Decomposition of recovery performance by phases. 91

6-7 Transaction processing performance during site failure and recovery. 92

11

12

List of Tables

4.1 Action table for backup coordinator. 49

4.2 Overhead of commit protocols . 50

13

14

Chapter 1

Introduction

“Twenty years from now you will be more disappointed by the things that

you didn’t do than by the ones you did do. So throw off the bowlines. Sail away

from the safe harbor. Catch the trade winds in your sails. Explore. Dream.

Discover.”

— Mark Twain (1835-1910)

Every time a sales clerk scans a barcode at the checkout counter of one of Wal-

mart’s 5,700 stores [12] worldwide, the sale is saved so that software can transmit

the sales data hourly to a growing 583-terabyte data warehouse running on a par-

allel 1,000-processor system [7]. Every time one of Wells Fargo’s 7 million online

customers logs onto the bank’s online portal, software extracts and builds a per-

sonalized spending report from a data warehouse of over 4 terabytes of transaction

history [6]. Every time a Best Buy manager reads the morning report summarizing

the sales picture of the entire 700-store [14] company, he or she reads the result

of a nightly analysis run on the 7 terabytes of data in the company’s data ware-

house [55].

A traditional data warehouse like the ones mentioned consists of a large dis-

tributed database system that processes read-only analytical queries over historical

data loaded from an operational database. Such data warehouses abound in retail,

financial services, communications, insurance, travel, manufacturing, e-commerce,

and government sectors, providing valuable sources of information for people to

15

gather business intelligence, extract sales patterns, or mine data for hidden rela-

tionships. They enable, for instance, a Walmart executive to discover for which

stores and for which months Colgate toothpaste was in high demand but in short

supply, a Wells Fargo customer to view a daily snapshot of his finances, or a Best Buy

sales worker to identify unprofitable customers who, for example, file for rebates

on items and then return them [17].

These warehouses often do not need traditional database recovery or concur-

rency control features because they are updated periodically via bulk-load utilities

rather than through standard SQL INSERT/UPDATE commands. They do, however,

require high availability and disaster recovery mechanisms so that they can provide

always-on access [5]. IT system downtime costs American businesses $1 million per

hour [33], and much of the value in these systems can be traced back to the busi-

ness intelligence data captured by data warehouses. A crashed site means fewer

queries can be run and fewer analyses can be performed, translating directly into

lost revenue dollars. When a site in a data warehouse crashes, queries must re-

main serviceable by other online sites, and the crashed site must be recovered and

brought back online before some other site fails. High availability and efficient crash

recovery mechanisms to enable a data warehouse to be up and running as much as

99.999% of the time therefore become critical features for most data warehouses.

1.1 Updatable Data Warehouses

Alongside these traditional data warehouses, recent years have seen increasing in-

terest in building warehouse-like systems that support fine-granularity insertions

of new data and even occasional updates of incorrect or missing historical data;

these types of modifications need to be supported concurrently with standard SQL

updates rather than with bulk-load utilities [13]. Such systems are useful for pro-

viding flexible load support in traditional warehouse settings and for supporting

other specialized domains such as customer relationship management (CRM) and

data mining where there is a large quantity of data that is frequently added to the

16

database in addition to a substantial number of read-only analytical queries to gen-

erate reports. Even users of traditional data warehouses have expressed desires for

zero-latency databases that can support near real-time analyses; such functionality

would, for instance, empower salespersons to identify customers likely to defect to

a competitor or to identify customer problems that have recently been experienced

by customers at other store locations [41].

These “updatable warehouses” have the same requirements of high availabil-

ity and disaster recovery as traditional warehouses but also require some form of

concurrency control and recoverability to ensure transactional semantics. Transac-

tions consisting of a sequence of individual actions need to happen atomically, and

multiple transactions executing concurrently must be isolated from one another. In

such updatable environments, providing some form of time travel is also useful; for

example, users may wish to compare the outcome of some report before and after

a particular set of changes has been made to the database.

1.2 Shortcomings with Traditional Recovery Mecha-

nisms

Traditional crash recovery mechanisms for database systems, described in more

detail in the next chapter, share three undesirable characteristics:

1. They require an on-disk log to achieve recoverability for transactions. After

a crash, the log provides a definitive word as to whether a transaction com-

mitted or aborted and contains undo/redo information to roll back or reapply

the effects of a transaction if necessary. To eliminate disk seeks between log

writes, systems often store the sequentially written log on a separate, dedi-

cated disk; since the log is used only for crash recovery, however, the scheme

wastes disk resources during normal processing.

2. They require forcing, or synchronously writing, log records to stable storage

during strategic points of commit processing to ensure atomicity in a dis-

17

tributed context. Given today’s slow disk times relative to CPU, memory, and

network speeds, the forced-writes impose considerable overhead on runtime

transaction performance.

3. They require a complex log-based recovery algorithm to restore the database

to a consistent state after failure. Log-based recovery is both difficult to reason

about and difficult to implement correctly.

These costs may be inevitable in single-site database systems, where the log pro-

vides the sole source of redundancy and a mechanism for achieving atomic trans-

actions. No compelling evidence exists, however, to show the necessity of a recov-

ery log in distributed databases where data may already be redundantly stored to

provide high availability and where some other mechanism for atomicity may be

possible.

In distributed database systems, crash recovery and high availability receive at-

tention as disjoint engineering problems requiring separate solutions. Log-based

crash recovery frameworks were originally designed only for single-site databases,

but high availability solutions in distributed databases have typically just accepted

the log stored on each site as a convenient relic without considering what additional

leverage redundantly stored data on remote sites may offer toward crash recovery.

A crash recovery scheme for distributed databases designed with high availability

in mind may lead to a cleaner and more efficient solution.

1.3 An Integrated Approach to Crash Recovery and

High Availability

In this thesis, I design, implement, and evaluate HARBOR (High Availability and

Replication-Based Online Recovery)—a new approach to recoverability, high avail-

ability, and disaster recovery in an updatable warehouse. HARBOR is loosely in-

spired by the column-oriented C-Store system [50], which also seeks to provide an

updatable, read-mostly store. I conduct my evaluation on a row-oriented database

18

system, however, to separate the performance differences due to my approach to

recovery from those that result from a column-oriented approach.

The core idea behind HARBOR is that any highly available database system

will use some form of data replication to provide availability; I demonstrate that

it is possible to capitalize on the redundancy to provide simple and efficient crash

recovery without the use of an on-disk log, without forced-writes during commit

processing, and without a complex recovery protocol like ARIES [37]. Instead, I

accomplish crash recovery by periodically ensuring, during runtime, that replicas

are consistent up to some point in history via a simple checkpoint operation and

then using, during recovery time, standard database queries to copy any changes

from that point forward into a replica. HARBOR does not require replicated data

to be stored identically, and crash recovery of multiple database objects or multiple

sites can proceed in parallel without quiescing the system. As a side effect of this

approach to recovery, the system also provides versioning and time travel up to a

user-configurable amount of history.

This approach may appear to violate the cardinal rule of recoverability, namely,

that transactions need to define some durable atomic action, called the commit

point, at which they change the database to a new state that reflects the effects of

the transaction; the commit point might be the forced-write of a COMMIT log record

or the flipping of an on-disk bit to switch shadow pages [42]. In the event of a fail-

ure during a transaction, whether stable storage shows that a transaction reached

its commit point determines if the database should treat the transaction as having

completed successfully. I solve the recoverability problem in HARBOR by recogniz-

ing that in highly available systems, the probability that all of the redundant copies

of the database fail simultaneously can be made arbitrarily and acceptably small.

Therefore, with high probability, some redundant copy will always remain online at

any given time and witness the effects of a transaction. Crashed sites can capitalize

on the redundancy and query the live sites to obtain any missing information.

Though conceptually simple, there are two major challenges to implementing

this approach:

19

• If done naively, recovery queries can be very slow. HARBOR attempts to en-

sure that little work needs to be performed during recovery and that little

state needs to be copied over the network.

• To provide high availability, the remaining replicas must be able to process up-

dates while recovery is occurring. The details of bringing a recovering node

online during active updates while still preserving ACID (atomicity, consis-

tency, isolation, and durability) semantics are quite subtle.

To benchmark my new approach, I compare the runtime overhead and recovery

performance of HARBOR with the performance of two-phase commit and the log-

based ARIES approach on a four-node distributed database. I show that HARBOR

provides comparable recovery performance and that it also has substantially lower

runtime overhead because it does not require disk writes to be forced at transaction

commit. Moreover, I demonstrate that HARBOR can tolerate site failure and recov-

ery without significantly impacting transaction throughput. Though my evaluation

in this thesis focuses specifically on distributed databases on a local area network,

my approach also applies to wide area networks. Aside from these strengths, HAR-

BOR is also substantially simpler than ARIES.

1.4 Thesis Roadmap

The remainder of my thesis is organized as follows. In Chapter 2, I summarize

the related work that has been completed on crash recovery and high availability.

Having painted the context for my work, I then lay out my fault tolerance model and

provide an overview of the techniques and steps used by HARBOR in Chapter 3. I

describe the mechanics behind query execution and commit processing in HARBOR

in Chapter 4 and then detail the three phases of my recovery algorithm in Chapter

5. In Chapter 6, I evaluate my recovery approach against two-phase commit and

ARIES on a four-node distributed database implementation and highlight some of

the implementation details. Lastly, I conclude with my contributions in Chapter 7.

20

Chapter 2

Related Work

Much literature has been written to address the separate problems of crash recovery

and high availability, but few publications exist on integrated approaches to bring

a crashed site online in a highly available system without quiescing the system. In

this chapter, I survey the literature on single-site crash recovery, high availability in

distributed systems, online recovery of crashed sites, and data replication strategies.

2.1 Single-site Crash Recovery

In the context of single-site database systems, the bulk of the literature on crash

recovery revolves around log processing. The gold standard for database crash

recovery remains the ARIES [37] recovery algorithm, implemented first in the early

1990’s in varying degrees on IBM’s OS/2, DB2, Quicksilver, and a few other systems.

Using a log-based approach like ARIES, a database management system (DMBS)

supports both atomic transactions and crash recovery by maintaining an on-disk

undo/redo log that records all transactions. The standard write-ahead logging pro-

tocol, which requires a system to force the undo and redo log records describing a

modified page to stable storage before writing the modified page to disk, ensures

that sufficient information exists to make transactions recoverable; a recoverable se-

quence of actions either completes in its entirety or aborts in such a way that no

action within the sequence appears to have occurred. After a computer failure, the

21

ARIES algorithm then consists of three phases: an analysis pass over the log from

the last checkpoint onward to determine the status of transactions and to identify

dirty pages, a redo phase that employs a repeating history paradigm to restore a

crashed system to its state directly prior to the crash, and an undo pass that scans

the log in reverse and rolls back all uncommitted changes.

Numerous optimizations have been developed to improve the performance of

the original ARIES algorithm. Oracle’s Fast-Start [30] employs an incremental

checkpointing technique to increase the frequency of checkpoints without introduc-

ing much runtime overhead; the optimization also supports data access during the

undo phase of recovery. Mohan [36] describes another technique to enable online

data access before the redo phase of recovery by defining a set of conditions under

which a transaction can safely execute during recovery without bringing the system

to an inconsistent state. In the realm of crash recovery for main memory database

systems, Hagmann [23] explores the partitioning of data by update frequency to

speed recovery, and Lehman and Carey [31] examine the separation of recovery

into a high-speed phase for data immediately required by pending transactions and

a slower phase for all remaining data.

2.2 High Availability in Distributed Systems

In the distributed context, most of the literature focuses on high availability tech-

niques rather than on crash recovery; most distributed systems presumably still rely

on the single-site log-based approach to crash recovery.

A typical high availability framework might involve a primary database server

that asynchronously ships update requests or transaction logs to some number of

identical secondary replicas, any of which can be promoted to the primary as a

failover mechanism [11]. This primary copy approach suffers from the setback that

the secondary replicas store temporarily inconsistent copies of data and therefore

cannot help load balance up-to-date read queries without sacrificing transactional

semantics; the replicas play a major role only in the case of failover, and some other

22

recovery protocol is necessary to restore a failed site. This approach is widely used

in the distributed systems community [32] as well as in many distributed databases

(e.g., Sybase’s Replication Server [51], Oracle Database with Data Guard [40], Mi-

crosoft SQL Server [34], and most other commercial systems).

A second approach to high availability is to maintain multiple identical repli-

cas that are updated synchronously, using a two-phase commit protocol [38] in

conjunction with write-ahead logging to guarantee distributed atomicity. Many

places in the literature describe this protocol; see Gray [19] or Bernstein [9] for

an overview. This second approach unfortunately suffers in transaction throughput

because two-phase commit requires the coordinator site to force-write log records

during the COMMIT phase and the worker sites to force-write them during both

the PREPARE and COMMIT phases. Disk I/O speeds pale in comparison to CPU,

memory, and network speeds and become a major bottleneck of the approach. The

approach again also requires correctly implementing a complex recovery protocol

like ARIES, which is non-trivial.

Most highly available database systems rely on special purpose tools (e.g., an

approach like the one described by Snoeren et al. [49]) to handle failover in the

event that a replica the client is talking to fails. To enable a system using HARBOR to

provide a seamless failover and prevent the client from seeing a broken connection,

the system would need similar tools.

2.3 Online Recovery of Crashed Sites

The approach most similar to mine is an algorithm for online recovery of replicated

data described by Jiménez-Peris et al. [27, 29]. Although the approach requires

each site to maintain an undo/redo log, the way in which they use the log for

distributed recovery follows a similar structure to HARBOR. A recovering site asks

an online site to forward it update requests from the online site’s log until the

recovering site catches up with all past and pending transactions, at which point,

the recovering site stops listening to forwarded requests, comes online, and applies

23

updates from its local queue of update requests.

Their scheme differs from HARBOR, however, in several aspects. First, their

scheme requires maintaining a recovery log (two logs in fact) whereas an online site

in HARBOR can supply missing updates to a recovering site simply by inspecting its

own data. Second, to handle the difficult race conditions surrounding the time at

which a recovering site comes online, they assume a middleware communication

layer that supports reliable causal multicast and that can deliver messages in the

same order to all sites; HARBOR solves this problem using a more conventional

locking solution that can be implemented straightforwardly in any database. Third,

their scheme assumes that all sites store data identically whereas HARBOR does

not. Because HARBOR imposes none of these assumptions, my integrated approach

is a more general scheme. To my knowledge, nothing has been written on logless

approaches to online crash recovery of databases.

2.4 Data Replication Strategies

Another line of research into high availability focuses on using different data place-

ment strategies for increasing availability. Hsiao and Dewitt [25, 26] propose

a chained declustering technique for laying out data to decrease the probability

of data loss in multiprocessor database systems. They compare their technique

to Tandem’s mirrored disk architecture [52] and Teradata’s interleaved decluster-

ing scheme [53]. These techniques could also be incorporated into a HARBOR-

protected system to increase availability.

In my replication approach, a system propagates all writes to K + 1 sites and

can tolerate failures of up to K sites without sacrificing availability; the approach

allows the system to process read-only queries at just a single site. Voting-based

approaches [18, 28, 44] could be applied to allow a system to send updates to

fewer machines by reading from several sites and comparing timestamps from those

sites. View-change protocols [2] build upon these ideas to allow replicated systems

to potentially tolerate network partitions and other failures that I do not address.

24

Allowing the system to proceed without ensuring replicas have all seen the same

transactions may make achieving one-copy serializability [10] difficult.

25

26

Chapter 3

Approach Overview

In Chapter 2, I painted the backdrop of existing research literature on the crash

recovery and high availability approaches of various database systems.

In this chapter, I focus on two specific features of the landscape for highly avail-

able data warehouses—the requirement for data replication and the concurrency

control issues associated with warehouse workloads. I show that a fault tolerance

model built on data replication and a concurrency control technique called histori-

cal queries can be together leveraged to build a simple and efficient crash recovery

algorithm, and I offer a high-level overview of that algorithm in HARBOR.

