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The U.S. Air Transportation Systems faces substantial challenges in transforming to 

meet future demand.  These challenges need to be understood and addressed in order to 

successfully meet future system needs.  This paper uses a feedback model to describe the 

general system transition process and identify key issues in the dynamics of system 

transition, with particular emphasis on stakeholder cost-benefit dynamics and safety 

approval processes. Finally, in addition to identifying dynamics and barriers to change the 

paper proposes methods for enabling transition through the use of levers such as incentives, 

mandates, and infrastructure development.  The implementation of ADS-B is studied as a 

pathfinding technology for planned Air Transportation System changes.  The paper states 

that overcoming stakeholder barriers and ensuring efficient safety approval and 

certification process are the key enablers to the successful implementation of ADS-B.  

I. Introduction 

The US Air Transportation System is facing several substantial challenges. Limited system capacity, in the face 

of continuously increasing demand for travel, presents the potential for substantial gridlock and disruption in future 

system operations. In response to this anticipated demand increase and other pressures, the U.S. Joint Planning and 

Development Office (JPDO) has proposed several ambitious new capabilities for the Next Generation Air 

Transportation System (NexGen) [1]. Automatic Dependent Surveillance-Broadcast (ADS-B) will be a pathfinding 

example for the ability to implement other aspects of the NGATS plan.  ADS-B is the first NextGen technology to 

be implemented and many downstream planned operational improvements depend on ADS-B capabilities. 

System modernization efforts must engage multiple stakeholders in the decision process while providing 

continued system safety and security, and reduced environmental emissions.  This paper will illustrate challenges to 

implementing ADS-B through a system transition model developed based on past case studies of change.  General 

issues in system transition and their applicability to ADS-B will be discussed.  Understanding and anticipating issues 

that may arise during transition is critical to achieving the required increases in system performance proposed to 

meet future demands. In particular, the paper will focus on the value distribution ADS-B provides to different 

stakeholders as well as barriers associated with conducting the safety review and certification processes.  Potential 

approaches and leverage mechanisms to overcome these barriers and motivate transition will also be discussed.  
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II. ADS-B Functionality and Implementation Approach 

ADS-B is a pathfinding technology for the modernization of Air Traffic Management and the Next Generation 

Air Transportation System.  ADS-B is a surveillance technology that broadcasts GPS-based position from aircraft to 

ground-based receivers and other aircraft.  This datalink enables a variety of capabilities on the aircraft and in air 

traffic control, as shown in Figure 1.  Broadcast to other aircraft and the ground is named ADS-B-in.  Because of the 

presence of a datalink, aircraft can also receive ADS-B information from other aircraft and receive information from 

the ground.  This functionality is known as ADS-B-out.  Applications enabled by ADS-B vary based on the 

characteristics of the particular ADS-B avionics and aircraft transponder and require separate standards and 

certification.  Benefits delivered to users depend on individual or combinations of applications that are implemented 

and on a critical mass of equipage by other operators.  

The FAA has taken a phased 

approach to implementing ADS-B.  

Early initial trials were performed in 

Alaska and the Ohio River Valley as 

operational demonstration programs, 

which proved initial feasibility of the 

technology.  The main nationwide 

deployment of ADS-B is divided into 

segments. Segment one deploys ADS-B 

to limited key sites, including the Gulf of 

Mexico, Louisville, Philadelphia.  

Service is also continued along the East 

Coast, Alaska, and other areas with 

legacy ADS-B equipment [2].  Segment 

two of the program extends ADS-B 

ground infrastructure nationwide.  A 

mandate is expected requiring ADS-B 

out equipage to access high density 

airspace by 2020 [3].  This phased 

approach allows focused cost-benefits 

delivered in each phase, and facilitates 

early adoption by specific users or 

geographic areas. 

