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Abstract

In relational query processing, one generally chooses between two classes of
access paths when performing a predicate lookup for which no clustered in-
dex is available. One option is to use an unclustered index. Another is to
perform a complete sequential scan of the table. Online analytical processing
(OIAP) workloads often do not benefit from the availability of unclustered in-
dices; the cost of random disk I/O becomes prohibitive for all but the most selec-
tive queries. Unfortunately, this means that data warehouses and other OLAP
systems frequently perform sequential scans, unless they can satisfy nearly all
of the queries posed to them by a single clustered index [7], or unless they have
available specialized data structures - like bitmap indices, materialized views,
or cubes - to answer queries directly.

This thesis presents a new index data structure called a correlation index
(CI) that enables OLAP databases to answer a wider range of queries from a
single clustered index or sorted file. The CI exploits correlations between the
key attribute of a clustered index and other unclustered attributes in the table.
In order to predict when CIs will exhibit wins over alternative access methods,
the thesis describes an analytical cost model that is suitable for integration
with existing query optimizers. An implementation compares CI performance
against sequential scans and unclustered B+Tree indices in the popular Berke-
ley DB [22] library.

Experimental results over three different data sets validate the accuracy of
the cost model and establish numerous cases where CIs accelerate lookup times
by 5 to 20 times over both unclustered B+Trees and sequential scans. The
strong experimental results suggest that CIs offer practical and substantial
benefits in a variety of useful query scenarios.

Thesis Supervisor: Samuel Madden
Title: Assistant Professor
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Chapter 1

Introduction

Database management systems (DBMSs) have become a central component of

nearly all large software applications. One of the basic services provided by

a DBMS is the ability to look up the records that satisfy a set of conditions

in a user-specified predicate efficiently. Efficient lookups are fundamental to

database systems not only because they support direct user queries, but also

because they underlie many other database operations, such as aggregates and

joins.

To implement such lookups efficiently, database systems employ indices

over the columns in a table. An index is a data structure that is overlaid upon

the table in order to be able to locate desired portions without reading the en-

tire table. Traditionally, the B+Tree is the most common indexing structure in

relational databases. Since an index represents some organization of the data,

it is associated with the notion of a particular ordering of the records. We say

that an index is clustered if the data are arranged on disk physically accord-

ing to the order that the index represents. Unclustered indices lack many of

the beneficial performance characteristics of clustered indices, especially as the

size of the database table grows large. In particular, traditional unclustered in-

dices are useful to look up specific values that occur infrequently, but queries

that access more than a small fraction of the table become impractically slow.



1.1 Motivation for a new index structure

Online analytical processing (OLAP) workloads often do not benefit from the

availability of unclustered indices. This is because queries in OLAP databases

usually involve aggregation over regions of very large tables, instead of highly

selective value lookups.1 The overhead of disk seeks to fetch the data pages

pointed to by the leaf records in unclustered B+Trees will be higher than the

cost to scan the table if even a small fraction of tuples in a table are accessed

by a query. Clustered indices (and sorted files in some warehouse systems)

perform better - beating sequential scans for many queries of even relatively

low selectivity - but most database systems limit users to a single clustered

index or sort order per table.

Unfortunately, this means that data warehouses and other OLAP systems

will frequently perform sequential scans, unless almost all of the queries posed

to them can be satisfied by a single clustered index [7], or unless specialized

data structures - like bitmap indices, materialized views, or cubes - can be

used to answer queries directly. In fact, Netezza, a popular appliance-based

data warehouse, uses no indexing, relying exclusively on sequential scans be-

cause it is hard to pick one index that will perform well for a range of ware-

house queries.2 Although there are many attempts to optimize sequential

scans (Netezza relies on special disk controllers and massive shared-nothing

parallelism), ultimately any full table scan can be quite slow. An index struc-

ture that leverages a particular table clustering to provide efficient lookups

for more than one column, therefore, may yield benefits wherever systems cur-

rently do no better than sequential scans.

1We adopt the convention that a highly selective query returns fewer tuples.
2Netezza whitepapers [18] say "no indexing required."



1.2 Overview of the correlation index

This thesis introduces a new index data structure called a correlation index (CI)

that allows OLAP databases to answer a wider range of queries from a single

clustered index. The idea is to exploit correlations between the key attribute

of a clustered index or sorted file (the "clustered attribute") and other "unclus-

tered attributes" in the table. The simplest form of a correlation index is just a

table that maps from each value u in the domain of an unclustered attribute Au

to values of the clustered attribute A, that co-occur with u in some tuple in the

database. Then, queries over Au can be answered by looking up the A, values

co-occurring with u in the clustered index to find potentially matching tuples.3

If there is a high degree of correlation, then each u will co-occur with only

a few clustered attribute values, such that answering queries over the unclus-

tered attribute requires only marginally more lookups than would be required

had a clustered index over Au been available. Because these lookups are per-

formed directly on the clustered index, the matching tuples can be read directly

from the index in sorted order in a very efficient manner (e.g., without perform-

ing a disk seek for each additional tuple, as an unclustered index requires).

Obviously, this technique will not work for all attribute pairs. If there is no

correlation between the clustered attribute and Au, each value in Au will map

to many values in the index, and the efficiency of the approach will be quite

low. Hence, one of the challenges of using correlation indices is determining

when they will be effective and when they will be costly. This thesis presents

an algorithm for determining the expected effectiveness of a correlated index

based on simple statistics.

3This is more general than a standard multicolumn index with the clustered attribute as
the lead index column, since the user is not required to specify a predicate over the clustered
attribute in the query.



1.3 Background and related work

In this section, we survey past work in semantic query optimization (SQO), soft

constraints, and the bitmap scan access method related to the ideas presented

in the thesis. We also provide background on sampling-based approaches to

distinct value estimation, a technique we exploit in § 4.1.2 to calculate statistics

for our cost model.

1.3.1 Semantic query optimization

One can view our work as an extension of certain optimization approaches from

the field of semantic query optimization; there has been a long history of work

in this area [5, 13, 16,21]. The basic idea is to exploit various types of integrity

constraints (often expressed as rules [3, 4, 14, 15, 17, 20, 231) - either specified

by the user or derived from the database - to eliminate redundant expressions

in the query or to find more selective access paths during query optimization.

Past work in this area has studied several problems that bear some resem-

blance to correlation indices. Cheng et al. [8] describe as one of their optimiza-

tions predicate introduction (which was originally proposed by Chakravarthy

et al [5]), in which the SQO injects new predicates in the WHERE clause of a

query based on constraints that it can infer about relevant table attributes.

Predicate introduction has traditionally focused on two approaches: index in-

troduction and scan reduction. In the former case, a predicate is introduced

naming a new attribute that may have an index available, which may then

open up new possibilities for the query optimizer. In scan reduction, the intro-

duction of range predicates can reduce the number of tuples that qualify for a

join. These SQO techniques traditionally adopt a two-phase approach, where

queries that are logically equivalent are first generated by query rewriting [8]

and then submitted to the downstream query optimizer, from which the least

expensive plan can be chosen. Thus, the effects of predicate introduction can

be quite similar to those achieved by the CI for some clustered indices.



Gryz et al. [12] propose a technique for deriving what are called "check con-

straints," which are basically linear correlations between attributes with error

bounds (e.g., "salary = age * 1008 +/- 20000") and show that these relation-

ships exist in data like TPC-H. They also look at a "partitioning" technique for

string-valued attributes that finds cases where when an attribute X takes on

a particular value v, some other attribute Y has a bounded range [a... b]. They

show that these correlations can subsequently be exploited using predicate in-

troduction over the detected constraint rules. Our approach generalizes Gryz

et al.'s results in the context of indexing, because it can capture these relation-

ships as well as non-linear relationships (such as the fact that city names are

correlated with states, even though one city may occur in many states).

Godfrey et al. [11] have looked extensively at discovering and utilizing "soft

constraints" for semantic query optimization. They classify these integrity con-

straints as absolute soft constraints, which hold with no exceptions in the cur-

rent state of a database, and statistical soft constraints, which can have some

degree of violation. They explain that such constraints can be used in query

rewrite, query plan parameterization, and cardinality estimation in the opti-

mizer's cost model for tighter guesses on selectivity factors.

However, the fact that their soft constraints capture only logical relation-

ships between table attributes means that they must keep track of when the

constraint no longer holds to invalidate the constraint or add violations to a

special table that has to be unioned into the result of the query. They must

account during every table update for the fact that the next change may inval-

idate a particular soft constraint. CIs need not worry about this issue, because

they do not explicitly represent logical constraints; rather, representing sets of

co-occurring values makes CI maintenance simple over updates.