3.1 Data Warehousing Techniques

Data warehouse systems share two important characteristics. First, any highly avail-

able database system will use some form of replication to ensure that data access

can continue with little interruption if some machine fails. Each database object

will be replicated some number of times and distributed among different sites. Un-

like many commercial high availability approaches [39, 43, 35], HARBOR does not

require that the redundant copies be stored in the same way or that different sites

be physically identical replicas. Copies of the data can be stored in different sort

orders [50], compressed with different coding schemes [50, 1], or included in dif-

ferent materialized views [20, 21, 15] as long as the redundant copies logically

27

represent the same data. This flexibility in physical data storage enables the query

optimizer and executor to more efficiently answer a wider variety of queries than

they would be able to in situations where the database stores redundant copies us-

ing identical representations. As an illustration of the performance gains available

through storing data in multiple sort orders and in different compression formats, C-

Store [50] achieves an average of 164 times faster performance over a commercial

row-oriented database and 21 times faster performance over a commercial column-

oriented database on a seven query TPC-H benchmark [54]. Data redundancy can

therefore provide both higher retrieval performance and high availability under

HARBOR.

The second characteristic is that data warehouses cater specifically to large ad-

hoc query workloads over large read data sets intermingled possibly with a smaller

number of OLTP (online transaction processing) transactions. Such OLTP transac-

tions typically touch relatively few records and only affect the most recent data; for

example, they may be used to correct errors made during a recent ETL (extract,

transform, and load) session. Under such environments, conventional locking tech-

niques can cause substantial lock contention and result in poor query performance.

A common solution is to use snapshot isolation [8, 56], in which read-only transac-

tions read data without setting locks, and update transactions modify a snapshot of

the data and resolve conflicts either with an optimistic concurrency control protocol

or a standard locking protocol.

C-Store [50] solves the lock contention problem using a time travel mechanism

similar to snapshot isolation. The solution uses an explicit versioned and times-

tamped representation of data to isolate read-only transactions so that they can

access the database as of some time in the recent past, before which the system can

guarantee that no uncommitted transactions remain. Such read queries, which I

term historical queries, can proceed without obtaining read locks because there is

no possibility of conflicts. Update transactions and read-only transactions that wish

to read the most up-to-date data use conventional read and write locks as in strict

two phase locking for isolation purposes.

28

In HARBOR, I adopt C-Store’s model for concurrency control. As a side effect of

this model, historical queries also provide a time travel feature that allows clients to

inspect the state of the database as of some time in the past; the feature empowers

them to, for instance, compare the outcome of a report both before and after a set

of changes.

A key contribution in my thesis is recognizing that one can leverage the pre-

existing requirement of data replication in highly available data warehouse envi-

ronments along with the technique of historical queries to build a simple yet effi-

cient crash recovery mechanism. Together, these two elements of data warehouses

serve as the foundation of the HARBOR approach to recovery and high availability.

3.2 Fault Tolerance Model

A system provides K-safety if each relation in the database is replicated K +1 times,

and the copies are distributed to sites in such a way that any K of those sites can fail

without impairing the system’s ability to service any query. Copies of a particular

relation need not be physically identical as long as they logically represent the same

data. A particular copy also does not need to be stored in its entirety at any given

site; each copy may be partitioned horizontally or vertically in different ways and

the partitions may themselves be distributed to various sites in a way that preserves

K-safety. A database designer can achieve K-safety straightforwardly by distributing

each of the K + 1 copies of a given relation to a different site; however, more

complex configurations are also possible.

Note two observations regarding K-safety as defined. First, the minimum num-

ber of sites required for K-safety is K + 1, namely in the case where the K + 1

workers all store a copy of the replicated data. Second, a K-safe system can tolerate

more than K site failures as long as no more than K of the failures affect each rela-

tion. For example, suppose there exists a 1-safe system that stores copies of relation

R at sites S1 and S2 and copies of relation R′ at sites S ′
1 and S ′

2. Even though the

system is only 1-safe, it can tolerate the failures of both S1 and S ′
1 because at most

29

one failure affected each relation. 1

In my approach, I abstract away the different possible K-safety configurations

and assume that the database designer has replicated the data and structured the

database in such a manner as to provide K-safety. The high availability guarantee

of HARBOR is that it can tolerate up to K failures of a particular relation and still

bring the failed sites online within a reasonable amount of time. As long as each

relation remains available at some combination of the online sites, HARBOR can

revive all crashed sites.

If more than K sites that support a particular relation fail simultaneously, HAR-

BOR no longer applies, and the recovery mechanism must rely on other methods;

the other method most likely will involve removing the effects of all updates after

some point in time in order to bring all sites to a globally consistent state. However,

because HARBOR can be applied to bring sites online as they fail and because the

probability of K simultaneous failures decreases exponentially with increasing K,

the database designer can choose an appropriate value of K to reduce the probabil-

ity of K simultaneous site failures down to some value acceptable for the specific

application.

In my fault tolerance model, I assume fail-stop failures and do not deal with

Byzantine failures. Therefore, I do not deal with network partitions or with cor-

rupted data caused by half-written disk pages. I also assume reliable network trans-

fers via a protocol such as TCP.

3.3 Historical Queries

Since HARBOR’s recovery approach depends on historical queries, I first describe

how they can be supported in a database system before proceeding to paint a high

1Technically, a K-safe system may be able to tolerate more than K failures that affect a given
relation. The definition of K-safety specifies that a system must tolerate the failure of any K sites
dealing with the particular relation but leaves open the possibility that the system may actually be
able to tolerate failures of certain combinations of more than K sites. HARBOR can actually apply as
long as some mechanism exists to detect that a relation can still be reconstructed from the remaining
live sites, but for simplicity, I do not discuss this case.

30

insertion time deletion time employee id name age
1 0 1 Jessica 17
1 3 2 Kenny 51
2 0 3 Suey 48
4 6 4 Elliss 20
6 0 4 Ellis 20

Figure 3-1: Sample sales table with timestamps. Shaded rows indicate that the
tuples have been deleted.

level description of the recovery algorithm used in HARBOR. A historical query as

of some past time T is a read-only query that returns a result as if the query had

been executed on the database at time T ; in other words, a historical query at time

T sees neither committed updates after time T nor any uncommitted updates.

Historical queries can be supported by using a versioned representation of data in

which timestamps are associated with each tuple. The system internally augments a

tuple <a1, a2, ..., aN> with an insertion timestamp field and a deletion timestamp field

to create a tuple of the form <insertion-time, deletion-time, a1, a2, ..., aN>. Times-

tamp values are assigned at commit time as part of the commit protocol. When

a transaction inserts a tuple, the system assigns the transaction’s commit time to

the tuple’s insertion timestamp; it sets the deletion timestamp to 0 to indicate that

the tuple has not been deleted. When a transaction deletes a tuple, rather than

removing the tuple, the system assigns the transaction’s commit time to the tuple’s

deletion timestamp. When a transaction updates a tuple, rather than updating the

tuple in place, the system represents the update as a deletion of the old tuple and

an insertion of the new tuple.

Example: Figure 3-1 illustrates a simple employees table with inser-

tion and deletion timestamps to support historical queries. At time 1, the

user inserts the first two tuples into the table. At time 2, the third tuple

is inserted. The deletion timestamp of 3 on the second tuple indicates

that the second tuple was deleted at time 3. At time 4, the user inserts

the fourth tuple. Nothing happens at time 5. At time 6, the user corrects

a misspelling in the last employee’s name with an update; note that the

31

update is represented by a deletion of the previous tuple followed by an

insertion of the corrected tuple.

Structuring the database in this manner is reminiscent of version histories [45]

and preserves the information necessary to answer historical queries. The problem

of answering a historical query as of some past time T then reduces to determining

the visibility of a particular tuple at time T . A tuple is visible at time T if 1) it was

inserted at or before T , and 2) it either has not been deleted or was deleted after

T . This predicate can be pushed down straightforwardly into access methods as a

SARGable predicate [46]. Because historical queries view an old time slice of the

database and all subsequent update transactions use later timestamps, no update

transactions will affect the output of a historical query for some past time; for this

reason, historical queries do not require locks.

A user can configure the amount of history maintained by the system by running

a background process to remove all tuples deleted before a certain point in time or

by using a simple “bulk drop” mechanism that I introduce in the next chapter.

3.4 Recovery Algorithm Overview

Having discussed the key elements of data replication and historical queries, I pro-

ceed to describe at a high level HARBOR’s recovery algorithm to bring a crashed

site online. I defer elaboration of the details to Chapter 5. The algorithm consists

of three phases and requires executing read queries in a special mode that enables

the recovery process to read the insertion and deletion timestamps of both present

and deleted tuples; the database can support the special mode simply by treating

the insertion and deletion timestamps as regular fields and disabling the machinery

for determining tuple visibility.

In the first phase, HARBOR uses a checkpointing mechanism to determine the

most recent time T with the property that all updates up to and including time

T have been flushed to disk at the recovering site. The recovering site then uses

32

procedure checkpoint():
let T = current time - 1
obtain snapshot of dirty pages table
for each page P in table:

if P is dirty
acquire write latch on P
flush P to disk
release latch on P

record T to checkpoint file

Figure 3-2: Checkpointing algorithm.

the timestamps available for historical queries to run local update transactions to

restore itself back to the time of its last checkpoint.

In order to record periodic checkpoints, I assume that the buffer pool maintains

a standard dirty pages table with the identity of all in-memory pages and a flag

for each page indicating whether it contains any changes not yet flushed to disk.

During normal processing, the database writes a checkpoint for some past time T

by first taking a snapshot of the dirty pages table at time T + 1. For each dirty

page in the snapshot, the system acquires a write latch for the page, flushes the

page to disk, and releases the latch. After flushing all dirty pages, it records T

onto some well-known location on disk, and the checkpoint is complete. Figure 3-

2 summarizes these steps. My experimental evaluations on simple insert-intensive

workloads suggest that updating this checkpoint once every 1–10 s imposes little

runtime overhead; if checkpointing turns out to have an adverse impact on runtime

performance, however, database designers can also adopt an incremental check-

pointing approach much like the one used by Oracle Fast-Start [30], which has

lower runtime overhead.

In the second phase, the recovering site executes historical queries on other

live sites that contain replicated copies of its data in order to catch up with any

committed changes made between the last checkpoint and some time closer to the

present. The ability to run historical queries without obtaining read locks is crucial

to ensuring that the system does not need to be quiesced while the recovering site

copies potentially large amounts of data over the network. My approach would not

be a viable solution if the site needed to acquire read locks for this recovery query.

33

In the third and final phase, the recovering site executes standard non-historical

queries with read locks to catch up with any committed changes between the start

of the second phase and the current time. A clever use of read locks ensures that the

recovery algorithm and any ongoing transactions preserve ACID semantics. Because

the historical queries in the second phase tend to substantially reduce the number

of remaining updates, this phase causes relatively little disruption to ongoing trans-

actions, as I show later in my evaluation in § 6.5. The coordinator then forwards

any relevant update requests of ongoing transactions to the recovering site to en-

able it to join any pending transactions and come online; this step requires that the

coordinator maintain a queue of update requests for each ongoing transaction.

This overview reveals a critical property of HARBOR’s recovery algorithm. Un-

like other recovery approaches, it is not log-based; rather, it leverages the redun-

dantly stored data at other sites to perform recovery. Hence, as I show in the next

chapter, a HARBOR-protected system can eliminate much of the runtime perfor-

mance overhead associated with maintaining on-disk logs, undo/redo log records,

and forced-writes.

My results in Chapter 6 demonstrate that HARBOR’s recovery algorithm works

well in data warehouse-like environments where the update workloads consist pri-

marily of insertions with relatively few updates to historical data. Its performance

surpasses the recovery performance of a log-based processing protocol like ARIES

under these conditions.

34

Chapter 4

Query Execution

In the previous chapter, I introduced the notions of K-safety and historical queries

and offered a high level overview of HARBOR’s recovery approach. In this chapter,

I drill down into the necessary design modifications to a standard database’s query

execution engine in order to support HARBOR’s data replication, concurrency con-

trol, and crash recovery goals.

Query execution in HARBOR differs in three respects from standard distributed

databases. First, the versioned representation of data and the support for histori-

cal queries bring about some changes to the distributed transaction model, which

I outline in § 4.1. Second, in order to improve performance of HARBOR’s recovery

queries that must apply range predicates on timestamps, I partition all database ob-

jects by insertion time into smaller chunks called segments. I describe this segment

architecture, its features, and its implications in § 4.2. Third, because HARBOR

does not require worker sites to log updates to disk, I can reduce commit process-

ing overhead by eliminating workers’ forced-writes when using two-phase commit

and all forced-writes when using three-phase commit. I describe these optimized

variants of both commit protocols in § 4.3.

35

4.1 Distributed Transaction Model

In my framework, each transaction originates from a coordinator site responsible

for distributing work corresponding to the transaction to one or more worker sites

and for determining the ultimate state of the transaction; the coordinator site may

also be a worker site for the same transaction. The coordinator may distribute read

queries to any sites with the relevant data that the query optimizer deems most

efficient. Update queries, however, must be distributed to all live sites that contain

a copy of the relevant data in order to keep all sites consistent; crashed sites can

be ignored by update queries because the sites will recover any missing updates

through the recovery algorithm described in Chapter 5.

To facilitate recovery, the coordinator maintains an in-memory queue of logi-

cal update requests for each transaction it coordinates. Each update request can

be represented simply by the update’s SQL statement or a parsed version of that

statement. The coordinator can safely delete this queue for a particular transaction

when the transaction commits or aborts.

In order to support historical queries, the coordinator determines, at transac-

tion commit time, the insertion and deletion timestamps that must be assigned to

any tuples inserted, deleted, or updated at the worker sites. If the database sup-

ports more than one coordinator site, HARBOR requires some consensus protocol

for the coordinators to agree on the current time; [50] describes one such pro-

tocol in which a designated timestamp authority decides with the coordinators to

advance the system time. The timestamps can be arbitrarily granular and need

not correspond to real time. For instance, one might choose to use coarse gran-

ularity epochs that span multiple seconds or timestamps with second granularity.

Finer granularity timestamps allow for more fine-grained historical queries but re-

quire more synchronization overhead if there are multiple coordinator sites. The

database frontend holds responsibility for mapping the times used by clients for

historical queries to the internal representation of timestamps in the database.

As previously mentioned in the discussion on historical queries, a worker assigns

36

timestamps not as it executes update requests but rather at transaction commit

time; therefore, a worker must keep some in-memory state for each update transac-

tion designating the tuples whose timestamps must later be assigned. Furthermore,

in order to handle aborts, a worker must be capable of identifying and rolling back

any changes associated with a particular transaction. A traditional database would

handle aborts using the same on-disk undo/redo log used for crash recovery. With

HARBOR, however, the log is not used for crash recovery, and so the log can be

stored in memory without using conventional protocols like forced-writes or write-

ahead logging. Moreover, because updates and deletes do not overwrite or clear

previously written data, the “log” does not even need to store undo/redo informa-

tion; it merely needs to identify modified tuples.

A worker site can support both normal commit processing and transaction aborts

straightforwardly by maintaining, for each transaction, an in-memory insertion list

of tuple identifiers for tuples inserted by the transaction and another in-memory

deletion list for tuples deleted by the transaction; note that an updated tuple would

go in both lists. To commit the transaction, the worker assigns the commit time to

the insertion time or deletion time of the tuples in the insertion list or deletion list,

respectively. To roll back a transaction, the worker simply removes any newly in-

serted tuples identified by the insertion list; no tuples need to be undeleted because

deletion timestamps are assigned at transaction commit.

One caveat is that if the buffer pool supports a STEAL policy [19] and allows un-

committed data to be flushed to disk, uncommitted inserts written to the database

should contain a special value in its insertion timestamp field so that the uncom-

mitted data can be ignored by queries and identified in the event of crash recovery.

Because deletes only assign deletion timestamps and because a site cannot deter-

mine the deletion timestamps until commit time, there is no reason for the database

to write uncommitted deletions to the buffer pool.

37

t + ∆t

t + ∆t

t + 2∆t

t + 2∆t

t + 3∆t

t

segments partitioned
by insertion timestamp

relation, horizontal partition,
or column

Tmin-insertion
Tmax-deletion

Tmin-insertion
Tmax-deletion

Tmin-insertion
Tmax-deletion

Figure 4-1: Database object partitioned by insertion timestamp into segments.