Segments one and two of the ADS-B program will enable capabilities in the cockpit and in air traffic control 

surveillance.  In the cockpit, applications primarily augment pilot situational awareness.  ADS-B-in applications 

include: enhanced visual acquisition (of traffic), enhanced visual approaches, final approach and runway occupancy 

awareness, and airport surface situational awareness [4].  Broadcast of weather and other aeronautical information 

also provides additional situation awareness.  On the ground, ADS-B-out will be incorporated as a surveillance 

source for air traffic control services, and to support separation of aircraft on the surface and in the enroute and 

terminal environment [4]. 

In the future, more accurate position information, available as a result of ADS-B, offers the opportunity to 

reduce separation standards.  Cockpit-based traffic also provides the potential to delegate separation responsibility 

from air traffic control to the cockpit under certain conditions.  However, these applications are not being 

implemented in the initial phases of ADS-B deployment. 

III. System Transition Feedback Model  

In order to understand the barriers to transition in the air transportation system a feedback model of transition is 

used.  The model, presented in Figure 2, was developed based on 13 cases of historical transition efforts in the US 

Air Transportation System.  Cases studied include technology and policy changes, successful and unsuccessful 

changes, as well as safety and capacity driven changes.  The framework provided by the model is used to study 

barriers to ADS-B equipage caused by the multi-stakeholder nature of transition as well as those posed by the 

complexity of the implementation process.   
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Figure 1: High-Level ADS-B Architecture: ADS-B broadcasts 

aircraft information to the ground and other aircraft enabling 

ground and airborne capabilities. 
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Figure 2: Transition Dynamics Process Model: Performance of the National Airspace System results in building 

of awareness of potential problems.  Through a change process, stakeholder preferences are formulated and result 

in infrastructure and equipage decisions.  These are implemented to then provide additional system capability. 

 

Boxes in the model represent high-level processes while arrows represent the resulting states.  The Air 

Transportation System is represented as a process in the model, the output of which is system behavior.  These 

outputs are monitored as part of the awareness building process.  During the awareness building process, 

stakeholders (a stakeholder is anyone with an interest in the outcome or involved in the process of a transition) 

develop an understanding and definition of the problem and potential solutions.  Each stakeholder forms their own 

mental model of the situation.  This includes projecting future outcomes based on potential actions to address the 

problem.  Awareness of a growing capacity problem in the US Air Transportation System has been increasing 

among aviation stakeholders and ADS-B is seen as a potential solution to this issue.   

Once stakeholder awareness of a problem and potential solutions exist, stakeholders engage in the change 

process.  During this process, stakeholders evaluate the projections for the future and develop preferences based on 

the formation of their individual objectives.  While these preferences are determined separately for each stakeholder, 

they can be modified as stakeholders act and interact during the decision making process.  Stakeholder objectives 

are formed based on the cost benefit estimate conducted by stakeholders.  Cost benefit estimates can include 

significant levels of risk and uncertainty when outcomes depend on the actions of other stakeholders.  Unfavorable 

cost benefit ratios mean that stakeholders will be resistant to a transition.  Expected benefits of ADS-B are 

application based but include increased information to pilots and controllers and an ability to safely handle increased 

levels of traffic.  In addition, the FAA expects to gain costs cuts by transitioning from a radar to an ADS-B based 

communication, navigation, and surveillance infrastructure.  However, these benefits come at a cost of developing, 

certifying, buying and installing both the ADS-B ground infrastructure and aircraft avionics.  

The negotiation loop occurs during the change process and captures the dynamics of decision selection in a 

situation with multiple stakeholders who have different agendas, value structures, and are affected differently by 

potential changes to the system.  During this process stakeholders work to influence decision makers and interact 

with others to determine if concessions and agreements can be reached.  In addition, leverage mechanisms to help 

overcome stakeholder disagreements can be used.  Such mechanisms include structuring the change to provide 

tangible benefits to stakeholders, mandating equipage, restricting access to airspace based on level of equipage, and 

providing the necessary infrastructure and approval for technologies and procedures.  