1.3.2 Unclustered index bitmap scans

Another indexing technique that is similar to correlation indices is the use of a

bitmap scan to guide lookups over an unclustered index. One of the important

reasons why CIs are able to achieve good performance is that they perform a

subset of an in-order table scan on disk, avoiding unnecessary random I/O. We

can make unclustered B+Trees behave in this way as well, using the following

modification.

Every value that we probe in the B+Tree returns a set of tuple or page

offsets on disk. We map each of these offsets to a bitmap, and we union the

bitmaps across multiple B+Tree probes to represent all of the disk offsets that

we need to visit during one query. Such bitmaps can be generated on demand

in memory. We can then scan the bitmap once to determine the sequence of off-

sets to visit, which will naturally occur in order. For example, the PostgreSQL

database system has implemented a bitmap scan access method in versions

since 8.1. 4

Although the unclustered index bitmap scan makes no explicit mention of

correlations, the scheme achieves good performance precisely when there are

correlations between the lookup key and the clustered key - otherwise, the

in-order schedule of resulting lookup pages still incurs random I/O costs and

performs no better than a plain unclustered index. In this sense, the bitmap

scan is a variation of the CI with different tradeoffs.

On one hand, a B+Tree identifies every matching tuple explicitly, so the

optimizer has more information to work with when choosing a query plan. On

the other hand, CIs are often far smaller than unclustered B+Trees. One of the

main motivations for developing the CI is to enable using many more indices at

once than with unclustered B+Trees. Although we make the common modeling

assumption in § 3.1 that indices fit in memory, this is less likely when dealing

with many B+Trees simultaneously; as fewer levels of the search trees fit in

4 See discussion at http: //archives.postgresql.org/pgsql-performance/
2005-12/msg00623.php



memory, their performance will worsen sharply. Furthermore, we can tune the

size of a CI freely using bucketing as we discuss in § 2.3, whereas a B+Tree's

size is determined by the number of tuples it represents.

We present experimental results in § 5.2.1 to demonstrate our claim that

bitmap scans perform well with a lookup column that is correlated to the clus-

tered index, but that they degrade to a plain unclustered B+Tree when there

are no useful correlations. Additionally, Chapter 5 describes the on-disk size of

unclustered B+Trees versus CIs for each of our experiments, and we confirm

that the CI is substantially smaller in every case.

1.3.3 Distinct value estimation

In § 4.1.2, we consider sampling-based approaches to measuring database statis-

tics used by our cost model, including distinct value counts over single at-

tributes and pairs of attributes. The basic problem of predicting the number of

distinct values in a column has seen extensive treatment in both the database

community and the statistics community, where it is known as the problem of

estimating the number of species (e.g. [21). All of the estimators proposed in

the literature struggled with poor performance on input distributions with ei-

ther high skew or low skew until a paper by Charikar et al. [61 proved a strong

negative result that estimating the distinct count of a column within some

small constant error requires reading nearly the entire table. The result is

particularly decisive because it places few restrictions on the behaviour of the

estimator, allowing any variety of random sampling and adaptive procedures.

To overcome this limitation of purely sampling-based approaches, Gibbons [10]

proposed the Distinct Sampling algorithm that achieves far more accurate re-

sults at the cost of one full table scan. While other work claimed that a small

random sample is the only practical way to compute statistics over very large

tables, Gibbons argues that one pass algorithms with fast incremental main-

tenance are also scalable [10]. The one-pass approach to estimating distinct



counts was introduced by Flajolet and Martin [9], who proposed hashing dis-

tinct values to a bit vector with specially tailored probabilities.

Since our approach to estimating statistics in § 4.1.2 relies only on distinct

counts over attributes and pairs of attributes, it can also benefit from alterna-

tive work in the area. For example, Yu et al. [24] look at estimating the number

of distinct values across a set of attributes using histogram information main-

tained within IBM DB2, instead of making additional passes over the data.

We expect that future advances in the area will make our method even more

practical and effective.

1.4 Contributions

In summary, correlation indices provide the potential to exploit correlations

between attributes to allow clustered indices to be used as an access method

for multiple attributes. This thesis describes the design and implementation of

a correlation-indexing system, with the following key contributions:

* A description of the correlation index structure as well as algorithms for

creating and querying it.

* A model of correlation index performance that allows one to predict how

effective a CI will be compared to traditional database access methods

(sequential scans and unclustered B+Trees). We show that this model is

a good match for real world performance.

* A system design that is very low in complexity, one that can be integrated

with existing access methods and query optimizers with little effort.

* An evaluation of the effectiveness of CIs on several data sets, including

TPC-H data and data from the US Census Bureau. We show that CIs can

outperform both unclustered indices and sequential scans by an order of

magnitude on a variety of useful pairs of correlated attributes, and that

20



for real world data sets a quarter of attribute pairs can benefit from CIs

by more than a factor of two.

1.5 Organization of thesis

The remainder of this thesis is organized as follows.

* Chapter 2 overviews the operation of the system in more detail, including

how correlation indices are implemented and used.

* Chapter 3 describes an analytical model for estimating the cost to perform

a lookup in a particular correlation index, and it describes how to compare

against the expected costs of an unclustered index and a sequential scan.

* Chapter 4 describes a CI Advisor tool that collects statistics about ex-

pected CI benefit and actually evaluates the cost model to predict the ben-

efit of creating a given CI. The chapter also explores a practical sampling-

based approach to gathering and maintaining system statistics.

* Chapter 5 illustrates the benefits of CIs over several real-world work-

loads, and looks at their costs and overheads.

* Finally, Chapter 6 summarizes our contributions and concludes.
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Chapter 2

System Operation

In this chapter, we describe the operation of correlation indices: how we iden-

tify candidate CI attribute pairs, as well as how we physically store and main-

tain CIs.

From a database client's standpoint, CIs work much like standard indices;

they support customary update and query operations. For the database ad-

ministrator, we provide a CIAdvisor tool to identify pairs of attributes that are

likely to be good candidates for a CI. He can use this information to decide what

clustered indices to build, as well as the associated CIs to build. By issuing a

simple DDL command, he can add a CI linking a given attribute - the CI key

- to a clustered index. We describe the operation of the CI Advisor and how it

computes the expected effectiveness of a CI in Chapter 4.

2.1 Building correlation indices

Suppose that a user wants to build a CI over an attribute T.A. of a table T, with

a clustered index on attribute T.A,. The CI is simply a mapping of the form

u -+ S,, where u is a value in the domain of T.Au and S, is a set of values in the

domain of T.A, such that there exists a tuple t E T of the form (t.A, = u, t.A, =

c,...) Vc E Sc. For example, if there is a clustered index on "product.state," a CI

on "product.city" might contain the entry "Boston -+ {NH,MA}." The algorithm

23



for building a CI is shown in Algorithm 1. Once the administrator issues a

DDL command to create a CI, the system scans the table to build the CI (line

2). As the system scans the table, it looks up the CI key value in the mapping

and adds the clustered index key value to the key value set (line 3). A similar

algorithm can be used for on-line insertions. Deletions, if needed, require the

maintenance of an additional count of the number of co-occurrences with each

value in the value set.1

input : Table T with attribute A, and clustered index over attribute Ac
output: Correlation index C, a map from A, values to co-occurring Ac values

1 C +- new Map(Value -4 Set)
2 foreach tuple t c T do

/* Record the fact that t.Ac co-occurred with t.A, in the
mapping for t.A, */

3 C.get(t.A,).add(t.Ac)
4 end
5 return C

Algorithm 1: Correlation Index Construction Algorithm.

We physically represent the CI as a B+Tree keyed by the CI key, with the set

of clustered index keys as the value for each record in the B+Tree. Whenever

a tuple is inserted, deleted, or modified, the CI must be updated, as with a

standard index. Because the CI is relatively compact (containing one key for

each value in the domain of the CI attribute, which in our experiments occupy

1-50 MB for databases of up to 5 GB), we expect that it will generally reside

in memory, although since it is a B+tree the database system is easily able to

spill it to disk. We report on the sizes of the CI for several real-world attributes

in our experimental evaluation in Chapter 5.

The clustered index over the table may be implemented either as a clustered

B+Tree or as a simple sorted file. The CI benefits from the ability to scan the

range of the table associated to a sort key efficiently. In a typical B+Tree im-

plementation, while one can scan a series of matching tuples quickly one page

at a time, it is still necessary to perform random disk seeks between pages.

