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ABSTRACT

Protein-protein interactions play an essential role in many biological functions. Prediction and
design of these interactions using computational methods requires models that can be used to
efficiently sample structural variation. This thesis identifies methods that can be used to sample
an important sub-space of protein structure: alpha helices that participate in protein interfaces.
Helices, the global structural properties of which can be described with only a few variables, are
particularly well suited for efficient sampling. Two methods for sampling helical backbones are
presented: Crick parameterization for coiled coils and normal-mode analysis for all helices.
These are shown to capture most of the variation seen in the PDB. In addition, these methods are
applied to problems in protein structure prediction and design. Normal-mode analysis is used to
design novel nanomolar peptide inhibitors of the apoptosis-related Bcl-2 family member, Bcl-xL,
and a modification of Crick Parameterization is used to predict the binding orientation of dimeric
coiled coils with greater than 80% accuracy. Finally, this study addresses the increase in
computational time required by flexible-backbone methods and the use of cluster expansion to
quickly map structural energies to sequence-based functions for increased efficiency.
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Chapter 1

Introduction

Protein-protein interactions play a critical role in most biological functions.

Investigations into these interactions raise many important questions such as: What are the

sequence, structure and physicochemical properties that determine the function, stability or

specificity of binding interactions? How do specific interactions fit into the entire cellular

network? Tools that allow for the prediction of protein-protein interactions and design methods

that can generate novel reagents to change or interfere with native interactions can provide a

wealth of information to answer these types of questions. Structural models are often used in

both of these pursuits as a way to obtain a detailed view of protein interfaces. They can provide

complementary information that is often difficult or sometimes impossible to obtain through

experimental techniques. By building accurate structural models, one can potentially extract the

physical basis of interactions and understand how sequence and structure relate to biological

function.

An important sub-class of protein interactions is alpha-helix mediated interfaces. Alpha

helices are one of the two common secondary-structure elements found in proteins, thus

understanding their role at protein interfaces can lead to insights into a wide variety of protein

complexes. In my thesis work I focused on methods for modeling the structural variability of



alpha helices in protein interfaces, as well as on incorporating these structural models into

methods for the design and prediction of protein-protein interactions.

In this chapter, I first review some of the biologically relevant interfaces that are

mediated by alpha helices. I then discuss the use of discrete structural models of proteins and

protein-protein interactions in design and prediction.

Helix-mediated interfaces

The structure of the alpha helix was first described in 1951 as a basic building block of

proteins.1 Alpha helices and beta sheets pack together to form the majority of the three-

dimensional structure of proteins, 2 and also mediate a wide variety of protein-protein

interactions. These structures include complexes of helical peptides with receptors, as well as

assembly motifs such as coiled coils, helical bundles and helix-loop-helix (Figure 1-1). 3 Many

important intermolecular interactions covering a diverse range of biological functions involve

helix-mediated interfaces.

Coiled coils are commonly found as structural proteins, like myosin or tropomyosin, as

well as oligomerization motifs. 3 These proteins are involved in many biological functions

including the transcriptional regulation by bZIPs,4 transmembrane signaling of the HAMP

domain,5 cellular membrane fusion mediated by the core structure of gp41 from the HIV

envelope glycoprotein, 6 and the intercellular membrane fusion role of SNARE proteins.7 Helical

bundles are also a common oligomerization motif that occur as isolated domains like ROP,8

LacR, tumor supresson, 9 p53,10 and bacterial luciferase," or as part of larger domains including

histidine kinases, 12 apoliprotein E3,13 granulocyte-macrophage colony-stimulation factor, 14

human growth hormone, 15 interleukin-4, 16 T4 lysoyzme17 and 3-isopropylamatelate



C)

Figure 1-1: Structures of helix-mediate interfaces. (a) coiled coil, (b) helical bundle, (c) helix-loop-helix, and (d)
helical-peptide interface.

dehydrogenase. 3'18 Helix-loop-helix domains are typically present as dimers, and bind with DNA

as part of transcriptional regulation. 19

There are also a number of interactions in which a helical peptide or a helical region of a

larger protein mediates the interaction with a receptor. This type of interaction is involved in

many areas of cellular regulation including apoptosis,20-23 cell-cycle24, inter-membrane

trafficking, 25 proteolysis, 26,27 and the Ca2+-dependent regulation of muscle contraction,

inflammation, metabolism, intracellular movement, memory, nerve growth and immune

response. 28,29 The receptor-binding component of many hormones is also an alpha-helical

d



element. 30-32 The activities of surface bound alpha helices are found in diverse categories of

biological functions including the antimicrobial function of manganin 33 and cecropin 34, the

channel-forming peptide alamethicin, 35' 36 the channel-forming toxin colicin37 and the membrane

surface binding motif of prostaglandin H2 synthase-1.38 Finally, helical elements are also

important for membrane and vesicle fusions,3 9 cell signaling, 40 recruitment of cellular

components41, and oligomerization. 42 44 In view of the myriad of interfaces that are mediated

through alpha helices, accurate models of these interactions could offer a better understanding of

a wide range of biological processes.

Discrete structural models

Modeling of proteins for computational design and large scale-prediction relies on the use

of discrete structural models. The number of degrees of freedom available to a given protein is

enormous. The additional complexity of searching over a large sequence space makes continuous

models of structure, e.g. molecular dynamics, computationally unfeasible. By limiting the search

to a finite set of conformations with discrete differences this problem becomes tractable. This

type of modeling has yielded many great successes in computational protein design. Of particular

note are experimentally verified designs such as stabilized native folds, 45 -4 9 novel folds,50-52

proteins with novel functions,53' 54 functionally active enzymes, 55 7 specific interacting protein

pairs,58-62 novel proteins that bind to native targets63-67 and conformational switches.68 These

examples include several novel alpha-helical proteins designed for a range of biological

applications. Novel helical peptides were designed to interact with native transmembrane

integrin proteins. 63 Helical bundle proteins were designed as a model system to study

conformational specificity.69 Coiled-coil proteins were designed to bind to the helical portion of



the protein calcineurin.67 A coiled-coil dimer was generated to be a mimetic of interleukin-4 and

bound to its high affinity receptor IL-4Ra.70 Novel heterodimeric coiled coils were also designed

to specifically not homodimerize. 62  Finally, a non-native right-handed coiled coil was

designed.50,71' 72 In addition to the design of the helical proteins, receptors have been designed to

bind to helices, including the redesign of calmodulin to bind to a native helical target

smMLCK.
64,65

Discrete structural sampling for protein modeling was introduced in 1987 by Ponder and

Richards. This work described modeling of protein cores with the simplifying approximation of

fixing the protein backbone and sampling side-chain conformation using a discrete set of

rotational isomers (rotamers).73 This method of discrete structural sampling has been used for

most computational protein design applications. The basic scheme for the process has been to

identify a backbone conformation to use as a starting backbone template, most commonly from

an x-ray crystal structure, and then, in the context of this fixed structure, the conformational

space of a set side-chain rotamers is searched to find the lowest energy configuration. To

facilitate this efficient structural search, the energy function needs to be pairwise

decomposable. 74 79 This requires energy calculations to be broken down into component terms

that include the interaction between pairs of side chains, the side chains with the backbone, and

sometimes the backbone-backbone interactions.

Protein design is typically expressed as an optimization problem with the goal of finding

sequences that maximize an objective function. The most common objective in protein design is

to find a sequence that stabilizes a particular fold, calculated as the difference in energy between

the folded and unfolded state. This involves searching through discrete structural conformations

of the target's folded state and evaluating the energy using a pairwise decomposable energy



function. Thus, the energy functions must be able to be used to identify the stabilizing sequences

for a particular backbone. In addition to finding a single stabilizing sequence, other design

objectives have been explored that require modeling of more than one state. In this case, each

state must be modeled with equivalent accuracy. This may require increased structural plasticity,

including introducing flexibility into the protein backbone, as well as energy functions that can

adequately capture the structural difference of sequences on different backbones. Below, I

describe alternative design objectives that benefit from accurate models of multiple states and

increased structural flexibility. I then introduce several current techniques that are used to

integrate backbone flexibility into the discrete structural modeling framework. Finally, I discuss

how different energy function components relate to discrete structural flexibility.

Design objectives

The most common goal in computational protein design experiments is to find a single

sequence that stabilizes a particular fold. This is frequently done using a single fixed backbone

structure and has had much success.4 9, 80 -85 However, there are many biases associated with

discrete structural models using a single fixed-backbone structure. Most notable is that only a

small range of native-like sequences can be modeled on the backbone.86 88 This limits the types

of computational experiments that can be conducted because only a subset of sequences will

have reasonable energies. However, it is possible to increase the sequence space of design

through increases in the structure space. This has been shown in a few examples where the

primary goal was to sample the sequence space compatible with a protein's fold.89-92 Larson et

al. included backbone flexibility to maximize the sequence based entropy from a single protein

fold. 90 Saunders et al. showed that a flexible-backbone design was better than a fixed-backbone



design for modeling the sequence diversity of a protein family.89 Finally, Wollacott et al. used

flexible backbone design to explore the sequence profiles of peptides in several different protein-

peptide complexes.91 Inclusion of backbone flexibility was essential to these experiments

because, for many sequences, a stable conformation of side chains could not be found using a

single native backbone. Increasing the sequence space for design is important when stability is

not the only design objective. With other objectives, additional constraints will restrict the

sequence space. Therefore it is important to remove artificial constraints imposed by using a

single fixed backbone.

Specificity is an important example of another design objective. This requires sequences

that stabilize a particular state and avoid other states. To do this explicitly, models of the desired

state and the undesired, or negative state, must both be modeled accurately. If the correct

approximate energy cannot be determined from the negative state, then this will give false

information about the specificity of the sequence. There have been several examples where

specificity design has been done with explicit models of both the target and negative

states. 6 1,62,93-95 Bolon et al. designed specific SspB heterodimers that avoided the homodimeric

state. 93 Their work illustrated the importance of negative design since without it they selected

mutants that both homo- and heterodimerized. In addition, these authors demonstrated the trade-

off between increased specificity and loss of stability. This trade-off is indicative of the reduced

sequence space that results when multiple constraints are imposed. Havranek et al. used negative

design to generate coiled-coiled heterodimers that disfavored the homodimeric state as well as

the aggregated state. 62 Here they built structural models for the desired heterodimers and the

undesired homodimer, and an approximate model of the aggregated state. They achieved good

specificity, but their predicted energy differences were not as large as what was determined



experimentally. The authors suspected that this was the result of over-estimation of the energy of

the negative state due to the use of a fixed backbone. 62 Kortemme et al. also designed specific

novel protein interactions of DNAase colicin E7 with its inhibitor, immunity protein 17, using

negative design.94 Their method introduced destabilizing mutations on each partner and then

compensatory mutations to improve the other side of the interaction. This was effective in

designing novel interacting pairs and relied on the ability to model both the desired pair as well

as the destabilizing mutations. This method, called second-site mutation, was also explored in a

follow-up paper that sought to introduce backbone flexibility into this design.95 In that paper

Joachimiak et al. used rigid-body rotation to generate an ensemble of starting structures. They

found that this allowed for the design of more specific proteins partners, but not from the

sequences that were selected using the second-site mutations. This indicates that they were not

modeling the negative state as accurately as the desired target, and thus provided incorrect

information to the design procedure. This result exemplifies the utility of including backbone

flexibility in design, but also that care must be taken to generate accurate structural models for

all states.

Backbone sampling methods

Protein backbones have many degrees of freedom, and sampling these efficiently in

protein design is quite challenging.92 To address this computational complexity, a number of

approaches have been introduced that allow for the sampling of the backbone space in a manner

that can be incorporated for use in protein design. Since the computational complexity of each

fixed-backbone design is already quite large, these structural searches must be focused into high-

probability regions of structure space.



The parameterization of several different types of protein structures has been introduced

for protein design. This technique has been applied to coiled coils for the modeling of native

templates, 96 including the variability of the native structure to better predict mutational

energies, 97 the effects of core mutations on structure and oligomerization state98 and the design

of non-native right-handed coiled coils. 50 The design of symmetrical 4-helix di-iron proteins was

enabled by sampling the starting template using three parameters for the displacement of the

helical monomer and three for the relative orientation. 99' 100 The design of a novel beta-barrel

structure was generated by reducing the structural space to ten parameters that could be

optimized to generate a low energy template. 10 1 A related approach has been used to vary the

orientation of secondary structure elements in the ot/f fold of the P1 immunoglobulin-binding

domain of streptococcal protein G.48

All of the methods described above introduced global deformations in the protein

structure. Several groups have used discrete structural modeling to sample local deformations.

The Baker group has had tremendous success modeling backbones in structure prediction by

sampling from peptide fragments in the PDB. 10 2,'10 3 They demonstrated that this approach is

effective in protein design with numerous examples including a novel protein fold"5 and

recapitulation of the native sequence space found in a protein familiy. 89 In another method for

local structural sampling, Larson et al. used a Monte Carlo procedure to randomly sample the

backbone 4 and y angles and generate 'native-like' structure ensembles. 90 Wollacott et al. used

the same method to sample the structure of peptides that were part of a protein complex. 9 1

In addition to generating de novo structural deformations, native structures can also be

used to model structural flexibility. Kono and Saven used NMR structure ensembles to represent

possible backbone conformations. 104 Ali et al. generated models of a tetrameric BBA proteins



using two crystal structures that differed by a single mutation.61 Yin et al. used multiple crystal

structures of transmembrane proteins to generate an ensemble of protein interfaces for the design

of peptides that bind specifically the integrin proteins.63

A number of docking methods have been introduced to generate protein-protein

complexes. 10 5 A few of these methods show promise for discrete sampling in protein design.

Huang and Mayo have shown that they can describe the relative orientation of monomers in a

homodimer using a fast-Fourier transform method. 10 6 This allows for a rapid search of the

relative position of the two structures that can be used as template candidates. This method was

used to design a novel dimer from the 31 immunoglobulin-binding domain of streptococcal

protein G.10 7 Additionally, the Baker group has extended their protein fragment search to allow

sampling of the relative orientation of different binding partners and internal structural flexibility

simultaneously. 108

Principal-component (PC) analysis is a common method used to capture structural

flexibility in proteins. This method reduces the dimensionality of the structural space into a set of

key deformations. This has been used with molecular dynamics to capture the structural changes

in short time-scale simulations.!09-114 In addition, the range of structural variation amongst

ensembles of conformations of a protein or homologous proteins can also be captured using this

method.' 15"18  In particular, the structural deviation of beta sheets and alpha helices can be

captured using PC analysis." 9" 20 Finally, Qian et. al. have shown that PC analysis can be useful

for design by limiting the structural search to the space defined by a small set of principal-

component vectors.'21

The motion of proteins in molecular dynamic simulations can also be described in a

reduced framework using normal-mode (NM) analysis. As described in a review by Ma,122 a



small number of low-frequency normal modes can be used to model functionally important

conformational transitions in several biomolecules that agree with motions observed in

molecular dynamics simulations. It has also been noted that a significant amount of the variation

seen among different crystal structures of the same, or closely related, proteins can be described

by a small set of NM values. 123' 124 Specifically for helices, Emberly et al. have shown that most

of the deformation of the Ca-trace can be captured by three low-energy modes. 120

Energy functions

Protein design relies on efficient methods for evaluating the energy of a structure. The

energy functions, similar to those used in molecular mechanics, are often a summation of

pairwise-energy terms that include van der Waals, electrostatics, hydrogen bonding and

solvation. 125,126 Some terms like the van der Waals energy, can be easily broken down into

pairwise contributions. However, other terms like electrostatics and solvation rely on multiple

side-chain positions or different dielectric areas, and thus require additional approximations to

make them pairwise decomposable. In addition, discrete structural sampling poses a particular

problem for energy components like van der Waals and hydrogen bonding which are sensitive to

the precise three-dimensional location of atoms. This is a result of the fact that the most

favorable conformation may not be one of the discrete states sampled. Additionally, the

hydrogen bonding term requires changes in charge distribution specific to each interacting pair to

be truly modeled correctly. This is not present in discrete structures searches with fixed charges.

A variety of approximations are made to allow these functions to be used for protein design with

discrete structural sampling.



Core packing and hydrophobic burial are important parts of protein stability. These are

typically captured using the van der Waals interaction energy, calculated with a 6-12 Lennard

Jones potential. 126 This function is pairwise decomposable and is therefore well suited for

computational design. However, due to the nature of the function, the van der Waals energy is

very sensitive to the precise three-dimensional position of interacting atoms. Since the side

chains sample discrete rotamer states, this often results in unrealistic clashes. This problem can

be somewhat addressed by increasing the structural search space to include a larger number of

rotamer conformations 127 or increased backbone space. 98,128  In addition, there are several

modifications to the energy function that are made to avoid this problem. The most common of

these is to scale the van der Waal radii of the atoms to 90%61, 62,12 9,130 or 95%51,131 of their initial

value. This prevents many clashes that occur using the rotamer approximation by softening the

interaction. Other common modifications are to cap the magnitude of the repulsive term80 or to

replace the repulsive terms with a linear function that has a finite maximum at a radius of 0.51,86

These modifications allow small clashes between side chains that would likely be relieved with

slight relaxation to be included in the design solutions. Grigoryan et al. conducted a systematic

examination of these types of approximations and demonstrated their strengths and

weaknesses. 132 The authors discussed the fine balance between modifications that allow

additional packing in the core and producing structures with unrealistic energies and geometries.

Another type of modification is to use a solvent-accessible surface-area based term to describe

the van der Waals energy. This is typically done by multiplying the amount of burial or

hydrophobic burial by a constant term.53 ,133 These values are often experimentally determined by

fitting to small molecule data or scaled to reproduce mutational data. 133- 135 These terms are less



sensitive to the precise structure and therefore work well with the discrete structure searches.