The change process terminates when an action to address an issue is selected.  As shown in the model, in the 

case of ADS-B this requires that operators commit to equipping with ADS-B technology while the FAA has to 

commit to provide the necessary ground infrastructure as well as develop procedures and certify both them and the 
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avionics.  Stakeholders must trust that others will fulfill their obligations so that benefits can be realized.  If this trust 

does not exist they will be hesitant to commit to action.   

Once an action is selected, it proceeds through the implementation process.  In this process, stakeholders refine 

the details of the solution, and approve the chosen solutions.  During this process, the complexities of determining 

the specifics of a solution as well as conducting the necessary safety certification and other approval processes can 

delay change.  While such approval processes are necessary and ensure system safety they are not easy to conduct.  

In addition, stakeholder disputes can once again arise when details of a solution are being determined and additional 

leverage mechanisms may be needed to overcome them.  Once implementation is complete and successful, the 

capability of the system is improved and the problem being addressed is reduced or eliminated.  

IV. Stakeholder Cost Benefit Dynamics and Barriers to ADS-B Implementation 

The distribution of costs and benefits can have a significant impact on the stakeholder dynamics during the 

process of transition. Understanding and anticipating stakeholder dynamics by analyzing the distribution of costs 

and benefits to stakeholders is an important aspect of achieving successful transitions. Marais and Weigel [5] 

developed a framework for analyzing cost benefit dynamics through the use of cost benefit matrices, and illustrated 

its application in the case of ADS-B.  This section reviews the framework and expands the ADS-B example to 

consider also the distribution of costs and benefits when different ADS-B applications are taken into account. 

While the overall cost benefit analysis for a transition may be favorable, there is no guarantee that individual 

stakeholders will derive value from the transition. Some stakeholders may reap a disproportionate share of the 

benefits, while others may incur a disproportionate share of the costs. Stakeholders who are asked to bear a 

disproportionate share of costs while reaping little benefit may be expected to be reluctant or unwilling to cooperate 

with a technology transition effort.  Ensuring a successful technology transition therefore requires looking at the cost 

and benefit distribution between stakeholders, as shown in Figure 3. 

Discrepancies in the distribution of costs and benefits between stakeholders can create a barrier to 

implementation when some stakeholders have a strong incentive to oppose the implementation of a change.  In the 

case of ADS-B the distribution of costs and 

benefits needs to be looked at not only on a 

stakeholder by stakeholder basis, but also for each 

application enabled by the technology.  Costs and 

benefits are delivered through applications 

enabled by new operational capabilities which are 

a combination of operating procedures, aircraft 

operational capability (i.e. equipage), ATC 

operational capability, and ground infrastructure 

changes as shown in Figure 4.  Each application 

of ADS-B is not automatically guaranteed if an 

operator equips with ADS-B avionics.  Instead, it 

has to be separately certified and approved by the 

FAA.  As a result, benefits are contingent on the 

operational approval of applications.  In addition, 

since users receive aggregate costs and benefits 

from a package of applications.  As a result, 

choosing which applications of ADS-B to support 

influences the total costs and benefits seen by 

stakeholders.  

 

Figure 3: Example Cost-Benefit Distribution across 
Stakeholders [5]: Illustration of cost and benefits 

appropriated across three example stakeholders. 
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Figure 4: Transitioning from Capabilities to Benefits: Changes in different systems-level capabilities enable 

various applications which then deliver aggregate costs & benefits to stakeholders 

 

In addition to a distribution of benefits between stakeholders the temporal distribution of costs and benefits needs 

to be considered.  Figure 5 shows an example distribution of costs and benefits over time.  As stakeholders 

formulate preferences the decision to equip with ADS-B will be made not only on whether a change results in a net 

benefit, but also on the timing of that benefit.  Investments in equipage are more attractive if benefits are rapidly 

realized. That is, in addition to a total positive net present value (NPV), a positive NPV over the short term is 

preferable, especially when initial costs are high. 