4.2 Segment Architecture

During normal transaction processing, the query executor uses the insertion and

deletion timestamps associated with tuples solely to determine a tuple’s visibility

as of some time T . In data warehouse environments where users typically run

historical queries as of some time relatively close to the present and where updates

to historical data happen infrequently, most of the tuples examined by a query are

visible and relevant. Thus, the executor incurs little overhead scanning invisible

tuples, and one does not need to build indices on timestamps for this purpose.

As I explain later in the discussion on recovery, however, recovery queries re-

quire identifying those tuples modified during specific timestamp ranges and may

be potentially inefficient. Specifically, recovery requires the efficient execution of

the following three types of range predicates on timestamps: insertion-time ≤ T,

insertion-time > T, and deletion-time > T. Moreover, given that recovery is a rela-

tively infrequent operation, one would like to be able support these range predicates

without requiring a primary index on timestamps (a secondary index would not be

useful in this case).

My architectural solution to this problem is to partition any large relations, ver-

tical partitions, or horizontal partitions stored on a site by insertion timestamp into

smaller chunks called segments, as illustrated in Figure 4-1. For example, a hori-

zontal partition for the relation products sorted by the field name that is stored on

one site might be further partitioned into one segment containing all tuples inserted

38

between time t and t + ∆t, the next segment containing all tuples inserted between

t + ∆t and t + 2∆t, etc. The size of the time ranges need not be fixed, and one

may instead choose to limit the size of each segment by the number of constituent

pages. Each segment in this example would then individually be sorted according

to name. If the original products table required an index on some other field, say

price, each segment would individually maintain an index on that field. The query

executor adds new tuples to the last segment until either the segment reaches some

pre-specified size or until the current time passes the end of the segment’s time

range; in either case, when a segment becomes full, the executor creates a new

segment to insert subsequent tuples.

To efficiently support the desired range predicates, I annotate each segment with

its minimum insertion time Tmin−insertion, which is determined when the first tuple

is added to a newly created segment. An upper bound on the insertion time of a

segment can be deduced from the minimum insertion time of the next segment or

is equal to the current time if no next segment exists. I also annotate each segment

with the most recent time Tmax−deletion that a tuple has been deleted or updated from

that segment; recall that an update is represented as a deletion from the tuple’s old

segment and an insertion into the most recent segment.

With this structure, the database can greatly reduce the amount of data that

must be scanned to answer a range query on timestamps during recovery. To find

tuples satisfying the predicate insertion-time ≤ T, the database ignores all segments

with Tmin−insertion > T ; similarly, to find tuples satisfying the predicate insertion-

time > T, it ignores all segments coming before a segment with Tmin−insertion ≤ T .

To find tuples with deletion-time > T, it prunes all segments with Tmax−deletion ≤ T .

The segment timestamps thus enable recovery queries to vastly reduce their search

space for valid tuples.

These changes to the physical representation require some modifications to the

standard query execution engine. Read queries on a segmented object must now

be conducted on multiple segments and may require an additional seek or index

lookup per segment, and the results from each segment must be merged together;

39

however, this merge operation is no different from the merge operation that must

occur on any distributed database to combine results from different nodes, except

that it is performed locally on a single node with results from different segments.

Update queries may similarly need to examine multiple segments or traverse mul-

tiple indices, starting from the most recent segment, to find desired tuples. The

distributed database implementation that I evaluate in Chapter 6 shows some of

the overhead for sequential scan queries, indexed update queries, and inserts on a

segmented architecture.

In return for the segment processing overhead, this solution also provides two

concrete benefits to data warehouse environments. Many warehouse systems re-

quire daily or hourly bulk loading of new data into their databases. Using a segment

representation, a database system can easily accommodate bulk loads of additional

data by creating a new segment and transparently adding it to the database as the

last segment with an atomic operation.

Recent years have also seen the rise of massive clickthrough warehouses, such as

Priceline, Yahoo, and Google, that must store over a terabyte of information regard-

ing user clicks on websites. These warehouse systems are only designed to store the

most recent N days worth of clickthrough data. My time-partitioned segment ar-

chitecture supports a symmetric “bulk drop” feature whereby one can, for instance,

create segments with time ranges of a day and schedule a daily drop of the old-

est segment to make room for fresh data. These bulk load and bulk drop features

would require substantially more engineering work under other architectures.

4.3 Commit Processing

In distributed database systems, a distributed commit protocol enables multiple co-

ordinator and worker sites to atomically agree to commit or abort a particular trans-

action; reasons for which workers may abort a transaction include deadlocks and

consistency constraint violations. The multi-phased commit protocols apply only to

update transactions; for read transactions, the coordinator merely needs to notify

40

the workers to release any system resources and locks that the transaction may be

using. One significant benefit that HARBOR confers is the ability to support more

efficient commit protocols for update transactions by eliminating forced-writes to

an on-disk log.

In this section, I start with the traditional two-phase commit protocol (2PC) [38]

used in conventional distributed databases and explain how my versioned represen-

tation of data can be supported with a few minor adjustments. I then dissect certain

parts of 2PC and show that many of the expensive log-related steps of 2PC can be

eliminated to create an optimized variant of 2PC by leveraging the guarantees of

K-safety and HARBOR. Finally, I present an observation that enables a HARBOR-

protected database system to employ a logless variant of a less widely used, but

non-blocking, three-phase commit protocol (3PC) [47] that achieves even higher

runtime performance.

4.3.1 The Traditional Two-Phase Commit Protocol

The traditional mechanism for supporting atomicity in distributed transactions is

the two-phase commit (2PC) protocol [38], illustrated in Figure 4-2. Variants of

2PC including Presumed Abort and Presumed Commit [38] also exist. A coordinator

initiates 2PC after the client commits the transaction and after the last worker has

acknowledged that it has completed the last update request for that transaction.

In the first phase of traditional 2PC, the coordinator moves a transaction from

the pending state to the in-doubt state and sends a PREPARE message to each

worker. Each worker willing to commit the transaction then force-writes a PRE-

PARE log record, moves the local state of the transaction from the pending state to

the prepared state, and sends a YES vote to the coordinator; each worker wishing

to abort the transaction force-writes an ABORT log record, moves the transaction

to the aborted state, rolls back any changes, releases the locks for the transaction,

and sends a NO vote to the coordinator.

In the second phase, the coordinator force-writes a COMMIT log record if it

41

prepare

commit

check constraints
vote Y/N

FW(COMMIT)
FW(COMMIT)

release locksack
all acks?

coordinator worker

forget transaction state

FW(ABORT)

W(END)

prepare

abort

vote Y/N

FW(ABORT)

release locksack
all acks?

coordinator worker

forget transaction state

W(END)

a NO vote?

all YES votes?

forget transaction state

forget transaction state

Commit Scenario Abort Scenario

FW(PREPARE)

release locks
forget transaction state

FW(PREPARE) OR FW(ABORT)
check constraints

Figure 4-2: Commit and abort scenarios of the traditional two-phase commit pro-
tocol. FW signifies force-write, and W signifies a normal log write. In the abort
scenario, only workers that did not abort in the first phase continue onto the sec-
ond phase.

received YES votes from all workers and then sends COMMIT messages to all work-

ers; otherwise, if it received a NO vote or if a worker site crashed, the coordinator

force-writes an ABORT log record and sends an ABORT message to all workers in

the prepared state. In either case, the logging of the COMMIT or ABORT record is

known as the commit point of the transaction; once the log record reaches stable

storage, the transaction is considered to be committed or aborted, and the coordina-

tor can notify the client of the outcome.

If a worker receives a COMMIT message in the second phase, the worker moves

the transaction to the committed state, releases the locks for the transaction, force-

writes a COMMIT record, and sends an ACK to the coordinator. If a worker receives

an ABORT message, the worker moves the transaction to the aborted state, rolls

back any changes, releases the locks for the transaction, force-writes an ABORT

record, and sends an ACK to the coordinator. When the coordinator receives ACKs

from all workers that it sent a message to in the second phase, it logs an END record

and forgets the transaction state.

To support my timestamped representation of data, I augment 2PC with two mi-

nor changes: 1) COMMIT messages also include a commit time to be used by worker

sites for all tuples modified by a particular transaction, and 2) the in-memory inser-

42

tion and deletion lists of that a worker maintains for an ongoing transaction can be

deleted when the transaction commits or aborts.

4.3.2 An Optimized Two-Phase Commit Protocol

The three non-overlapping forced-writes of log records (two by each worker and

one by the coordinator) increase transaction latency by several milliseconds each

and can easily become the performance bottleneck of update-intensive workloads.

The evaluations in § 6.3 indicate that the forced-writes can increase transaction

latency by over an order of magnitude on a simple insert-intensive workload on

a four-node distributed database system. Modern systems use a technique known

as group commit [16, 24] to batch together the log records for multiple transac-

tions and to write the records to disk using a single disk I/O. In the distributed

context, sites must still ensure that forced-writes reach stable storage before send-

ing out messages, but group commit can help increase transaction throughput for

non-conflicting concurrent transactions. Latency, however, is not improved.

One key observation regarding 2PC is that the forced-writes by the worker sites

are necessary only because log-based recovery requires examination of the local

log to determine the status of old transactions. After a worker fails and restarts,

the forced COMMIT or ABORT record for a transaction informs the recovering site

about the outcome of the transaction, while the PREPARE record in the absence of

any COMMIT or ABORT record informs the recovering site that it may need to ask

another site for the final consensus.

If a worker can recover without using a log, then the forced-writes and, in fact,

any log writes become unnecessary; this condition exists within HARBOR’s frame-

work. When K-safety exists, a crashed worker does not need to determine the final

status of individual transactions for recovery purposes. As long as all uncommitted

changes on disk can be identified from the special insertion timestamp value asso-

ciated with uncommitted tuples, worker sites can roll back uncommitted changes

and query remote replicas for all committed updates at recovery time. It is this re-

43

prepare

commit (T)

check constraintsvote Y/N

FW(COMMIT)
commit with time T

release locksack
all acks?

coordinator worker

forget transaction state

rollback changes
W(END)

prepare

abort

vote Y/N

FW(ABORT)

release locksack
all acks?

coordinator worker

forget transaction state

W(END)

a NO vote?

all YES votes?

forget transaction state

forget transaction state

Commit Scenario Abort Scenario

release locks
forget transaction state

if voting NO, roll back changes
check constraints

Figure 4-3: Commit and abort scenarios of the optimized two-phase commit proto-
col. FW signifies force-write, and W signifies a normal log write.

alization that enables worker sites under the HARBOR approach to eliminate both

the forced-writes to stable storage and the use of an on-disk log all together.

My optimized 2PC therefore looks like the interaction shown in Figure 4-3. A

worker site, upon receiving a PREPARE message, simply checks any consistency

constraints and votes YES or NO. When a worker site receives a COMMIT message, it

simply assigns the commit time to the modified tuples; when a worker site receives

an ABORT message, it rolls back all changes. In either case, the worker then sends

an ACK to the coordinator. I examine the performance gains of eliminating the

workers’ logs and their two forced-writes in § 6.3.

Note that despite the absence of a log write in the PREPARE phase, the pro-

tocol still requires workers to be prepared because the database schema may have

integrity constraints that can only be verified at the end of a transaction; in other

words, a particular worker site may still need the option of aborting the transaction

after the transaction’s operations have completed. In special frameworks where the

database schemas have the property that workers can verify integrity constraints

after each update operation, the PREPARE phase can be removed from this protocol

to produce a one-phase commit protocol [4, 3] without logging; in general, how-

ever, these assumptions do not hold, and I do not further consider this specific case

in my thesis.

44

Handling Failures during Optimized 2PC

If a coordinator receives no response from a worker during the optimized 2PC pro-

tocol, either because a faulty network dropped the worker’s response or because the

worker crashed, the coordinator assumes the worker aborted the transaction and

voted NO. In accordance with this logic, if a worker crashes, recovers, and subse-

quently receives a vote request for an unknown transaction, the worker responds

with a NO vote.

If a coordinator fails, a worker site can safely abort the transaction if either a)

the worker has not received a PREPARE message for the transaction, i.e., the trans-

action is still pending, or if b) the worker has received a PREPARE message but has

voted NO. Otherwise, the worker needs to wait for the coordinator to recover before

completing the transaction. That the worker needs to wait for the coordinator to

recover stems from the blocking nature of 2PC; I describe an optimized 3PC protocol

that avoids this problem in the next section.

4.3.3 An Optimized Three-Phase Commit Protocol

Under my optimized 2PC, the coordinator still must force-write a COMMIT or

ABORT log record prior to sending out COMMIT or ABORT messages to workers.

The reason is that if a coordinator fails after informing the client of the transaction’s

outcome but before receiving ACKs from all of the workers, it needs to examine the

log to reconstruct the transaction’s status prior to the crash so that it can respond

to worker inquiries regarding the transaction’s final outcome upon rebooting.

The key insight in this section is that if workers can eliminate their dependency

on a crashed coordinator and resolve a transaction by themselves, then the coordi-

nator’s log becomes unnecessary because a recovering coordinator can be absolved

of responsibility for transactions that it coordinated prior to the crash. Unfortu-

nately, 2PC does not provide workers with sufficient information to recover a trans-

action after a coordinator crash. Suppose that a coordinator fails after sending a

COMMIT message to one worker, and the worker also fails; then the remaining

45

workers cannot proceed because they do not have sufficient information among

themselves to determine whether the transaction has committed, has aborted (pos-

sibly due to a timeout from a slow network), or is still pending.

The canonical 3PC protocol solves this blocking problem by introducing an addi-

tional prepared-to-commit state between the prepared state and the committed state.

The additional state enables the workers to use a consensus building protocol, de-

scribed in the next section, to agree on a consistent outcome for a transaction with-

out depending on a crashed coordinator or other worker site to ever come back

online. Under this framework, workers execute the consensus building protocol if

they detect a coordinator crash. The coordinator, upon restart, responds to worker

inquiries by asking the workers to execute the consensus building protocol rather

than following the conventional “if no information, then abort” rule of 2PC [38].

The non-blocking property of 3PC means that coordinators in 3PC do not need to

force-write log records or maintain an on-disk log. 1

No part of this discussion affected the ability of workers to recover without a log.

With K-safety, the system can tolerate K failures to a database object and still recover

any worker data through the recovery algorithm to restore committed data and the

consensus building protocol to resolve any ongoing transactions. Combining the

canonical 3PC protocol, which does not require coordinator log writes, with my 2PC

optimizations, which eliminate worker log writes, therefore leads to an optimized

3PC protocol that eliminates all forced-writes and log writes by all participants. My

optimized 3PC protocol is illustrated in Figure 4-4 and works as follows.

In the first phase, the coordinator sends a PREPARE message to all workers with

a list of site identifiers for the workers participating in the transaction. A worker

willing to commit the transaction after checking any consistency constraints enters

the prepared state and responds with a YES vote; a worker unable to commit enters

the aborted state and responds with a NO vote.

1Note that the original proposal for 3PC [47] does not explain log writes for the protocol and that
my interpretation of 3PC differs from the one presented by Gupta et al. [22]; their 3PC still requires
coordinators to maintain a log, presumably because they do not abandon the “if no information,
then abort” rule.

46

prepare (worker-ids)

commit

check constraintsvote Y/N

commit with time T

release locksack
all acks?

coordinator worker

forget transaction state

forget transaction state

all YES votes?
prepare-to-commit (T)

ack

all acks?

prepare (worker-ids)

vote Y/N

coordinator worker

a NO vote?

rollback changes
abort

release locksack
all acks?

forget transaction state

forget transaction state

Commit Scenario Abort Scenario

release locks
forget transaction state

if voting NO, rollback changes
check constraints

Figure 4-4: Commit and abort scenarios of the optimized three-phase commit pro-
tocol.

In the second phase, if the coordinator receives all YES votes in the first phase, it

sends a PREPARE-TO-COMMIT message with the commit time to all the workers. A

worker enters the prepared-to-commit state after receiving the message and replies

with an ACK. When all ACKs have been received, the coordinator has reached the

commit point in the transaction. If the coordinator had instead received a NO

vote, it sends an ABORT message to the workers still in the prepared state, and the

protocol terminates after the coordinator receives all ACKs.