1It is not necessary for correctness to support deletions in CIs - in the worst case, they will
result in scanning unnecessary values from the clustered index.



On the other hand, a sorted file can be stored contiguously on disk in order to

provide optimal scan performance, but it does not support real-time updates

as a B+Tree does. A static sorted file may be practical in many OLAP environ-

ments, where updates are infrequent and can be batched until the sorted file

is regenerated periodically. One possible trade-off is to use a clustered B+Tree

implementation backed by a packed memory array [1], which provides a bound

of 0(1 + (log2 N)/B) amortized memory transfers per update to a table with

O(N) elements and a page size of B, and reduces sequential scan performance

by a factor of 2 at worst.

2.2 Using correlation indices

The API for the CI access method is straightforward; the CI implements a sin-

gle procedure with the same interface as traditional access methods. It takes

as input a set of values over the unclustered attribute associated to the CI, and

it returns a list of tuples matching the desired set.

TupleList ci_lookup(Set unclustered_attrvalues);

When a query arrives that contains a predicate over an attribute for which

a CI is available, the database system will use the CI if the query optimizer

determines that it will be beneficial to do so. We did not implement a complete

query optimizer for our experimental evaluation, but we provide a cost model

that we intend to be used by the query optimizer in Chapter 3. Using the

cost model, the optimizer should pick a CI access path if it estimates that the

access cost and selectivity will be less than some other access path for the same

table. The optimizer should not pick a CI access path if another access path will

provide an "interesting order" [19] that avoids sorts or reduces the cost of later

operations in the plan outweighing the savings of using the CI.

Using a correlation index is straightforward. The basic lookup algorithm is

illustrated in Algorithm 2. Given a range predicate p over a CI attribute, the



query executor looks up all of the records in the range in the CI (lines 2-4). It

takes the union of all of the resulting clustered attribute value sets (line 3) and

generates a sorted list of the clustered attribute values that need to be scanned

(line 6). The executor looks up each of the matching values in the clustered

index, in order (line 8). For each tuple that is returned, the executor checks

to see if the tuple satisfies p (line 9), and if so, adds the tuple to the output

set (line 10). This final predicate check is necessary because some values in

the clustered index may not satisfy the predicate - for example, a scan of the

states "MA" and "NH" to find records with city "Boston" will encounter many

record from other cities ("Cambridge," "Somerville," "Manchester," etc.) that do

not satisfy the predicate.

input : Correlation index C over attribute A,
Clustered index I on attribute Ac
Range R over A,

output: List of tuples in R
1 indexKeys <- new Set()
2 foreach value r c R do
3 indexKeys <- indexKeys U C.get(r)

4 end
5 taps <- new TupleList()
6 sortedKeys <- inidexKeys.sortedList()
7 foreach k E sortedKeys do

/* I.lookupTuples returns tuples in I that have value k */
8 foreach t e I.lookupTuples(k) do
9 if t.a E R then

to taps.append(t)
11 end

12 end

13 end
14 return tups

Algorithm 2: Correlation Index Lookup Algorithm.

Figure 2-1 illustrates an example CI. Here, the user has a table with three

attributes: state, city, and salary, with a clustered B+Tree on state. The ad-

ministrator has created a CI on city. The CI maintains a correspondence be-

tween each city name and the set of states it appears in. When a query with

a restriction to the cities "Boston" and "Springfield" arrives, the system gener-



Query and Physical Plan

Clustered B+Tree, BT

MA  .. NH " IOH ...

{MA,Boston,$25K}) (MA,Somerville,$15K) {NH,Boston,$48K) (OH,Cleveland,$70K)
{MA,Boston,$90K) ., {MA, Springfield,$90K) {NH,Boston,S90K) ,. (OH, Sandusky,$15K)
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(MA,Cambridge,$60K) (NH, Boston,$45K) (NH,Manchester,$60K) (OH, Springfield,$60K)

Page 1 Page i Page 1+1 Pagej

Figure 2-1: Diagram illustrating an example CI and its use in a query plan.

ates a physical query plan that uses the CI to identify the states that contain

"Boston" and "Springfield" ("MA," "NH," and "OH"), and performs an in-order

lookup on the clustered B+Tree to find the pages containing records from these

states (1, 2, and 3 in our example). The tuples on these pages are fed to a se-

lection operator, which returns only those tuples whose city matches "Boston"

or "Springfield."

2.3 Bucketing correlation indices

The basic CI approach described in the previous section works well for at-

tributes where the number of distinct values in the CI attribute or the clus-

tered attribute is relatively small. However, for large attribute domains, the

size of the CI can grow quite unwieldy (in the worst case having one entry for

each tuple in the table). Keeping a CI small is important to keep the overhead

of performing lookups low.

We can reduce the size of a CI by "bucketing" ranges of the CI attribute

together into a single value. We can compress ranges of the clustered attribute

stored in the CI similarly. A basic approach to bucketing is straightforward.
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Manchester: (NH)
Portland :(NH, OR)
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WHERE city='Boston' BT (Pages 1 i, i+1, j, ...)
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CI ('Boston', 'Springfield')
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For example, suppose we build a CI on the attribute temperature and we have a

clustered index on the attribute humidity (these attributes are often correlated

- with lower temperatures bringing lower humidities).

Suppose the unbucketed CI looks as follows:

{12.3 0C} -- {17.5%, 18.3%}

{12.7 °} -{18.9%,20.1%}

{14.40C} - {20.7%.22.0%}

{14.90C} {21.3%, 22.2%}

{17.80C} - {25.6%, 25.9%}

We can bucket into 1OC or 1% intervals via truncation as follows:

{12 - 13C} {17 - 18%, 18 - 19%,20 - 21%}

{14 - 150C} - {20 - 21%,21 - 22%, 22 - 23%}

{17 - 18C} - {25 - 26%}

Note that we only need to store the lower bounds of the intervals in the buck-

eted example above. We omit a detailed algorithm for performing this trunca-

tion, but we observe that the bucketing scheme could be as simple as taking an

integer floor or as complex as arbitrary user-defined stored procedures.

The effect of this truncation is to decrease the size of the CI while decreasing

its effectiveness, since now each CI attribute value maps to a larger range of

clustered index values (requiring us to scan a larger range of the clustered in-

dex for each CI lookup). In this thesis, we consider simple fixed-width binning

schemes such as the one shown in the example above. 2 In § 5.2.3, we present

2Note that a poor bucketing can destroy correlations, since two CI values with very different
clustered attribute sets may be placed into the same bucket. In this scenario, the CI must
scan a large range of the clustered attribute space whenever we look up either CI attribute
value. Hence, it is attractive for future work to look at adaptive binning techniques that merge
together CI attribute buckets only when there is significant overlap in their clustered attribute
sets.
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experimental results to illustrate the effectiveness of the simple approach in

one of our data sets.

2.4 Discussion

CIs capture the correlation between the CI attribute and the clustered at-

tribute. If two attributes are highly correlated, each value of the CI attribute

will co-occur in a tuple with only a few values in the clustered attribute, whereas

if they are poorly correlated, the CI attribute will co-occur with many clustered

attribute values.

Intuitively, correlated indices will be most effective when:

* There is a strict functional dependency between the unclustered attribute

and the clustered attribute (that is, there is a many to one relationship,

such that the unclustered attribute perfectly predicts the clustered at-

tribute value). For example, in the United States, a zip code is a perfect

predictor of a state. "Soft" functional dependencies should also perform

well; for example, though a city name does not perfectly predict a state

(since there is a Boston, M1A and a Boston, NH), city is often sufficient to

predict state.

* The number of tuples across all clustered values to which an unclustered

value maps is small. For example, in a nationwide database, city name

is a good predictor of county, and there are many cities and counties. If

a clustered index on county exists, it is likely that the index will also be

useful for answering queries over city name, since the number of tuples

for each county will not be large compared to the size of the database.

As a counter-example, consider the TPC-H benchmark attribute "return-

date," which indicates when a product was returned. It is perfectly cor-

related with the attribute "returncode" that indicates whether or not a
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product has been returned (returndate is null when no return has hap-

pened, and non-null when it has). However, this correlation may not be

useful, since the domain of returncode is so small that a very large frac-

tion of the database has to be scanned whenever a clustered index on

returncode is used.

It is also instructive to to compare the performance of CIs to unclustered

B+Trees on the CI attribute. Clearly, using the correlation index will cause

the system to read more tuples than it would read using an unclustered index.