However, these need to be offset by a repulsive term or the cores can become over-packed.

Proteins exist in a highly polarizable environment, therefore modeling the electrostatics

correctly requires accurate models of solvation. 136 Protein design relies on implicit solvent

models since explicit modeling of water would be too computationally expensive. A common

solvent model used for biomolecules is finite difference Poisson Boltzmann (FDPB), which for

continuum models is often considered as a standard for accuracy. 137' 138 This and other continuum

solvent models treat the protein as a low dielectric cavity surrounded by a high dielectric solvent.

Generating this dielectric boundary requires the exact position of all atoms. This is a problem for

protein design because the exact positions of side-chain atoms are not determined before the

calculation is complete. Several models have been generated that break down the effect of the

polarizable environment into interactions of side-chain pairs. These include distance dependent

dielectric functions, 61' 10 4' 126 dielectric constants that are dependent on the protein structure,133, 139

statistical methods based on distributions of charged pairs in the PDB,86 '140 or pairwise screening

described using the generalized Born equation. 141 Likewise, the solvation energy of a charged

atom is also dependent on the dielectric environment. Approximations to this effect range from

simple phenomenological models to detailed physical models. The simplest methods rely solely

on the hydrophobic polar patterning seen in the core and surface positions of proteins. 142 ,143

Other statistical methods parameterize the solvation free energy as function of burial. 10 4 Several

continuum solvent models have also been introduced for design including the approximation of

the FDPB as a pairwise function, 13 6' 144 Tanford-Kirkwood' 45 and the approximations of the

generalized Born method to allow for pairwise determination of Born radii. 146,'147 Finally,



volume-based methods like EEF161,86,141,148 and surface area based methods' 14 6' 149 have also been

used to approximate the solvation energy with reasonable results.

Hydrogen bonding is very common in proteins.1 50 It is thought to play an important role

in stabilizing native proteinss151 -153 and provide specificity to proteins and protein-protein

interactions. 154,155 However, these have been difficult to model with fixed-charge molecular-

mechanics methods. Additionally, discrete structural models may not sample the precise three-

dimensional geometry associated with hydrogen bonding pairs. Thus approximate methods have

been introduced to assure that hydrogen bonding donors and acceptors are satisfied. These

include a statistical orientation-dependent hydrogen bonding function that uses the native

distribution of hydrogen bonding geometry in the PDB, 59 a rules-based geometric hydrogen

bonding function that requires packed polar residues to form at least one hydrogen bond, 15 6 and

an inventory-based hydrogen bonding function that weights the importance of hydrogen bonding

in native interactions. 53 Like for van der Waals energy, increasing the rotamer library and

allowing backbone flexibility will also generate more conformations with native-like hydrogen

bonding geometry.

In addition to the physics based methods discussed above, experimental data has also

been used to improve the energy function. This has been done by optimizing the relative

magnitudes of terms to improve the performance of a particular function or replacing part of the

calculation with experimentally validated values. Native sequence recovery in single-site design

was used to optimize a composition-dependent unfolded state, as well as the relative magnitude

of the components of the energy function. 86 In a similar approach, experimental binding data for

single mutants has been used to optimize different energy components. 133 Finally, for cases when

the structural models fail, it can be useful to replace some parts of the calculation with



experimental data. Grigoryan et al. described this as a way to improve the prediction of bZIP

partnering. There they used experimentally determined coupling energies to replace core

interactions that were modeled inaccurately.' 4 1

Many of the approximations of the energy function result from the necessity to be both

pairwise decomposable and computationally inexpensive to allow for efficient structural

searches. However, this requirement can be removed if the structure determination step and the

energy evaluation step are split into two separate calculations. 58 These methods are implemented

by using a low-resolution pairwise function to search the structure space and then selecting a

subset of candidate conformations to re-evaluate using a more accurate high-resolution function.

Thus, any non-pairwise energy functions could be used to determine the final energy solutions

for design. Care must be taken that the subset of sequences that are re-evaluated with the high-

resolution function contains the global minimum energy conformation." In addition to different

energy components, it is also possible to include continuous structure sampling methods at this

step, like continuous minimization. This has been shown to be very helpful in relieving steric

clashes associated with the van der Waals function.' 32

Summary of work

In the following chapters I discuss my work in developing methods for sampling the

backbone structure space of proteins for use in design and prediction. Because the computational

complexity associated with the sequence search is large, exploring the structure space in a

rigorous manner, such as in molecular dynamics, would be too costly. However, more efficient

structural searches that focus on a sub-space highly enriched with native-like conformations are

acceptable. In my work, I have sampled alpha-helical structures at protein-protein interfaces to



search for alternate native-like conformations (Chapter 2). Using this approach I explore three

applications: designing novel BH3 peptides that bind to Bcl-2 receptors (Chapter 3), predicting

the binding orientation of dimeric coiled coils (Chapter 4), and exploring the use of cluster

expansion for flexible-backbone energy evaluation (Chapter 5).
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The alpha helix is a basic building block of many protein structures.1 As described in the

previous Chapter, helical elements mediate many protein-protein interactions in a wide variety of

biological processes. Accurate structural models of alpha helices are therefore an important part

of understanding many types of protein interfaces. The backbone conformation of alpha helices

is localized in selected regions of the Ramachandran ý,y space,2 thus many methods treat these

elements as rigid when sampling the structure. 3-9 However, treatment of the helix as a fixed

element does not capture all of the deformation that occurs naturally, as evidenced by the

distribution in the Protein Databank (PDB) (See below). Modeling the flexibility of these

abundant structural elements is an important part of structure prediction, as well as of protein

design and prediction of protein interactions. In this chapter, I examine several methods for

capturing the structural variability of helices found in the PDB and demonstrates how these

methods can be used to generate helices that span the native structure space. These methods are

normal-mode analysis and principal component analysis to determine the flexibility of single

helices, and expanded Crick parameterization to model flexibility in parallel and antiparallel

dimeric coiled coils.

Alpha helices

The stability of an alpha helix (EH) can be thought of as a sum of internal factors and

external factors. The internal factors include the self energies of the backbone (EBB) and side

chains (Esc), and the backbone-side chain (EBB-SC) and side chain-side chain (Esc-sc) interaction

energies. The external factors include the interaction of the backbone (EBB-R) Or side-chains (Esc-

R) with other partners, and the interaction of the helix with the solvent (EH-S).

EH = EBB + Esc +EBBSC +Esc-sc + EBB-R + ESC-R + EH-S (2-1)



A balance between these terms determines how favorable it is for a peptide to be in the helical

state. 0-12 A similar balance of effects is also thought to dictate smaller variations of alpha-helical

structure. 13 The specific geometry of the alpha-helix backbone is important, allowing for a

network of hydrogen bonds 12 and strong van der Waals contacts 14 to overcome the loss of

backbone entropy.10-12 This, in combination with the stabilizing effects of some side chains' 1' 1 5' 16

or pairs of side chains,"' •8 could resist deformations. In contrast, any destabilizing side

chains"" 5- "8 should make the helix more prone to deformations. Finally, stabilizing protein-

protein interactions can offset the loss of stability associated with bending. Assuming that one

can approximate the low energy backbone conformation with an ideal helix, I hypothesize that

the deviations from this structure are dictated by the sequence and surrounding environment.

In the PDB, helices are found with many different sequences in a wide range of

environments. By examining all the helices, it is possible to sample the large and somewhat

random distributions of environments, and thus approximate the relative distribution of possible

deformations. To accomplish this I generated a set of helical structures from the PDB and

examined the types and distribution of deformations that occur. I then examined two different

methods to capture the structural variability: normal-mode analysis and principal-component

analysis.

Helix database

To probe the structural variation of helices in the PDB, I extracted over 45,000 protein

fragments of at least 15 consecutive residues with 4 and y angles in the range of -500 +/- 300

from x-ray crystal structures with resolution of 2.5 A or better. Helices of each length were then

aligned to ideal helices permitting the deformation to be captured using the difference between



the N-Ca-C backbone of the target and the ideal helix. The structures in the database were all

close to the ideal helix with the average root mean square deviation (rmsd) ranging from 0.45 +/-

0.14 to 1.1 +/- 0.38 A for helices of length 15 to 30 respectively. As these helices were all part of

larger structures, I also evaluated their degree of burial. The mean degree of burial was 67.6%

with a standard deviation of 14.5 %. This was relatively similar for helices of all lengths, with

the mean ranging from 62.4% to 70.9%, and the range was not correlated to the length of the

helix.

I speculated that the helical deformation was dictated by a balance between the stability

of the ideal structure and other features including the sequence and the environment. Therefore I

investigated whether for alpha helices in the database the sequence composition or degree of

burial were significantly correlated with structural deformation, as defined as the rmsd of the

each alpha helix with respect to an ideal helix. To determine the degree of structural

deformation, I broke the helices into sets by length and calculated the mean rmsd for each set.

Using these data, the set of all helices was subdivided into two groups: more bent than the

average from its own length set (larger rmsd), or less bent than the average. I then performed a X2

test to see if there was a statistically significant difference for each of these properties.

The results for the sequence composition are shown in Figure 2-1, along with

experimentally determined helix propensities. 16 Helix propensities, or the intrinsic helix forming

tendencies of a side-chain, are thought to strongly determine the stability of a helix. 11' 15-17' 19 X2

analysis reveals that a number of different amino-acid types were enriched in helices that

differed significantly from the mean (p-value < 10-3). Ala, Cys, Glu, Lys, Gln and Arg correlated

with significantly less deformation while Phe, Gly, Pro, Ser, Thr, Trp and Tyr correlated with

significantly more deformation. For some amino acid types the degree of bending correlates with
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Figure 2-1: Effect of amino-acid type on deformation of alpha helices. Using the database of alpha helices of length
15 to 30, a X2 test was conducted to see if helices that were more or less bent than the mean were more enriched with
any amino acid type. Plotted here on the left axis and in blue are the x 2 values multiplied by 1 if there is a higher
proportion of that amino-acid in bent helices and -1 if there is a smaller proportion. The dashed lines indicate
significant values with p-scores < 10- 3. In the right axis and in red are helix propensities.16

the helix propensities. For example, Pro and Gly, which strongly disfavor the helical state, and

Thr, which weakly disfavors the helical state, are all more prevalent in bent helices. Other amino

acids are less bent, like Ala, Glu, Lys, Gln, and Arg, and have helix propensities that suggest

they stabilize the helical structure. Trp, Tyr and Phe are all more prevalent in bent helices, but do

not follow a helix propensity trends. However they are all large residues and their size could

cause disruption to the helix because they are more likely to have interactions with external

structures. These results are consistent with my hypothesis that the degree of deformation is a

tradeoff between the energy of being in the ideal helical state and outside influences. The

observation that residues that stabilize the helix more are more prevalent in straighter helices and

those that are bulky or destabilize the helix are found more often in bent helices, supports this

view. The two exceptions to this observation are the amino acids Ser and Cys. Ser is more

prevalent in bent helices, though it does not favor or disfavor the helical state, and Cys strongly

disfavors the helical state but is found more often in straighter helices.



In addition to sequence composition, I also compared the degree of burial to the

probability of a helix being more bent. x2 analysis revealed that these two variables were not

independent (p-value of 3 x 10-7). This suggests that being more buried correlates with being

more bent. If we assume that on average the more buried a helix is, the larger number of

interactions it has with other parts of the protein, this result is also consistent with the hypothesis

that external forces compensate for the bending of a helix.

The database was also used to investigate the types of helical interfaces present in the

PDB. All multi-chain structures in which a helix was part of the interface (at least one residue

within 5 A of a different chain) were isolated. These structures were then filtered to look for

cases where the helix made up more than 50% of interface residues for one chain. A total of 170

structures fit these criteria. Figure 2-2 illustrates the types of interfaces found in this subset of

structures.

Normal-mode analysis

Normal-mode (NM) analysis has been widely recognized as a way to model functionally

important conformational changes in biomolecules.20 -23 It is also speculated that it might provide

an effective strategy for modeling the backbone variation in a protein fold as the sequence

changes. 20' 24 NM analysis can generate basis vectors that allow for sampling all 3N-6 internal

degrees of freedom of any structure with N atoms, but the mode space required to accomplish

this is prohibitively large. However, if the number of modes that contribute to significant

structural deviations is small, NM analysis could provide a highly efficient way of sampling non-

local conformational change. Emberly et al. 13 demonstrated this potential for alpha helices in a

small set of 399 structures. Their results suggest NM analysis is a promising method to sample



a)b) c) d) e)

r,,\ k\; \ I/\ IX
WI '1i! J) I' I)

m) n) o ) q) r)

Q1 ti "I

Figure 2-2: Representative helix-mediated protein-protein interfaces in the PDB. All structures were solved by x-ray
diffraction with a resolution better than 2.5 A. These are collected such that the helix, shown in red, contains at least
50% of all interface residues for its chain. The structures represent the types of interfaces found through this search
method. Listed are the PDB ids and a description of the interacting partners. (a) lax2: Interaction of troponin C with
helix fragment from troponin I. (b) lj2x: Interaction of transcription initiation factor IIF with helix from RAP74
subunit of transcription factor IIF. (c) lo9u: Interaction of glycogen synthase kinase-3 beta with helical axin peptide.
(d) It0j: Interaction between voltage-gated calcium subunit beta-2A and the helical peptide of the voltage dependent
L-type calcium channel alpha-lC subunit. (e) lm45: Interaction of myosin light chain with helical MYO2P class V
myosin. (f) lg39: HNF-lalpha dimerization domain. (g) lcdl: Calmodulin in complex with a helical peptide from
smooth muscle myosin light chain kinase. (h) ldp5: Interaction of proteinase A with the helical proteinase inhibitor
IA3. (i) 114x: Homo-octomeric de novo designed helix. (j) lpql: Interaction of Bcl-2 family member Bcl-xL with
helical Bim-BH3 peptide. (k) lsyq: Interaction of viniculin with helical talin. (1) 1vzj: Four fold helical interaction of
a WWW motif with a left handed polyproline helix (m) 2zta: Coiled-coil leucine zipper that is part of a yeast
transcriptional activator. (n) 1x79: Human GGA1 GAT domain complexed with the helical GAT-binding domain of
Rabaptin5. (o) 2bni: Antiparallel four-helix bundle. (p) lg12: Coiled coil of endosomal SNARE core complex. (q)
2siv: Helical SIV gp41 core structure. (r) lkzu: Helical chain of the integral membrane peripheral light harvesting
complex in R. Acidophila. (s) ljbO: Interaction between photosystem I and its helical subunit PSAX. (t) ltu3:
Interaction of the RAB5 complex with the helical Rabaptin5 c-terminal domain. (u) lltg: Heat-labile enterotoxin
complex mediated through a helical domain. (v) 1m56: Helical subunit of cytochrome C oxidase interacting with
total complex.
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the structural deformations associated with sequence changes for alpha-helical segments, and

possibly other structures, in protein design calculations.

Previously, Emberly et al. used the Ca-backbone trace to generate normal modes and fit

these to existing protein structures. However, it is quite difficult to predict all backbone atoms

from the Ca-trace, as the best methods only fit the main-chain atoms to 0.4 to 0.6 A rmsd.2 5 Here

I report on the use of NM analysis to generate deformations associated with the Ca, C and N-

backbone atoms of helical peptides. This 3-atom method has an advantage because the Ca, C and

N atoms are positioned explicitly, leaving no ambiguity in the construction of the backbone.

The generation of normal modes is described in detail in the Methods section of this

Chapter. Briefly, an ideal helix, generated using CHARMM, serves as the zero point energy

structure for these calculations. A simplified distance-dependent function (Eqn. 2-4 in Methods)

was used to calculate the harmonic potential. This function has been shown to capture low

energy normal modes accurately by Tirion 26 and was later used by Tama et al.2 1 The Hessian

matrix of this potential was then diagonalized to determine the eigenvectors and eigenvalues.

The eigenvectors are the normal modes and the eigenvalues are the frequencies. The deviation of

any helix from the ideal helix is then fit to a linear combination of normal modes as described by

Equation 2-6 in the Methods.

With this procedure I utilized the test set of helices described above to examine the

normal modes that correspond to deformations of helices seen in the PDB. Among these

structures, the two normal modes with the lowest frequencies (modes 1 and 2), along with one

other mode, captured on average -70% of the total deformation (Figure 2-3a and 2-3b). In

addition, of the three modes with the largest contributions, modes 1 or 2 occurred in the top 3 40-

50% of the time. Most importantly, for helices of a given length, modes 1 and 2 had the largest
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Figure 2-3: Capturing the structural variation of alpha helices using normal modes. A large number of helices with
lengths between 15 and 40 residues were extracted from the PDB and analyzed to generate panels a-c (see Methods).
(a) Shows the fractional deviation from an ideal-helix geometry that can be described with the indicated normal
modes, as a function of the length of the helices being modeled. Circles indicate the two lowest energy modes,
crosses the top three magnitude modes, triangles the two lowest energy modes plus the next largest magnitude mode,
and asterisks the top 20 modes. (b) Indicates the fractional contribution of modes 1-20 and (c) shows the normalized
standard deviation of this contribution. In (b), the color indicates the fraction of occurrences in which a mode is
among the top 3 magnitude modes. In (c), the color indicates the standard deviation of normal mode magnitudes
across all helices of a given length. Standard deviations are normalized so that the total sum of standard deviations
for a given length helix sums to 1.

standard deviations over structures (Figure 2-3c), illustrating that these modes encompassed most

of the variability and are good candidates to sample structure space.
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For both the Ca and the N-C,-C backbone, three normal modes made up the largest

component of deformation: 13 the single order X-Z and Y-Z bending modes and the helical

twisting mode. However, there was a difference in the ordering of relative energy of these modes

as compared to the other low-energy normal modes. When describing the backbone using the Ca

trace, these three modes were the lowest in energy. For the N-Ca-C backbone, the helical twist

mode was only the 10 th to 18th lowest energy mode, depending on the length of the helix. This

difference could be explained by a more degenerate normal-mode space and the larger total

number of normal modes that describe these structural changes.