Finally, in the third phase for transactions to be committed, the coordinator

sends the final COMMIT message. Upon receiving the COMMIT, workers enter the

committed state and can assign the commit time to modified tuples, forget any state

for the transaction, and release its locks.

Correctness of my logless 3PC protocol can be seen assuming a correct consen-

sus building protocol, which I describe in the next section, and a correct logless

recovery algorithm, which I describe in the next chapter. If a worker fails during

a transaction, the coordinator behaves as with 2PC: it commits with the remaining

workers if it has already received a YES vote from the failed worker and receives

YES votes from all other workers; otherwise, it aborts. In either case, the failed

worker, upon executing the recovery algorithm, undoes any uncommitted changes

from that transaction and then copies state from other replicas to become consistent

47

with respect to all transactions. If a coordinator fails, the workers use the consensus

building protocol to obtain a consistent transaction outcome, and the coordinator,

upon recovery, is no longer responsible for the transaction.

Using this 3PC protocol in conjunction with HARBOR, one can support trans-

action processing and recovery without forced-writes and without maintaining an

on-disk log structure for any sites. When the network is substantially faster than

the disk, the extra round of messages introduces less overhead than a forced disk

write. I evaluate the runtime performance implications of using this 3PC in § 6.3.

Consensus Building Protocol to Handle Coordinator Failures

If a worker detects a coordinator failure before a transaction’s commit processing

stage or if a recovered coordinator indicates no knowledge for a particular transac-

tion, the worker can safely abort the transaction as with 2PC. If the coordinator site

fails during commit processing, however, a worker that detects the crash can use a

consensus building protocol like the one described in [47] and whose correctness

is proven in [48]. In the protocol, a backup coordinator is chosen by some arbi-

trarily pre-assigned ranking or some other voting mechanism from the transaction’s

worker set and then decides from its local state how to obtain a globally consistent

transaction outcome, as follows.

The backup can either be in the pending (a.k.a. unprepared state), the prepared

state, the prepared-to-commit state, the aborted state, or the committed state. To aid

in the exposition, Figure 4-5 shows the 3PC state transition diagram for a worker

site under normal transaction processing. Note that because the state transitions

proceed in lock-step, no worker site can be more than one state away from the

backup coordinator.

There are four cases:

• If the backup either 1) had not voted in the first phase, 2) is prepared and

had voted NO, or 3) had aborted, it sends an ABORT message to all workers

because no site could have reached the prepared-to-commit state.

48

pending prepared,
voted YES/NO

aborted

prepared-
to-commit

committed

Figure 4-5: State transition diagram for a worker site using three-phase commit.

• If the backup is in the prepared state and had voted YES, then no sites could

have yet reached the committed state (they could have at most reached the

prepared-to-commit state). The backup therefore asks all sites to transition to

the prepared state if it is at some other state and waits for an ACK from each

worker; it then sends an ABORT message to each worker.

• If it is in the prepared-to-commit state, then no site could have aborted. Thus,

it replays the last two phases of 3PC, reusing the same commit time it received

from the old coordinator, and commits the transaction.

• If it is in the committed state, then clearly no site aborted, and so it sends a

COMMIT message to all workers. Workers can safely disregard any duplicate

messages they receive.

Table 4.1 summarizes the backup’s actions for the various states. In order for

the backup coordinator to seamlessly handle the failed connection with the client,

one can use a special purpose tool like the one described in [49].

Backup Coordinator State Action(s)
pending abort
prepared, voted NO abort
prepared, voted YES prepare, then abort
aborted abort
prepared-to-commit prepare-to-commit, then commit
committed commit

Table 4.1: Action table for backup coordinator.

49

Protocol Messages Forced-Writes Forced-Writes
per Worker by Coordinator per Worker

2PC 4 1 2
optimized 2PC 4 1 0

3PC 6 0 3
optimized 3PC 6 0 0

Table 4.2: Overhead of commit protocols

4.3.4 Cost Summary of Commit Protocols

The standard strategy for profiling commit protocols, as done in [22], tabulates the

number of messages and the number of forced-writes required for a protocol and

measures the overhead via a simulation or an online system. Table 4.2 shows the

messages and forced-writes required for the four commit protocols discussed thus

far, in terms of the number of messages sent by a coordinator to each worker, the

number of forced-writes by a coordinator, and the number of forced-writes by a

worker. 2

I evaluate the commit processing overhead of these four protocols on my four-

node distributed database implementation in § 6.3.

4.3.5 Additional Advantages of HARBOR

Aside from eliminating the need for forced-writes and an on-disk log, HARBOR also

confers two additional advantages to transaction processing not available to con-

ventional database systems. In a conventional system, a coordinator must abort

a transaction if a worker crashes in the midst of a transaction. In a HARBOR-

protected system, however, if a worker crashes before commit processing for a

transaction has begun, the coordinator can opt instead to commit the transaction

with K-1-safety rather than aborting it. The crashed worker will simply recover the

committed data when it runs the recovery algorithm to come back online.

As a corollary to this first advantage, a coordinator can also “crash” a worker

2Note that the 3PC analysis in [22] assumes that the coordinator also logs, which is not strictly
necessary.

50

site that is bottlenecking a particular pending transaction due to network lag, dead-

lock, or some other reason and proceed to commit the transaction with K-1-safety;

the “crashed” worker site would then be forced to undergo recovery to recover the

committed changes. Obviously, the coordinator must take measures to ensure that

K-safety is not lost if it takes this action (or if multiple coordinators decide to exe-

cute this technique), but HARBOR at least allows the flexibility for such a technique

to exist.

51

52

Chapter 5

Recovery

Having discussed the design modifications to query execution required to support

the HARBOR framework, I now proceed to discuss the central recovery algorithm of

this thesis. In this chapter, I first introduce some terminology to clarify my recovery

discussion. I then present the three phases of HARBOR’s recovery algorithm to

bring a crashed site online and conclude with how HARBOR deals with site failures

during recovery.

5.1 Terminology

Let S be the failed site. I describe recovery in terms of bringing a particular database

object rec on S online, where rec may be a table, a horizontal or vertical partition, or

any other queryable representation of data. Indices on an object can be recovered

as a side effect of adding or deleting tuples from the object during recovery. Site

recovery then reduces to bringing all such database objects on S online. HARBOR

permits multiple rec objects and even multiple sites to be recovered in parallel; each

object proceeds through the three phases at its own pace.

Assuming that S crashed within the specifications of the fault tolerance model

(i.e., while the system still maintained K-safety for K ≥ 1), the system can still

continue to answer any query. Therefore, there must exist at least one collection

of objects C distributed on other sites that together cover the data of rec. Call each

53

of these objects in C a recovery object, and call a site containing a recovery object

a recovery buddy. For each recovery object, one can compute a recovery predicate

such that a) the sets of tuples obtained by applying the recovery predicates on their

corresponding recovery objects are mutually exclusive, and b) the union of all such

sets collectively cover the object rec.

Example: Suppose that a database stores two replicated tables EMP1

and EMP2 representing the logical table employees. EMP1 has a pri-

mary index on salary, and EMP2 has a primary index on employee id;

the database designer has designated different primary indices on the

two copies to efficiently answer a wider variety of queries. Suppose

EMP2A and EMP2B are the two and only horizontal partitions of EMP2;

EMP2A is on site S1 and contains all employees with employee id < 1000,

and EMP2B is on site S2 and contains all employees with employee id

≥ 1000. Finally, let rec on the recovering site S be the horizontal par-

tition of EMP1 with salary < 5000. In this example, S1 would be a

recovery buddy with the recovery object EMP2A and the recovery pred-

icate salary < 5000; similarly, S2 would be another recovery buddy with

the recovery object EMP2B and the same recovery predicate.

I assume that the catalog stores the information illustrated in the example,

which is not unreasonable because the computation of recovery objects and pred-

icates is the same as the computation that the query optimizer would perform in

determining which sites to use to answer a distributed query for all employees with

salary < 5000 when S is down.

Having established this terminology, I now discuss in detail the three phases

of HARBOR’s recovery algorithm. For simplicity, I describe virtually all steps of

recovery declaratively using SELECT, INSERT, DELETE, and UPDATE SQL queries

and define the semantics of special keywords as they arise. All INSERT, DELETE, and

UPDATE statements in the recovery queries refer to their normal SQL semantics in

standard databases rather than to the special semantics used for historical queries.

54

5.2 Phase 1: Restore local state to the last checkpoint

Recall from § 3.4 that a site writes checkpoints during runtime by periodically flush-

ing all dirty pages to disk. Call the time of S’s most recent checkpoint Tcheckpoint.

During recovery, HARBOR temporarily disables periodically scheduled checkpoints.

The last checkpoint guarantees that all insertions and deletions of transactions that

committed at or before Tcheckpoint have been flushed to disk. The disk may also con-

tain some uncommitted data as well as some, but probably not all, data from trans-

actions that committed after the checkpoint. In Phase 1, HARBOR executes two

local queries to discard any changes after Tcheckpoint and any uncommitted changes

in order to restore the state of all committed transactions up to Tcheckpoint.

First, HARBOR deletes all tuples inserted after the checkpoint and all uncom-

mitted tuples by running the following query:

DELETE LOCALLY FROM rec

SEE DELETED

WHERE insertion_time > T_checkpoint

OR insertion_time = uncommitted

The LOCALLYkeyword indicates that this query runs on the local site; I will

use the keyword REMOTELYlater to indicate queries that need to run on remote

replicas. The semantics of SEE DELETEDare that rather than filtering out deleted

tuples as a standard query would do, HARBOR executes the query in a special

mode with delete filtering off so that both insertion and deletion timestamps be-

come visible as normal fields. Also, note that the DELETEin the query refers to the

standard notion of removing a tuple rather than recording the deletion timestamp.

The special uncommitted value refers to the special value assigned to the insertion

timestamp of tuples not yet committed; in practice, the special value can simply be

a value greater than the value of any valid timestamp, which has the benefit that

uncommitted tuples are added to the the last segment.

The segment architecture discussion of § 4.2 describes the usage of Tmin−insertion

and Tmax−deletion annotations on segments to improve the performance of recovery

queries. Using the minimum insertion timestamp Tmin−insertion associated with each

55

segment, HARBOR can efficiently find the tuples specified by the range predicate

on insertion time for this query. Assuming that the database is configured to

record checkpoints somewhat frequently, executing this query should only involve

scanning the last few segments; I evaluate the cost of this scan later in Chapter 6.

Next, HARBOR undeletes all tuples deleted after the checkpoint using the fol-

lowing query:

UPDATE LOCALLY rec SET deletion_time = 0

SEE DELETED

WHERE deletion_time > T_checkpoint

Like the DELETEin the previous query, the UPDATEin this query corresponds

to the standard update operation (an update in place), rather than a delete and

an insert. Using the maximum deletion timestamp Tmax−deletion recorded on each

segment, HARBOR can prune out any segments whose most recent deletion time

is less than or equal to Tcheckpoint. Thus, recovery performance pays the price of

sequentially scanning a segment to perform an update if and only if a tuple in

that segment was updated or deleted after the last checkpoint. In a typical data

warehouse workload, one expects that updates and deletions will be relatively rare

compared to reads and that any updates and deletions will happen primarily to the

most recently inserted tuples, i.e., in the most recent segment. Thus, in the common

case, either no segment or only the last segment should need to be scanned. 1

After the two queries in the first phase complete, the state of rec reflects only

those transactions that committed at or before Tcheckpoint.

Example: Figure 5-1 illustrates a sample run of recovery Phase 1

on a simplified version of a sales table. A real warehouse table would
1An alternative data representation that would greatly reduce the cost of this recovery query

and subsequent recovery queries with range predicates on the deletion time would be to store
a separate deletion vector with the deletion times for all tuples in that segment. Recovery could
then simply scan the deletion vector to find the desired deleted tuples rather than scan the entire
segment. If the deletion vector replaced the deletion time column, however, standard read
queries would incur the additional cost of performing a join with the deletion vector to determine
tuple visibility. If it were stored redundantly in addition to the deletion time column, updates
would need to write the deletion timestamp in two locations. Either recovery optimization may be
a potentially worthwhile tradeoff. Ultimately, the deletion vector representation is better suited for
column-oriented databases where each column is already stored separately, and range predicates on
columns are already the norm.

56

insertion time deletion time product name
1 0 Colgate
2 3 Poland Spring
4 6 Dell Monitor
5 0 Crest

uncommitted 0 Playstation

(a) Table on the crashed site with checkpoint at time
4. Shaded rows indicate rows inserted after the check-
point and will be deleted by the DELETEquery.

insertion time deletion time product name
1 0 Colgate
2 3 Poland Spring
4 6 Dell Monitor

(b) Table after the DELETEquery. Shaded cells indi-
cate deletions after the checkpoint that must be un-
done by the subsequent UPDATEquery.

insertion time deletion time product name
1 0 Colgate
2 3 Poland Spring
4 0 Dell Monitor

(c) Table after recovery Phase 1.

Figure 5-1: Sample run of recovery Phase 1 for a checkpoint recorded at time 4.

contain millions of rows and 20–40 columns. Figure 5-1(a) shows the

state of the table on the crashed site. Assuming the site recorded its

most recent checkpoint at time 4, the DELETEquery removes all the

shaded tuples inserted either after the checkpoint or by uncommitted

transactions to obtain the table shown in Figure 5-1(b). The shaded cell

shows a deletion that happened after the checkpoint; the UPDATEquery

undoes this deletion, resulting in the table of Figure 5-1(c).

57

5.3 Phase 2: Execute historical queries to catch up

The strategy in the second phase is to capitalize on the data redundancy available

at remote sites and to leverage historical queries to rebuild rec up to some time

close to the present. Because historical queries do not require locks, this phase of

recovery does not quiesce the system. Let the high water mark (HWM) be the time

right before S begins Phase 2; thus, if S begins Phase 2 at time T , let the HWM

be T − 1. Recall that a historical query as of the time HWM means that all tuples

inserted after the HWM are not visible and that all tuples deleted after the HWM

appear as if they had not been deleted (i.e., their deletion time s would appear

to be 0).

First, HARBOR finds all deletions that happened between Tcheckpoint (exclusive)

and the HWM (inclusive) to the data that was inserted at or prior to Tcheckpoint.

HARBOR’s recovery algorithm requires that each tuple have a unique tuple identi-

fier (such as a primary key) to associate a particular tuple on one site with the same

replicated tuple on another. HARBOR can then accomplish this task by running a

set of historical queries as of the time HWM for each recovery object and recovery

predicate computed for rec:

{(tup_id, del_time) } =

SELECT REMOTELY tuple_id, deletion_time FROM recovery_object

SEE DELETED HISTORICAL WITH TIME HWM

WHERE recovery_predicate AND insertion_time <= T_checkpoint

AND deletion_time > T_checkpoint

The HISTORICAL WITH TIME HWMsyntax indicates that the query is a his-

torical query as of the time HWM. The query outputs a set of tuples of the type

<tuple id, deletion time>, where all the tuple ids refer to tuples that were inserted

at or before Tcheckpoint and deleted after Tcheckpoint. Both of the Tmin−insertion and

Tmax−deletion timestamps on segments help to reduce the number of segments that

must be scanned to answer the insertion time and deletion time range

predicates; on typical warehouse workloads where historical updates are rare, few

segments should need to be scanned. For each (tup id, del time) tuple that S re-

58

ceives, HARBOR runs the following query to locally update the deletion time of the

corresponding tuple in rec:

for each (tup_id, del_time) in result:

UPDATE LOCALLY rec SET deletion_time = del_time

SEE DELETED

WHERE tuple_id = tup_id AND deletion_time = 0

The UPDATEagain happens in place, as opposed to being a separate insert and

delete, to reflect that S is simply copying any new deletion times from its recovery

buddies. The predicate on the deletion time ensures that HARBOR updates the

most recent tuple in the event that the tuple has been updated and more than one

version exists. I assume that an index exists on tuple id , which is usually the

primary key, to speed up the query.