However, the CI can be much less expensive than an unclustered B+tree be-

cause every tuple that is retrieved in an unclustered index requires a random

disk I/O, whereas the CI scans all tuples with a given value from the clus-

tered index, which keeps tuples with the same value together on the same disk

page(s). We formalize this intuition in Chapter 3 where we model and compare

the performance of unclustered B+Trees and CIs. 3

3It is interesting to note that it is possible to use an unclustered index in conjunction with
a clustered index in much the same way we use a CI. This is true since if there is a correlation
between the unclustered attribute and the clustered attribute, lookups of a particular value in
the unclustered index will tend to be grouped onto a few pages of the clustered index. One way
to view a CI is as a more compact representation of of an unclustered index used in this way.



Chapter 3

Cost Model

So far in the thesis, we have given some intuition for when a CI might be less

expensive than an unclustered index or a sequential scan; however, we have

not provided a formal analysis for when this will be true. In this chapter, we

describe an analytical cost model that we use to compare the absolute costs of

the different access methods over an unclustered attribute. In particular, we

examine an unclustered B+Tree index, a full table scan, and a CI over a given

pair of attributes. Our goal is to compute the expected runtime of a lookup

given parameters characterizing the underlying hardware and basic statistics

extracted from the data.

3.1 Preliminaries

In the following discussion, we assume a table with attributes A, and A,. The

field A, serves as the clustered attribute for the table, and the field A, is the

unclustered attribute upon which we query. Our model assumes that the table

is stored as a heap file sorted on A, for fast sequential scans. Thus, to read all

of the tuples corresponding to a clustered attribute value, we look up the file

offset corresponding to the value and perform a disk seek. We then read the

relevant tuples sequentially.

We assume that the database system is in a steady state where the desired



Table 3.1: Table statistics used by the cost model.
tups-per-page Number of tuples that fit on one page.

c_tups Average number of tuples appearing with each Ac value.
c-per_u Average number of distinct Ac values for each Au value.

totaltups Total number of tuples in the table.
nlookups Number of A, values to look up in one query.

queries have not recently executed. We do not charge the B+Tree or CI access

methods for reading index pages, since the upper levels of an active index are

likely to be cached in a warm system. We assume that the cache initially holds

none of the table pages. After a page has been accessed once, we do not charge

an operator to read it a second time.

In Table 3.1, we summarize the statistics that we calculate over each table.

Additionally, in Table 3.2, we describe the hardware parameters we use, along

with typical values measured on our experimental platform. Most model pa-

rameters are straightforward, and we describe in Chapter 4 how to measure

them automatically.

We assume that all of the access methods are disk-bound. We do not model

the CPU costs associated to traversing a B+Tree nor filtering tuples in the CI,

and the cost of the sequential scan is independent of the number of values

we look up. Through CPU profiling of the implementation that we present in

Chapter 5, we have validated that our assumption is reasonable.

3.2 Cost of sequential scan

The sequential scan operator is the simplest access method to model. Given our

model parameters, the number of pages in a table is total_tups/tups_per_page.



The cost of scanning a table is then

costsc = (sequential page cost) ( totaltups
tupsper-page)

We note here that our model is oblivious to external factors such as disk

fragmentation. We found that this may not be true, for example, with sequen-

tial scans over tuples stored in Berkeley DB B+Tree files, which tend to be

highly fragmented. This factor is entirely implementation-specific, so we do not

attempt to model it and we control for it in our experiments by defragmenting

each file before a query begins.

3.3 Cost of unclustered B+Tree

In our model, every tuple read via an unclustered B+Tree index causes a ran-

dom seek. Given that we expect utups tuples to be associated to each Au value,

the basic cost of looking up n-lookups values using a B+Tree is simply

cost btree = (random seek _cost) (u-tups) (n _lookups)

However, we must be careful about charging too much when the same pages

are likely to be accessed more than once.

In addition to modeling the behavior of random disk accesses, it is important

to model the effect of the database system's buffer pool on access costs. We

have chosen not to adopt a complicated caching model, which would obscure

the primary effects that we wish to compare between unclustered B+Trees and

CIs. Instead, we propose the following simple model that captures the first-

order effects of the buffer pool.

Suppose at the beginning of a query that we have a buffer pool of unlimited

size that has cached none of the heap pages storing table data. The first time

we request any heap page, we incur the cost of one disk read; subsequently,

requests for that page are free. Furthermore, assume that the B+Tree samples
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pages uniformly at random from the heap with replacement.

Theorem 3.3.1. Under our caching model, the expected number of cache hits

after p requests in a file with n pages is

(3.1)

Proof Let Hi be an indicator variable that is 1 if request i hits the cache, and

let Ci be a random variable representing the number of pages in the cache

immediately before request i. Then, the expected number of cache hits after p

requests is EP, Hi. Manipulating this expression, we have:

P[ ]E Hi
P

= ZE[Hi ]
i=1

p

= Pr(H = 1)
i=1

p n

= E Pr(Hi = 1 = x)Pr(C = x)
i=1 x=1
P nT

=ZZ XPr(Ci = x)

i=1 x=1pn

i 1 x=E

i=1

Now, let us consider E[Ci], the expected number of pages in the cache at request

i. We wish to define a recurrence by relating the number of cached pages at step

i to the number of cached pages at step i - 1. Let us denote the page requested

at step i by Ri. The number of pages in the cache will increase by one after a

request iff that request misses the cache. Using this fact, by our model we have
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that

E[C1 ] = E[Ci- 1] + P(RE misses the cache)

= E[Ci•1] + 1 - P(Rz hits the cache)

= E[Ci_1] + 1-
n

= 1+ (n n1)E[

This recurrence has the straightforward solution

E[Cj] = -n(( 7 1 ) i72)

Substituting this expression back into our original calculation, we conclude

that

P[ H
E =1

1 p

i=1

P=Z1

i=l

P

P- 1

-n (
n-l1

72

n-1
n

= 1+p-n 1-
n-1

n
)P+1)

(n - 1)P+l
= l+p-n+ pFinally, we incorporate the caching model into our expected B+Tree cost.

Finally, we incorporate the caching model into our expected B+Tree cost.

n- 1

n



Instead of performing a random seek for each result tuple, we now perform one

random seek only for each predicted disk read:

disk.reads = (utups) (nlookups) - cache hits

costbtee = (random_seek _cost) (disk _reads)

We have assumed that each tuple read via an unclustered B+Tree index

causes a random seek - for example, if values were inserted in the B+tree

in some secondary sort order. If the database system has more information

about the distribution of values across pages (e.g. via histogram statistics in

the system catalog), it can take the statistics into account by varying the ran-

dom-seekcost for B+Tree operations.

3.4 Cost of correlation index

Having developed a general caching model in the previous section, we now

describe the expected cost of a correlation index lookup. We will see that we can

apply our previous caching result almost directly, with one simple modification

for the CI access pattern.

Suppose as usual that the CI has a set of A, values to look up. For each

A, value, we must visit c.peru different clustered attribute values. We will

need to perform one random seek to reach each of these clustered attribute

values, followed by a scan of all of the pages for that A, value. In terms

of the parameters we are given, the number of pages for a given Ac value is

ctups/tups_perpage.

Now, we must take into account cache hits as before. The key difference

while modeling the CI is that our former assumption of an access pattern sam-

pling pages uniformly at random is false - each clustered attribute that we

visit results in the CI reading a contiguous segment of pages (a "superpage"),

and thus these reads are highly correlated.



To modify our assumption, suppose we know that there are cpages =

ctups/tups perpage pages associated to each clustered attribute value. Then,

there are now only total _tups/tups_per_page/cpages superpages in the file, and

we can apply our caching model to the superpages.

Summarizing our ideas, the expected number superpages that we visit is

determined by the following expressions.

c_tups
cpages =

tupsper.page

n_superpages = (n n_lookups) (cper_u) - cache_hits

Combining these expressions, the overall cost of a CI lookup is

cost ci = (n _superpages) (random_seek_cost

+ (sequentialpage_cost) (cpages))

Similar to our assumption that each secondary B+Tree tuple causes a ran-

dom seek, we choose not to model the overlap between the sets of Ac keys as-

sociated to two particular Au values. In other words, if one A, value maps to n

different A, values on average, then it is not true in general that two Au values

map to 2n different Ac values. Our model may overestimate the number of A,

values involved, and thus the cost of CI.