Sampling structures using NMA

For the N-C,-C backbone, the two lowest energy normal modes described most of the

variability in the normal-mode space. This allowed for backbone flexibility to be included in

modeling of helical interfaces with greatly reduced dimensionality. For this type of sampling, I

first needed to determine the range of deformations common for the two normal modes. To do

this, I fit the deformations of these modes to a normal distribution using the following equation:

(x-.) 2

(x , ) = e 2a2 (2-2)

where x is the mode value, pt is the mean and a is the standard deviation. These values and their

95% confidence intervals are shown in Figure 2-4. For neither mode was the value of the mean

always zero. However, this value oscillated around zero depending on the length of helices in

each set. This was probably due to the small sample size for each set of helices. Additionally, the

standard deviation increased as the length of the helix increased. This increase is present because
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Figure 2-4: Distribution of normal-mode values for alpha helices. The first two normal mode values for helices of
length 15 to 30 were fit to normal distributions. The mean ([t) and the standard deviation (T) are shown with their
95% confidence interval for (a) NM-1 and (b) NM-2. Finally, the first two normal mode values are independently
sampled based upon a distributionp (Eqn. 2-3).

the energy required to bend a longer chain the same amount, based on total displacement, as a

shorter chain is less, allowing the structure to vary more.

Given these observations, structures can be varied using the following procedure. First,

the value of the mean is assumed to be 0 for helices of all lengths. The value of a is then selected

for the appropriate length helix based on a linear fit to the values shown in Figure 2-4. Next, a

linear combination of normal modes is fit to the starting structure to determine the native values.

This is determined by multiplying a normal distribution associated with the native normal-mode

space with a user defined distribution centered on the mode value from the starting structure.

p(x I p, cr, m,s) = f(x O, ) -f (x I m,s) (2-3)

Herefis defined in Equation 2-2, x is a new normal mode parameter value, p. and a are the mean

and standard deviation from the set of native structures, m is the normal mode value of the

starting structure, and s is user defined control parameter. If s is set to a small value, the

structures will sample a space that is close to the native mode value of the starting structure



(Figure 2-5a). If s is large, a wide mode space will be sampled, but the space will remain

confined to the range of native values (Figure 2-5b). Using the complete set of normal mode

parameters, a linear combination of normal mode vectors is added to the ideal helix to generate

the new helix. This will completely describe the backbone of the structure.

Principal-component analysis

Principal component (PC) analysis is a mathematical method used to reduce the

dimensionality of a data set into its largest contributing components. Like NM analysis, PC

analysis has been used to capture the common structural changes in proteins. Examples include

capturing dynamical modes during short-time-scale simulation 22,23,27-30 and capturing the

components of structural changes between ensembles or sets of homologous proteins. 3 1-34

Additionally, the deviations of secondary structure elements can be captured using PC

analysis.1 3' 35 The significant difference between NM analysis and PC analysis is that NM

analysis describes structural changes by approximating motions using a harmonic potential,

while PC analysis describes common deformations by the covariance of different atoms in a set

of protein structures. The former uses an external reference that is independent of the test set,

while the latter is dependent on the test set and therefore could be biased by it. Here I used the

same test set of structures described above to determine if PC analysis could be used to capture

the deviation of the N-C,-C backbone efficiently.

The principal components were determined by calculating the covariance of the protein

atoms with respect to the average position of those atoms (Eqn 2-7 in Methods). This average

was determined by aligning all helices of a given length helix to the ideal helix and then the

average of each coordinate for each atom calculated. The covariance matrix was then
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Figure 2-5: Sampling normal modes with a normal distribution. Based upon Equation 2-3, the distribution of
normal-mode values sampled (green) is determined by multiplying the normal distribution of the native normal-
mode space (shown in blue) by a user defined distribution (shown in red). The width of this distribution is
determined by a control variable s, which is shown either (a) set to 2 and (b) set to 10.

diagonalized. The resultant eigenvectors were the set of orthogonal principal-components vectors

and the eigenvalues indicated how much each component contributed to the overall distributions

of deformations. The normalized contribution of all components for helices of each length is

shown Figure 2-6. This figure illustrates how many components are required to fit the

deformation in the data set. For helices of length 15 to 40 amino acids, the top component

captured 40-90% of the deformation, the top two captured 70-95% and the top three captured

virtually all the deformation.

Comparison between PC analysis and NM analysis

PC analysis and NM analysis each capture the major types of deformations associated

with the changes in helical structure in the PDB. However, PC analysis can capture a

significantly larger percentage of the total deformation than NM analysis, using the same number

of modes. Given this altered performance between the two methods, there must be some

difference between the types of deformation that these large contributing modes capture. This

__ _



Helix Length(aa)

Figure 2-6: Capturing the structural variation of alpha helices using principal-component analysis. Helices of
lengths 15 to 40 residues were extracted from the PDB and analyzed to show the fractional deviation from ideal-
helix geometry that can be described with the indicated principal components. Circles are the largest component,
crosses the largest two, and triangles the largest three.

was examined by comparing the structural difference between the PC analysis and NM analysis

eigenvectors. To do this, a linear combination of normal modes was fit to each PC to determine

its composition. Since only a few PCs made up most of the deformation, I only looked at the four

largest component modes (Figure 2-7). Figure 2-7a, shows that for most helices, the first

principal component (PC-1) is made up of the XZ- or YZ-bends from normal modes 1 and 2

(NM-1 and NM-2). However, for helices of length 17, and 24-27 these modes are not the largest

contributors. Instead, these modes are the same twisting modes that were seen for the normal

mode fit of deformation (Figure 2-3). This difference in normal-mode composition of PC-1 may

be more the result of using differing test sets for each length helix than an actual feature of the

structural space. PC-2 is almost entirely composed of combinations of the bending modes. The

first two principal components make up 70-95% of the total deformations, and are composed

primarily of the three types of normal modes that were seen previously. The next two

components, PC-3 and PC-4, are mainly composed of other modes and make up the remaining 1
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Figure 2-7: Comparison of principal-component analysis and normal-mode analysis for capturing the deformation
of helices. For helices of length 15 to 40 a linear combination of normal modes are fit to the first four principal
components (PC-1-4), shown as (a-d) respectively. The color indicates the percentage of the PC for that length helix
captured by a particular NM.

to 25% of the deformation. These modes sample other higher order normal-mode bends, but are

still primarily the lower energy deformations.

Both PC analysis and NM analysis appear to be reasonable methods to sample the

structure space of helices. The three modes described for NM analysis seem like the most



common deformation modes for helices and compare well with the PCs. The top PC modes

captured a larger fraction of the structural deformation, but there appears to be a strong test set

bias. This is seen in the large helix-length dependence on the types of NMs whose linear

combinations make up PC vectors. Since the PC vectors must be generated for helices of each

length, it will be difficult to determine if the PC deformations are real or just represent a biased

non-random set of helices. As a result, NM analysis is likely to be a less biased method to sample

the helical structure of a protein. An application of NM analysis for modeling helical proteins

that interact with the Bcl-2 family member Bcl-xL is described in Chapter 3.

Coiled coils

The coiled-coil structure consists of a bundle of supercoiled helices that are encoded by a

7-residue sequence repeat of the form [abcdefg]n. With a and d positions hydrophobic and e and

g positions usually polar or charged, a "sticky" stripe winds its way around an individual helix,

dictating the formation of a twisted helical bundle. This structure was first proposed by Crick in

1952.36 Soon afterwards he described a method whereby the structure of the C, trace of a parallel

coiled coil can be described using as reduced set of parameters: an interhelical radius R0, a

superhelical twist oo, and a helical offset parameter 4 (Figure 2-8). 37 These three parameters

described the symmetrical interaction of the two helices about the superhelical axis. In 1995 this

method was updated for the use of modem computers and implemented as a user energy function

in the molecular mechanics software package CHARMM. 38 The function generates an ideal set

of C, atoms based upon Crick parameters and then imposes an energetic constraint proportional

to the distance squared to the target structure. It allows for both the optimization of the Crick

parameters to identify those that best fit a known structure, as well as the generation of a parallel



apz

Figure 2-8: Crick parameterization of parallel and antiparallel coiled coils. (a-b) Schematic illustrating parameters
used to describe (a) parallel and (b) antiparallel backbone geometries. For each wheel diagram, the heptad positions
are indicated in lowercase letters and the direction of the chain is indicated by whether the N or C terminus is out of
the page. For the structural diagram, the a and a' positions are shown in black, the d and d' positions in gray, and
the rest in white

Ro



coiled coil with arbitrary parameter values. This method has been used for the design and

predication of native-like coiled coils, 38,39 as well as the design of a non-native right handed

coiled coil.40-42

A test set of parallel dimeric coiled-coil structures was generated to determine the

accuracy of this model. These were extracted from the EMBL Protein Quaternary Structure

(PQS) using the program SOCKET which detects native-like knobs into holes packing.43 From

this, a set of 54 coiled-coil structures were examined by eye to eliminate any helical bundles, a

common false positive of this prediction method.44 Figure 2-9 shows in blue the ability to fit

these structures using the Crick parameterization. The rmsd range is between 0.4 and 2.0 A, and

all but 8 structures have an rmsd of less than 1.0 A. Figure 2-10 shows a distribution of

parameters. Using this set of values, I generated a set of 120 ideal parallel coiled-coil structures

that can be used to approximate the range of the native structure space (see methods).

Crick parameterization has not previously been used to generate antiparallel coiled coils.

However, it has been speculated that Crick Parameterization could be extended for this

purpose. 3 8,42 This seems reasonable as coiled coils in both orientations are thought to have the

same knobs-into-holes packing geometry45 and the Ca-trace starting from either end of the ideal

alpha helix is symmetrical. Because the Crick parameterization relies only on the C, trace,

antiparallel coiled coils have been described using the simple modification of numbering the CQ

atoms of one chain in reverse order to generate a pseudo-parallel coiled coil.42 To see if this

modification to Crick parameterization would describe antiparallel coiled coils, a set of

antiparallel structures was collected using the same method as for the parallel coiled coils. Here

70 dimeric antiparallel coiled coils were extracted from the PQS using SOCKET after a manual

filtering step. These were fit using the Crick parameterization. The results are shown in green in
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Figure 2-10: Histogram of the parallel Crick parameters generated by fitting parallel test-set structures to the best
possible Crick backbone. Parameters a) Ro, b) 4 and c) mo are shown. The mean value of the parameter is indicated
in green, and in red are the values used to generate the parallel-structure templates used for prediction. These
parameters were chosen to span the range of values seen in native structures. As a note, the values of wo sampled
were skewed towards larger values because no structure with wo < -0.07 radians/residue was chosen as the lowest
energy structure for any sequence, parallel or antiparallel.

Figure 2-9. The fit of these structures was not as good as for the parallel coiled coils, with a rmsd

range of 0.8 to 2 A. It was evident from this result that there was something different about the

structure of the antiparallel coiled coils.



Previously, Gernet et al. demonstrated that in some antiparallel coiled coils, their core

interactions are offset from each other.46 This is illustrated by comparing two coiled-coil

structures (Figure 2-11). To the left, the core residues in opposite chains of the parallel coiled

coil lie in the same plane, which is not the case for the antiparallel coiled coil on the right. The

current Crick parameterization method assumes that the corresponding Ca atoms lie in the same

plane and therefore cannot capture this type of structural difference.

This native offset was accommodated by introducing the new parameter apz into the

Crick parameterization (Equation 2-8 in Methods). For the first chain apz is set to zero, and for

the second chain it is altered to account for the degree of offset. Since these two chains are no

longer symmetrical about the superhelical axis, the parameter 4 was allowed to have different

values for each chain.

Another key change to this fitting procedure relates to the generation of the superhelical

axis. For parallel coiled coils, which are symmetrical about this axis, the superhelical axis was

taken as the axis of rotation that gave the greatest amount of superposition of the two chains. For

the antiparallel coiled coils, this method would no longer find the superhelical axis because the

two helices are not rotationally symmetrical about it. To account for this, the superhelical axis

was varied during the fitting process, and the best fit parameters included the best fit superhelical

axis. A detailed description of the new Crick parameterization for coiled coils is described in the

Methods. These two additional parameters and the new method for identifying the superhelical

axis were then used to fit the same test set of 70 antiparallel structures to idealized antiparallel

coiled coils. The results are shown in Figure 2-9 in red. These structures are now fit as well as

the parallel coiled coils. The distribution of apz values for antiparallel coiled coils shows how

important the addition of this parameter was (Figure 2-12e). It was also important to allow the



Parallel Antiparallel
Figure 2-11: Illustration of the helical offset difference between parallel and antiparallel coiled coils. For both
structures the C,-Cp bond of the core a and d positions are shown in red. At left the parallel coiled coil has opposing
a-a' pairs and d-d' pairs that are in the same plane, perpendicular to the superhelical axis. At right, the antiparallel
coiled coil has opposing a-d' and d-a' pairs that are not in the same plane.

two 4 parameters to be independent because the values of these two parameters are never

identical (Figure 2-13). However, the fact that these two ý values were correlated was used in

structural sampling.

With this new parameterization method for antiparallel coiled coils, it is now possible to

sample the structure space of antiparallel coiled coils in a manner similar to that used for parallel

coiled coils. A distribution of these parameters is shown in Figures 2-12 and 2-13. For

antiparallel coiled coils, OA and 4B are well correlated (Figure 2-13), allowing the reduction of

the sampling space to 4 parameters. Using this set of parameters, I generated a structure set of 81

ideal antiparallel coiled coils that can be used to model the range of the native structures space

---- - - ---- -----
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Figure 2-13: Antiparallel ýA and 4• correlation for all structures in the test set. These two parameters were treated
independently in antiparallel Crick parameterization, but showed a strong correlation. As a result, 4 A was varied in
the ideal structure set and 4 B was determined using the equation shown in the Figure.

(see methods). This set along with the parallel set were used to compare the binding preference

of sequences to be parallel or antiparallel, as described in Chapter 4.

Summary

In this chapter I described two methods for sampling helical structures. First, normal

mode analysis was used to determine the important types of helical deformations in existing

structures and then uses those vectors to sample the highly populated parts of structure space.

This structure-space was also captured through the use of principal-component analysis which

showed that the largest deformations were mostly linear combinations of these types of modes.

The second method described the structural changes associated with coiled-coil interfaces.

Previous work by Crick and by Harbury et al. described the structure of coiled coils using a

reduced set of parameters.3 7'40 In this chapter, I demonstrated that this method could be extended

to describe antiparallel coiled coils accurately with the introduction of two new parameters: an

antiparallel offset apz, to account for the relative shift between the two chains and an additional



helical offset parameter 1 for one chain. These parameters allowed for the generation of idealized

models that matched closely to structures in the PDB and made it possible to sample new

antiparallel coiled-coil structures. Both of these methods allow for an efficient sampling of the

structure space and can be integrated into flexible backbone modeling for design and prediction.

Methods

Helix database

The entire PDB was downloaded on August 5, 2005. From these structures, the backbone

dihedral angles were calculated using the chi module of the program Jackal.47 From x-ray crystal

structures with resolution of 2.5 A or better, I extracted over 45,000 protein fragments with at

least 15 consecutive residues with 1 and y angles in the range of -500 +/- 300. These helices were

aligned to ideal helices that had CHARMM paraml9 default bond lengths and bond angles, and

dihedral angles defined as co = 1800,0 = -570 and y = -470.2 Deformations could then be captured

using the difference between the N-Ca-C backbones of the helix database and the ideal helix.

All multiple-chain structures containing helices from this database were extracted. From

these, the interface residues between each pair of chains were determined, defined as any residue

that was within 5 A of the other chain. If more than 50% of these residues were part of a helix

from the database, then this structure was marked as having a helix-mediated interface. This

resulted in 170 unique PDB structures.



Backbone variations in normal-mode space

To construct helical backbones, we used a set of NM vectors similar to those described

by Emberly et al., 13,35 with slight modifications. The C, Ca and N backbone atoms, rather than

only C, atoms, were used to compute the NM potential. In Cartesian space, the harmonic

potential of a structure was calculated using the following function described by Tirion26 and

later used by Tama et al.21:

V = k k(di - d (2-4)
d < Rc

Here k is a force constant that was set to 10 for all pairs of atoms, d, is the distance

between atoms i andj of a structure, and do is the reference distance between these two atoms in

the ideal-helix structure. This potential does not contain values for pairs of atoms with distances

larger than the cutoff of Rc. This value was set to 8 A as suggested by Tama et al. 21 and Bahar et

al.48 From this potential the Hessian (H) can be calculated:

82V
Him,j = (2-5)

xi, ,m i,n

Here xi,m is mth Cartesian coordinate of atom i. The eigenvectors {XI of this matrix are the

normal modes, and the eigenvalues are the corresponding frequencies. Modes corresponding to

the six rotational and translational degrees of freedom were discarded and the remaining modes

were used to sample distortions of a helix about a fixed Cartesian center. A separate set of NM

vectors was calculated for each helix of length L (number of residues). To generate a variable

helix F, a set of 9L-6 NM amplitudes {(a } was multiplied by the NM vectors and added to the

ideal helix I:

9L-6

F = I + aiX i  (2-6)
i=1



To determine the NM values of the native helix, a difference vector between the native

helix and the aligned ideal helix was calculated. This vector was fit to a linear combination of

NM vectors using linear regression. The fitted linear coefficients gave the {ai } of the native

helix.