When the levels and 

distribution of both costs and 

benefits is certain the NPV can 

be calculated and used to 

determine if equipage makes 

sense.  However, in most cases 

estimates of costs and benefits 

contain uncertainty due to risks 

associated with system 

transition.  Adjusting for risks in 

level and time of benefit 

delivery can change the 

resulting NPV and potentially 

reduce the attractiveness of 

equipage.  Figure 6 shows the 

effect of both value and time 

uncertainty on the level of 

benefits.  If value increases or time to realization of benefits decreases, transition becomes more favorable.  

However, if the level of benefits decreases and time to realize these benefits increases the risk adjusted NPV begins 

to look less favorable.   

There are three significant sources of risk associated with ADS-B implementation.  The first is that a critical 

mass of equipage needs to be reached before stakeholders can begin to receive benefits of implementation.  As a 

result, stakeholders are dependant on the actions of others for ADS-B to be successful.  Because there is no 

guarantee that other operators will equip, there is an incentive for operators to postpone implementation and be the 

last to equip.  In this way they can minimize uncertainty about the actions of others.  However, as each stakeholder 

postpones equipage benefits are also postponed resulting in a less favorable NPV.   

Figure 5: Temporal Distribution of Costs and Benefits: In this example, 

costs occur before benefits in time, although benefits outweigh costs. Adapted 

from [5] 
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Providing incentives for 

equipage is a potential leverage 

strategy that can be used to 

overcome this barrier.  

However, when insufficient 

individual equipage for delivery 

of benefits does not occur it 

may become necessary to 

mandate equipage to gain full 

benefits.  A mandate indicates 

that those without equipage will 

not have access to airspace 

adding significant costs to those 

who do not equip.  In current 

plans, the FAA is seeking to 

encourage early voluntary 

equipage, but recognizes the 

need for an ADS-B mandate in 

2020 [6]. 

The second risk deals with 

which applications of ADS-B 

will be supported and when.  

Both the level and timing of 

benefits will be impacted by the 

selected applications and their 

timing.  

The third source of risk deals with the ability and timing of the FAA’s infrastructure deployment and completion 

of safety and certification processes.  In order for operators to gain benefits from ADS-B equipage the FAA has to 

ensure the availability of ground infrastructure, stable technology and procedure requirements, and certified 

technology for operators to equip with.  As a result, the certification and approval process can be a key barrier to 

implementation if there are difficulties carrying out this process.  If these processes are delayed the benefits will be 

delayed as well.  In addition, if some of the processes fail the level of benefits will be significantly decreased.  

V. Stakeholder Perception of ADS-B Benefits 

The distribution of costs and benefits can have a significant impact on stakeholder dynamics during the transition 

process. In order to understand what benefits operators are expecting from ADS-B equipage, a survey of potential 

user benefits was conducted.  This survey can be used to identify which benefits are already planned and which can 

be added and used as incentives to motivate operator equipage.   

U.S. aviation stakeholders were surveyed and asked to rank their perceived level of benefit for a variety of 

potential ADS-B applications including those currently planned by the FAA and potential future applications.  

Applications were divided into those enabled both by ADS-B-out in radar and non-radar airspace and ADS-B-in 

with different enabling avionics. Benefit trends for each application were examined by self-identified stakeholder 

groupings.  These eight groupings differentiate between type of aircraft operation and operators and include: aircraft 

owners, Part 91 recreational pilots, Part 91 business traveling airplane pilots, Part 91 flight Training airplane pilots, 

Part 91 commercial airplane pilots, Part 135 airplane pilots, part 121 airplane pilots, and helicopter pilots.  The 

results are shown in Figure 7.  The online survey was open to aviation stakeholders (primarily pilots), throughout the 

US.  The survey was internet-based and posted in June & July 2007 and received 1136 valid responses.  A detailed 

description of the methodology and results is reported by Lester and Hansman [7]. 

 

Figure 6: Time and Value Uncertainty in Benefit Distribution: Value 

uncertainty can change the expected magnitude of benefits, while time 

uncertainty shifts the time at which benefits are realized. 