We have chosen to omit this statistic in the interest of a simpler model, but

we observe here that the desired overlap can easily be measured from the table

by sampling pairs of uncorrelated attribute values and computing the average

overlap between the resulting sets of Ac values.

3.5 Discussion

We have presented a series of expressions that estimate the cost of lookups us-

ing a sequential scan, an unclustered B+Tree, and a CI. While the expressions



are fairly simple, they involve disparate sets of parameters that make compari-

son inconvenient. For this reason, we now provide some intuition for situations

where a CI might be more or less expensive than a sequential scan or B+Tree.

Sequential scan: The CI access pattern can be thought of as a subset of a se-

quential scan - that is, the CI will always read segments of a file in the same

order as a sequential scan would, but it will jump over some stretches of the

file. The CI reads fewer tuples than the sequential scan, but it still incurs some

cost from disk seeks. Thus, there exists a trade-off in our model between re-

ducing the number of tuples that the CI reads and the number of extra seeks

that it performs.

In general, the CI will beat a sequential scan when the selectivity is high,

and it is reasonable to expect the performance of CI to degrade to that of the

sequential scan when the selectivity becomes low (indeed, the CI access pattern

becomes more and more like a sequential scan). However, it is worth noting

that it is possible for the CI to be more expensive than a sequential scan by

a constant factor for low selectivities, because there is a noticeable overhead

associated with seeking (even if the seeks are in-order and do not skip large

distances in the file).

Unclustered B+Tree: The difference between the performance of CIs and B+Trees

is less straightforward to grasp. There are essentially two trade-offs that may

apply to a particular query situation.

First, suppose that c_tups is low; that is, the average number of tuples for

each clustered attribute value is small. This suggests that the number of irrel-

evant tuples that a CI reads will not be too large, because the CI will not fall

into reading long segments of the file with only a few matching tuples.

In this case, the primary trade-off occurs between the utups and c_peru

parameters. If u_tups is high, then the B+Tree will incur a higher cost by

performing a random seek for each A, value. On the other hand, if cperu

is high, then the CI will need to visit a large number of clustered attribute



locations in the file (each of which also costs a random seek).

Now, suppose that cups is high, so that each A, clustered attribute value

that the CI must visit is very expensive. In this case, it is important for the CI

not to have to visit very many A, values, or rather that the correlation between

A. and Ac values be high.

Given that ctups is high, the scenario most favorable to the CI occurs when

a given A, value maps to a single A, value, but where there are many tuples

scattered throughout that Ac superpage matching A,. The CI needs merely to

scan the single superpage, while the B+Tree must perform numerous random

probes within that superpage.

The scenario least favorable to CI occurs when there are only a handful of

tuples in the file matching the A, value, but where each of the tuples co-occurs

with a different clustered attribute value. Now, the CI must scan and discard

a large number of irrelevant tuples while the B+Tree can seek to the desired

pages directly.





Chapter 4

Prediction

The introduction of a new access method to the database system complicates

the job of the database administrator. Judging when a correlation index will

be beneficial for a given pair of attributes is difficult to do by hand. Indeed, the

administrator would need to weigh his estimation of the domain sizes of each

attribute against the overall size of the table and the cost of random disk I/O.

Fortunately, given the analytical model that we have developed, we can

fully automate the process of predicting when CIs will be useful. In our imple-

mentation, we built a CI Advisor tool that scans existing database tables and

calculates the statistics needed by the cost model. Given these statistics and

measurements of underlying hardware properties, the CI Advisor can predict

accurately each pair of attributes that would benefit from a CI. Presented with

this information, the database administrator need only choose pairs from the

list that the application is likely to query.

Since the CI Advisor computes sufficient statistics to evaluate the cost model

for any set of parameters, our implementation is capable of generating plots of

the expected query performance over each of the three access methods. In

Chapter 5, we present the plots predicted by the CI Advisor alongside our em-

pirical results. Our results suggest that the CI Advisor produces accurate esti-

mates.



4.1 Parameter collection

In order to form predictions based on the cost model, the CI Advisor must

refresh the statistics listed in Figure 3.1 based on the current state of the

database. These include cltups and cper_u, which are based on counts of the

number of distinct values in the database. We first present a naive procedure

to gather the statistics. The approach is straightforward to understand, and

it is possible to compute the relevant aggregates using standard SQL queries

within the database system itself. Such aggregate queries may however be im-

practically expensive, however, and we present a sampling-based approach in

§ 4.1.2 to reduce the overhead of parameter collection by an order of magnitude

or more. We present experimental results in § 5.3 to contrast the effectiveness

of the different approaches.

The parameter total_tups is simply a count of the number of tuples in the

table, which we expect the DBMS to maintain already as a routine statistic.

The parameter c_tups can also be computed as totaltups divided by the num-

ber of distinct values in Ac, which is also routinely maintained in the system

catalog. Furthermore, the average number of tupsper page can be determined

easily by dividing the size of a database page on disk by the average width of a

tuple.

Our model further relies on the sequentialpagecost and randomseek _cost -

parameters that are characteristics of the underlying disk. Instead of depend-

ing on the user to supply these values, our implementation measures them

directly by creating large files on the target filesystem and reading them via

sequential and random access patterns. Since the hard disk parameters asso-

ciated with a given table file can change over time (due to external factors such

as disk fragmentation), we recommend that these parameters be refreshed pe-

riodically to reflect the current state of the file.
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4.1.1 Computing the c-per_u parameter exactly

The c.peru parameter, the average number of distinct clustered key values for

each lookup key value, is the chief statistic that captures degrees of correlation

within our model. Unfortunately, it is also by far the most expensive statistic

to compute exactly.

For the purposes of the CI Advisor, we must compute one c.per_u value for

each ordered pair of fields in the table. To compute the set of cperu param-

eters for each pair, we perform the queries listed in Figure 4-1. For each at-

tribute G in the table T, we issue one SQL statement that groups by G. In

the inner query of the statement, the C, through C, terms produce the distinct

counts across every other attribute of T within each group of G. Then, the

outer query takes the average number of distinct counts across all groups of G

for each attribute. The final output values are the average counts of distinct Ai

values for each G value. 1

Note that each count(DISTINCT ... ) term must be processed using a sepa-

rate sort or hash operation. Thus, the number of disk output buffers in general

across all cper_u pairs will be quadratic in the number of columns, and the

performance is likely to be impractical in real applications.

foreach attribute A E T:
select avg(counts.C 1), ..., avg(counts.OC)
from (select count(DISTINCT A,) AS C1,

count(DISTINCT A,) AS C,
from T
group by A) as counts

Figure 4-1: Algorithm to compute the model parameter cper_u for all pairs of
attributes in table T.

1In terms of c-peru parameters, the group-by attribute G corresponds to the unclustered
attribute A, and the distinct count attributes Ai correspond to the clustered attribute Ac.



4.1.2 Approximating the cper_u parameter

Our initial approach to computing exact c_per_u statistics is expensive. Previ-

ous works in semantic query optimization tools, which need to gather similar

statistics, have proposed analogous schemes. For example, Gryz et al. [12] sug-

gest applying a linear regression statistic model over all comparable pairs of

fields in each table, which they can achieve only by a similarly brute-force ap-

proach.

Since intensive aggregates are expensive for very large databases, it is nat-

ural to ask if we can achieve reasonable estimates for our desired statistics via

a sampling-based approach over our tables. If we can reduce the cost of deter-

mining the distinct counts of each field as well as the cper_u counts, then we

can reduce the execution time of the CI Advisor and improve the staleness of

the cost model used for query optimization.

Before we turn to approximation, we observe that the naive approach com-

puted the distinct count over A, values for each Au group, and subsequently

took the average of the per-group distinct counts. Since we desire only the

average value as the output, computing the distinct count for each group indi-

vidually is in fact unnecessarily expensive. We now present a simplification for

the exact algorithm.

Consider the example of calculating the average number of distinct salaries

per state in Figure 4-2. As opposed to counting the number of distinct salaries

directly (shown above), we could alternatively enumerate the distinct pairwise

values (shown below) and divide by the number of groups. In this case, there

are five distinct (state II salary) pairs across two state groups, so the cperu

count is 2.5. Stating our observation more generally, let us write the number

of distinct values over a pair of attributes A, and Aj within a set of tuples T as

DT(Aj, Aj) and the number of distinct values over a single attribute as DT(Ai).
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Original Table

State City Salary
MA Boston $25k
MA Boston $90k
MA Cambridge $25k
MA Somerville $30k
NH Manchester $40k
NH Manchester $60k
-.. ... I ... j

Distinct Salaries Per State

MA: {$25k, $30k, $90k}
NH: {$40k, $60k}

Distinct (State II Salary) Pairs

State I! Salary
MA II $25k
MA 11 $30k
MA II $90k
NH II $40k
NH II $60k

Figure 4-2: An illustration of alternative ways to calculate cperu statistics:
either by averaging the distinct salary count per state group, or by counting
the number of distinct (state jI salary) pairs.