Next, HARBOR queries for the rest of the data inserted between the checkpoint

and the HWM using a series of historical queries as of the HWM on each recovery

object and associated recovery predicate, and it inserts that data into the local copy

of rec on S:

INSERT LOCALLY INTO rec

(SELECT REMOTELY * FROM recovery_object

SEE DELETED HISTORICAL WITH TIME HWM

WHERE recovery_predicate AND insertion_time > T_checkpoint

AND insertion_time <= hwm)

The semantics of the INSERT LOCALLYstatement are in the sense of a tra-

ditional SQL insert, without the reassignment of insertion times as would occur

under my versioned representation; it reflects the idea that S is merely copying the

requested data into its local copy of rec. While the predicate insertion time

<= hwmis implicit by the definition of a historical query as of the HWM, it is shown

here explicitly to illustrate that HARBOR can again use the Tmin−insertion timestamps

on segments to prune the search space.

After running this query, the recovery object rec is up-to-date as of the HWM.

Because objects will be recovered at different rates, HARBOR cannot write a check-

point stating that stable storage reflects all committed changes up to time T for

59

some T > Tcheckpoint until recovery of all objects completes. If the recovering site

or a recovering buddy crashes and recovery needs to be restarted, however, the

recovering site would benefit from the knowledge that some database objects may

already be more up-to-date than Tcheckpoint. To accommodate this observation, S

adopts a finer-granularity approach to checkpointing during recovery and maintains

a separate checkpoint per object. Using the object-specific checkpoints, S records

a new checkpoint as of the time HWM for rec to reflect that rec is consistent up to

the HWM. The site resumes using the single, global checkpoint once recovery for

all objects completes.

Note that if S has crashed for a long time before starting recovery, or if S’s

disk has failed and must be recovered from a blank slate, Phase 2 may require

a substantial amount of time to copy the missing data. After Phase 2, the HWM

may lag the current time by a sizeable amount, and many additional transactions

may have committed since Phase 2 started. If the HWM differs from the current

time by more than some system-configurable threshold, Phase 2 can be repeated

additional times before proceeding to Phase 3. The benefit of re-running Phase 2

is that the remaining queries in Phase 3 proceed with transactional read locks and

block ongoing update transactions, whereas the historical queries of Phase 2 do not.

Example: Figure 5-2 continues the recovery story from the previous

section. Figure 5-2(a) shows the table on the recovering site after Phase

1. Phase 2 uses a HWM of 10, and Figure 5-2(b) depicts the recov-

ery buddy’s table with the missing updates to be copied during Phase 2

shaded. Note that the recovery buddy’s table uses a different sort order

but logically represents the same data. Because the HWM is 10, the tu-

ple with an insertion time of 11 will not be copied, and the tuple deleted

at time 11 appears undeleted to historical queries as of time 10. After

executing the SELECTand UPDATEqueries to copy over the deletion

timestamps for tuples deleted between the checkpoint and the HWM,

the recovering site holds the table shown in Figure 5-2(c); the copied

deletion time is shaded. Figure 5-2(d) reflects the table at the end of

60

insertion time deletion time product name
1 0 Colgate
2 3 Poland Spring
4 0 Dell Monitor

(a) Table on the recovering site after recovery Phase 1
with checkpoint at time 4.

insertion time deletion time product name
11 0 Bose Speaker
6 9 Chapstick
1 0 Colgate
4 8 Dell Monitor
10 11 iPod
2 3 Poland Spring

(b) Table on the recovery buddy, sorted by
product name. Shaded cells indicate insertions,
deletions, and updates that the recovering site must
copy during Phase 2 of recovery. Note that the inser-
tion and the deletion at time 11 are not visible to a
historical query running as of time 10.

insertion time deletion time product name
1 0 Colgate
2 3 Poland Spring
4 8 Dell Monitor

(c) Table on the recovering site after the SELECTand
UPDATEqueries of Phase 2. The shaded cell indicates
the deletion time copied from the recovery buddy.

insertion time deletion time product name
1 0 Colgate
2 3 Poland Spring
4 8 Dell Monitor
6 9 Chapstick
10 0 iPod

(d) Table on the recovering site after the nested
SELECTand INSERT query of Phase 2. Shaded tuples
indicate tuples copied from the recovery buddy.

Figure 5-2: Sample run of recovery Phase 2 for a checkpoint recorded at time 4 and
a HWM of 10.

61

Phase 2, after running the nested SELECTand INSERT query to copy

the shaded tuples with insertion timestamps between the checkpoint

and the HWM.

5.4 Phase 3: Catch up to the current time with locks

Phase 3 consists of two parts: 1) executing non-historical read queries with locks

to catch up to with all committed updates up to the current time and 2) joining

any pending transactions dealing with rec. The structure of the read queries highly

parallel the structure of those in Phase 2, except that they are not run in historical

mode.

5.4.1 Query for committed data with locks

First, HARBOR acquires a transactional read lock on every recovery object at once

to ensure consistency:

for all recovery_objects:

ACQUIRE REMOTELY READ LOCK ON recovery_object

ON SITE recovery_buddy

The lock acquisition can deadlock, and I assume that the system has some dis-

tributed deadlock detection mechanism, by using timeouts for instance, to resolve

any deadlocks. Site S retries until it succeeds in acquiring all of the locks.

When the read locks for all recovery objects have been granted, all running

transactions on the system are either a) not touching rec’s data, b) running read

queries on copies of rec’s data, or c) waiting for an exclusive lock on a recovery

buddy’s copy of rec’s data (recall from § 4.1 that update transactions must update

all live copies of the data, including the one on the recovery buddy). In other

words, after site S acquires read locks on copies of data that together cover rec,

no pending update transactions that affect rec’s data can commit until S releases

its locks. Moreover, no in-doubt transactions that updated rec’s data can remain in

62

the database because S’s successful acquisition of read locks implies that any such

transactions must have already completed commit processing and released their

locks.

After Phase 2, the recovering site S is missing, for all tuples inserted before the

HWM, any deletions that happened to them after the time HWM. To find the missing

deletions, I use a strategy similar to the one used at the start of Phase 2. For each

recovery object and recovery predicate pair, HARBOR executes the following query:

{(tup_id, del_time) } =

SELECT REMOTELY tuple_id, deletion_time FROM recovery_object

SEE DELETED

WHERE recovery_predicate AND insertion_time <= hwm

AND deletion_time > hwm

HARBOR again relies on the segment architecture to make the two timestamp

range predicates efficient to solve. For each (tup id, del time) tuple in the result,

HARBOR locally updates the deletion time of the corresponding tuple in rec:

for each (tup_id, del_time) in result:

UPDATE LOCALLY rec

SET deletion_time = del_time

WHERE tuple_id = tup_id AND deletion_time = 0

Finally, to retrieve any new data committed inserted after the HWM, HARBOR

runs the following insertion query that uses a non-historical read subquery:

INSERT LOCALLY INTO rec

(SELECT REMOTELY * FROM recovery_object

SEE DELETED

WHERE recovery_predicate AND insertion_time > hwm

AND insertion_time != uncommitted)

The check insertion time != uncommitted is needed assuming that the

special uncommitted insertion timestamp is represented by some value larger than

any valid timestamp and would otherwise satisfy the insertion time > hwm

predicate. In the common case, the query only examines the last segment, but

63

HARBOR may need to examine more segments depending on whether new seg-

ments were created since the time HWM at the beginning of Phase 2. After this

query, S has caught up with all committed data for rec as of the current time and

is still holding locks on its recovery buddies’ recovery objects. S can then write a

checkpoint for rec timestamped at the current time minus one (the current time has

not expired, and additional transactions may commit with the current time).

Example: Figure 5-3 illustrates the remaining queries for missing up-

dates. Figure 5-3(a) shows the recovering table after Phase 2, and Fig-

ure 5-3(b) shows the table on the recovery buddy; shaded cells in the

recovery buddy’s table indicate data to be copied. The recovering site

obtains a read lock on the recovery buddy’s table at the start of Phase 3.

After the recovering site queries for the deletions after the HWM, the re-

covering table looks as shown in Figure 5-3(c) with the copied deletions

shaded. Figure 5-3(d) shows the recovering table after it has copied all

insertions up to the current time.

5.4.2 Join pending transactions and come online

At this point, there may still be some ongoing update transactions that the recov-

ering site S needs to join. The simple approach would be to abort all pending

non-historical transactions at coordinator sites and restart them with the knowl-

edge that rec on S is online; however, one would like to save the work that has

already been completed at other worker sites.

The protocol for joining all pending update transactions begins with site S send-

ing a message M to each coordinator saying “rec on S is coming online.” Any sub-

sequent transactions that originate from the coordinator and that involve updating

rec’s data must also include S as a worker; read-only transactions can optionally use

rec on S because it already contains all committed data up to this point. As previ-

ously mentioned in § 4.1, each coordinator maintains a queue of update requests

for each of its transactions; the system now uses this queue to complete recovery.

64

insertion time deletion time product name
1 0 Colgate
2 3 Poland Spring
4 8 Dell Monitor
6 9 Chapstick
10 0 iPod

(a) Table on the recovering site after recovery Phase 2.

insertion time deletion time product name
11 0 Bose Speaker
6 9 Chapstick
1 0 Colgate
4 8 Dell Monitor
10 11 iPod
2 3 Poland Spring

(b) Table on the recovery buddy, sorted by
product name. Shaded cells indicate insertions,
deletions, and updates that the recovering site must
copy during Phase 3 of recovery.

insertion time deletion time product name
1 0 Colgate
2 3 Poland Spring
4 8 Dell Monitor
6 9 Chapstick
10 11 iPod

(c) Table on the recovering site after the SELECTand
UPDATEqueries of Phase 3. The shaded cell indicates
the deletion time copied from the recovery buddy.

insertion time deletion time product name
1 0 Colgate
2 3 Poland Spring
4 8 Dell Monitor
6 9 Chapstick
10 11 iPod
11 0 Bose Speaker

(d) Table on the recovering site after the nested
SELECTand INSERT query of Phase 3. Shaded tuples
indicate tuples copied from the recovery buddy.

Figure 5-3: Sample run of the standard lock-based queries to catch up to the current
time during recovery Phase 3 with a HWM of 10.

65

coordinatorrecovering site

rec coming online

find relevant transactions
forward update
requests

...
all done

rec online

recovery queries
complete

Figure 5-4: Protocol to join pending transactions and come online.

Let PENDING be the set of all pending update transactions at a coordinator when

message M is received. To complete recovery, S needs to join all relevant transac-

tions in PENDING. A transaction T is relevant if at some point during the transac-

tion, it deletes a tuple from, inserts a tuple to, or updates a tuple in the recovering

object rec. The coordinator determines if a transaction T is relevant by checking

if any updates in the transaction’s update queue modify some data covered by rec.

To have S join a relevant transaction, the coordinator forwards all queued update

requests that affect rec to S. When the transaction is ready to commit, the coor-

dinator includes S during the commit protocol by sending it a PREPARE message

and waiting for its vote, as if rec on S had been online since the beginning of the

transaction.

The coordinator cannot conclude that S will not join a particular transaction

T until either the client commits the transaction or the transaction aborts because

otherwise the transaction may still update rec’s data. After all transactions in PEND-

ING have been deemed either relevant or irrelevant to rec, and after S has begun

joining all relevant transactions, the coordinator sends an “all done” message to S.

Figure 5-4 summarizes this protocol for the recovering site to join pending transac-

tions and come online. When S receives all such messages from all coordinators, it

releases its locks on the recovery objects for rec on remote sites:

66

for all recovery_objects:

RELEASE REMOTELY LOCK ON recovery_object

ON SITE recovery_buddy

Object rec on S is then fully online. Transactions that were waiting for locks on

the recovery objects can then continue to make progress.

5.5 Failures during Recovery

HARBOR’s recovery algorithm tolerates a variety of site failures during recovery,

including failure of the recovery site, failures of recovery buddies, and failures of

coordinators.

5.5.1 Failure of Recovering Site

If the recovering site S fails during Phase 1 or Phase 2 of recovery, it restarts re-

covery upon rebooting, using a more recent object-specific checkpoint if one is

available. If S fails during Phase 3, however, it may still be holding onto remote

locks on its recovery objects, and the coordinator may have been attempting to let

S join ongoing transactions. To handle this situation, HARBOR requires some fail-

ure detection mechanism between nodes, which already exists in most distributed

database systems. The mechanism may be some type of heartbeat protocol in which

nodes periodically send each other “I’m alive” messages; or, it may be, as in my im-

plementation, the detection of an abruptly closed TCP socket connection as a signal

for failure. Regardless of the mechanism, when a recovery buddy detects that a re-

covering node has failed, it overrides the node’s ownership of the locks and releases

them so that other transactions can progress. For any pending transactions that S

had been joining, the coordinator treats the situation as it normally treats worker

failures during transactions. S then restarts recovery.

67

5.5.2 Recovery Buddy Failure

If a recovery buddy fails during recovery, the remaining read locks on the remaining

recovery buddies no longer cover a full copy of rec. Because the distributed trans-

action model only requires that updates be sent to all live worker sites with the

relevant tuples, transactions that update the part of rec’s data stored on the crashed

recovery buddy may be able to slip past S’s locks. Thus, the recovering node S

must release any locks on the remaining replicas that it may be holding, abort any

transactions that it may be joining, and restart recovery with a new set of recovery

objects computed from the remaining online sites. The coordinator and the other

recovery buddies behave as if rec on S had actually failed.

5.5.3 Coordinator Failure

If a coordinator fails during recovery, and the system is configured to use optimized

2PC, recovery may block in Phase 3 as S waits for any read locks held by workers

participating in the coordinator’s update transactions. S can proceed only after

those transactions complete and release their locks, which may require waiting for

the coordinator to recover.

The non-blocking, optimized 3PC protocol supports recovery without waiting for

a failed coordinator to recover. In the rest of this section, I show that the consen-

sus building protocol used to handle coordinator failure during normal processing

continues to preserve ACID semantics.

Suppose that a coordinator fails during Phase 1 or Phase 2 of recovery. All of

the coordinator’s transactions will either commit or abort based on the rules of op-

timized 3PC and the consensus building protocol. The aborted transactions do not

affect the results of any recovery queries because the queries only copy committed

data. All other committed transactions that affect rec fall into two categories:

1. The transaction commits at or before the HWM. In this case, S begins Phase 2

after the transaction committed and will copy the transaction’s updates with

its historical queries to catch up to the HWM.

68

2. The transaction commits after the HWM. In this case, S could not have ob-

tained the read locks to its recovery objects until the transaction completed.

Therefore, by the time that S acquires its remote read locks, it will be able to

copy the updates through its non-historical queries with locks to catch up to

the current time.

Suppose that a coordinator instead fails during Phase 3, after S has obtained

read locks on its recovery objects. In this case, any of the coordinator’s ongoing

transactions that affect rec must still be in the pending state and waiting for a lock

held by S; otherwise, S would have been unable to acquire its locks. Therefore, any

transactions affecting rec will abort and not affect S’s recovery.

69

70

Chapter 6

Evaluation

In order to evaluate the runtime overhead and recovery performance of HARBOR,

I have implemented a distributed database system, consisting of 11.2 K lines of

Java code. In this chapter, I first highlight some implementation details not cov-

ered previously; I then compare the runtime overhead and recovery performance

of HARBOR to the performance of traditional two-phase commit and ARIES on a

four-node distributed database.

6.1 Implementation

Figure 6-1 shows an architecture diagram of the query execution, query distribu-

tion, and transaction management modules in my implementation. I have imple-

mented all of the components described thus far except the consensus building pro-

tocol to tolerate coordinator failures and the functionality to handle failures during

recovery.

The implementation supports two independent recovery mechanisms—HARBOR

and the traditional log-based ARIES approach. Furthermore, I have implemented

the canonical and optimized variants of both the 2PC and 3PC protocols, for a total

of four different protocols. For ease of experimental evaluation, a few command-

line parameters enable the system to easily switch between the two recovery frame-

works and the various commit protocols.