To generate a new NM structure, all atoms of the helix were removed except for the

backbone C, Ca, and N. The backbone was deformed by applying a linear combination of NM

vectors to the ideal helix, as described above. We chose random values for the two lowest

frequency NM parameters from a Gaussian distribution approximating the mode values seen in

helices in the PDB, centered on the starting values for the set. The backbone was reconstructed

by regenerating H and O atoms with CHARMM paraml9 default parameters. The side chains

were assigned CHARMM default values for bond lengths and bond angles, but crystal-structure

dihedral values. Structures with backbone atoms on different chains within 3 A were discarded.

The remaining NM structures could be used for design.

Principal-component analysis

The backbone deviations found in the database of alpha helices were computed by

decomposing the structural variation into its principal components. To do this, I calculated the

covariance matrix (Cij) shown in equation 2-7. This matrix contains the relative variance over all

N structures for each pair of N-, C, - or C-atom coordinates as compared to their average.

- N I1 rI (2-7)
Ci j - 1 (Xmi -- Axi @xmj -- x (2-7)

Here xmi and xmj are the ith and jth x-, y- or z-coordinates of structure m, and <xi>and <xj>are the

average values of those coordinates over all structures. From this covariance matrix I calculated



the eigenvectors and eigenvalues. The eigenvectors are the principal components and the

eigenvalues are the amount of structural variation captured by that component.

Coiled-coil database

Parallel and antiparallel coiled-coil dimer structures were obtained by applying SOCKET to

the EMBL Protein Quaternary Structure (PQS) database downloaded on April 12, 2007. 43

Structures returned by SOCKET were filtered to exclude those shorter than 18 residues as well

as those with a discontinuous heptad assignment. A manual filtering step was used to exclude

non-coiled-coil structures, such as certain portions of helix bundles, helix sheets and other

extended knobs-into-holes assemblies. 44 The GCN4 coiled-coil family was overrepresented in

this set; several sequences containing point mutations were removed. Finally, due to the

significant minority of parallel heterodimeric coiled-coil crystal structures, we added seven

sequence pairs from the human bZIP family, for which the helix orientation and alignment could

be determined by sequence alignment49,50: ATF7+MAFK, ATF2+FOS, CREBPA+JUN,

CEBPbeta+CEBPalpha, ATFI+CREM, CEBPgamma+ATF4 and the ATF1 homodimer. All

complexes contained two chains of the same length and were completely overlapping (i.e. had

"blunt" ends) in both parallel and antiparallel orientations. The final set consisted of 61 parallel

and 70 antiparallel coiled coils.

Crick parameterization

To describe and generate parallel coiled-coil dimer backbones, I used the parameterization

originally proposed by Crick and subsequently implemented by Harbury et al. as a user routine in

CHARMM. 37' 38 This parameterization has been shown to closely mimic the geometry of several



parallel coiled coils.38 Additionally, using our parallel coiled-coil test set, we found that this

idealized parameterization can be fit to a set of 54 native backbones with Ca RMSD values

ranging from 0.25 to 2.5 A, and with 46 of 54 backbones having an RMSD less than 1.0 A

(Figure 2-14).

I modified the Crick/Harbury approach to describe and generate antiparallel coiled-coil

backbones. As in the fitcc program, 42 we used the fact that the Ca trace of the antiparallel coiled

coil has approximately the same symmetry properties as the parallel coiled coil. The two relevant

exceptions are that a symmetry-breaking axial shift can occur between the two chains, and the 0

values that describe the angle of side chains relative to the helix-helix interface need not be the

same on both chains. The modification of the coiled-coil parameterization accounts for these

differences by introducing two new parameters. Parameter apzi captures the helical shift as

described above, and parameter 0 is replaced with an independent value for each helix: OA and

OB. The parameterization for antiparallel coiled coils is re-written as:

CC(r) = EC'(r) + H(r)
cos(wor) - sin(wor) cos(a) 0

E(Wcor,a,0) = sin(o 0r) cos(cor)cos(a) 0
0 - sin(a) cos(a)

R, cos(w,zr + j)
C'= R, sin(, 1r + i) (2-8)

apzi

R0 cos(o 0or)
H(r) = | Ro sin(wcor )

dr cos(a) )
where sin(a) = Roo

d

Here Ro is the superhelical radius, ¢i are phase angles that locate the residues on the superhelical

backbone trace, and wo is the superhelical frequency, ca is the helix-crossing angle, R1 is the

alpha helix radius and ol is the alpha helix frequency. As described above, apzi is an axial helical
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Figure 2-14: Native coiled-coil variation described using the Crick parameterization. Histogram of the backbone
RMSD (Ce-only) between each test-set structure and its closest Crick backbone.

offset that is set to 0 for chain A, and is non-zero for other chains. As for the parallel coiled coil,

we generate chains by constructing them using this equation and rotating them into position

about the superhelical axis. This antiparallel parameterization was coded as a user-defined

energy routine in CHARMM, as for the parallel parameterization.

I used the Crick parameterization both to fit idealized backbones to native structures and

to generate de novo backbones. To fit a native structure, I optimized superhelical parameters, as

well as two external parameters that locate the coiled coil in the laboratory frame. It is important

that the superhelical axis of the native coiled coil be aligned with the z-axis of the

parameterization above. The superhelical axis of a parallel coiled coil can be well-approximated

as the rotational axis that maximizes superposition of one helix onto another. However, this is

not the case for antiparallel coiled coils. For these, I found the best alignment by adjusting the

internal Crick parameters, along with two Euler rotations and three translational degrees of

freedom, using a process similar to that of the fitcc program. The center of mass of the helix was

translated to the origin, and then the coiled coil was approximately oriented, using two vectors

, parallel
- antiparallel

Jh1IL I I

__



defined by connecting the first and last Ca atom of each helix. The average of these two vectors

was aligned with the z-axis. Starting from this position, the rest of the Crick parameters, along

with two Euler angles and translations in three dimensions, were optimized using Matlab's

constrained minimization algorithm 51 to minimize the RMSD of the native helix to the closest

ideal Crick helix. Given this superhelical alignment, antiparallel Crick parameters were fit in

CHARMM by minimizing the energy with respect to these parameters as well as a rotation about

the superhelical axis and a translation with respect to this axis. The energy minimized was

proportional (with constant 25 kcal/A 2) to the sum of the distances squared of all Ca atoms from

the ideal Crick Ca atom positions.

Generation of Crick backbones

All structures were generated via minimization under a potential that included the user

defined Crick energy as well as van der Waals interactions, bond length, bond angle, dihedral

and improper dihedral energy terms, and a hydrogen bonding potential, all defined by the

paraml9 force field.52 Parameters R1, ol and d, which describe alpha-helix geometry, were set

to 2.26 A, 4x/7 radians per residue and 1.52 A respectively.38 Other parameters were sampled as

follows: The parallel set contained 120 structures with Ro values of 4.7, 4.8, 4.9, 5.0, 5.1 and 5.2

A, 4 values of 0.25, 0.30, 0.35, and 0.40 radians, and oo values of -0.055, -0.06, -0.065, and -

0.70 radians. The antiparallel set contained 81 structures with Ro values of 4.8, 4.9 and 5.1 A, oo

of -0.050, -0.060 and -0.070 radians, 4A, ýB pairs (in radians) of (0.412, 0.395), (0.422, 0.384),

(0.432, 0.374) and apzi values of 1.5, 2.0 and 2.5 A. These values span the space of native

parallel and antiparallel sequences. As illustrated in Figures 2-10 and 2-12. 4gA, 4B values were

sampled as pairs due to correlations between these in native structures (Figure 2-13).
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Abstract

Computational protein design can be used to select sequences that are compatible with a

fixed-backbone template. This strategy has been used in numerous instances to engineer novel

proteins. However, the fixed-backbone assumption severely restricts the sequence space that is

accessible via design. For challenging problems, such as the design of functional proteins, this

may not be acceptable. In this chapter, we present a method for introducing backbone flexibility

into protein design calculations and apply it to the design of diverse helical BH3 ligands that

bind to the anti-apoptotic protein Bcl-xL, a member of the Bcl-2 protein family. We demonstrate

how normal mode analysis can be used to sample different BH3 backbones, and show that this

leads to a larger and more diverse set of low-energy solutions than can be achieved using a

native high-resolution Bcl-xL complex crystal structure as a template. We tested several of the

designed solutions experimentally and found that this approach worked well when normal mode

calculations were used to deform a native BH3 helix structure, but less well when they were used

to deform an idealized helix. A subsequent round of design and testing identified a likely source

of the problem as inadequate sampling of the helix pitch. In all, we tested seventeen designed

BH3 peptide sequences, including several point mutants. Of these, eight bound well to Bcl-xL

and four others showed weak but detectable binding. The successful designs showed a diversity

of sequences that would have been difficult or impossible to achieve using only a fixed backbone.

Thus, introducing backbone flexibility via normal mode analysis effectively broadened the set of

sequences identified by computational design, and provided insight into positions important for

binding Bcl-xL.



Introduction

Computational protein design holds great promise for guiding the discovery of useful

biomolecules. In particular, the design of proteins that form specific interactions could facilitate

the development of therapeutic inhibitors or agonists. There have been many experimentally

validated examples of protein design, including the design of stable folds, active enzymes and

specific receptors. -'8 Most successful protein design calculations so far have sought to identify a

sequence that stabilizes a fixed backbone geometry, as defined by a high-resolution structure.

Fixed-backbone design is used to limit the potentially infinite search space and make design

problems more tractable. However, the fixed-backbone approximation is an artificial limitation

that severely restricts the space of possible design solutions. For example, it has frequently been

observed that sequences designed using a fixed backbone are very native-like.19-21 As the

demands placed on protein design problems increase, e.g. as designed proteins are required to be

more specific, more highly functional, less aggregation prone or easier to encode in DNA

libraries, artificial restrictions such as those imposed by using a fixed backbone become less

tolerable. In this chapter, we propose a new method for introducing backbone structural variation

using normal mode (NM) analysis and explore it in the context of a protein-protein interaction

that is of critical importance for cancer and other diseases - the interaction of pro-apoptotic

peptides with anti-apoptotic members of the Bcl-2 family.

The Bcl-2 family comprises both pro- and anti-apoptotic proteins.22' 23 Five mammalian

anti-apoptotic family members, Bcl-2, Bcl-xL, Bcl-w, Mcl-1 and (presumably) Al, have a

conserved globular structure, and all known family members, both pro- and anti-apoptotic, share

a weakly conserved short BH3 (Bcl-2 homology 3) sequence. Peptides corresponding to the BH3

region have been shown in several instances to adopt an a-helical structure when bound into a



hydrophobic groove on the surface of anti-apoptotic proteins.24-27 This interaction mode is

assumed to be conserved for a larger group of BH3 peptides and anti-apoptotic receptors that

have been observed to interact.28 Recent studies have begun to map the interaction preferences of

the Bcl-2 family of proteins and have shown that BH3 peptides have distinct binding profiles,

with some binding only a subset of anti-apoptotic receptors and others interacting

promiscuously.29-32 Several models have been proposed to explain how the selectivity of this

interaction is important for regulating apoptosis via mitochondrial pathways. 29-3 1 All of these

models support the idea that selective disruption of specific interactions could be a valuable

strategy for treating cancers.

Both peptide and small-molecule inhibitors that disrupt Bcl-2 interactions have been

identified. In a protein engineering approach, the Schepartz group grafted BH3 sequences onto a

mini-protein scaffold derived from an avian pancreatic polypeptide. 33,34 By screening a

combinatorial library at selected positions in the BH3 part of the sequence, several peptides were

identified that bound to Bcl-2 and Bcl-xL. Sadowsky et al. 35 designed a novel f/±p+ca-amino acid

backbone scaffold and identified a sequence that bound to Bcl-xL with sub-nanomolar affinity.

Small-molecule inhibitors that interrupt the interactions between BH3 and Bcl-xL in the low

micromolar range were identified in 2001.36 More recently, Olterstorf et al.37 screened hundreds

of small molecule fragments using NMR to identify those that bound tightly to Bcl-xL. A

promising compound constructed from these fragments has nanomolar affinity and is now in pre-

clinical trials for suppressing certain tumors. Although these inhibitors span a wide range of

physical and chemical properties, a common theme in their development was the use of

extensive screening and selection to identify compounds with high binding affinity.



BH3 peptides have very diverse sequences and show varying levels of binding to anti-

apoptotic Bcl-2 proteins.30 It would be useful to generate artificial peptides that exhibit diverse

binding profiles, distinct from those of native peptides, with respect to Bcl-2 family receptors.

Such peptides could serve as reagents to help dissect the biological consequences of different

interactions in apoptosis and could lead to the development of more specific inhibitors with

better therapeutic properties. Until very recently, however, only one high-resolution crystal

structure of a Bcl-2 family receptor/BH3 complex has been solved - a complex of Bcl-XL with a

BH3 peptide derived from Bim.26 ,38,39 Ligands designed based on this fixed-backbone structure

are likely to sample only a small portion of the sequence space that holds interesting, diverse

binding peptides. Introducing backbone flexibility to the design protocol may provide a way to

overcome this limitation (see Figure 3-1).

Protein backbones have many degrees of freedom, and sampling these efficiently in

protein design is quite challenging, as reviewed by Butterfoss and Kulman.40 One approach has

been to use small sets of parameters to describe variation using a simplified geometry. This

technique has been applied to coiled coils and helical bundles,41'42 and a related approach has

been used to vary the orientation of secondary structure elements in the a/[p fold of the 31

immunoglobulin-binding domain of streptococcal protein G.15 The Baker group has had

tremendous success modeling backbones in structure prediction by sampling from peptide

fragments in the PDB. They have also demonstrated that this approach is effective in protein

design. 16' 43 Kono and Saven used NMR structure ensembles to represent possible backbone

conformations, 44 and Larson et al. used a Monte Carlo procedure to sample backbone cp and j

angles and generate 'native-like' structure ensembles. 45 In this chapter, we use normal mode

(NM) analysis to introduce backbone flexibility. This method has proven useful for modeling
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Figure 3-1: Cartoon illustrating the idea of using flexible backbones to expand the accessible BH3 peptide sequence
space. Circles encompassing varying areas indicate the sequence diversity of 26mers meeting different criteria.

variations of secondary structure elements. 46' 47 It shares the advantages of parameterized

sampling but can potentially be applied more broadly.

Any protein motion can be described as a sum of NM distortions, but such a description

is most useful if the number of modes making significant contributions to structural variation is

small, and if these can be identified. As described in a recent review by Ma,4 8 a small number of

low-frequency normal modes can be used to model functionally important conformational

transitions in several biomolecules that agree with motions observed in molecular dynamics

simulations. It has also been noted that a significant amount of the variation seen among different

crystal structures of the same, or closely related, proteins can be described by a small set of NM

values.4 9'50 Specifically for helical regions, Emberly et al. have shown that most of the

deformation of the Ca trace can be captured by three low-energy modes.46 These modes are two

perpendicular bends and a helical twist.

We have used NM calculations to generate deformations associated with the Ca, C and

N- atom backbone of helical peptides for protein design. We started with the crystal structure of

a Bcl-xL/Bim-BH3* complex26 and used NM analysis to construct diverse sets of backbones by

* Bim refers to Bim-BH3 throughout this chapter.



fixing the receptor structure and varying the conformation of the binding helix. We then ran

computational design calculations on both the crystal structure and on structures in the flexible

backbone sets. A larger sequence space could be accessed when flexible backbones were

considered. The binding of seventeen designed peptides spanning a range of backbone

geometries was tested against three receptor proteins. Eight peptides bound well to Bcl-xL, as

intended, and four more showed weak but detectable binding. Several peptides showed altered

binding profiles compared to the wild-type Bim peptide on which the designs were based.

Results

Chapter 2 described how NM analysis can be used to generate structural variation in

helical backbones for protein design. The follow sections show how we have used such a

strategy to design novel Bcl-xL ligands.

Flexible backbones generated using normal-mode analysis

As described in Chapter 2, two low-energy normal modes can capture most of the

deformation of helices found in the PDB. Given this observations, we used NM analysis to

generate two sets of variable templates for protein design. Two hundred I-set (ideal-helix set)

and 200 N-set (native-helix set) backbones were generated as described in the Methods. The

primary difference between these two sets is in the local deformations. The N-set retains small

relaxations associated with the match of the native ligand to the receptor, whereas these have all

been removed in the I-set. The purpose of generating two sets of backbones was to reflect

different design scenarios that may be encountered. The N-set backbones may be a good choice

in cases where a crystal structure complex of the target helix is available. The I-set could be used



in the more general case in which a helix must be constructed de novo. Here we use information

from the complex structure to position the deformed helices with respect to the receptor, but with

docking methods this helix could be placed without this prior knowledge.

Before using the flexible backbone templates for design, we characterized them by

repacking the native sequence of Bcl-xL/Bim on each structure, as described in the Methods. The

N-set backbones included solutions that were very close to the native structure in both rmsd and

energy, and extended to -3 A rmsd (Figure 3-2). Our energy function effectively recognized the

native structure, assigning higher energies to structures with higher deviations. Energy

minimization of the Bim helix led to minimal structural changes and little change in energy for

the best N-set templates, whereas small steric clashes were relieved in the higher-energy

structures. The I-set gave structures with larger backbone rmsd from the native structure (up to

-6 A) and considerably higher energies. Minimization of the I-set Bim helix backbones gave

little structural change. However, the energies of the best of these solutions became comparable

to those of the minimized N-set, with rmsd values ranging from -1.5 - 4.3 A. This analysis

suggested that both sets might be reasonable design templates, provided the helix backbone

structures were relaxed, with the N-set sampling more native-like structures and the I-set

including greater variability.