Then, it is clear that

EaEgroups ofAo Da(Ac) DT(A), Ac)
number of A. groups DT(A.)

In other words, instead of computing each cper_u value explicitly using an

average over an expensive grouping aggregate operation, we can alternatively

calculate distinct counts for each single attribute and each attribute pairs.

Then, we simply divide the distinct counts as necessary to derive each c-peru

value.

Now, we describe how to apply a sampling-based approach to improve the

performance of our scheme for approximate answers. In § 1.3.3, we discussed

the Distinct Sampling algorithm presented by Gibbons. Of particular interest

to our problem, Distinct Sampling can provide highly accurate estimates of dis-

tinct counts (experimentally, often within 10%) over numerous table attributes

using relatively small, constant space bounds and a single table scan. We refer

the reader to [10] for a full presentation of the algorithm.

Not only does our revised cyper.u calculation based on distinct counts reduce



complexity, the Distinct Sampling algorithm is well-suited to computing dis-

tinct value estimates over the entire set of target attributes in one pass. Thus,

in order to approximate distinct count statistics efficiently, we create one Dis-

tinct Sampling instance for each target attribute and attribute pair. To derive

the actual c_per_u values used by the model, we calculate DT(Au, Ac)/DT(Au) as

necessary.

Our revised procedure for computing c.per_u estimates achieves a high de-

gree of accuracy while reducing the calculation runtime by over an order of

magnitude, which we demonstrate experimentally in § 5.3. While the num-

ber of Distinct Sampling instances is still quadratic in the number of columns,

each instance requires only a small, constant amount of state and the entire

operation is likely to fit in memory. Furthermore, it has the key property that

the D(Aj) and D(Ai, Aj) values supplied by each Distinct Sampling instance

can be maintained efficiently online in the presence of insertions. It is now

possible, therefore, for the DBMS to maintain up-to-date c_peru estimates for

use by the planner during query optimization, instead of relying on one-time

statistics that are computed periodically and become stale.



Chapter 5

Experimental evaluation

In this section, we present an experimental validation of our results. We

have developed an analytical model and an accompanying tool to identify cases

where CIs are useful; however, we have not yet shown that such cases routinely

exist. Additionally, we would like to argue that CIs are likely to be useful in

a large fraction of pairs of attributes across a given table. The goals of our

experiments are thus threefold:

1. to validate the accuracy of our analytical model

2. to establish that useful correlations are reasonably common in large data

sets

3. to demonstrate that there exist cases where CIs win over both B+Trees

and sequential scan and to measure the extent of that benefit.

5.1 Implementation

To conduct our experiments, we have completed an implementation of correla-

tion indices that is suitable for comparison against Berkeley DB B+Trees and

full table scans. We have chosen Berkeley DB as a low-overhead B+Tree library

to avoid conflating unrelated system effects in a full DBMS.
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For our experimental platform, we ran our tests on Emulab1 machines with

64-bit Intel Xeon 3 GHz processors and 2 GB RAM running Linux 2.6.16. The

machines each had single Seagate Ultra320 SCSI hard disks that spin at 10K

RPM. We developed code in C++, linking against Berkeley DB version 4.4.20.

In order to optimize the performance of the B+Tree, we employ the bulk-access

API where appropriate and we supply a custom key comparator. In our exper-

iments, we use a Berkeley DB cache size of 512 MB.2

To implement the clustered index over a table required by CIs, we have cho-

sen to represent tables as sorted files on the clustered attribute. In this way, the

pages of a file corresponding to each clustered attribute value are contiguous

on disk. Our experiments are thus able to measure the performance of sequen-

tial access across a given clustered attribute value directly. We have confirmed

that sequential access performance is as fast as reading the file from the disk

directly, suggesting that the CPU overhead associated to processing tuples is

insignificant. We decided that sorted files were a reasonable implementation of

a clustered index because they are common in OLAP environments. Although

they are expensive to maintain, updates are not common in such environments.

5.1.1 Experimental setup

We have chosen to experiment with three data sets exhibiting different char-

acteristics: a purely synthetic table for model validation, the TPC-H lineitem

table, and a table adapted from the US Census Gazetteer. We also study the

degree of correlations in a fourth data set from a real business that includes ge-

ographic and demographic information about customers, but we do not present

query tests on it because the scale of the data set is too small.

We begin each experiment by pre-loading the complete table into both the

Berkeley DB B+Tree format and our custom sorted file format. While loading

lhttp: //www. emulab.net
2Although our machines have more than 512 MB of memory, Berkeley DB double-buffers

against the Linux filesystem cache. A Berkeley DB cache of 512 MB appeared to achieve
optimal performance across the cache sizes that we tested.
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the sorted file, we also build the physical correlation index that is stored on

disk. We found that the loading times were costly for both file formats - they

typically dominated the individual query times - which we expect for OLAP

environments. For each of the test cases, we present the size of the on-disk

CI data structure as well as the size of the unclustered B+Tree over the same

attribute.

After the files have been loaded, we have available the set of distinct values

in the uncorrelated attribute. We choose a subset of these values according to

the SQL query that we present, and we begin timing once we have invoked the

access method on the query values. In each experiment, we vary the number of

unclustered attribute values that we look up per query. The values are chosen

uniformly at random from the domain of the attribute, except where we have

indicated a range predicate. For each trial, we measure the (wall clock) time

elapsed from the time the input is specified to the time the final output tuple

is returned.

We now give brief background describing each data set.

Synthetic data

For our first data source, we present a purely synthetic workload. We chose

the values of the pickles and factories columns so that we could vary the degree

of correlation and measure its effects on performance. In our experiments, we

present results over one choice of parameters with the following characteris-

tics:

* We create tuples that involve 50 distinct factories, altogether producing

5000 different types of pickles.

* Each factory produces 500 different types of pickles.

* A given pickle can be purchased from any of 5 different factories.

The table consists of approximately 36 million tuples of 136 bytes each, for

a total table size of approximately 5.0 GB. To generate the table, we begin by



instantiating 50 factories and 5000 pickles and assigning each pickle to 5 dif-

ferent factories at random. We then iterate over the factories; for each factory,

we output 720000 tuples by randomly selecting one of the pickles assigned to

that factory for each tuple. Since there are relatively few factories and pickles

for the total number of tuples in the table, the degree of correlation between

pickles and factories is high.

TPC-H data

For our second data source, we chose the lineitem table from the TPC-H bench-

mark, which represents a business-oriented log of orders, parts, and suppliers.

There are 16 attributes in total in which we looked for correlation. While TPC-

H is a widely recognized benchmark for OLAP applications, it is worth noting

that the data are generated by a tool such that all correlations are manufac-

tured intentionally.

In Figure 5-1, we present a graphical representation of the fraction of at-

tribute pairs for which our model predicts a CI to win over both an unclustered

B+Tree and sequential scan in this dataset. We have calculated the ratio of CI

query time to the minimum of B+Tree and sequential scan query time, assum-

ing one random query value on the unclustered attribute. To make the results

more easy to visualize, we have truncated the ratios for which we predict a CI

to lose (that is, ratios that we depict as 1.0 are in fact cases where CI loses by

a potentially large ratio). The plot suggests that we will see a win in roughly

half of the 240 attribute pairs, and a win by a factor of 2 about 20% of the time.

Furthermore, we will see a win of about an order of magnitude for 8 attribute

pairs.

The table consists of approximately 18 million tuples of 136 bytes each, for

a total table size of approximately 2.5 GB.
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Pairs of attributes sorted by relative CI win
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Figure 5-1: List of lineitem attribute pairs sorted by expected win for a CI.
Smaller values represent more substantial wins. The plot suggests that we
will see a win in roughly half of the 240 attribute pairs.

Census data

We intend for the census data to represent a real-world data set with geo-

graphical correlations and realistic skew effects. We began with the US Census

Gazetteer Zips file3 that contains fields for each state and zip code in the United

States. Additionally, the original data include the population, longitude, and

latitude for each zip code.