71

File System TCP/IP

Buffer Pool

Logging Heap File/
Segmentation

Versioning

Operators Communication
Layer

Lock
Manager

Worker
Sites

Coordinator
Sites

Query Execution Query Distribution

Transaction Management

HARBOR
Recovery Process

ARIES

Figure 6-1: Architecture diagram of query execution, query distribution, and trans-
action management modules in the database implementation. Boxes indicate key
components, and arrows indicate dependencies.

72

6.1.1 Physical Data Storage

The database system stores relations in segmented heap files with 4 KB pages using

standard files in the underlying file system. Each segmented heap file stores in a

header page a series of <Tmin−insertion, Tmax−deletion, start-page> triplets that identify

all the segment timestamps and boundaries within that file, in accordance with the

segment architecture specifications of § 4.2. The system assigns the start-page for a

segment at creation time, and updates to a particular segment may modify the seg-

ment’s timetamps as appropriate during runtime. The physical data model reserves

two columns in each row of a relation for the insertion and deletion timestamps.

To reduce the cost of sequential scans, the system densely packs heap files by

inserting tuples into any available slots before appending additional heap pages to

the file; to reduce the cost of insertions, heap files and heap pages maintain pointers

to the first empty slot once the buffer pool loads them into memory.

6.1.2 The Lock Manager

A local lock manager on each site handles the concurrency control logic for the ta-

bles on that site. During normal transaction processing, the lock manager supports

locking at page granularity in order to offer more concurrency than table-level lock-

ing while avoiding the excessive bookkeeping that would be required by tuple-level

locking. The lock manager exposes the following API to the buffer pool to regulate

shared and exclusive access to pages:

// lock manager API
void acquireLock(TransactionId tid, PageId pid, Permissions perm)
boolean hasAccess(TransactionId tid, PageId pid, Permissions perm)
void releaseLocks(TransactionId tid)

The API call acquireLock blocks if a lock on the page with the specified read

or write permissions cannot currently be granted to the transaction. To detect dead-

locks, the call employs a simple timeout mechanism and throws an exception if a

73

timeout occurs. The call hasAccess checks if a transaction has appropriate privi-

leges to a page, and the call releaseLocks releases all of a transaction’s locks at

the end of the transaction. For recovery purposes, the lock manager also exposes

a table-granularity version of the locking API to enable a recovering site to obtain

read locks on entire recovery objects of recovery buddies.

To synchronize concurrent access to the lock manager, I declare the API methods

for acquiring and releasing locks with Java’s synchronized attribute so that at

any given time, only one thread can read or write the critical data structures within

the lock manager.

6.1.3 The Buffer Pool

The buffer pool enforces a STEAL/NO-FORCE paging policy [19] (though other

paging policies have also been implemented) to manage the reading and writing

of pages from and to disk and uses a random page eviction policy to deal with

buffer pool saturation. The buffer pool presents the following API to the database

operators:

// data access and modification API
// reads the page, either from memory or from disk,
// acquiring any necessary locks
Page getPage(TransactionId tid, PageId pid, Permissions perm)
// inserts/deletes/updates a specified tuple
RecordId insertTuple(TransactionId tid, int tableId, Tuple t)
void deleteTuple(TransactionId tid, Tuple t)
void updateTuple(TransactionId tid, RecordId rid, UpdateFunction f)

In the data access and modification API implementation, the buffer pool uses

the lock manager API to regulate operator access to data across concurrent trans-

actions. Prior to returning a page in getPage to an operator, the buffer pool calls

hasAccess to determine whether the transaction already holds a lock with the

necessary read or write permissions, and if not, acquires one with acquireLock .

Update operators then use insertTuple , deleteTuple , or updateTuple to

modify a page in the buffer pool.

74

One point worth noting is that when inserting new tuples into a table, a transac-

tion obtains a shared lock over a heap page before scanning it for empty slots and

upgrades to an exclusive lock on a page when an empty slot is found. The shared

lock prevents the race condition of another concurrent transaction filling the last

empty slot on a page just as the current transaction is intending to do so.

The buffer pool exposes a separate API to coordinators and workers to handle

transaction commit and abort:

// commit processing API
void prepareTransaction(TransactionId tid)
void prepareToCommitTransaction(TransactionId tid)
void commitTransaction(TransactionId tid)
void abortTransaction(TransactionId tid)

Each call updates the local state of a transaction. If the particular commit pro-

cessing protocol in effect requires logging, each call also appends an appropriate

log record, forcing the log to disk if necessary. If a transaction commits, the buffer

pool releases all locks using the lock manager’s releaseLocks call; if a transac-

tion aborts, the buffer pool rolls back any logged changes and subsequently releases

the locks.

6.1.4 Versioning and Timestamp Management

A versioning and timestamp management wrapper around the buffer pool abstrac-

tion re-exposes the buffer pool’s data access and modification API and its commit

processing API but decorates the calls with additional timestamp-related function-

ality. The call insertTuple acquires a lock on the tuple’s page, adds the tuple’s

identifier to the in-memory insertion list, assigns 0 to the tuple’s deletion times-

tamp, writes the special uncommitted value to the tuple’s insertion timestamp to

indicate that it has not yet been committed, and finally delegates the remaining

work to the buffer pool’s insertTuple call. The deleteTuple call simply ac-

quires an exclusive lock on the affected page and adds the tuple identifer to the

in-memory deletion list without yet engendering any actual page modifications; the

75

lock ensures that the page with the tuple can be subsequently modified at transac-

tion commit time. The updateTuple call deletes the old tuple and inserts the new

tuple via the wrapper.

The versioning layer’s commitTransaction assigns the commit time to the

insertion and deletion timestamps of the tuples in the insertion and deletion lists,

respectively, prior to deleting the transaction’s in-memory state and delegating to

the buffer pool’s commitTransaction implementation. If logging is disabled,

abortTransaction uses the insertion list to roll back updates at transaction abort

and then deletes the transaction’s in-memory state prior to delegating lock man-

agement to the buffer pool’s abortTransaction implementation; otherwise, it

simply deletes the in-memory state and delegates the remaining work to the buffer

pool.

6.1.5 Database Operators

The database implementation supports most of the standard database operators,

including sequential scans, primary indices based on tuple identifiers, predicate

filters, aggregations with in-memory hash-based grouping, nested loops joins, pro-

jections, updates, deletes, and inserts. The implementation also supports special

versions of the scan, insert, delete, and update operators that are aware of times-

tamps and historical queries. All operators export the standard iterator interface

found in row-oriented database systems:

// standard iterator interface
void open()
Tuple getNext()
void rewind()
void close()
// returns the relational schema for the operator’s output tuples
TupleDesc getTupleDesc()

The database implementation does not yet have a SQL parser frontend; query

plans must be manually constructed before they can be executed.

76

6.1.6 Distributed Transactions

Coordinators and workers interact through a basic client-server model and commu-

nicate via TCP socket connections. Each worker runs a multi-threaded server that

listens for incoming transaction requests, and multi-threaded coordinator sites send

requests to the workers. Each TCP socket connection manages a single transaction

at any given time, but connections can be recycled for subsequent transactions;

coordinators execute concurrent transactions by establishing multiple socket con-

nections simultaneously.

I implement distributed transactions by building a communication abstraction

layer over Java’s TCP socket library and by creating special network operators that

writes tuples to and read tuples from socket connections. The communication layer

serializes messages to and deserializes messages from a socket connection.

6.1.7 Recovery

As previously mentioned, I instrumented my database implementation with two

recovery mechanisms, ARIES and HARBOR. I believe my benchmark ARIES im-

plementation to be a faithful implementation of the ARIES recovery protocol as

specified in [37]. Modern implementations of ARIES and other log-based recovery

approaches undoubtedly include many optimizations [30, 36] that I have omitted,

but my implementation suffices as a benchmark to validate HARBOR’s recovery ap-

proach. One small implementation detail to note is that because workers assign

timestamps to tuples at commit time, ARIES requires writing additional log records

for the timestamp updates after the PREPARE phase, on top of any log records that

may have been written for the tuples prior to the PREPARE phase.

The HARBOR recovery implementation follows directly from the recovery dis-

cussion of Chapter 5. A recovering worker leverages the machinery described in

this implementation discussion to execute and distribute the recovery SQL queries.

A coordinator site runs a recovery server on a well-known port to listen for recovery

messages and to enable recovering workers to join ongoing transactions.

77

6.2 Evaluation Framework and Objectives

Each node in the four-node distributed database system runs on a 3 GHz Pentium IV

machine with 2 GB of memory running RedHat Linux. In addition to a 200 GB disk

with 60 MB/s bandwidth, each machine is also equipped with a three-disk 750 GB

RAID with 180 MB/s bandwidth. The database did not use the RAID disks except as

a separate disk for the log when a log is required. Unless otherwise noted, whenever

a logging operation is involved, the database uses group commit without a group

delay timer [24]; test experiments showed that various group delay timer values

ranging from 1–5 ms only decreased group commit performance. The machines are

connected together in a local area network with 85 Mb/s bandwidth.

Table sizes vary in the different experiments, but I implement each table as a

heap file with a segment size of 10 MB. The tuples in each table contain 16 4-

byte integer fields, including the insertion and deletion timestamp fields used for

historical queries.

The objective of the evaluation is to profile and better understand the perfor-

mance characteristics of optimized 3PC and HARBOR relative to traditional 2PC

and ARIES. Because disk speeds today fall roughly six orders of magnitude behind

main memory access speeds, I would expect optimized 3PC to win with higher

transaction throughput and lower transaction latency by trading away its forced-

writes for an additional round of messages on a fast local area network. In fact, the

experiments on the runtime overhead of logging and commit messages in § 6.3 con-

firm this hypothesis. Given sufficient network bandwidth, I would also hypothesize

that copying data over the network for recovery would be cheaper than processing

an on-disk recovery log, but that HARBOR’s recovery performance would decrease

if many historical segments needed to be scanned for recovery; the recovery exper-

iments presented in § 6.4 validate my suspicions. To validate that HARBOR embod-

ies an end-to-end recovery mechanism, I show in § 6.5 that my system can tolerate

a site failure and bring the site back online while still processing transactions.

78

6.3 Runtime Overhead of Logging and Commit Mes-

sages

In the first set of experiments, I compare the runtime overhead of my optimized

commit processing protocols against two-phase and three-phase commit with write-

ahead logging using ARIES. Only three of the four nodes participate in the experi-

ments to measure runtime performance. One coordinator node sends update trans-

actions to the two other worker nodes. For simplicity, both workers store the same

replicated data in the same format; in general, HARBOR does not constrain repli-

cated data to use the same storage format at different nodes.

For these experiments, I configure the system to flush all dirty pages and record

a checkpoint once per second. A few separate experiments that I ran showed that

setting the checkpoint frequency between 1–10 s affected transaction throughput

by no more than 9.5%.

6.3.1 Transaction Processing Performance of Different Commit

Protocols

In the first experiment, each transaction simply inserts a single 64-byte tuple into

a target table on the worker sites. I vary the number of concurrent transactions to

observe the effect of group commit in alleviating the overhead of forced-writes. To

eliminate the effect of deadlocks on the results, concurrent transactions insert tuples

into different tables so that conflicts do not arise; for example, an experimental run

with 10 concurrent transactions uses 10 different tables.

Figure 6-2 reports the throughput in transactions per second (tps) of four com-

mit processing protocols: optimized 3PC without logging, optimized 2PC without

logging at worker sites, canonical 3PC with logging at workers and no logging at

the coordinator, and traditional 2PC with logging. To better illustrate the effects

of group commit and the costs of replication, I also include for comparison the

throughput of 2PC with no group commit and the throughput of 2PC without repli-

79

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 2 4 6 8 10 12 14 16 18 20

Tr
an

sa
ct

io
ns

 p
er

 S
ec

on
d

Number of Concurrent Transactions

Transaction Processing Performance of Different Commit Protocols

optimized 3PC (no logging)
optimized 2PC (no worker logging)

canonical 3PC
traditional 2PC

2PC without group commit
2PC without replication

Figure 6-2: Transaction processing performance of different commit protocols.

cation, i.e., with only one worker site. I obtained the measurements in the figure

by recording the average steady-state throughput on a workload with N transac-

tions, where N equals 10000 times the number of concurrent transactions for the

particular run.

The case of no concurrency, i.e., a single running transaction, illustrates the av-

erage latency of a transaction and shows that optimized 3PC (latency = 1.8 ms)

runs 10.2 times faster than canonical 2PC (18.8 ms), 13.2 times faster than canoni-

cal 3PC (23.4 ms), and 4.8 times faster than optimized 2PC (8.9 ms). The overhead

of the 3 forced-writes in traditional 2PC and canonical 3PC far eclipse the overhead

of adding an additional round of messages to 2PC to obtain optimized 3PC.

Additional degrees of concurrency enable the overlap of CPU, network, and disk

utilization to increase transaction throughput; furthermore, group commit reduces

the cost of forced-writes significantly, as shown by the upward trends of the logging

protocols with group commit in contrast to the stable line for 2PC without group

commit. Without group commit, concurrency does not increase throughput beyond

80

58–93 tps because the synchronous log I/Os of different transactions cannot be

overlapped. Nevertheless, even with 10–20 concurrent transactions, the through-

put of optimized 3PC still remains a factor of 2–2.9 higher than the throughput of

traditional 2PC with group commit. Surprisingly, optimized 2PC performs nearly as

well as optimized 3PC on highly concurrent workloads despite requiring a forced-

write by the coordinator; this result suggests that group commit can effectively

batch the single log write of optimized 2PC across transactions.

Optimized 3PC and optimized 2PC taper off with throughput at 778 tps and 733

tps, respectively, because they become CPU-bound. Production database systems

achieve higher transaction throughput by increasing the number of processors per

machine, the number of coordinator sites accepting transactions, and the number

of worker sites performing work on behalf of different transactions. Such additions

would also increase the overall transaction throughput of my implementation.

Canonical 3PC and traditional 2PC level off with throughput at 396 tps and 387

tps, respectively, because they become disk-bound. Group commit cannot perfectly

overlap the I/O across concurrent transactions; some of the 3 forced-writes of some

transactions will inevitably incur overhead waiting for the disk to become available.

Despite requiring the same number of forced-writes and an additional round

of messages compared to traditional 2PC, canonical 3PC still manages to achieve

roughly 14% higher throughput. This apparent oddity can be explained by noting

that each of canonical 3PC’s forced-writes for a given transaction can be batched

via group commit with any of the 3 forced-writes for any other transaction run-

ning on the worker; in contrast, a coordinator’s forced-writes in 2PC can only be

batched with other forced-writes at the coordinator, and a worker’s forced-writes

can only be batched with other forced-writes at the worker. Thus, forced-writes in

canonical 3PC have more opportunities to be batched by group commit than those

in traditional 2PC.

The results for 2PC without replication suggest that replication on two sites

costs between 2 to 23% of transaction throughput. Optimized 3PC without repli-

cation has been omitted from the experiments and is not too meaningful because

81

the data redundancy is the primary reason why HARBOR’s recovery guarantees are

possible without logging. The tradeoff for the runtime performance of replication

is increased availability during failures; however, the substantial gains in runtime

performance observed when comparing optimized 3PC with traditional 2PC more

than justify the replication costs.

The results are encouraging and demonstrate that one can eliminate substantial

commit processing overhead using HARBOR. Of course, with a less update-intensive

workload, these differences may be less dramatic. Moreover, update transactions

typically may require some computational overhead, and the computation would

tend to dampen the relative advantage of a faster commit protocol. To observe

the effects of CPU overhead and also to gain a better grasp of the performance

characteristics of commit processing on a less update-intensive workload, I rerun a

similar experiment with more CPU-intensive transactions.

6.3.2 Transaction Processing Performance with CPU-Intensive

Workload

In this second experiment, each transaction still inserts a single tuple, but worker

sites must perform some duration of work for a transaction prior to committing the

transaction. I simulate CPU work required for a transaction by invoking a loop for

some number of cycles at the worker sites. The simulated work could represent the

ETL (extract, transform, and load) processing of new tuples, the compression of

new data prior to storage, the generation of derived fields from the original fields

of an operational database, the update of multiple materialized views, or any other

CPU-intensive actions. Figure 6-3 shows the tps throughput of different commit

protocols while varying the amount of simulated CPU work (measured in number

of cycles) at the worker sites per transaction. I repeat the exercise for 1, 5, and 10

concurrent transactions.