The sequence landscape over multiple backbones

To evaluate which of the 400 backbones in the N- and I-sets were appropriate for

designing helical ligands for Bcl-xL, we used the SCADS program. SCADS is a statistical

protein design method that can rapidly generate sequence profiles that are consistent, in a mean-

field sense, with a fixed backbone geometry. We used it to determine which N- and I-set
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Figure 3-2: Modeling the complex of Bcl-xL with Bim using different backbone sets. The folded-state energy
relative to the crystal-structure energy is plotted against the backbone rmsd from the crystal structure (in A).
Energies were evaluated without (crosses) or with (circles) minimization to relax the structure (see Methods). N-set
structures prior to minimization are shown in cyan and those after are shown in green. Energies of I-set structures
prior to minimization are shown in red and those after are shown in blue.

backbones were compatible with low-energy sequences by redesigning all 26 residues of Bim on

each template. The conformational energies of designed sequence profiles (Econf, see Methods)

are plotted as a function of the values of normal mode 1 and normal mode 2 (nml and nm2) for

each backbone in Figure 3-3c and d. A smooth energy surface with a relatively flat well is

observed for both structure sets. As shown in a similar plot of the rmsd from the native backbone

(Figure 3-3a and b), we found that the lowest energy region is in the vicinity of the wild-type

structure.

To probe the extent to which structural variation can provide diversity in designed

sequences, we compared sequence profiles generated from the crystal structure backbone and

from both sets of distorted backbones. Backbones were clustered according to sequence profiles

derived from them, using a pairwise sequence profile similarity score (ASS) and the Xcluster

program.51 Seven clusters were defined in the I-set and eight in the N-set. Structures from the

same sequence-profile cluster are indicated with the same symbol in Figure 3-3c and d, showing

that the clusters defined in sequence space are also clustered in structure space. The clusters are
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numbered in order of increasing Econf of the lowest energy profile in each cluster. Thus,

structures in clusters with low energies, such as clusters 1 to 3 in the I-set and 1 to 4 in the N-set,

are potentially good design templates.

Conserved residues may not be conserved for binding

Figure 3-4 shows SCADS design profiles for positions 11 and 16 on the native backbone

and on backbones from the I- and N-sets. For the flexible backbones (I- and N- sets), the profiles

were averaged within each cluster shown in Figure 3-3c and d. These two residues are highly

conserved in native BH3 sequences as Leu and Asp, respectively, and previous alanine-scanning

studies by Sattler et al.24 have shown that they are important for binding. SCADS calculations on

the native backbone also indicated that the native residues are strongly preferred at both positions,

as shown in the top panels of Figure 3-4a and b. However, when we included backbone

flexibility in the re-design of these positions, phenylalanine, a much larger residue than leucine,

was preferred in low-energy clusters at position 11 (clusters 1-3 in the I-set and cluster 4 in the

N-set). At position 16, the native residue aspartic acid was preferred on the native backbone and

for the lowest energy clusters, but lysine was found to be highly probable in cluster 2 in both

backbone sets. Alanine is predicted to be unfavorable at both positions on all backbones,

consistent with the alanine-scanning experiments.24

These results suggest that the conservation of Leu 11 and Asp 16 may not be due to a

strict requirement for binding. To test whether residues predicted to be stable using the flexible-

helix backbones are indeed competent for binding, two single mutants, Bim-Ll 1F and Bim-

D16K were made and their binding to Bcl-xL was tested using a solution pull-down assay. Wild-

type Bim and human Bim with Leu 11 mutated to Asp (hBim-L11D) were used as positive and
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negative controls, respectively. The results are shown in Figure 3-5. Both single mutants bind to

Bcl-xL approximately as tightly as the native Bim helix.

Design of novel Bcl-xL binding peptides

As discussed in the Introduction, relieving the fixed-backbone approximation can

potentially provide more diverse sequences from protein design calculations than are otherwise

available. This is supported by the fact that we could identify point mutations, particularly L1 IF,

that are tolerated at highly conserved positions using flexible backbones, but not the native

88
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backbone. To explore this idea further, we redesigned the binding interface of the Bim peptide

using the flexible backbone templates. Eleven core and boundary positions were selected for

redesign (see Table 3-1). Hydrophobic residues A, F, G, I, L, M, and V were allowed at the core

positions, and all amino acids except Cys and Trp were allowed at the boundary positions. Cys

was excluded to avoid disulfide bond formation. Trp was excluded to maintain peptide solubility.
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Table 3-1. Redesigned positions of Bim. Numbering starts from "1" for residue 2 of Bim chain B in structure 1PQ1.

Subgroup SASA range Positions Allowed residues

Core <10% 17, A8, L11, 114, G15, F18 A, F, G, I, L, M, V

A, D, E, F, G, H, I, K, L, M, N,Boundary 10%-20% E4, R12, D16*, N19*, Y22* A , Q, H, 1, T, V, M
P, Q, R, S, T, V, Y

L1, R2, P3, I5, R6, Q9, E10, R13,Exposed >20% E17, E20, T215, T23, R24, R25, Native residues
E17, E20, T21*, T23, R24, R25, V26

* These positions were categorized manually based on visual inspection.

Bim residues not in the binding interface were retained with their wild-type identities, but the

side-chain conformations were allowed to change.

The I- and N-set backbones were used in this study, along with the crystal structure

backbone. Sequences designed using the x-ray structure as a template are referred to as the X-set.

We adopted a two-tier design strategy to explore the large sequence-structure space (Figure 3-6).

First, SCADS was used to eliminate non-designable backbones and generate profiles of amino

acids compatible with each designable backbone. Subsequently, specific sequences were selected

using a Monte Carlo (MC) procedure and a different energy function. The two-tier strategy was

designed to take advantage of the strengths, and minimize the disadvantages, of these two

approaches. SCADS is a method based on the maximization of entropy, and it is ideally suited to

identifying the broadest possible set of sequences compatible with a given backbone template at

a given design temperature. 53 It is very fast. It can rapidly identify backbone structures that lead

to irresolvable clashes or that cannot support good packing interactions. Finally, it has been

developed to reproduce patterns of hydrophobic and polar residues that are typical of native

structures. Although SCADS has been used alone for many design problems,2-4 we have found

that the results are sensitive to the environmental energy score used (this parameter is

constrained to a pre-defined value in these calculations). This can make it difficult to use SCADS
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Figure 3-6: Schematic of the two-tiered design method.

to select specific sequences for experimental testing. Thus, we used SCADS to generate

restricted amino-acid libraries and analyzed individual sequences selected from these libraries

using a Monte Carlo procedure and a different, more physically interpretable, energy function.

At each step of the MC search, a structure was generated using side-chain repacking and then

relaxed by briefly minimizing all side chains and the helix backbone. This was previously shown

to be necessary to give reasonable energies (Figure 3-2). Energies of the relaxed structures were

evaluated using the function described in the Methods. The use of two different energy functions

with different molecular mechanics parameters for protein design has been suggested to help

minimize the error due to biases in either of them individually.' 8

Energies of all sequences visited by the MC search on their respective X-, N- and I-set

structures were compared to the energy of the wild-type sequence evaluated in the context of the
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crystal structure. Sequences with binding energies lower than the wild-type sequence were

considered as possible design candidates and screened further. One hundred and nine sequences

were identified using the I-set, and 494 sequences were found from the N-set. Only 35 sequences

were found on the crystal-structure backbone. Petros et al. have shown that higher helix

propensities for BH3 peptides favor binding.25 Therefore, we eliminated peptides with helix

propensities 54 lower than wild-type Bim from the N-set and I-set. This included 341 sequences

from the N-set and 28 sequences from the I-set.

In Figure 3-3e and f, the symbols on the energy landscape indicate I- and N-set

backbones on which good design candidates were selected by SCADS. Each symbol represents a

backbone. After Monte-Carlo selection, only a few of these backbones, 24 out of 200 in the I-set

and 17 out of 200 in the N-set, had one or more sequences that met the two requirements of

having lower energy and higher helix propensity than the wild-type structure. Of these,

backbones from the N-set had lower SCADS Ecof (-640 - -620 kcal/mol) than those from the I-

set (-600 - -560 kcal/mol). The same trend was apparent in energies used for evaluation of single

sequences in the Monte Carlo search.

To assess the diversity of sequences generated by this design protocol, all three sets of

sequences, N-, I- and X-, were clustered with selected native BH3 sequences using Clustal-X. 55

Only the eleven designed positions were used for clustering. To more clearly visualize the results,

we restricted the clustering to the 10 lowest-energy sequences per backbone and up to 50

sequences total for each of the I-, and N- sets (Figure 3-7). Clustering including the entire I- and

N-sets gave similar results (data not shown). The 35 sequences in the X-set (blue lines in Figure

3-7) comprise a subfamily of limited diversity. The N-set (green lines) and I-set (red lines) both



Figure 3-7: Clustering of sequences designed on I-set (red), N-set (green), X-set (blue), and I,-set (orange)
backbones, along with sequences of native BH3 peptides (black) that have been observed to bind Bcl-xL. The
vertical dashed lines show the thresholds used for picking clusters to be tested experimentally.
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span a larger space than the X-set, because they contain more backbone structures and provide

access to greater sequence diversity.

The results above demonstrate that relieving the rigid backbone approximation can lead

to a significantly larger number of sequences that are predicted to have good complementarity

with Bcl-xL and favorable helix propensity. As shown in Figure 3-3a-d, the differences in the

backbone can be small but still allow for sequences that would not be designed without the use

of an expanded backbone set. There are additional requirements for a sequence to make a good

ligand in solution, however. The designed peptide must be soluble, it must not adopt alternative

structures not considered in the design procedure, and the energy function used must model not

only the bound state but also the unbound state with sufficient accuracy to give high-affinity

designs. To test whether our designed peptides met these criteria, the lowest-energy sequences

from several clusters in Figure 3-7 were chosen for experimental testing. Thresholds defining

clusters for the X-, N- and I-sets, shown as dashed lines in Figure 3-7, were chosen manually to

sample the space. The cutoffs give three and two sub-trees for the I- and the N- set, respectively.

Seven sequences were selected for experimental testing: two from the X-set (Xl and X2),

three from the I-set (I1, 12 and 13) and two from the N-set (N1 and N2). The sequences selected

from the flexible backbones (I- and N- sequences) are shown as the black dots in Figure 3-3e and

f. To demonstrate that the I- and N- sequences would not have been identified using the rigid

crystal structure, the energies of all sequences evaluated on the crystal-structure backbone and on

their respective normal mode design backbones are shown in Table 3-2. When modeled on the

crystal structure, the designed sequences are predicted to be at least 8 kcal/mol less stable than

the wild-type sequence, with more than 4800 sequences in the combined N-, I- and X-sets



Table 3-2. Sequences designed on flexible backbones that were chosen for experimental characterization.

Sequences* energy on NM bb energy on x-ray
(kcal/mol) bb (kcal/mol)

Bim LRPEIRIAQELRRIGDEFNETYTRRV 0
BimL 1F --- E--IA--FR-IGD-FN--Y---- -4.4 t  6.6
BimD16K -- -E--IA--LR-IGK-FN--Y---- 2.2 t  6.7

X1 -- -N- -IA--MV-IAR-FH--H ---- -2.9

X2 ---V--VG--MM-IGR-FF--H---- -2.1
N1 -- -F--VA--LM-FAH-FD- -H ---- -14.3 8.3
N2 -- -V--VA--LM-MGK-FY - --M--- -6.7 23.0

II ---H--IV- -FK-FGN-IQ--K---- -10.4 30.8
12 -- -F--IA--FM-FAQ-MY- --I--- -4.5 26.0
13 --- L--LI--LQ-LGY-FN--A---- -2.6 29.1
Ipl -- -A--LA--MR-FAR-FE--A---- -10.7 2.2
I2 -- -R- -VA- -LE-MAN-LR--N ---- -10.3 15.1
IP3 --- I--AA--LQ-FAM-FR--D ---- -10.1 13.7
IP4 --- M--IA--LR-FAR-FR--D ---- -9.8 7.3

N2-Y19N - - -V- -VA- -LM-MGK- FN- -M - - - - -0. 1t 9.5
13-I8A --- L--LA--LQ-LGY-FN--A---- 3.3t  3.3

N3 -- -V--VG--LM-IAR-FD- --T--- -7.8 7.6
N4 --- F--VA--LN-IAK-FH ---F--- -2.7 4.1

All energies are relative to the energy of the x-ray structure of Bcl-xLjBim. Dashes indicate the native Bim residue at that position
* The first Leu was mutated to Glu in experimental tests for all sequences except Bim, BimL11F and BimDI6K, see text.
t Sequences for point mutants were evaluated on all backbones. The lowest energy is reported.

predicted to have better binding affinity. Thus, the selected sequences cover a sequence space

that cannot be accessed by fixed backbone design.

The designed peptides were tested in a solution pull-down assay. Because previous

experiments suggested that designed BH3 peptides can be poorly soluble in aqueous buffers

(data not shown), a leucine at the first position of the peptide was mutated to glutamic acid. This

site is a surface position and as a result is not expected to influence the binding interaction

significantly. Wild-type Bim was used as a positive control and hBim-L1 D as a negative

control. As a negative control of the receptor protein, we used a Bcl-xL mutant in which Gly 138,

a residue in the hydrophobic binding cleft, was mutated to glutamic acid. The results are shown

in Figure 3-5. For the two X-set designs, X1 bound well to Bcl-xL with X2 binding more weakly.

Designed peptides N1 and N2 bound, but more weakly than the positive control. The other three



peptides Il, 12, and 13 did not bind. As expected, none of the peptides, including the native Bim

positive control, bound to the Bcl-xL negative control. We also tested all peptides for binding to

anti-apoptotic proteins Mcl-1 and Bcl-w. Pull-down results showed that, except for the X1

design and the two point mutants Bim-L11F and Bim-D16K, none of the designed peptides

bound to either protein.

To explore why several peptides from the first round of design did not bind well, we

manually designed and tested several point mutants. In most of the native BH3 peptides, position

8 is an alanine or glycine. However two of the I-set designs have a larger side chain at this site.

To test whether this could be causing a steric problem, we made an Ile to Ala mutation in design

13. The resulting peptide, I3-I8A, showed improved binding to Bcl-xL (Figure 3-5). In another

case, for design N2, the Tyr residue at position 19 is larger and more hydrophobic than the native

asparagine. Gel filtration analysis showed that this peptide eluted somewhat later than native

Bim, with a peak that had a long tail, suggesting that it may be sticky and potentially self-

associating or aggregating (data not shown). To address this we restored the native Asn at

position 19. Again, this peptide bound Bcl-xL better than the original design (N2-Y19N in Figure

3-5).

All three sequences designed on the I-set backbones performed poorly, suggesting these

structures may not be good templates. In our statistical analysis of helices in the PDB we saw

that for helices of length 26, the first two normal modes encompass most of the standard

deviation (Figure 2-3c) but mode 10 also contributes to the overall difference from the

"idealized" helix that we used as a reference (Figure 2-3b). Mode 10 represents a twisting

deformation around the helix axis. To test if adjusting the helical pitch would improve the I-set

designs, we constructed a new backbone set, the Ip,-set, for which the coefficient for mode 10 was



set to the native value of the Bim helix, -6.13. Using this new set, we repeated the design

calculations and selected sequences with energy lower than wild-type, giving a total of 249

designed peptides. These sequences were filtered by removing those with helix propensity less

favorable than wild type (6 sequences removed), and the 50 lowest-energy sequences remaining

were clustered along with the other backbone sets, as shown in Figure 3-7. As with the I-set, the

Ip-set designs clustered together, although they were somewhat more similar to the N-set and X-

set sequences. Four sequences were chosen for testing by dividing the Ip-set cluster using the

dashed yellow line shown in Figure 3-7. Figure 3-5 shows that Ipl bound Bcl-xL quite well, I,4

more weakly, and I,2 and I,3 not very much at all. These peptides were also tested against Mcl-1

and Bcl-w; none showed any binding.

Because the N-set designs bound better than the I-set designs, we considered more of

these sequences in our next round of experimental tests. We originally chose N1 and N2 from

separate clusters, as seen in Figure 3-7, but ignored a third clustering of N-set peptides, because

it contained slightly higher energy sequences. We selected two sequences from this cluster, N3

and N4 as shown in Figure 3-7, and found that both bound well to the Bcl-xL receptor. The

binding affinity of these two sequences was also tested against the three other Bcl-2 receptors.

N4 showed very weak binding, whereas N3 showed no binding to Bcl-w. Neither of them

showed binding to Mcl-1 or Bcl-xL-G138E. Overall, 12 out of 17 designs considered in this

study, which contained from one to eight mutations relative to Bim, showed some level of

binding to the Bcl-xL receptor.