In order to scale the data set to a reasonable size, we expanded the zips

table to include effectively one tuple for every person in the United States. We

replicated the tuple representing each zip code as many times as the population

specified, replacing the population field with a unique identifier field. In order

to distribute zip codes evenly per state, we randomize the order of tuples within

each state.

The resulting table consists of approximately 250 million tuples of 16 bytes

each, for a total table size of approximately 3.8 GB.

3Available via http: //www. census,.gov/tiger/tms/gazetteer/



Company data

Additionally, we present results from running our model over a small (propri-

etary) data set obtained from a local company that describes geographic and

demographic information about customers. We chose this table because it in-

cludes over 40 attributes that are representative of a variety of different as-

pects found in typical business data sets. Because the table fits easily into

memory, it is not meaningful to run actual experiments over these data and we

do not present results on these data in the next section. However, the subset

of the data that we have does show a substantial degree of useful correlations,

further substantiating our belief that CIs are beneficial in many similar real

data sets. The results from applying our model are shown in Figure 5-2. This

plot is organized in the same style as Figure 5-1. The results suggest that we

will again see a win in over half of the 1980 attribute pairs, and a win by a

factor of 2 about 25% of the time. In other words, a CI will win over alternative

access methods more often than not. Furthermore, we may see a win of about

an order of magnitude for approximately 35 attribute pairs.

Pairs of attributes sorted by relative CI win
over both B+Tree and sequential scan1

0 0.9

OCiO 0.80
0.7

0.6
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C 0.3

- 0.2

0.1

0 0
0 0 200 400 600 800 1000 1200 1400 1600 1800 2000

Attribute pair rank

Figure 5-2: List of company attribute pairs sorted by expected win for a CI.
Smaller values represent more substantial wins. The plot again suggests that
we will see a win in roughly half of the 1980 attribute pairs.
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5.2 Indexing results

We now present the results of a variety of experiments. The goal of each ex-

periment is to understand the relative trends in running times for each of the

unclustered B+Tree, sequential scan, and CI access methods as we vary the

number of values that we look up.

In the subsequent sections, we describe the equivalent SQL query that each

experiment implements. We additionally present two plots: on the upper plot,

we show our actual measurements, and on the lower plot, we present the times

predicted by our analytical model. One can confirm visually that the analytical

model matches the measurements quite well in each case.

5.2.1 Synthetic results

In Figure 5-3, we show the results of looking up increasingly large sets of pick-

les in a table clustered on the factory attribute. The size of the pickle set that

we request ranges between 1 and 10 on the horizontal axis, and we show the

elapsed time on the vertical axis. For this experiment, we present five lines:

one for sequential scan, one for the unclustered B+Tree, one for the CI, and two

measurements over PostgreSQL bitmap scans (described in § 1.3.2). For the

first bitmap scan result, we have clustered the table on the factory attribute

and we expect the performance to be competitive with that of the CI. For the

second bitmap scan result, we have clustered the table on a random ID field

so that there is no correlation between pickles and the sort key; we expect the

performance to be similar to that of an unclustered B+Tree. Since the run-

time of the sequential scan is roughly constant in each test, it will appear as a

horizontal line.

The purpose of our synthetic experiment is to validate the accuracy of our

model. The lower plot in Figure 5-3 includes three lines predicting performance

for the unclustered B+Tree, sequential scan, and CI. Indeed, we can see by

comparing against the experimental measurements that the model predicts the
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actual performance quite well. Since the data are generated using a pseudo-

random number generator and the model depicts the average case, we observe

slight inaccuracies in the model predictions compared to our measurements.

However, it is clear that our predictions are sufficient for a query optimizer to

be able to make correct decisions.

Although each pickle maps to 5 different factories at random, there are over-

laps in the sets of factories between two pickles. This explains why looking up

10 different pickles results in scanning roughly half of the table. It is interest-

ing to note that the CI outperforms the B+Tree with even a single pickle lookup

(3.24s versus 31.6s). The model explains that this happens because each pickle

appears in 7200 tuples, generating many random B+Tree disk seeks, while the

CI scans of 5 factories more efficiently.

The PostgreSQL bitmap scan also behaves according to our expectations.

When we cluster the table on factory, there is correlation between the lookup

attribute and the clustered attribute, so the bitmap scan behaves similarly to

the CI (since we are comparing our targetted implementation against a com-

plete DBMS, we expect higher overhead from the DBMS). However, when we

randomize the table, there are no useful correlations and the bitmap scan ap-

proximates the plain unclustered B+Tree. Note that the bitmap scan perfor-

mance asymptotes to that of a sequential scan (at roughly 105s), since the

bitmap scan access pattern is a subset of the sequential scan.

Recall to perform each query, we must first look up the set of clustered at-

tribute keys to visit from the correlation index B+Tree structure. During our

experiments, we logged the amount of time spent in this lookup phase com-

pared to the time spent actually reading tuples from disk. Since the number of

correlation index lookups is equal to the size of the query set, which is small,

it is unsurprising we found the fraction of the total time spent in the lookup

phase is insignificant. For the synthetic data, the fraction of time spent was

between 1% and 3% of the total query time.



CLUSTER

SELECT
FROM

WHERE

synthetic ON factory;

synthetic
pickle IN (Pi, ... , Pn);

1 2 3 4 5 6 7

Number of pickles to look up

1 2 3 4 5 6 7
Number of pickles to look up

8 9 10

8 9 10

Index type Size on disk (MB)
Unclustered B+Tree 758.26
Correlation index 0.18359

Figure 5-3: Time elapsed for queries over the pickle (unclustered) and factory
(clustered) attributes in the synthetic table: experiment (above) vs. model (be-
low). We also show the size of each index type on disk.
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5.2.2 TPC-H results

We first present our results for a pair of attributes where the CI wins over

both the sequential scan and the unclustered B+Tree by over a factor of 20. We

have clustered lineitem on the receiptdate attribute, and we perform lookups on

the shipdate attribute. The query we have chosen computes the average sale

price for a set of items shipped on any of set of interesting dates (for example,

holidays). The results are shown in Figure 5-4.

This pair of attributes is expensive for the B+Tree because each shipdate

corresponds to approximately 7,000 tuples, resulting in a large number of ran-

dom disk seeks for each query value. We can see the B+Tree curve in the re-

sults increasing sharply on the left, confirming our expectations. On the other

hand, there is moderate correlation between shipdates and receiptdates, which

results in strong CI performance.

Next, in Figure 5-5 we present an interesting variation on the query above.

The table that we load is identical; we have clustered lineitem on the receipt-

date attribute. Instead of choosing the set of shipdates randomly, however, we

apply a range predicate to choose a contiguous set of dates. The modified query

is a realistic example of an aggregation over a range of dates for which we

would like to make a business decision. We present only the plot of measure-

ments, because the model prediction is identical to that in Figure 5-4.

The performance of sequential scan and the B+Tree in this experiment are

roughly the same as that in the previous experiment, but the CI performance

has improved by over an order of magnitude. It is easy to understand why

by considering the semantic relationship between shipdates and receiptdates;

specifically, an order is likely to be received in a small number of days after it

has been shipped, and the attributes have a nearly linear relationship. As a

result, a contiguous set of shipdates will map to a strongly overlapping set of

(nearly contiguous) receiptdates. We therefore improve the CI access pattern

dramatically, as it needs only to visit a small number of receiptdate ranges,



CLUSTER lineitem ON receiptdate;

SELECT AVG(extendedprice * discount)
FROM lineitem

WHERE shipdate IN (date1, ... , date,)
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Index type Size on disk (MB)
Unclustered B+Tree 460.63
Correlation index 0.35156

Figure 5-4: Time elapsed for queries over shipdate (unclustered) and receipt-
date (clustered) attributes in the lineitem table: experiment (above) vs. model
(below). We also show the size of each index type on disk.
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CLUSTER lineitem ON receiptdate;

SELECT AVG(extendedprice * discount)
FROM lineitem

WHERE shipdate >= date1
AND shipdate <= date,;
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Figure 5-5: Time elapsed for queries over shipdate (unclustered) and receipt-
date (clustered) attributes in the lineitem table, now using a range predicate.
See Figure 5-4 for the model prediction.

finding more matching shipdates within each range. As we have previously

discussed in § 3.4, our analytical model becomes a poor predictor for the per-

formance of the modified query, because it does not attempt to capture the

relevant overlap.