Aside from the obvious trend that increasing the amount of work per transaction

decreases transaction throughput and increases transaction latency, the experiment

82

 0

 100

 200

 300

 400

 500

 600

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Tr
an

sa
ct

io
ns

 p
er

 S
ec

on
d

Simulated Work (millions of cycles)

Transaction Processing Performance with No Concurrency

optimized 3PC (no logging)
optimized 2PC (no worker logging)

traditional 2PC
canonical 3PC

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Tr
an

sa
ct

io
ns

 p
er

 S
ec

on
d

Simulated Work (millions of cycles)

Transaction Processing Performance with 5 Concurrent Transactions

optimized 3PC (no logging)
optimized 2PC (no worker logging)

traditional 2PC
canonical 3PC

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Tr
an

sa
ct

io
ns

 p
er

 S
ec

on
d

Simulated Work (millions of cycles)

Transaction Processing Performance with 10 Concurrent Transactions

optimized 3PC (no logging)
optimized 2PC (no worker logging)

traditional 2PC
canonical 3PC

Figure 6-3: Transaction processing performance of different commit protocols, with
simulated work at the worker sites and various degrees of concurrency.

83

illustrates two additional trends:

1. The relative performance differences among protocols decrease with increasing

CPU work. As the duration of simulated CPU work increases, the absolute

amount of work required for a transaction begins to overshadow any relative

commit costs associated with the log-based commit protocols. For example,

in the case of 5 concurrent transactions, optimized 3PC has 4.9 times higher

throughput than traditional 2PC when transactions perform 0 cycles of sim-

ulated CPU work, but only 1.4 times higher throughput when transactions

perform 5 million cycles of simulated CPU work. Similarly, optimized 3PC

throughput drops from being 4.0 times higher than canonical 3PC to 1.4 times

and from being 2.6 times higher than optimized 2PC to roughly equal perfor-

mance. The graphs for no concurrency and for 10 concurrent transactions

exhibit a similar trend.

2. The relative performance differences among protocols decrease with increasing

concurrency. The previous section’s experiment already alluded to this trend,

but this experiment confirms the trend for CPU-intensive workloads as well.

At 1 million cycles of CPU work per transaction and no concurrency, opti-

mized 3PC provides 5.6 times higher throughput than traditional 2PC, 7.8

times higher throughput than canonical 3PC, and 2.7 times higher throughput

than optimized 2PC. Holding the CPU work constant and increasing concur-

rency to 5 transactions cause those performance ratios to drop to 2.4, 2.9, and

1.4 respectively. At 10 concurrent transactions, those ratios become 1.5, 1.8,

and 1.0.

Two explanations account for these observations. First, as previously noted,

group commit increases the throughput of the logging protcols by batching

log writes; thus, higher degrees of concurrency benefit the logging protocols.

Second, a worker site cannot overlap the CPU work of concurrent transac-

tions because the processor can only dedicate itself to one transaction at a

time; thus, increasing the number of transactions, each with some CPU cost,

84

translates to increasing the absolute amount of total work and therefore over-

shadows any commit costs even further. In this respect, CPU resources dif-

fer from disk and network resources, which can be shared across concurrent

transactions via batching.

6.4 Recovery Performance

In the next two experiments, I compare the performance of HARBOR’s recovery

approach against ARIES and demonstrate that my recovery performance is indeed

comparable. Though modern implementations of ARIES and other log-based re-

covery algorithms include optimizations that I have omitted from my benchmark

ARIES implementation, the following experiments still shed light on the recovery

performance. The fact that the performance of my recovery implementation is on

par with my ARIES implementation is highly encouraging.

Both experiments use all four nodes (one coordinator and three workers) and

follow a similar setup to measure recovery performance as a function of the number

of transactions to recover. Each table used is replicated identically on each worker

site, and each worker site starts with a clean buffer pool and a fresh checkpoint.

The coordinator then executes some number of insert/update transactions with the

three worker sites; the workers do not flush any dirty pages during these trans-

actions, but they periodically flush the log if ARIES is being evaluated. After the

coordinator finishes the transactions and after any and all log writes have reached

disk, I crash a worker site and measure the time for the crashed worker to recover

under four scenarios:

1. The inserts/updates all target one 1 GB table, and the crashed worker uses

ARIES to recover from the log.

2. The inserts/updates all target one 1 GB table, and the crashed worker uses

HARBOR to recover from another worker site.

85

3. The inserts/updates are equally distributed among two 1 GB tables, and the

crashed worker uses HARBOR to recover each table, in parallel, one from each

of the remaining worker sites.

4. The inserts/updates are equally distributed among two 1 GB tables, and the

crashed worker uses HARBOR to serially recover each table from other worker

sites.

The purpose of the four scenarios is 1) to profile and understand the perfor-

mance characteristics of ARIES and HARBOR on my distributed database imple-

mentation and 2) to better understand if and how parallel recovery of multiple

database objects may reduce overall recovery time. Though a system would never

actually have a reason to use serial recovery over parallel recovery (assuming that

parallel recovery finishes faster than serial recovery, which it does), I include se-

rial recovery to help shed light on the performance gains provided by parallelism.

Profiling recovery performance as a function of transactions to recover can also be

interpreted as measuring the potential reductions in recovery time from increasing

checkpoint frequency.

Each 1 GB table in the scenarios uses a segment size of 10 MB and consumes

101 segments, with the last and most recent segment half full. Because no transac-

tions occur during recovery, HARBOR spends minimal time in Phase 3; I show the

performance impact of all three phases on runtime performance later in § 6.5.

6.4.1 Recovery Performance on Insert Workloads

In the first recovery experiment, the coordinator sends only insert transactions, with

one insertion per transaction, and I vary the number of transactions performed. Be-

cause newly inserted tuples are appended to the end of a 1 GB heap file, the newly

inserted tuples affect only the last segment, though the worker may create a new

segment given sufficient insertions. Figure 6-4 illustrates the recovery performance

of all four scenarios as functions of the number of insert transactions to recover.

86

 0

 10

 20

 30

 40

 50

 60

 0 10000 20000 30000 40000 50000 60000 70000 80000

Re
co

ve
ry

 T
im

e
(s

ec
on

ds
)

Number of Insert Transactions

Recovery Performance as Function of Insert Transactions Since Crash

ARIES, 1 table
HARBOR, serial, 2 tables

HARBOR, parallel, 2 tables
HARBOR, 1 table

Figure 6-4: Recovery performance as a function of insert transactions since crash.

While ARIES performs well on a small number of insert transactions, ARIES

performance degrades over 3 times more rapidly than HARBOR performance in

the same single table scenario; HARBOR requires an additional second of recovery

time for every additional 4400 insertions, but ARIES needs an additional second

after only 1347 tuples. In my implementation, the crossover point where ARIES

performance falls behind HARBOR performance in the same single table scenario

occurs at 4581 insert transactions. These observations show that, at least for my

implementation, log processing for committed transactions incurs higher overhead

than querying for the committed data from a remote replica does.

The 5.3 s that HARBOR requires to recover 2 insert transactions indicate the

fixed cost that HARBOR must invest 1) to send the recovery SQL requests and 2)

to scan the most recent segment in Phase 1 to search for uncommitted data or

data committed after the checkpoint. Aside from the fixed cost, recovery time for

HARBOR grows roughly linearly as a function of the number of insert transactions.

Serial recovery of two 1 GB tables demands more time than recovery of a single

1 GB table even when both scenarios involve an equivalent total number of insert

transactions because the fixed cost must be expended once per table.

The results show that parallel recovery proceeds on average only 1.4 s faster

87

than serial recovery up to a certain point (40000 transactions) but that the perfor-

mance gap widens substantially to 7.3 s at 80000 transactions. The observation

that parallel recovery of two 1 GB tables is only slightly faster than serial recov-

ery on small numbers of transactions demonstrates that the recovering site wins

only a small performance gain by attempting to parallelize the work to scan the

two tables’ last segments. The worker’s disk head can only scan one segment at

a time in Phase 1, and the fixed costs dominate most of the recovery time. The

larger performance difference at higher numbers of transactions suggests that par-

allel recovery scales well with the number of insert transactions to recover and that

Phase 2, unlike Phase 1, can benefit from the parallelism. In the parallel recovery

scenario, Phase 2’s recovery queries copy over inserted tuples simultaneously from

both recovery buddies; thus, the recovery buddies can overlap the network costs of

sending tuples, and the recovering site essentially receives two tuples in the time to

send one.

One point worth mentioning but not illustrated by the results is that because

HARBOR only queries for committed data, aborted transactions do not impact

HARBOR’s recovery performance. On the other hand, because ARIES must redo

all transactions and undo aborted ones, an aborted transaction after a checkpoint

actually costs ARIES twice as much work as a committed transaction.

6.4.2 Recovery Performance on Update Workloads

In the second recovery experiment, I fix the number of transactions at 20 K and

vary the number of historical segments updated by introducing update transactions

that update tuples in older segments of the table. The purpose of this experiment

is to measure the cost of scanning additional segments for updates that happened

after the checkpoint to the original 1 GB of data, as required by Phase 2. Figure 6-

5 reports the recovery time of the four scenarios as functions of the number of

historical segments updated. Note that the number of historical segments does

not include the most recent segment in a table, which must already be scanned

88

 0

 10

 20

 30

 40

 50

 0 2 4 6 8 10 12 14 16

Re
co

ve
ry

 T
im

e
(s

ec
on

ds
)

Total Historical Segments Updated

Recovery Performance as Function of Historical Segments Updated Since Crash

ARIES, 1 table
HARBOR, serial, 2 tables

HARBOR, parallel, 2 tables
HARBOR, 1 table

Figure 6-5: Recovery performance as a function of segments updated since crash.

by Phase 1 of recovery; furthermore, in the scenarios involving both tables, the

segment count reflects the total number of historical segments updated in both

tables.

In the single table scenarios, the graph illustrates that HARBOR performs ex-

tremely well in the situations where few historical segments have been updated

since the last checkpoint; in fact, HARBOR’s recovery performance exceeds ARIES

performance in the case of 3 or fewer segments. As the number of historical seg-

ments increases, HARBOR’s recovery performance degrades linearly because HAR-

BOR needs to scan the segments whose Tmax−deletion timestamps occur after the

checkpoint in order to find the particular tuples updated; on the other hand, be-

cause ARIES only scans the tail of the log since the last checkpoint rather than the

actual data to find updates, its recovery time remains constant regardless of the

number of segments updated. In database systems where checkpoints occur fre-

quently and where the update workload consists mostly of inserts and relatively

few OLTP updates to historical data, one expects that the system would tend to ex-

hibit recovery performance in the region of the graph with few historical segments;

these conditions hold true in data warehouse environments.

The scenarios with two tables shed additional light on HARBOR’s parallel re-

89

covery performance. While parallel recovery of two tables performed worse than

recovery of a single table in the previous experiment, this experiment establishes an

opposite trend; as the total number of historical segments increases, parallel recov-

ery actually exhibits better performance than serial recovery. Even though the work

in Phase 1 cannot be overlapped, the work in Phase 2 can be parallelized because

each live worker site can share in the responsibility of scanning segments from dif-

ferent tables during recovery. The net effect of the concurrency is a substantial

reduction of recovery time over the serial case.

The results indicate that when the transactions to recover consist primarily of

insertions and of updates concentrated on a few historical segments, HARBOR ac-

tually performs better than ARIES.

6.4.3 Analysis of Recovery Performance

To better understand the performance characteristics of the HARBOR recovery ap-

proach, I decompose HARBOR’s recovery time from the previous experiment’s single

table scenario into four constituent parts: Phase 1, Phase 2’s remote SELECTand

local UPDATEof historical tuples deleted between the checkpoint and the HWM,

Phase 2’s remote SELECTand local INSERT of tuples inserted between the check-

point and the HWM, and Phase 3. Figure 6-6 shows the decomposition of the

recovery times for different numbers of updated segments.

The time required for Phase 1 remains constant at 3.1 s regardless of the num-

ber of historical segments updated and reflects the time the system spends in Phase

1’s DELETEquery, scanning the last segment for tuples inserted after the check-

point. Because no updates reached disk after the checkpoint, the worker uses the

Tmax−deletion timestamp associated with segments to avoid scanning segments for

deletions after the checkpoint as part of Phase 1’s UPDATEquery; hence, the cost

of Phase 1’s UPDATEquery is negligible. Had the worker crash happened after

updates to historical segments reached disk but before a new checkpoint could be

written, the worker would need to invest recovery time scanning those segments;

90

 0

 5

 10

 15

 20

 25

 30

 35

 40

1614121086420

Re
co

ve
ry

 T
im

e
(s

ec
on

ds
)

Number of Historical Segments Updated

Decomposition of HARBOR Recovery Performance Time

Phase 3
Phase 2 SELECT + INSERT

Phase 2 SELECT + UPDATE
Phase 1

Figure 6-6: Decomposition of recovery performance by phases, with different num-
ber of segments.

given a checkpointing frequency of a few seconds and a warehouse workload with

few historical updates, however, this situation is rare.

The amount of time spent by the recovery buddy in Phase 2’s SELECT and

UPDATEqueries to identify updates made to older segments increases linearly with

the number of segments updated, at a rate of 2.0 additional seconds of recovery

time for each additional historical segment updated. The site spends the bulk of

this time scanning segments with eligible Tmax−deletion timestamps for updated tu-

ples. Phase 2’s SELECTand INSERT queries consume a fairly constant cost of 3.7 s

to have the recovery buddy send over the roughly 20 K newly inserted tuples to the

worker site.

Phase 3 consumes an insignificant fraction of recovery time and is barely vis-

ible in the figure because the coordinator executes no inserts or updates during

recovery; therefore, the crashed worker copies all the missing tuples during Phase

2’s recovery queries. The next and last experiment shows how transactions during

recovery impact recovery performance.

91

 0

 100

 200

 300

 400

 500

 600

 700

 0 20 40 60 80 100 120

Tr
an

sa
ct

io
ns

 p
er

 S
ec

on
d

Time (seconds)

Transaction Processing Performance During Failure

Worker crash
Recovery phase 1

Recovery phase 2

Recovery phase 3

Worker online

Figure 6-7: Transaction processing performance during site failure and recovery.

6.5 Transaction Processing Performance during Site

Failure and Recovery

In the last experiment, I capture the runtime performance of my database system

in the midst of a site failure and subsequent recovery. The coordinator site, with no

concurrency, continuously inserts tuples into a 1 GB table replicated on two worker

sites. Thirty seconds into the experiment, I crash a worker process. Another thirty

seconds after the crash, I start the recovery process on the worker.

Figure 6-7 illustrates transaction processing performance as a function of time.

Transaction throughput steadies at 530 tps prior to the worker crash. The first

major dip at time 30 corresponds to the worker crash, the detection of the failure

by the coordinator, and the abort of any ongoing transaction. After the worker fails,

the throughput by the remaining live worker increases by roughly 40 tps to 570 tps

because commit processing now only involves one worker participant rather than

two.

At time 60, the crashed worker initiates Phase 1 of recovery, but recovery does

not yet affect the overall throughput because the first phase proceeds locally. The

small dip at time 64 indicates the start of Phase 2. Between times 65 and 81, the sys-

92

tem exhibits sporadic but lower average performance as the recovering worker runs

historical queries on the live worker to catch up with the HWM, thereby draining

some of the live worker’s CPU and disk resources away from transaction processing.

At time 83, an even larger dip in performance appears as Phase 3 begins; the recov-

ering worker obtains a read lock over the data needed by the insertion transactions,

thereby obstructing progress for a short time. By time 86, however, recovery is

complete and performance soon steadies back to its initial point.

The small bump between times 86 and 91, where the system averages roughly

25 tps, results due to TCP slow-start and Java’s overhead for opening new socket

connections. One can observe a similar bump at the start of the graph from time

0 to time 4. Though not shown by this experiment, any read-only transactions or

transactions dealing with other tables would neither have suffered from this bump

nor the final performance dip between times 83 and 86. The read locks to ensure

transactional consistency only affect update transactions, and the re-establishment

of TCP socket connections only affects the recovery objects.