Competition binding experiments

To further characterize the binding of several designed peptides, we tested them in a

fluorescence polarization competition assay. Bad-BH3 is a native BH3 peptide that binds in the

hydrophobic groove of Bcl-xL, as determined by previous binding studies and by a solution

structure of the complex.2 5 In our assay, fluoresceinated Bad-BH3 (FITC-Bad) with a reported

Kd of 21.48 nM56 was competed off of Bcl-xL by increasing concentrations of Bim, BimL11F,

BimD16K, Xl, X2, Ni, N2, N3, N4, N2-Y19N, II, Ipl, Ip2, or Ip4. The Bcl-xL construct used in

our assay was slightly different from what was reported, and we measured the Kd of FITC-Bad

as 16.7 nM (inset in Figure 3-8). This value was used to fit the competition binding curves

shown in Figure 3-8. The Kd values obtained from experiments were: Kd(Bim)=3.2 nM,

Kd(X1)=23.4 nM, Kd(N4)=239.7 nM, Kd(Ipl)=73.8 nM, Kd(BimL11F mutant)=0.6 nM,

Kd(BimD16K mutant)=33.1 nM, Kd(N2-Y19N)= 73.8 nM, Kd(N2)=490 nM, Kd(I1 4)=790 nM,

Kd(N1)=960 nM, Kd(X2)=2400 nM, Kd(N3)=4400 nM. Additionally, Il and I,2 showed no

binding.

Post-analysis of design results

Given that not all of the designs bound tighter than wild type, as was predicted, we

sought to determine what aspects of the calculation was responsible for this. We had noticed that

none of the I-set sequences bound to the Bcl-xL receptor. To determine why, a new method for

post-processing of the experimentally tested sequences was introduced to determine whether we

could better predict binding affinity. Previously we minimized each helix to allow for local

deformation. However, the flexibility introduced by the minimization lowered the energies of I-

set backbones, perhaps to an artificially low value (Figure 3-2). This was likely due to the
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Figure 3-8: Competition binding curves from fluorescence polarization assay. The assay was done at room
temperature with murine Bcl-xL at 100 nM and FITC-Bad at 25 nM. Competing peptides Bim, BimL11 F,
BimD16K,, X1, X2, N1, N2, N3, N4, N2-Y19N, I1, Ipl, Ip2 and Ip4 are labeled according to the legend on the
right. The lines are binding curves fit to the data points. CL is the initial concentration of the competitor peptide.
The inset shows the direct binding of FITC-Bad to murine Bcl-xL (Kd = 16.7 nM). Here CR is the initial
concentration of Bcl-xL. The KI values of the competing peptides (MBM, X1, N4, and Ipl) were derived using our
measured Kd (Bad/Bcl-xL). Competition binding measurements gave the Kd values shown in the legend to the right.
I1 and Ip2 did not show binding.

inability of the energy function to accurately describe the relative stability of vastly different

backbones. As a way to introduce the flexibility without over-minimization, we used a procedure

where each sequence was repacked on all backbones in the set. Additionally, we only allowed

the side chains to relax during minimization.

Using this approach we evaluated all 14 sequences with experimental Kds, along with two

non-binders from the pulldown assay, 12 and 13. There were four non-binders in total, which

were assigned a Kd value of 105 nM, which is the approximate limit of the competition binding

assay. Experimental binding data is plotted against the minimum predicted energy of each

sequence over all backbones (Figure 3-9). This procedure gives a much better correlation with

experimental energies, with an R2 value of 0.79, and could be used in future rounds of design to

improve the prediction performance and the selection of candidate sequences to test

experimentally.
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Figure 3-9: Comparison of predicted to experimentally determined binding affinities. The minimum energy for each
sequence evaluated on all backbones is compared to Kd values obtained through the competition binding. The
calculated affinities are all shown relative that of Bim. In blue are data for Bim, BimL11F, BimD16K,, X1, X2, N1,
N2, N3, N4, N2-Y19N, I1, Ipl, Ip2 and Ip4 that showed binding. In red are data for sequences that showed no
binding. These non-binders are assigned a binding affinity of 105 nM, which is below the detection limit of the
competition binding assay.

Designing with side-chain only minimization

Given the success of the post-analysis, we performed a new round of designs using only

side-chain minimization and leaving the helix and receptor backbone fixed. In addition to

designing for binding to Bcl-xL, this round also included the design of BH3 peptides to bind to

Mcl-1, based on crystal structure 2NL9 (this structure was solved after the initial rounds of

design). One issue with this was that in the Mcl-1/Bim structure, Bim contains only 23 residues,

22 of which overlap those found in the Bcl-x/Bim structure. Thus 22-mers were designed in this

round using the N-set backbones. 200 native-like normal mode backbones that had 22-residue

BH3-helices were generated for both the Bcl-xL/Bim and Mcl-1/Bim structures. With the

exception of the minimization step, the same procedure was utilized as in the last round of design.

The 200 lowest energy sequences for both Bcl-xL and Mcl-1 design were re-evaluated using the

post-processing step described above. Four low energy sequences were chosen that were
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significantly different in sequence identity to those previously validated. Three were designed to

bind to Bcl-xL and one to bind to Mcl-1 (Table 3-3). So far, these sequences have only been

tested for binding to Bcl-XL, and all bound weakly. This may have resulted because the design

and the post-processing procedures were very similar and had the same biases. In evaluation of

the previous rounds, the sequences were designed and evaluated using different methods. By

having different minimization protocols, each method had different biases. As described above,

Harbury et al. suggested the benefits of using orthogonal energy functions in design.'8 Perhaps

the same is true for minimization procedures.

Discussion

Previous studies aimed at designing protein-protein interactions have focused primarily

on identifying one or a few high-affinity and/or heterospecific complexes, often by re-

engineering the sequence of both binding partners.5-7' 17,18 There are only a small number of

examples in which a protein or peptide has successfully been designed to bind a native target.8-1 0

Here, we report the successful design of several new 26-residue peptides that bind to Bcl-XL. The

designs exploited a new method for sampling backbone flexibility using NM analysis. In three

rounds of computation and experimental testing, we gained insights into features of the BH3

sequences that are and are not important for binding. We also uncovered important

considerations for sampling helical backbone structures. In this section we discuss these issues,

as well as the general importance of including backbone flexibility in protein design and some

possible areas for future improvements.
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Table 3-3. Sequences designed with side-chain only minimization chosen for experimental characterization.
Sequences* Design target Binding Affinity to Bcl-xL

(KD)

Bim RPEIRIAQELRRIGDEFNETYT >1 nM

PE1 - -H- -VA- -LN-AGR-FD- -H- Bcl-xl 1800 nM
PE3 -- N--VA--LK-FGR-FD--R- mcl-i 4200 nM

MN1 --E- -MA- -VM- IAE -MS- -K- mcl-1 6400 nM

Backbone Templates

Carefully selected backbone structures are key for structure-based computational

design.16 Although native backbone structures determined by x-ray crystallography have been

successfully used in many cases, they have obvious limitations. One is that sequences designed

on a fixed native backbone are strongly biased by the exact atomic coordinates of the selected

structure, as shown in Figure 3-4 and Figure 3-7. However, fixed-backbone design has been

successful partly because starting with an x-ray crystal structure guarantees that the template is

designable. When flexible or de novo backbones are used, additional criteria are needed to select

a designable scaffold. Our goal in this study was to increase the sequence space that could be

accessed in protein design by introducing backbone flexibility in a way that sampled realistic

structures. NM analysis has been shown to be effective for describing structural deformations of

helices, 46 and we found that this was also a convenient way to generate structural variants for

design. We used this approach to identify a wide range of candidate BH3 ligands for Bcl-xL.

From our initial round of design, only two of the five peptides that we tested bound to

Bcl-xL. The two that bound were designed from the native-like N-set, and those that did not bind

were from the I-set. Additionally, we were able to design binding peptides using the crystal

structure as a template. This suggested that the I-set did not provide good templates. The I-set

structures were derived de novo from an idealized helix backbone using only the two lowest-

frequency normal modes to generate structural variation. However, these two modes capture less
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than half of the deviation between our reference helix and a-helices in the PDB. For helices of

length 26, -70% of the deformation from the ideal helix can be captured by modes 1, 2 and 10,

with mode 10 corresponding to changing the pitch of the helix. The contribution of mode 10 to

helices of length 26 is approximately constant (Figure 2-3b and c) and indicates that the pitch of

our "ideal" helix is larger than what is found in the PDB. Consistent with this, we found that

when we minimized the I-set helices as part of the design procedure, the value of mode 10

changed to be closer to the average value in the PDB. We postulated that modifying the I-set

structures to reflect the native value of mode 10 in the Bcl-xL/Bim structure could improve the

quality of the templates. A new I,-set was used to design four peptides and resulted in two that

did bind Bcl-xL. This suggests that using an 'ideal' helix to construct a new backbone set can be

an effective strategy, as long as the pitch is set appropriately.

The I-set sequences that we chose for experimental characterization were scored as low

in energy by our design procedure, yet they failed to bind Bcl-xL. This occurred despite the fact

that for the native sequence we were able to distinguish I-set backbone models as higher in

energy than N-set models (Figure 3-2). We were also able to relax the I-set backbones towards

more native-like structures in the Monte Carlo design procedure. That our energy function was

reasonably effective for prediction but showed deficiencies in design is not necessarily surprising.

For example, if van der Waals, electrostatic interactions and 4 and yt dihedral strain are not

balanced, it is possible that the design procedure could systematically exploit this to introduce

unrealistic interactions that compensate for poor backbone geometry (e.g. see below). Choosing

a backbone set, such as the N-set, that samples more realistic structures can help to address this.

It is interesting to note that the choice of energy function and the method for varying backbone
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structure may be linked; shortcomings in one can be partially compensated for by adjustments in

the other.

Although we successfully introduced flexibility in the binding BH3 helix, the Bcl-xL

receptor was held fixed. It is clear from available NMR and X-ray structures of Bcl-xL bound to

BH3 peptides, 24-26,38,57 as well as to small molecules, 37' 58 that there is some variability in the

structure of a-helices 3 and 4, which form part of the binding site. This is another degree of

freedom that could be sampled to further increase the design diversity. Although normal-mode

analysis may not be an efficient way to sample the irregular structural changes involved in this

region, one strategy could be to use existing experimental structures as a guide. Qian et al. have

shown that principle-component analysis can be used to sample natural variation efficiently,

when this is represented by a set of existing structures.59 With several Bcl-xL complex structures

available, 26' 38' 57 and more likely to be solved in the future, this represents a possible route

towards designing yet more diverse BH3 peptide ligands.

Analysis of designed BH3 sequences

Native BH3 peptides are quite diverse and have only a weak consensus: ------ h{A/G}--L-

-h{G/A}D-h----------, where "h" represents a hydrophobic residue, {x/y} indicates that residues x

and y are commonly found at a given site, and "-" indicates no strong consensus. Leu 11 and Asp

16 are the most strongly conserved residues and are present in all native BH3 peptides that are

known to bind Bcl-xL. Our first round of design calculations (using SCADS only) indicated that

despite being strongly conserved, Leu 11 and Asp 16 are not strongly favored at their respective

positions once backbone flexibility is considered. Slight backbone motions can accommodate the

larger Phe residue at position 11 (see Figure 3-10), and several backbones favor Lys over Asp at
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position 16. Experiments confirmed that the dramatic sequence changes of Leu to Phe at position

11 and Asp to Lys at position 16, do not disrupt binding of Bim to Bcl-xL. Thus, these residues

are probably conserved for some reason other than maintaining binding affinity to this target.

Two other sequence changes suggested by the designs also contradicted the consensus

sequence. These were the designs of a Val or Ile residue at position 8, a site normally occupied

by Ala or Gly. Peptides 11 and 13 with these substitutions were designed using the I-set

backbones and, when tested experimentally, failed to bind Bcl-xL. A point mutation of Ile 8 to

Ala in design 13 restored binding. Thus, it seems that a small residue at position 8 is probably a

requirement for binding Bcl-xL. Our energy function indicated that Ile or Val at this site could

form favorable interactions with the receptor, but only in the context of the I-set backbones. Such

P-branched residues could not be accommodated at this site using the N- or X-sets, and only four

of the top 50 I,-sets sequences have valine. Our energy function did not correctly balance the

reward of a favorable van der Waals interaction with a suitable penalty for the I-set backbones

having an inappropriate pitch. We addressed this by introducing the Ip set, restricting our

backbone search to more realistic structures.

In total, our 12 BH3 designs spanned a significant sequence space. All designs (other

than the point mutants) had 6-8 sequence changes from native Bim, out of 11 interface positions.

All of the designed sequences maintained the four conserved hydrophobic residues that pack into

Bcl-xL, but the identities of these varied according to the backbone structures on which the

sequences were designed. Boundary residues varied more significantly, with charged residues

such as Glu 4 and Asp 16 in Bim sometimes being replaced by hydrophobic or oppositely
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iodate the Leu to Phe mutation at position 11 of Bim.
Bcl-xL is shown as a surface representation colored in gray. BH3 backbones and the side chains at position 11 are
shown using sticks. The native BH3 backbone and Leu 11 side chain are shown in cyan. The L11F mutant side
chain modeled on the native backbone is shown in yellow. The L11F backbone and side chain designed on an N-set
normal mode-generated backbone are shown in pink. Figure generated using Pymol.

charged residues. Such changes of residue type may be particularly important for designing BH3

ligands with altered binding specificity (see below).

Backbone flexibility for specificity design

In signaling pathways leading to apoptosis, the binding specificity of native BH3 peptides

for multi-domain anti-apoptotic Bcl-2 family members is a key factor in triggering cell death.2 9-31

In particular, it is important whether BH3 peptides bind to all or to only a subset of the anti-

apoptotic proteins. It would be useful to design synthetic peptides with desired binding

specificity profiles, e.g. peptides that bind to Bcl-xL but not Bcl-w or Mcl-1, in order to

understand and manipulate the interactions of these proteins. It might be possible to engineer

specificity profiles directly, using a multi-state design procedure. Initially though, we only had

the x-ray structure of Bcl-xL/Bim to use as a template (we have found that available NMR
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structures do not give good results in repacking calculations), and our ability to design novel

specificity profiles was hindered by a strong bias that causes designed sequences to resemble

native Bim in core positions, and have low sequence diversity in all design sites. Including

multiple backbones can counteract this structural bias and provide access to a larger sequence

space, a space that potentially includes sequences with novel specificity profiles, as illustrated in

Figure 3-5.

Our results support this idea. Native Bim is promiscuous and binds to all anti-apoptotic

Bcl-2 family members, including Bcl-XL, Mcl-i and Bcl-w (Figure 3-5). The two designed point

mutants, BimL11F and BimD16K, which are similar in sequence to native Bim, both bound Bcl-

w. BimL11F also bound Mcl-i, whereas BimD16K bound Mcl-i very weakly. In contrast, when

11 positions were redesigned on a range of backbones, only one sequence designed from the

crystal backbone (Xl) bound Bcl-w, and one from a native-like backbone (N4) bound Bcl-w

very weakly. None of the designed sequences show detectable binding with Mcl-1.

Since the completion of this design experiment, several other x-ray crystal structure of

Bcl-2 family complexes have been published including Bcl-XL complexes with Bad and

Beclin,38,57 MCl-1 complexes with Bim and Noxa,39 and Al complexes with Bim, Puma, Bmf,

Bak and Bid.60 ,61 In the future, it may be possible to use these additional crystal structures to

select directly for sequences that bind to certain anti-apoptotic Bcl-2 family members but not

others. In such an application, the ability to model backbone flexibility will remain very

important. First, with increasing demands on the designed sequences, artificial constraints on the

space of possible solutions become less acceptable. Furthermore, backbone flexibility is a critical

element of negative design against undesired "decoy" targets. A common problem in negative

design is that decoy states must be modeled and their energies accurately evaluated. With fixed
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backbone design, this is problematic because structures may have high energies based on slight

steric clashes that are easy to resolve with backbone relaxation or flexibility. The BimLl 1F

mutant provides a good example of this (see Figure 3-10). If the complex of Bcl-xL with Bim

was a negative design target, then fixed backbone design would predict that Phe at position 11

would disfavor this structure. In contrast, we find that BimL11F binds well to Bcl-xL.

Possible directions for future improvements

In this work, we used a range of starting structures as templates for design, with the goal

of generating a set of peptides with diverse properties that bind to Bcl-xL. Practical

considerations led us to constrain our search to a sequence space identified as favorable by

SCADS, and to use a fairly slow non-pairwise energy function for evaluation. Thus, in an

attempt to sample broadly, we have sacrificed local optimization. Although we found many good

sequences, we may not have identified minima in either structure or sequence space. A possible

strategy for the future is to use sequences from experimentally validated clusters as starting

points for further rounds of design. Additionally, Baker and colleagues have demonstrated the

power of iteratively optimizing sequence and structure. 16'43 A similar approach could help to

identify tighter binding sequences in the space of NM-sampled backbones. Finally, energy

functions that are suitable for fixed-backbone design may not be optimal for flexible-backbone

design. Further work may be needed to determine how best to balance the internal energy of the

template with the interaction energy of the designed side chains. Sampling normal modes in

dihedral space rather than Cartesian space may generate backbones that better maintain ideal

bond lengths and angles, while retaining suitable dihedral values. Nevertheless, the use of NM

analysis focuses backbone sampling to a realistic parts of structure space very efficiently, using
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only 2-3 parameters. A set of realistic templates reduces the burden placed on the search and

evaluation functions in design. The NM strategy can be used to sample variation of any a-helices

present in a design template. Further, the use of NM analysis, which has a very general

formulation, may extend well to other secondary or super-secondary structural elements.

The initial design results were promising, but there is much room for improvement in the

accuracy of the prediction. This prediction gave 12 out of 17 peptides that bound to Bcl-XL, but

only one that actually had a lower Kd value than the native sequence. Post-processing of the

sequences by modeling them on all backbones showed better correlation to the experimental data.