 

Time

C
o

s
t 
a
n

d
 B

e
n

e
fi

t 
L

e
v
e
ls

Costs Benefits

Benefits with 

Time Uncertainty

Time

C
o

s
t 
a
n

d
 B

e
n

e
fi

t 
L

e
v
e
ls

Costs
Benefits with 

Value Uncertainty



 

American Institute of Aeronautics and Astronautics 

Copyright © 2007 by the Massachusetts Institute of Technology 

 

7 

 
 

Figure 7: User-Perceived ADS-B Application Benefits: User responses to ADS-B application benefits.  Users 

identified significant benefits for Search & Rescue, Enhanced Visual Acquisition, Visual Separation, and Weather 

and Airspace Display. 

 

The survey showed that stakeholders perceive a high potential benefit stemming from ADS-B.  Applications 

which received strong responses of significant benefit across stakeholder categories are likely to provide the highest 

leverage to encourage early individual equipage.  Such applications include: Enhanced Visual Acquisition and 

Visual Flight Rule (VFR) separation in Marginal VFR (MVFR) conditions provided by ADS0B-in.  Both require 

CDTI implemented to augment situation awareness.  This is likely to be lower cost than a higher level of 

certification design assurance.  These applications also lead to benefits in dense traffic areas such as busy terminal 

areas that already have ATC radar coverage, and the FAA plans to support them in current ground infrastructure 

deployment for Segments one and two as discussed previously.  Additionally, cockpit weather and airspace provide 
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significant benefits to all operators, including part 121 and part 135 operators, and can be used with a display that 

supports situation awareness in the cockpit. 

The two ADS-B-out applications with the highest identified benefits are radar-like Instrument Flight Rule (IFR) 

separation and Improved Search and Rescue Accuracy.  These benefits require ground infrastructure deployment in 

regions without current radar coverage.  However, currently the FAA plans to only use ADS-B within existing radar 

coverage volumes.  Strong consideration should be given to adding ADS-B coverage in areas of mountainous terrain 

or low altitude where procedural separation is currently used. 

Pilots did not perceive strong benefits from surface surveillance applications, either from the tower or in the 

cockpit with a CDTI.  However, general aviation and part 135 operators who operate primarily under IFR (part 91 

commercial, part 91 business), do see significant benefits from final approach and runway occupancy awareness 

from the tower or from within the cockpit.  All other operators see some benefits from final approach and runway 

occupancy applications. 

Based on the survey results, the strongest leverage mechanisms to accelerate the realization of ADS-B-out 

benefits are to provide radar-like separation services in areas where radar coverage is currently lacking.  Therefore a 

strong leverage strategy would be to add ADS-B coverage volumes where current use of procedural separation 

limits access to airspace and airports.  For equipage of ADS-B-in, expected to be equipped along with ADS-B-out, 

the highest benefits rated by users relate to traffic separation in VFR and MVFR conditions, requiring development 

of procedures and avionics to utilize cockpit-based CDTI.  Information services also offer strong benefits across the 

aviation community, even to scheduled airline pilots. 

VI. Operational Approval Process and Uncertainty in ADS-B Benefits 

A. Overview of the Operational Approval Process 

One of the greatest sources of uncertainty to realizing future ADS-B benefits is receiving operational approval in 

the implementation process shown in Figure 2.  Potential operational capabilities of ADS-B, such as reduced 

separation, will require operational approval by the FAA before benefits can be realized.  The complexities of the 

safety and approval process, while necessary, can introduce substantial delays and uncertainty into the transition 

process.  Delivery of operational approval impacts the decision to invest in technology both by increasing 

uncertainty around the time at which benefits from applications are available to users, and by increasing the 

uncertainty that benefits will ultimately be realized.  Increasing the level of certification requirements can also 

significantly increase the cost of equipage.  Understanding and addressing potential barriers to achieving operational 

approval is critical to delivery of benefits from ADS-B capabilities.  The uncertainties surrounding implementation 

affect the NPV calculated during the cost benefit analysis and significantly contribute to operators’ hesitancy to 

equip with ADS-B.  