The experiment demonstrates that HARBOR can tolerate the fault of a worker

site and efficiently bring it back online without significantly impacting transaction

throughput. Online recovery of crashed sites from remote replicas is indeed viable

and effective in updatable data warehouses.

93

94

Chapter 7

Contributions

Walmart executives leverage their 583-terabyte data warehouse to extract consumer

sales patterns; Best Buy managers read daily reports summarizing business intelli-

gence gathered from 7 terabytes of data; Wells Fargo customers and bankers use

a 4-terabyte warehouse of transaction history to serve up a 360° view of personal

spending reports; Google, Yahoo, Priceline, and other internet companies all strive

to personalize the user experience and do so by storing terabytes of user click-

through data in updatable data warehouses—data warehouses that not only sup-

port data mining but also service operational inserts and updates. The thread of

data warehouses runs through retail, financial services, e-commerce, communica-

tions, travel, insurance, and government sectors.

The strong dependency on data warehouses introduce requirements for five or

six 9’s of availability (being up and running 99.999% or 99.9999% of the time).

When downtime can cost businesses upwards of $1 million an hour [33], fast re-

covery becomes critical. This thesis represents my attempt at a viable solution.

My main contributions in this thesis include the following:

1. Designing a simple yet efficient crash recovery algorithm for an updatable,

distributed data warehouse. Unlike traditional log-based approaches to re-

covery, which require intimate interaction with disk and file layout, most of

HARBOR’s recovery algorithm can be built over the standard SQL interface

95

that relational databases already present. Through a segmenting scheme that

partitions database objects by insertion time, HARBOR attains recovery per-

formance comparable to ARIES performance and even exceeds it on ware-

house workloads consisting of mostly inserts or updates to recent data; the

segment architecture also significantly reduces the engineering work required

to build oft-demanded bulk load and bulk drop features.

2. Integrating the recovery algorithm with a high availability framework that

supports non-identical replicas and defining a fault tolerance model based on

K-safety that clearly delineates HARBOR’s recovery guarantees. Though the

performance benefits of storing data redundantly in non-identical formats are

not examined in this thesis, recent research has shown that storing multiple

orderings of data can achieve upwards of one to two orders magnitude better

query performance [50]. Many log-based high availability approaches [51,

40, 34] require identical replicas and lose this class of advantages.

3. Developing an optimized three-phase commit protocol that eliminates the

overhead of synchronous forced-writes and the maintenance of an on-disk

log, while preserving transactional semantics. The protocol leverages the log-

less nature of the recovery algorithm and the guarantees of K-safety to achieve

correctness. On a simple insert-intensive workload, the optimizations result

in 10 times less latency and 2-10 times higher throughput than the traditional

two-phase commit protocol with ARIES.

4. Implementing in Java a four-node distributed database system, with support

for multiple commit protocols, the ARIES recovery algorithm, and the HAR-

BOR recovery algorithm, and capturing the design details required to engineer

a fully functional distributed database system.

5. Evaluating the runtime overhead of logging and of the commit protocols and

verifying empirically the efficiency of HARBOR’s parallel recovery approach

on the four-node database. Furthermore, I have analyzed in detail the experi-

96

mental results and decomposed the cost of HARBOR’s recovery approach into

its constituent phases to shed additional light on recovery performance.

The results of my thesis work are highly encouraging and suggest that updatable

data warehouses and my integrated approach to solving their recovery and high

availability problems are both quite tenable.

97

98

Bibliography

[1] Daniel J. Abadi, Samuel Madden, and Miguel Ferreira. Integrating compres-

sion and execution in column-oriented database systems. In SIGMOD ’06: Pro-

ceedings of the 2006 ACM SIGMOD International Conference on Management of

Data, June 2006.

[2] Amr El Abbadi and Sam Toueg. Maintaining availability in partitioned repli-

cated databases. ACM Transactions on Database Systems, 14(2):264–290,

1989.

[3] Maha Abdallah, Rachid Guerraoui, and Philippe Pucheral. One-phase com-

mit: does it make sense? In Proceedings of the 1998 International Conference

on Parallel and Distributed Systems, pages 182–192. IEEE Computer Society,

1998.

[4] Yousef J. Al-Houmaily and Panos K. Chrysanthis. 1-2PC: the one-two phase

atomic commit protocol. In SAC ’04: Proceedings of the 2004 ACM Symposium

on Applied Computing, pages 684–691, New York, NY, USA, 2004. ACM Press.

[5] Hisham Alam. High-availability data warehouse design. DM Direct Newslet-

ter, December 2001. http://www.dmreview.com/article_sub.cfm?

articleId=4374 .

[6] Deena M. Amato-McCoy. One-stop banking. FinanceTech, Novem-

ber 2005. http://www.financetech.com/showArticle.jhtml?

articleID=173402232 .

99

[7] Charles Babcock. Data, data, everywhere. InformationWeek, January

2006. http://www.informationweek.com/story/showArticle.

jhtml?articleID=175801775 .

[8] Hal Berenson, Phil Bernstein, Jim Gray, Jim Melton, Elizabeth O’Neil, and

Patrick O’Neil. A critique of ANSI SQL isolation levels. In SIGMOD ’95: Pro-

ceedings of the 1995 ACM SIGMOD International Conference on Management of

Data, pages 1–10, New York, NY, USA, 1995. ACM Press.

[9] Philip A. Bernstein and Nathan Goodman. Concurrency control in distributed

database systems. ACM Computing Surveys, 13(2):185–221, 1981.

[10] Philip A. Bernstein and Nathan Goodman. The failure and recovery problem

for replicated databases. In PODC ’83: Proceedings of the Second Annual ACM

symposium on Principles of Distributed Computing, pages 114–122, New York,

NY, USA, 1983. ACM Press.

[11] Anupam Bhide, Ambuj Goyal, Hui-I Hsiao, and Anant Jhingran. An efficient

scheme for providing high availability. In SIGMOD ’92: Proceedings of the

1992 ACM SIGMOD International Conference on Management of Data, pages

236–245, New York, NY, USA, 1992. ACM Press.

[12] Alex Biesada. Wal-Mart Stores, Inc. Hoovers. http://www.hoovers.com/

free/co/factsheet.xhtml?ID=11600 .

[13] Michele Bokun and Carmen Taglienti. Incremental data warehouse updates.

DM Direct Newsletter, May 1998. http://www.dmreview.com/article_

sub.cfm?articleId=609 .

[14] Joe Bramhall. Best Buy Co., Inc. Hoovers. http://www.hoovers.com/

free/co/factsheet.xhtml?ID=10209 .

[15] Surajit Chaudhuri, Ravi Krishnamurthy, Spyros Potamianos, and Kyuseok

Shim. Optimizing queries with materialized views. In ICDE ’95: Proceed-

100

ings of the 11th International Conference on Data Engineering, pages 190–200,

Washington, DC, USA, 1995. IEEE Computer Society.

[16] David J. DeWitt, Randy H. Katz, Frank Olken, Leonard D. Shapiro, Michael R.

Stonebraker, and David Wood. Implementation techniques for main memory

database systems. In SIGMOD ’84: Proceedings of the 1984 ACM SIGMOD

International Conference on Management of Data, pages 1–8, New York, NY,

USA, 1984. ACM Press.

[17] Joshua Freed. The customer is always right? Not anymore. July

2004. http://www.sfgate.com/cgi-bin/article.cgi?f=/news/

archive/2004/07/05/national1332EDT0564.DTL .

[18] David K. Gifford. Weighted voting for replicated data. In SOSP ’79: Proceedings

of the 7th ACM Symposium on Operating Systems Principles, pages 150–162,

New York, NY, USA, Dec 1979. ACM Press.

[19] Jim Gray and Andreas Reuter. Transaction Processing: Concepts and Techniques.

Morgan Kaufman, 1992.

[20] Ashish Gupta and José A. Blakeley. Using partial information to update mate-

rialized views. Information Systems, 20(9):641–662, 1995.

[21] Ashish Gupta and Inderpal Singh Mumick. Maintenance of materialized

views: problems, techniques, and applications. pages 145–157, 1999.

[22] Ramesh Gupta, Jayant Haritsa, and Krithi Ramamritham. Revisiting commit

processing in distributed database systems. In SIGMOD ’97: Proceedings of the

1997 ACM SIGMOD International Conference on Management of Data, pages

486–497, New York, NY, USA, 1997. ACM Press.

[23] Robert B. Hagmann. A crash recovery scheme for a memory-resident database

system. IEEE Transactions on Computers, 35(9):839–843, 1986.

101

[24] Pat Helland, Harald Sammer, Jim Lyon, Richard Carr, Phil Garrett, and An-

dreas Reuter. Group commit timers and high volume transaction systems. In

Proceedings of the 2nd International Workshop on High Performance Transaction

Systems, pages 301–329, London, UK, 1989. Springer-Verlag.

[25] Hui-I Hsiao and David J. Dewitt. Chained declustering: a new availability

strategy formultiprocessor database machines. In Proceedings of the Sixth In-

ternational Conference on Data Engineering, pages 456–465, February 1990.

[26] Hui-I Hsiao and David J. Dewitt. A performance study of three high availabil-

ity data replication strategies. Distributed and Parallel Databases, 1:53 – 79,

January 1993.

[27] Ricardo Jiménez-Peris, M. Patino-Mart́ınez, and Gustavo Alonso. An algorithm

for non-intrusive, parallel recovery of replicated data and its correctness. In

SRDS ’02: Proceedings of the IEEE International Symposium on Reliable Dis-

tributed Systems, 2002.

[28] Ricardo Jiménez-Peris, M. Patino-Mart́ınez, Gustavo Alonso, and Bettina

Kemme. Are quorums an alternative for data replication? ACM Transactions

on Database Systems, 28(3):257–294, 2003.

[29] Bettina Kemme. Database Replication for Clusters of Workstations. PhD disser-

tation, Swiss Federal Institute of Technology, Zurich, Germany, 2000.

[30] Tirthankar Lahiri, Amit Ganesh, Ron Weiss, and Ashok Joshi. Fast-Start: Quick

fault recovery in Oracle. In SIGMOD ’01: Proceedings of the 2001 ACM SIGMOD

International Conference on Management of Data, pages 593–598, New York,

NY, USA, 2001. ACM Press.

[31] Tobin J. Lehman and Michael J. Carey. A recovery algorithm for a high-

performance memory-resident database system. In SIGMOD ’87: Proceedings

of the 1987 ACM SIGMOD International Conference on Management of Data,

pages 104–117, New York, NY, USA, 1987. ACM Press.

102

[32] Barbara Liskov, Sanjay Ghemawat, Robert Gruber, Paul Johnson, and Liuba

Shrira. Replication in the harp file system. In SOSP ’91: Proceedings of the

13th ACM Symposium on Operating Systems Principles, pages 226–238, New

York, NY, USA, 1991. ACM Press.

[33] Robert Manning. Managing the costs of system downtime. CIO Update,

September 2004. http://www.cioupdate.com/budgets/article.

php/3404651 .

[34] Microsoft Corp. Log shipping. http://www.microsoft.com/technet/

prodtechnol/sql/2000/reskit/part4/c1361.mspx .

[35] Microsoft Corp. SQL server 2000 high availability series: Minimizing down-

time with redundant servers, November 2002. http://www.microsoft.

com/technet/prodtechnol/sql/2000/deploy/harag05.mspx .

[36] C. Mohan. A cost-effective method for providing improved data availability

during DBMS restart recovery after a failure. In VLDB ’93: Proceedings of the

19th International Conference on Very Large Data Bases, pages 368–379, San

Francisco, CA, USA, 1993. Morgan Kaufmann Publishers Inc.

[37] C. Mohan, Don Haderle, Bruce Lindsay, Hamid Pirahesh, and Peter Schwarz.

ARIES: a transaction recovery method supporting fine-granularity locking and

partial rollbacks using write-ahead logging. ACM Transactions on Database

Systems, 17(1):94–162, 1992.

[38] C. Mohan, Bruce Lindsay, and Ron Obermarck. Transaction management

in the R* distributed database management system. ACM Transactions on

Database Systems, 11(4):378–396, 1986.

[39] Oracle Corp. Oracle database 10g release 2 high availability, May 2005.

http://www.oracle.com/technology/deploy/availability/

pdf/TWP_HA_10gR2_HA_Overview.pdf .

103

[40] Oracle Inc. Oracle database 10g Oracle Data Guard. http:

//www.oracle.com/technology/deploy/availability/htdocs/

DataGuardOverview.html .

[41] Mark Rittman. Implementing real-time data warehousing using ora-

cle 10g. DBAzine.com, February 2006. http://www.dbazine.com/

datawarehouse/dw-articles/rittman5 .

[42] Mendel Rosenblum and John K. Ousterhout. The design and implementa-

tion of a log-structured file system. ACM Transactions on Computer Systems,

10(1):26–52, 1992.

[43] Philip Russom. Strategies and Sybase solutions for database availability. Tech-

nical report, Nov 2001. http://www.sybase.com/content/1016063/

sybase.pdf .

[44] Yasushi Saito, Svend Frølund, Alistair Veitch, Arif Merchant, and Susan

Spence. FAB: Building distributed enterprise disk arrays from commodity

components. In ASPLOS-XI: Proceedings of the 11th International Conference

on Architectural Support for Programming Languages and Operating Systems,

pages 48–58, New York, NY, USA, 2004. ACM Press.

[45] Jerome H. Saltzer and M. Frans Kaashoek. Topics in the engineering of com-

puter systems. MIT 6.033 class notes.

[46] Patricia G. Selinger, Morton M. Astrahan, Donald D. Chamberlin, Raymond A.

Lorie, and Thomas G. Price. Access path selection in a relational database

management system. In SIGMOD ’79: Proceedings of the 1979 ACM SIGMOD

International Conference on Management of Data, pages 23–34, New York, NY,

USA, 1979. ACM Press.

[47] Dale Skeen. Nonblocking commit protocols. In SIGMOD ’81: Proceedings

of the 1981 ACM SIGMOD International Conference on Management of Data,

pages 133–142, New York, NY, USA, 1981. ACM Press.

104

[48] Dale Skeen. Crash recovery in a distributed database system. PhD thesis, Uni-

versity of California, Berkeley, May 1982.

[49] Alex Snoeren, David Andersen, and Hari Balakrishnan. Fine-grained failover

using connection migration. In USITS ’01: Proceedings of the USENIX Sympo-

sium on Internet Technologies and Systems, 2001.

[50] Mike Stonebraker, Daniel Abadi, Adam Batkin, Xuedong Chen, Mitch Cher-

niack, Miguel Ferreira, Edmond Lau, Amerson Lin, Sam Madden, Elizabeth

O‘Neil, Pat O‘Neil, Alex Rasin, Nga Tran, and Stan Zdonik. C-Store: A column-

oriented DBMS. In VLDB ’05: Proceedings of the 31st International Conference

on Very Large Data Bases, pages 553–564. ACM, 2005.

[51] Sybase, Inc. Replicating data into Sybase IQ with replication server. http:

//www.sybase.com/detail?id=1038854 .

[52] Tandem Database Group. Nonstop SQL. a distributed, high-performance,

high-reliability implementation of SQL. In High Performance Transaction Sys-

tems Workshop, September 1987.

[53] Teradata. DBC/1012 database computer system manual release 2.0, Novem-

ber 1985. Doc. C10-0001-02.

[54] Transaction Processing Performance Council. TPC benchmark H (decision sup-

port): Standard specification revision 2.3.0, August 2005. http://www.

tpc.org/tpch/spec/tpch2.3.0.pdf .

[55] Kelli Wiseth. Find meaning. Oracle, 2001. http://www.oracle.com/

oramag/oracle/01-sep/o51cov.html .

[56] Shuqing Wu and Bettina Kemme. Postgres-R(SI): Combining replica control

with concurrency control based on snapshot isolation. In ICDE ’05: Proceed-

ings of the 21st International Conference on Data Engineering, pages 422–433,

Washington, DC, USA, 2005. IEEE Computer Society.

105