This could prove to be a useful method for future rounds of design, and hopefully will improve

the hit rate of candidate sequences selected for experimentally testing. It has been suggested that

for design, over-optimization of a single function can lead to strong biases.'8 However, these can

be overcome by screening solutions with an orthogonal function.18 The fact that the design

process and the post-process do not use identical structural models may indeed help to improve

the ability to model particular sequences. Another improvement could include the incorporation

of experimental data into the design method. This has shown much promise in optimizing energy

functions for particular types of targets. 19 ,6 2 ,6 3 In addition to our experimentally-tested sequences,

there are a number of systematic experiments that have measured the binding affinity of point

mutants of Bcl-2 family complexes. 64 67 These data could be used to optimize the relative

magnitude of different energy components and the unfolded state energies, or to replace

particular interactions that are not presently modeled well. Improvements in the energy function

could help to increase the confidence in our design selections.
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Methods

Construction of flexible backbone structures

Starting templates

The 1.65 A resolution structure of Bcl-xL/Bim was used as a template (PDB code:

1PQ1). 26 The backbone of Bcl-xL, chain A, was held fixed. The backbone of chain B,

corresponding to Bim, was varied. The 1.55 A resolution structure of Mcl-1/Bim was also used

as a template (PDB code: 2NL9). 39 The backbone on Mcl-1, chain A, was held fixed. The

backbone of chain B, corresponding to Bim, was varied. An ideal cL-helical backbone (9p = -57.00,

w = -47.0', and Q = 180.00)68 was generated using default bond lengths and bond angles from

CHARMM paraml9. 69,70 The C, C, and N backbone atoms of the ideal helix were aligned to

chain B in the crystal structure using ProFit 2.2.71 The side chains were generated using paraml9

values for bond angles and bond lengths and the crystal-structure dihedral angles. The original x-

ray structure and the structure with chain B replaced by an aligned ideal helix were both used as

starting templates.

Backbone variations in normal-mode space

The details of how to sample normal mode space and generate new structures are

described in detail in chapter 2. Based upon equation 2-5, we varied the set of normal mode

parameters {ai} to generate new sets of backbones. Three choices of ai } values were used to

construct backbone sets in this study. Abbreviations for, and descriptions of, these sets are

summarized in Table 3-4. For the I-set (ideal-helix set), all values of ai except for the two lowest

frequency ones were fixed as zero, corresponding to the NM values of an ideal helix. Helices in
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Table 3-4. Abbreviations and descriptions for backbone sets used in design calculations.
Set Name Starting Structure Modes fixed to 0 Modes fixed to Native

X-set Native helix None All
I-set Ideal helix All except 1 and 2 none
N-set Native helix None All except 1 and 2
Ip-set Ideal helix All except 1, 2 and 10 10

the Ip set (ideal-helix with native pitch) were constructed in the same manner as the I-set, except

that the 10 th lowest frequency normal mode, a mode corresponding to the change of the helical

pitch, was set to the crystal structure value of -6.13. Finally, for the N-set (native-helix set), all

ai's with i greater than 2 were fixed as those of the native helix. To determine the NM values of

the native helix, a difference vector between the native helix and the aligned ideal helix was

calculated. This vector was fit to a linear combination of NM vectors using linear regression. The

fitted linear coefficients gave the {(a } of the native helix.

Design Calculation

Two types of design calculations were preformed. In the first, Statistical Computationally

Assisted Design Strategy (SCADS), developed by the Saven group, 2,44,72 was used to rapidly

characterize the sequence and structure space of cx-helical ligands of Bcl-XL. In the second, a

two-tiered strategy was implemented to select single sequences for experimental testing. The two

tier-procedure included a SCADS profile design, used to narrow the library of amino acids,

followed by a single-sequence Monte Carlo design (Figure 3-6). In SCADS, the AMBER force

field,73 with a united atom representation, was used to calculate non-bonded interactions. A

statistical environmental score (Eenv) was included as a constraint to enforce the hydrophobic

patterning of native proteins. 44 A tri-peptide model was used to approximate the

unfolded/unbound state of the BH3 peptide.2 The Richardson-Richardson rotamer library74 was

used with the X1 angles of Phe, Trp and Tyr expanded by ± 50 and ± 100, increasing the total
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number of rotamers to 254. Bcl-XL residues with at least one atom located within 10 A of any

atoms of the helix were allowed conformational flexibility. All other residues were held fixed

with the crystal-structure coordinates. Sequence profiles, in the form of a set of amino-acid

probabilities at each site, were obtained for each backbone structure. A conformational energy

(Econf) for each profile was evaluated by averaging non-bonded mean-field energies at each

position, weighted by the appropriate amino-acid probabilities. Ecof consists of side chain - side

chain and side chain - backbone terms and was evaluated at P=0.3 (kcal/mol) -1 , where P is an

effective inverse temperature.

The second tier of design utilized a Monte Carlo strategy. Here a subset of amino acids

was chosen based upon SCADS sequence profiles. For each site, the number of amino acids

included in the design was determined by the site-specific sequence entropy S,.

S,= p• , In pi,a (3-1)
ai

Here pi•,• is the probability of a particular amino acid ai at site i derived from the SCADS

calculation. The probabilities were rescaled from the original P=0.3 calculation to P3=1.0 to limit

the sequence search to high probability amino acids. The top ni (ni = exp(S,)) most probable

amino acids were included in the design at each site (ni was rounded up to the nearest integer).

Using this limited amino-acid library, 10 independent runs of 500 steps of Monte Carlo design

were performed for each structure. For each Monte Carlo design step in sequence space, we

performed a repacking calculation to model the side-chain conformations, followed by an energy

evaluation step to guide the Metropolis sampling. Structures were repacked as described by Ali

et al., 17 with a few modifications. The energy function included CHARMM van der Waals

energy with the atomic radii scaled to 90%, EEF175 for solvation, distance dependent dielectric
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electrostatics with e=4r, and CHARMM torsional energies. The same rotamer library as for the

SCADS calculation was used. All helix residues and all receptor residues within 8 A of the helix

were allowed conformational flexibility. All other residues were held fixed with the crystal

structure coordinates. Sequence repacking was performed using Dead-End Elimination (DEE)

and the A* algorithm. 76-81 Following repacking, we minimized the structure using CHARMM

with 1000 steps of steepest-decent minimization and 1000 steps of adapted bases Newton-

Raphson. The energy function for minimization included the van der Waals energy with 100%

van der Waals radii, bond angle, bond length, dihedral angle and improper dihedral angle

molecular mechanics energies, and -=r distance dependent dielectric electrostatic interaction

energy. The receptor backbone atoms were fixed during minimization. Finally, a non-pairwise

decomposable energy function was used to evaluate the energy of the minimized structures. This

energy was used to guide the Monte Carlo search. It included terms for van der Waals

interactions with 100% van der Waals radii, finite-difference Poisson-Boltzmann (FDPB)

solvation energy, Coulombic electrostatic interactions with external and internal dielectric of 4,

and a solvent-accessible surface area cavitation energy with a proportionality constant of 10

cal/mol*A2. The van der Waals and Columbic energy terms were evaluated using CHARMM and

the FDPB calculations using DelPhi V.4;82,83 the surface area was calculated using NACCESS.84

In accord with experimental observation,25 we modeled the unfolding pathway as a

transition from the bound complex (R-H) to an isolated receptor (R) and a random coil (RC). The

energy of this transition can be described as follows.

AEtota = ER-H - (ERC + ER) (3-2)

The energy of the isolated receptor is the same for all design calculations and can be ignored. It

is difficult to evaluate the energy of a random coil, but the contribution of an amino acid to the
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transition from a random coil to a folded helix can be captured using experimentally determined

helix propensities. Helix propensities are reasonably context independent, with good agreement

found between measurements made in different environments. 85,86 Consequently we define E H

as the self energy of a single amino-acid side chain i in the context of a poly-alanine peptide, and

write:

SHP = _.EH: -ERc (3-3)
i i

HPi are helix propensities as measured by O'Neil and Degrado 54 and EH was calculated using

the same repacking, minimization and energy evaluation described above. Given our original

folding equation, we can add and subtract C EH. giving

AErot = (ER- -H iEH +( i EH, -ERC) (3-4)

or

AEo, = (EH - EH.) HP (3-5)
ER-H was calculated explicitly as the energy of the complex. AEo,o is the energy used in the MC

design procedure.

Selection of the design positions

Although there are 33 residues in the B chain of Bcl-xL/Bim structure 1PQ1,26 some

residues at the N- and C- termini do not make direct contact with the receptor protein. In the

design calculations, we considered residues 2 to 27, and re-numbered these as 1 to 26. In an

initial set of SCADS calculations, all twenty-six residues from chain B were designed and

allowed to be any amino acid. When designing individual sequences with our two-tier procedure,

only residues at the binding interface were re-designed. The binding interface was defined based
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on solvent-accessible surface area (SASA) calculated by NACCESS, 84 followed by manual

inspection. Design positions for these calculations, and residues allowed at each position, are

given in Table 3-1.

Characterization of sequence space

Comparing sequence profiles

A sequence profile can be either a set of site-specific probabilities, such as those obtained

from multiple sequence alignment, a SCADS design calculation, or a single sequence, which is

equivalent to a profile with all site-specific probabilities either 1 or 0. The sequence similarity

score defined by Panchenko et al.87 (ASS) was used to compare pairs of sequence profiles (pl

and p2):

ASS = SS -SS (3-6)

where SS is a raw pair-wise similarity score, and SS is a reference sequence score. 87 Only

sequences with the same chain length (L) were studied in this work. SS and SS were calculated

with the following equations:

SS = - score(p,i P2,i) (3-7)
L

SS= -L X score(pl,i P2,j) (3-8)
i=1 j=1

with score(pi,p2,j) characterizing the sequence similarity between profile 1 (pl) at position i

and profile 2 (p2) at positionj. The BLOSUM62 substitution matrix (M) was used to evaluate the

similarity of any pair of amino-acid residues (lpi and ctp2):

115



20 20

score(pl,'P2,j)= I I P(azp,,)P(ap2,j)M(p,,i''p2,j) (3-9)
pli 1p2,j =1

Sequence clusters

X-cluster 51 was used to cluster sequence profiles by their sequence similarity scores. The

k-mean algorithm was used to find the clusters. Up to ten clusters were defined for all pairs of

profiles. Clustal-X5 5 was used to cluster single sequences. Only the eleven interface residues

listed in Table 3-1 were used in the clustering calculations.

Experimental methods

Sample preparation

Twenty-six-residue peptide ligands (BH3 peptides) were constructed using gene

synthesis. Oligonucleotides were designed using DNAWorks 3.088, with 5' BamHI and 3' NotI

restriction sites and ordered from IDT. Standard PCR conditions were used to synthesize genes,

using temperatures suggested by DNAWorks. The PCR reaction products were cloned into a

modified pDEST17 vector, containing an N-terminal His 6 tag, a tobacco etch virus (TEV)

cleavage site and a C-terminal flag tag, giving the sequence: SYY-HHHHHH-

LESTSLYKKAGSGS-ENLYFQ-GGS-BH3-GGR-DYKDDDDK. Peptides were expressed in E.

coli RP3098 or BL21 cell. The expressed peptides were purified by Ni-NTA affinity

chromatography followed by HPLC to greater than 99% purity. The molecular weights of the

purified peptides were confirmed by mass spectrometry and were accurate to within 1% of the

expected molecular weight.

Murine Bcl-xL (provided by G. Nunez, University of Michigan), residues 1-209, which

excludes the C-terminal transmembrane domain, was sub-cloned by PCR with 5' BglII and 3'

116



XhoI sites. The fragment was ligated into a modified pDEST17 vector, containing an N-terminal

His6 tag followed by a TEV protease cleavage site, using BamHI and XhoI sites. The protein was

expressed in BL21-pLysS cells. The protein was purified by Ni-affinity chromatography (Ni-

NTA agarose) under native conditions, followed by ion-exchange chromatography using Q

sepharose.

The human Bcl-xL negative control construct was generated by PCR amplification of two

halves of the Bcl-xL gene, 1-138 and 138-209, mutating residue 138 from Gly (5'-GGT-3') to

Glu (5'-GAG-3'). The two halves were combined by overlapping extension with end primers

containing 5' BglII and 3' XhoI sites. The Bcl-xL G138E mutant DNA was ligated into pSV282

(using 5' BamHI and 3' Xho), a vector containing an N-terminal His-tagged MBP (maltose

binding protein) followed by a TEV protease cleavage site. Human Mcl-1 was subcloned,

removing the N-terminal PEST domain and C-terminal transmembrane domain. Residues 166-

327 were PCR amplified with 5' BamHI and 3' XhoI sites and ligated into pSV282. Human Bcl-

w, residues 1-176, was cloned into pSV282 following the same protocol as for Mcl-i. The

human clones of Bcl-xL and Mcl-1 were obtained from J. Kramer, Harvard Institute of

Proteomics. The cDNA of human Bcl-w was provided by D. Huang at WEHI in Australia. The

pSV282 vector was provided by L. Mizoue at Vanderbilt University, Center for Structural

Biology.

The human Bcl-xL negative control, Mcl-1 and Bcl-w were expressed in BL21 pLysS and

purified by Ni-affinity chromatography under native conditions. Ni-purified proteins were

cleaved with TEV protease (-1 AM) in a buffer containing 50 mM Tris, 50 mM NaC1, 0.5 mM

EDTA at pH 8.0 for 2.5 hours at room temperature. The untagged TEV cleavage product was

purified by Ni-affinity chromatography, separating it from His-tagged MBP and TEV. The Bcl-
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XL and Mcl-i proteins were further purified by gel filtration chromatography with an S75 column.

The Bcl-w protein was purified on a Q sepharose column.

Solution pull-down assay

All pull-down experiments were conducted in TBS buffer (150 mM NaCl, 50 mM Tris,

pH=7.4) containing 0.1% Triton X-100 using 200 ptM of the receptor proteins and 12 ý.g/ml of

the peptides. Mixtures of the receptor proteins and BH3 peptides were incubated at 4 'C on a

rocker for one hour before a fixed amount of ca-flag beads (Sigma) was added. The protein and

bead solutions were incubated at 4 OC on a rocker for another 30 minutes. Washes and elutions

were done following the manufacturer's protocol. Elution fractions were analyzed on

polyacrylamide gels stained with Coomassie dye.

Fluorescence polarization assay

Fluoreseinated-Bad (FITC-Bad, Abbott) 56 was dissolved in DMSO at 500 nM. Bcl-XL

and the competing peptides are the same as described above. Both Bcl-xL and the peptides were

dissolved in binding buffer (20 mM phosphate buffer, pH 7.5, 50 mM NaCI, ImM EDTA, and

0.001% triton X100). The concentration of the Bcl-XL stock was measured at 280 nM in

Edelhoch buffer.89 Peptide concentrations were measured directly in the binding buffer due to

limited solubility.

Direct and competition binding assays were conducted at 250 C in the binding buffer as

described. 56 In all samples, FITC-Bad was present at 25 nM, with 5% DMSO. In the competition

binding assays, the concentration of Bcl-xL was fixed at 100 nM. For direct binding, the samples

were equilibrated for at least 30 minutes. For the competition binding, the samples were
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equilibrated for at least three hours. Fluorescence polarization measurements were done using a

PTI QM-2000-4SE spectrofluorometer (Lawrenceville, New Jersey) with excitation wavelength

of 485 nm, and emission wavelength of 517 nm. A model considering depletion of the labeled

peptides was used to fit the direct binding data, and a model considering depletion of both the

labeled and unlabeled peptides was used to fit the competition binding data (see online

supplemental material for the fitting models). The ability to determine the saturated baselines

was limited by the solubility of the peptides. A single additional data point at [competition

peptide] = 1 mM was added with an anisotropy value determined by averaging the values of Bim

at 1000 and 2000 nM before fitting the competition curves. Experiments were done in duplicate,

with one replicate shown in Figure 3-8 and the range of measured Kd's given in the figure.
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Chapter 4

Predicting helix orientation for coiled-coil dimers

Portions reprinted with permission of John Wiley & Sons, Inc. from:

Apgar, J.R., Gutwin, K.N., Keating. A.E. (2008) "Predicting helix orientation for coiled-coil

dimers" Proteins, In Press

Collaborators Notes:

Karl Gutwin generated the coiled-coil test sets and implemented the sequence based scoring

functions.
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Abstract

The alpha-helical coiled coil is a structurally simple protein oligomerization or

interaction motif consisting of two or more alpha helices twisted into a supercoiled bundle.

Coiled coils can differ in their stoichiometry, helix orientation and axial alignment. Because of

the near degeneracy of many of these variants, coiled coils pose a challenge to fold recognition

methods for structure prediction. Whereas distinctions between some protein folds can be

discriminated on the basis of hydrophobic/polar patterning or secondary structure propensities,

the sequence differences that encode important details of coiled-coil structure can be subtle. This

is emblematic of a larger problem in the field of protein structure and interaction prediction: that

of establishing specificity between closely similar structures. We tested the behavior of different

computational models on the problem of recognizing the correct orientation - parallel vs.

antiparallel - of pairs of alpha helices that can form a dimeric coiled coil. For each of 131

examples of known structure, we constructed a large number of both parallel and antiparallel

structural models and used these to assess the ability of five energy functions to recognize the

correct fold. We also developed and tested three sequence-based approaches that make use of

varying degrees of implicit structural information. The best structural methods performed

similarly to the best sequence methods, correctly categorizing -81% of dimers. Steric

compatibility with the fold was important for some coiled coils we investigated. For many

examples, the correct orientation was determined by smaller energy differences between parallel

and antiparallel structures distributed over many residues and energy components. Prediction

methods that used structure but incorporated varying approximations and assumptions showed

quite different behaviors when used to investigate energetic contributions to orientation
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preference. Sequence based methods were sensitive to the choice of residue-pair interactions

scored.