A simplified representation of the specification and approval processes relevant to implementing NAS-wide 

ADS-B capabilities is shown in Figure 8.  The process begins with an initial operational concept to improve the 

system, which can be divided into three aspects of the operational capability: airborne components, the air/ground 

interface & procedures, and ground-based infrastructure.  Standards are then developed for components of the 

system, including the air/ground interface, applications, and ground-based infrastructure.  Next, analysis is 

conducted and additional requirements are identified for all components of the system.  Finally, approval and 

implementation processes result in an airborne operational capability, established procedures, and ATC operational 

capability.  These three capabilities combine to create overall system operational capability.  The approval process is 

performed incrementally and typically multiple iterations are needed to approve different applications or sets of 

applications. 

B. Example Sources of Uncertainty in the Approval Processes 

1. Requirements Stability 

Because standards are developed before certification of procedures, there is significant uncertainty in potential 

costs of recertification or re-equipage if the avionics installed by early adopters are not adequate to perform desired 

functions.  This problem occurred during the development of DO-260, which is the Minimum Operational 

Performance Standards (MOPS) for the 1090 MHZ extended squitter (1090ES) [8].  Early avionics based on the 

DO-260 standard allowed for the use of either of two potential measures of position uncertainty.  During later 

 



 

American Institute of Aeronautics and Astronautics 

Copyright © 2007 by the Massachusetts Institute of Technology 

 

9 

 

 

 

F
ig

u
re

 8
: 

S
im

p
li

fi
ed

 S
p

ec
if

ic
a

ti
o

n
 a

n
d

 A
p

p
ro

v
a

l 
P

ro
ce

ss
es

 f
o

r 
N

ew
 O

p
er

a
ti

o
n

a
l 

C
a

p
a
b

il
it

y
: 

S
ev

er
a

l 
p

ro
ce

ss
es

 a
re

 p
er

fo
rm

ed
 i

n
 t

h
e 

im
p

le
m

en
ta

ti
o
n

 s
ta

g
e 

to
 

tr
a

n
si

ti
o

n
 f

ro
m

 a
n

 o
p

er
a

ti
o

n
a

l 
co

n
ce

p
t 

to
 a

n
 i

m
p

le
m

en
te

d
 o

p
er

a
ti

o
n

a
l 

ca
p
a

b
il

it
y.

 

 



 

American Institute of Aeronautics and Astronautics 

Copyright © 2007 by the Massachusetts Institute of Technology 

 

10 

revisions, only one of these measures was determined to be acceptable for use in ATC separation.  As a result, the 

installation of ADS-B avionics in individual aircraft must be modified to use the approved method of broadcasting 

position uncertainty.  As an example, Airservices Australia currently has to certify each individual airframe before 

the aircraft can utilize ADS-B for ATC separation [9]. 

The DO-260 specification has been changed once, to the current specification being DO-260 Change 1.  The 

second version of the 1090 ES MOPS, DO-260A, has been changed three times, with the current version published 

as DO-260 Change 3.  The MOPS for the Universal Access Transceiver (UAT), the datalink standard which 

supports graphical weather information, has also gone through two major revisions, with the current revision being 

DO-282A.  These revisions illustrate that there is no guarantee that further changes will not occur.  In fact, the 

contract award for broadcast services is likely to stimulate further avionics development and standard revisions.  

Uncertainty in standards creates a disincentive for operators to equip with a technology that meets the current 

standards if their avionics may not be usable in the future or if revised standards provide a higher level of benefits. 