Now, we present results for a pair of attributes that is a variation on the ear-

lier example in Figure 5-6 where the CI loses to the B+Tree in query time by a

roughly consistent offset of 10 seconds. In the new experiment, the lineitem ta-

ble remains clustered on the receiptdate attribute, but we now perform lookups

on the partkey attribute. We can understand why the CI results in slower

queries using the following statistics:

* partkeys identify a very small set of tuples (each partkey matches 30 tu-

ples)

* the correlation between parts and the receiptdate is moderate (there are
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CLUSTER

SELECT
FROM

WHERE

lineitem ON receiptdate;

AVG(extendedprice * discount)
lineitem
partkey IN (pl, p2, ... );
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Number of partkeys to look up

Index type Size on disk (MB)
Unclustered B+Tree 456.42
Correlation index 82.371

Figure 5-6: Time elapsed for queries over partkey (unclustered) and receipt-
date (clustered) attributes in the lineitem table: experiment (above) vs. model
(below). We also show the size of each index type on disk.
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30 receiptdates for each part)

* the number of tuples for each receiptdate is large (there are 7000 tuples

for each receiptdate)

The latter two statistics determining the performance of CI have not changed

substantially compared to the earlier experiment, and thus the CI performance

is roughly the same as in Figure 5-4. The B+Tree lookups are now substantially

more efficient than before, because each value lookup results in only 30 random

seeks. On the other hand, the CI must perform a random seek to each of 30

receiptdates, and furthermore it must read a total of over 200,000 tuples to

compute a result set of merely 30 tuples.

In each of our experiments over the lineitem table, our model does a rea-

sonably good job of predicting the costs of each access method. In particular,

the model captures the fact that the CI runtimes tend downward slightly from

a straight line. The reason for this curvature is due to the caching of pages

that are read repeatedly. However, the model overestimates the cost of B+Tree

lookups, which is most likely due to optimizations in Berkeley DB that we do

not model.

5.2.3 Census results

To conclude our presentation of experimental query results, we examine query

performance over the zip and longitude attributes of the census table. In the

original data, the zip code is a five-digit US mailing code defining a small geo-

graphic area and the longitude is a float value that specifies a geographic offset.

Since longitude is essentially a unique identifier, by clustering over it we would

expect the performance of lookups over zip codes to be nearly identical using

CIs and unclustered B+Trees. This is because the CI will need to perform one

random seek and read roughly one page for each result tuple (ignoring overlap),

which is exactly the same as the B+Tree access pattern in our model.
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CLUSTER census ON integrallongitude;

SELECT count(personid)
FROM census

WHERE zip IN (zl, ... , z);
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Index type Size on disk (MB)
Unclustered B+Tree 4966.5
Correlation index 1.1328

Figure 5-7: Time elapsed for queries over zip (unclustered) and longitude (clus-
tered) attributes in the census table: experiment (above) vs. model (below).
The longitude values have been bucketed into integral bins from the original
census data. We also show the size of each index type on disk.
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Instead, to improve the performance of the CI, we have decided to apply a

simple bucketing scheme to the longitude field. Here, we simply truncate each

longitude to its integer value. As a result, there are 96 integral longitude val-

ues across the United States, and there are approximately 300 zip codes per

longitude on average. The reason why we now expect CI to have better per-

formance is that the CI can scan all of the tuples within an integral longitude

sequentially, and the number of matching tuples within each longitude will be

reasonably high. The results in Figure 5-7 confirm our expectations.

5.3 Parameter calculation results

In § 4.1.2, we presented both exact and approximate approaches to computing

the values of the model parameter c.peru. We conjectured that the sampling-

based approach would provide sufficiently accurate results at a small fraction

of the cost of computing the exact results. In this section, we validate our

claims by evaluating the procedures over a subset of 8 numeric attributes (cor-

responding to 56 different cper_u values) from the lineitem table. We perform

our experiments on the Emulab machines described previously, by calculating

distinct counts over a 2.5GB lineitem table with 18 million rows.

To compute cper u values directly, we first ran the query listed in Fig-

ure 4-1 on the PostgreSQL 8.2 database system. The results from this trial

are labeled postgresql_grouping in Figure 5-8. We then used PostgreSQL

to compute distinct counts over single attributes and pairs, in the trial labeled

postgresql_counts. Both methods provide us with exact results.

Next, to evaluate our sampling-based approach, we developed a Distinct

Sampling implementation in C++. The full Distinct Sampling algorithm re-

turns a synopsis of tuples sampled from the full table that is suitable for sub-

sequent predicate evaluation. Since the synopsis is irrelevant to our system -

we care only about the distinct count estimate - we have simplified our imple-

mentation to accept only a single parameter, the space bound B on the number
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of tuples we can store at any time.
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Figure 5-8: Time elapsed for six approaches that calculate cperu values: ex-
act calculations in PostgreSQL and approximate calculations using Distinct
Sampling with four different space bounds.

We created one Distinct Sampling instance for each single attribute and

attribute pair in the reduced lineitem table, and we then performed a single

table scan. We present results over four different space bounds: B e {100, 1000,

10000, 100000}. These space bounds correspond to storing {.00056%, .0056%, .056%,

.56%} of the full table, respectively, for each of 28 Distinct Sampling instances

in a trial. As the space bound increases, we expect a more costly runtime but

more accurate results. Each trial with space bound B is labeled sampling_B

in Figure 5-8.

Our results are summarized in Figure 5-8, which plots the runtime of each

procedure, and Table 5.1, where we show the accuracy of each sampling trial.

The ratio error is defined as max(D/D, D/D), where D is the true distinct count

and D is the estimate. Thus, values closer to 1.0 are better. Within PostgreSQL,

our results show that computing cperu exactly using grouping aggregates re-
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Table 5.1: Accuracy of Distinct Sampling lineitem estimates over four different
space bounds. Ratio error values closer to 1.0 are better.

Average ratio error of D(Ai)
Space bound Memory usage (KB) and D(Ai, Aj) estimates

100 2012 2.579
1000 3280 2.103
10000 14444 1.100
100000 109724 1.035

quires over 3 hours for our 2.5G lineitem table - far too expensive to be prac-

tical. Using distinct count calculations instead of grouping aggregates reduces

the computation time by nearly half. Furthermore, sampling improves the

computation time from 2-3 hours to 6-14 minutes - over an order of magnitude

in improvement.

The accuracy results in Table 5.1 suggest that our sampling-based approach

is highly effective. By choosing Distinct Sampling instances with a space bound

that is merely .056% of the entire table, we are able to achieve an average of

10% error in a total of roughly 14MB of memory. Increasing the space bound

to .56% of the table improves our average error to 3.5%, but it also increases

the memory usage heavily to roughly 110MB. We conclude that it is possible to

calculate the model parameters efficiently by using Distinct Sampling.

5.4 Summary of findings

In this chapter, we have presented experimental results over a variety of data

with different characteristics and degrees of correlation. Our implementation

establishes that CIs win in real query situations, often by a factor of two and

sometimes by a factor of ten or more. Furthermore, the model predicts the true

performance quite well in most situations, and we have identified areas where

the model is inaccurate.

Furthermore, we have presented an evaluation of the Distinct Sampling al-

gorithm implementing our sampling-based approach to computing model statis-
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tics. Our evaluation shows that sampling is an efficient and accurate way to

compute the distinct count statistics required by our model.
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Chapter 6

Conclusion

This thesis presents a new index data structure called a correlation index that

enables OLAP databases to answer a wider range of queries from a single clus-

tered index or sorted file. CIs exploit correlations between the key attribute

of a clustered index and other unclustered attributes in the table. In order

to predict when CIs will exhibit wins over alternative access methods, we de-

veloped an analytical cost model that is suitable for integration with existing

query optimizers. Additionally, we described the CI Advisor tool that we use

to identify pairs of attributes that are suitable for CIs. We described both ex-

act and sampling-based approximate approaches to measuring the statistics

required by our model. We compared the performance of an implementation of

CIs against sequential scans and unclustered B+Tree indices in BerkeleyDB,

and we furthermore evaluated the efficiency and accuracy of our approaches to

gathering statistics.

We showed experimental results over three different data sets that validate

the accuracy of our cost model and establish numerous cases where CIs acceler-

ate lookup times by 5 to 20 times over either unclustered B+Trees or sequential

scans. Furthermore, based on predictions from our model, we showed that in

both TPC-H as well as a data set obtained from a local company that we will

obtain gains of a factor of 2 or more in 25% of attribute pairs. Based on these

results, we conclude that CIs, coupled with our analytical model, have the po-



tential to improve substantially the performance of a broad class of index-based

queries.
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