2. Varying Criticality Levels  

Rulemaking is anticipated to require ADS-B-out equipage for access to certain areas of airspace by 2020 [6].  It 

is expected that some users will evaluate a decision to equip earlier than the mandate based on benefits of both 

ADS-B-out and ADS-B-in applications.  For segments one and two, a limited set of ADS-B-in applications are 

being implemented.  While air traffic control surveillance is classified as a critical NAS service, the currently 

supported cockpit-based applications augment situation awareness and are therefore classified as essential services 

[10].  Classification of services as higher criticality means that more stringent requirements are placed on system 

performance.  As examples, critical services have higher system availability requirements and lower probability of 

failure requirements than essential services.  In addition, and specific cockpit design attributes, such as placement in 

the primary field of view may be required to receive airworthiness certification.  Several lower-level performance 

measures also depend on the higher level specifications, such as system latency and update rate. 

Several applications envisioned for future use of ADS-B, such as self-separation, would require airborne 

avionics to support a higher level of flight criticality in ADS-B-in applications.  Because of the mismatch between 

design assurance levels to support essential cockpit-based services, and potential future flight-critical uses, there is a 

concern that current airborne specification of the system may not be sufficient to support future uses, and additional 

standards in equipage would be needed.   

There is also a potential that ground infrastructure design assurance, including software and data integrity, may 

not be sufficient to support future flight-critical cockpit-based applications.  While some safety assessment and 

modeling activities are used to inform the development of RTCA standards, the FAA is ultimately responsible for 

safety certification of ADS-B procedures.  This analysis is performed to determine ground infrastructure 

requirements and procedural mitigations to arrive at an acceptable level of safety, according to the FAA’s Safety 

Management System (SMS) process [11]. 

Avionics and operational procedures are approved through a different process.  Intended uses of avionics are 

certified as part of operator type certification, and specific avionics packages are certified through the airworthiness 

certification process.  Avionics development and certification usually occurs after ground infrastructure has already 

been specified and deployed.  As a result, ground infrastructure requirements are fixed while avionics are still 

changing potentially resulting in incompatible systems.   

3. Equivalent vs. Target Levels of Safety  

As currently specified, ADS-B will be a replacement surveillance source for current radar separation procedures.  

As a result, the use of ADS-B can be certified using an equivalent level of safety approach.  This approach requires 

demonstration that ADS-B performs equivalent to current surveillance sources and is therefore easier to achieve than 

performing an analysis to a target level of safety.  However, reduction in separation standards requires an assessment 

to a target level of safety before procedures can be approved [12].  Assessing changes to a target level of safety is 

significantly more difficult because it is performed to an absolute instead of relative standard.  As an example, 

performing a target level of safety assessment to support the implementation of Reduced Vertical Separation 

Minima (RVSM) in domestic EU airspace required approximately 10 years to conduct [13]. 
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VII. Conclusions 

ADS-B will be a pathfinding capability for additional system modernization as planned for the Next Generation 

Air Transportation System.  Implementation of ADS-B faces a number of barriers that need to be addressed to 

achieve system-level benefits.  The benefits from ADS-B applications will influence individual equipage decisions.  

However, there are a variety of sources of uncertainty in both the time and magnitude of benefits delivery that 

reduce the potential attractiveness of ASD-B to stakeholders.  The benefits case for ADS-B can be accelerated by 

increasing high value applications to encourage early adoption, and by reducing uncertainty in the delivery of 

benefits through ensuring certification of new operational capabilities. 

A survey of stakeholder’s perception of benefits derived from ADS-B applications revealed that ADS-B-in 

display of weather and airspace information, as well as search and rescue capability provided by ASD-B-out have 

strong benefits to a broad range of system stakeholders.  In particular, general aviation users are interested in these 

capabilities.  These applications complement strong perceived ADS-B benefits in operational efficiency 

improvements in VFR and marginal VFR approach spacing.   

The implementation of applications with strong perceived ADS-B benefits should be accelerated to encourage 

early adoption of technology by users to create corresponding system-level benefits in capacity and safety 

enhancement.  In addition, sources of uncertainty in the operational approval process should be reduced to ensure 

confidence in delivery ADS-B applications and benefits.  Effective means must also be used to ensure future 

proposed ADS-B applications.  In particular, ground infrastructure and airborne requirements must be sufficient to 

address planned future uses. 
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