Introduction

The alpha-helical coiled coil has long served as a model for studying the relationship

between protein sequence and structure. The coiled coil consists of a bundle of supercoiled

helices encoded by a 7-residue sequence repeat of the form [abcdefg]n. With a and d positions

hydrophobic and e and g positions usually polar or charged, a "sticky" stripe winds its way

around an individual helix, dictating the formation of a twisted helical bundle (Figure 2-8a and

b). Because of this simple relationship, the coiled-coil fold is one of the easiest protein structures

to predict. Numerous programs have been developed to detect the presence of coiled-coil

forming segments in sequences, and these exhibit respectable sensitivity and specificity.1-4

However, few methods exist to predict the variety of topologies found in coiled-coil structures.4-6

Helix content can vary from 2 to 7 helices, and helix orientation can be parallel or antiparallel.

Structures can be homo- or hetero-oligomeric, and the helices can align axially in different ways.

Thus, the "coiled coil" is really a large family of structures that share many properties but exhibit

different topological characteristics. 7

The difficulty of predicting coiled-coil structure lies in differentiating what can be subtle

distinctions in interactions. For example, it has been reported for several designed coiled coils

that changing a single a- or d-position residue can lead to a change or loss of oligomerization

specificity. 8-10 Small changes in sequence can also alter helix orientation preferences. In the work

of Oakley et al., moving a buried Asn residue by 7 positions in one helix and 3 in its partner

helix was sufficient to switch a designed coiled coil from a parallel to an antiparallel
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orientation." Lumb and Kim found that a buried Asn can establish both oligomerization and

helix orientation specificity.1 2 Perhaps surprisingly, this sensitivity to small sequence changes

appears to hold for many native sequences as well. Mutation of an Asn residue at an a position of

the yeast transcription factor GCN4 leads to loss of oligomerization specificity in that coiled

coil, 13 and changing 2 residues in the antiparallel coiled-coil dimer of Bcr can give either a

mixture of antiparallel higher-order helical assemblies or trimers, depending on the mutations.14

This plasticity of coiled-coil structure in response to mutation makes the problem of fold

recognition challenging. Much of the signal that is typically used to discriminate one structure

from another in prediction, including patterns of predicted secondary structure and preferences of

residues for different degrees of burial, is of little or no use in classifying coiled coils by type

because these properties are largely the same in many of the competing structures. This situation

also arises in other structure-prediction problems, where target and decoy structures must be

resolved that sometimes include "mirror-image" variants containing the correct secondary

structure elements arranged incorrectly with a reversed overall chirality. 5', 16

Despite these challenges, some progress has been made on the problem of predicting

coiled-coil interaction preferences from sequence. Several methods have been proposed for

discriminating dimers from trimers. Simulations have successfully captured oligomeric

preferences, and sequence-based programs have been developed for making predictions on novel

coiled coils. 4 5,'17 However, these were developed over a decade ago, using extremely small sets

of known coiled-coil examples, and frequently fail on additional test cases that are available

today. More recently, several methods have been developed to predict interacting partners among

the bZIP transcription factors - an important protein family in which dimerization is mediated by

a parallel coiled coil. 6,'18 -2 1 Relatively little is known about determinants of coiled-coil helix
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orientation, however. Various strategies have been used to design coiled coils that specifically

adopt a parallel or antiparallel orientation, such as electrostatic charge patterning or the

manipulation of a- and d-position polar residues or shape complementarity.11,22-27 Alanine in

core positions has been proposed to contribute to antiparallel specificity in coiled coils.28 But in

general, it is difficult to recognize sequence patterns that may specify helix orientation in native

sequences. Analyzing features that determine orientation specificity via mutagenesis is often

confounded by the fact that key residues may encode other types of specificity as well. For

example, when probing the possible role of d-position Glu in determining the orientation

preference of the Bcr coiled-coil domain, mutation to Leu led to the formation of trimers and

other higher-order oligomers, as mentioned above. 14

In this Chapter, we describe the performance of several types of computational models on

the problem of predicting coiled-coil orientation. Due to the relatively small number of coiled

coils with known orientation preference, learning strategies such as those that have been used in

other motif recognition problems are not readily applicable. 1' 29-32 Instead, we relied on structural

models to evaluate coiled-coil orientation. We developed both explicit structural models and

sequence-based models in which our use of structure was implicit. "Out-of-the-box" methods of

both types did not perform very well, but small adjustments that took advantage of coiled-coil

properties significantly improved the results.

Results

We tested several methods for predicting whether two sequences that can form a coiled

coil will assemble as a parallel or an antiparallel dimer. For simplicity, we considered pairs of

sequences of equal length that can be fully overlapped in both parallel and antiparallel
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orientations, i.e., those sequences that are "blunt ended" when aligned both ways. This test is

akin to biochemical assays that can measure the relative stability of these two conformations, 11' 33

although it avoids complexities that can be introduced by non-dimer states. An important feature

of our calculations is that they do not require an accurate treatment of a dissociated and/or

unfolded reference state (because the common unfolded state cancels), and therefore represent a

best-case scenario for computational prediction.18 Significant additional challenges, such as

predicting the correct axial alignment of helices, and determining that two sequences will form a

dimer rather than some other type of oligomer, must be overcome to develop a general coiled-

coil structure prediction method.

Our assessment of different methods used a database of parallel and antiparallel coiled-

coil dimers of known structure. To assemble this database, dimers were identified using the

program SOCKET, 34 which detects the knobs-into-holes side-chain packing that characterizes

coiled-coil interfaces. Additionally, SOCKET was used to determine the coiled-coil heptad

assignment (abcdefg). Because SOCKET also detects knobs-into-holes packing in non-coiled-

coil structures, such as 4-helix bundles and helical sheets, 34 '35 these were manually removed. We

also included several sequences from the human bZIP family of coiled coils 21' 36 in order to

increase the number of parallel heterodimers in the database. In total, 61 parallel and 70

antiparallel examples with low sequence similarity and length >= 18 residues were selected and

defined as our test set. We made the assumption that the coiled-coil motif itself is sufficient to

encode the observed helix orientation for these structures. This may not always be true, and it is

less likely to be true for short sequences that are part of a more complex fold. It is also less likely

to be true for coiled coils that are highly buried. Nevertheless, local determination of helix

orientation has been confirmed experimentally for a small number of cases in the literature, and
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it is likely to be true for the majority of our examples. 14 ,37-40 Due to the limited number of

available structures, there are biases in the data set. In particular, the parallel structures include

more homodimers and the antiparallel structures more heterodimers. This affected the

performance of some methods, as discussed below. A summary of the structures that make up

the database is provided in Table 4-1 and a detailed list is available in Table 4-2.

We tested two general categories of methods. The first required explicit models of

structure for each orientation. The experimentally determined structure was available for the

correct orientation for most of the sequences, but to simulate a real prediction problem we did

not use this structure in our evaluations. Instead, models of both parallel and antiparallel

complexes were predicted for each dimer. To generate idealized parallel backbones, we used a

parameterization first developed by Crick in 1953 and subsequently adapted for use with modem

molecular modeling programs by Harbury et al.41,42 To describe antiparallel coiled-coil

backbones, we introduced two new parameters into the Crick parameterization (see Methods).

We then generated 120 ideal parallel and 81 ideal antiparallel backbones that spanned the

parameter space of the dimeric coiled-coil test set (Figures 2-9 and 2-11 to 2-14). The backbone

RMSD between each native structure and its closest idealized backbone was in the range of 0.25-

1.8 A, with all but 12 structures within 1.0 A (Figure 4-1).

The other class of methods that we tested was based on sequence and did not require

structural modeling. These approaches took advantage of characteristics of the coiled coil, such

as the heptad repeat and extensive experimental characterization of interfacial residue-residue

interactions that are important for dimer stability and specificity. We used this information to

select interchain pairs of heptad positions that were scored based upon the residues at those
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Table 4-1: Test set of coiled-coil dimers of known orientation

Avg. Length Number of fraction Avg (range)
Sequence (range) in intramolecular Avg (range) RMSD to closest

residues coiled coils ideal Crick
backbone ()A)b

Parallel 61

Homodimer 49 32.9 (18-75) 0 0.71 (0.24 - 0.95) 0.72 (0.29-2.5)

Heterodimer 12 32.9 (18-40) 0 0.80 (0.67 - 0.91) 0.57 (0.35-1.0)

Antiparallel 70

Homodimer 19 25.0 (18-40) 0 0.59 (0.33 - 0.89) 0.51 (0.21-1.0)

Heterodimer 51 22.5 (18-53) 45 0.58 (0.16 - 0.83) 0.60 (0.28-2.4)

Data for seven bZIP coiled coils without structures not included in averages. aFraction exposed is the ratio of the
solvent-accessible surface area (SASA) of the coiled coil as observed in the crystal structure to the SASA of the
isolated coiled coil. SASA calculated using NACCESS.68 bRMSD to the closest ideal Crick backbone is the
difference between the crystal structure and the best-fitting Crick ideal structure. Data for all structures is shown in
Figure 2-12.

Table 4-2: List of PQS structures in the test set.
PQS ID strandl_loc strandl__hep strand2_loc strand2_hep

la36 644-668:A a 684-708:A a

la38 48-66:A d 79-97:A d

lam9 1 366-391:A d 366-391:B d

lber 117-134:A a 117-134:B a

lbjt 1013-1030:A a 1129-1146:A a

lclg_2 740-800:C d 1024-1084:D d

lclg 2 600-674:C d 884-958:D d

1 cii 229-281:A a 387-439:A a

lent 2 21-38:2 a 159-176:2 a

1cz7 2 300-345:C a 300-345:D a

1dgc 250-274:A a 250-274:C a

le7t 358-404:A d 358-404:B d

lecm 7-38:A a 7-38:B a

lecr 10-27:A a 110-127:A a
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legw_l1 21-38:A a 21-38:B a

lexj 77-116:A d 77-116:B d

ifew 34-65:A a 74-105:A a

Ifew 101-118:A a 101-118:B a

ifos 1 158-190:E d 282-314:F d

ifos 2 158-197:G d 282-321:H d

lfsO 32-56:G a 216-240:G a

Ifxk 21-45:A a 71-95:A a

Ifxk 7-45:C a 94-132:C a

lgd2_2 101-132:G a 101-132:H a

lgmj_2 60-77:C a 53-70:D a

lgo4 501-526:E d 501-526:F d

lgo4 494-526:G d 494-526:H d

1h88 299-331:A d 299-331:B d

Ihlo 57-75:A d 57-75:B d

lhw5 117-134:A a 117-134:B a

liii 165-182:P a 253-270:P a

lilr 13-30:B a 151-168:B a

lii8 166-191:A d 712-737:B d

lik9 123-169:A d 123-169:B d

liol 64-95:A a 408-439:A a

livs 2 805-823:B d 840-858:B d

ljbg 84-101:A a 84-101:B a

ljnm 273-305:A d 273-305:B d

Iklf 2 42-66:E a 28-52:F a

lkd8 3 2-33:E a 2-33:F a

lkql 232-270:A a 232-270:B a

1kvk 264-282:A d 290-308:A d

Ilih 58-75:A a 58-75:B a

11j2 213-230:A a 213-230:B a

11j2 274-299:A d 274-299:B d

lm5i 134-151:A a 214-231:A a

lnkn 1 849-916:A d 849-916:B d

Inkn 2 846-912:C a 846-912:D a

Inkp_l 953-971:A d 253-271:B d

lno4_2 36-67:D a 36-67:C a
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Int2 84-102:B d 131-149:B d

Inwq 310-335:A d 310-335:C d

lnyh 1285-1337:A a 1285-1337:B a

lo51 109-126:A a 109-126:B a

lo9c 59-76:A a 85-102:A a

lomi 1110-1127:A a 2110-2127:B a

lorj 1019-1037:A d 1103-1121:A d

lov9 22-39:A a 22-39:B a

lp15 1274-1341:A d 1274-1341:S d

1q05 88-105:A a 88-105:B a

1q06 84-109:A d 84-109:B d

1q08 86-111:A d 86-111:B d

lqp9_1 107-124:A a 107-124:B a

1qsd 13-37:B a 48-72:B a

lqvrl 1 399-417:A d 435-453:A d

1qz2 404-422:A d 404-422:B d

Ir6f 153-171:A d 284-302:A d

1r6t 9-26:A a 36-53:A a

lr7j 66-90:A a 66-90:B a

lrq0_2 435-452:B a 462-479:B a

Islc 992-1009:X a 992-1009:Y a

1s4b 164-181:P a 252-269:P a

ises 30-47:B a 80-97:B a

lt3j 688-726:A a 688-726:B a

lt6f 2-33:A a 2-33:B a

ltjl_1 41-65:A a 82-106:A a

1tu3 2 807-832:H d 807-832:I d

ltu3 3 811-835:J a 811-835:B a

ltwf 245-262:C a 88-105:K a

luii 99-145:A d 99-145:B d

luuj_2 58-75:C a 58-75:D a

lvp7_1 55-73:A d 55-73:B d

Iwle 75-93:A d 128-146:A d

1wlq_l 96-135:A d 96-135:B d

1wu9 193-224:A a 193-224:B a

1x03 212-244:A d 212-244:B d
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1x75 366-384:B d 474-492:B d

lxd4 2 205-223:B d 249-267:B d

lxnp 127-152:A d 134-159:B d

lybz 4-35:A a 4-35:B a

lyf2 178-202:A a 388-412:A a

lyf2 178-195:B a 395-412:B a

lyhn 248-272:B a 248-272:C a

lyke_1 175-192:A a 94-111:B a

1z0j 736-753:B a 762-779:B a

Izik 2-26:A a 2-26:B a

Izil 2-26:A a 2-26:B a

lzke 1 5-22:A a 55-72:A a

lzme 76-93:C a 76-93:D a

lzpy 23-41:A d 53-71:A d

2b5u 333-372:C d 393-432:C d

2bde 340-358:A d 380-398:A d

2br9 53-70:A a 79-96:A a

2btp 48-66:A d 79-97:A d

2d4c 1 216-241:A d 223-248:B d

2d4x 70-94:A a 233-257:A a

2d8e 5-36:A a 5-36:B a

2e7s 4 52-69:G a 52-69:H a

2esh 90-115:A d 90-115:B d

2etn 3 19-36:C a 48-65:C a

2fxo 2 845-905:C d 845-905:D d

2fxo 2 912-957:C a 912-957:D a

2gau 124-148:A a 124-148:B a

2h7v 2 562-580:D d 590-608:D d

2hg4_1 16-33:A a 16-33:B a

2h15 200-224:A a 200-224:B a

2hld 1 3-34:G a 227-258:G a

2iw5 421-445:A a 335-359:B a

2jdi 3-20:G a 236-253:G a

2ncd 314-345:A a 314-345:B a

2nov 1 361-379:A d 435-453:A d

2o98 907-924:P a 907-924:C a
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2ocy 69-87:A d 69-87:B d

2pah 430-447:A a 430-447:C a

bbz2_C EBPbeta+44_CEBPalp

ha* a a

bbz3 CEBPgamma+35_ATF4

* d d

bbz4_ATF_7+55 MAFK* a a

bbz5_ATF_2+10 FOS* a a

bbz6 CREBPA+28 JUN* a a

bbz7 ATF 1+52 CREM* a a

bbz7 ATF 1+7 ATF 1* a a
* Sequences taken from previously published bZIP interaction data.36 Strandl loc and Strand2 loc indicate the
residue numbers and chain for the first and second helix of the coiled coil. Strandl_hep and Strand2_hep indicate
the first heptad position of the first and second helices, respectively.

parallel
antiparallel

II I ii ý I I
0 0.5 1 1.5 2 2.5

BackboneRMSD of Closest Template to the Crystal Structure

Figure 4-1: Distribution of the backbone RMSD (N, Cco, and C atoms) for the native crystal structures in the test set
to the closest ideal structure in the backbone sets. For every example, an idealized model with an RMSD of less than
1.8 A was available for selection as a template.

positions, thus using structural information implicitly. We refer to the two different types of

approaches as ESMs and ISMs, for explicit or implicit structural models, respectively.

These two classes of models have different strengths and weaknesses. The ISMs are

much faster to evaluate and can easily incorporate experimental data about relevant heptad pairs

and interaction energies. However, they make strong assumptions about the independence of
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pair-wise interactions and may obscure potentially significant details of atomic interactions

necessary for modeling orientation specificity. ESMs provide advantages for analysis and

interpretation of the physical basis of the overall interaction. Finally, ESMs are more

generalizable in that they can potentially be applied equally to any structure; ISMs must be

created specifically for the structure to be modeled.

Performance of explicit-structure models

Predicting helix orientation using ESMs involved three steps: (1) generating large

numbers of parallel and antiparallel dimer backbones, (2) modeling each sequence pair on each

backbone, and (3) selecting the lowest-energy model. The first step was carried out using the

coiled-coil parameterizations described above. The second step was carried out using Rosetta, or

a combination of Rosetta and CHARMM (see below). 43-45 The third step gave rise to differences

between models, with each ESM named according to the energy function used at this stage.

In a preliminary set of calculations, we tested two structure-prediction methods for use in

step 2. Initially, Rosetta was simply used to place side chains into preferred conformations on

each of 81 parallel and 120 antiparallel idealized Crick backbones. When Rosetta was used to

select the lowest-energy structure and orientation for each pair of sequences (corresponding to

step 3), this procedure predicted the orientation of 42/61 parallel sequences and 48/70

antiparallel sequences correctly. In the second approach, all Rosetta-repacked backbones were

relaxed via minimization using the CHARMM paraml9 force field.45 Rosetta evaluation of these

relaxed structures gave strikingly better results, improving the prediction rate to 50/61 (82%) of

parallel sequences and 57/70 (81%) of antiparallel sequences. The performance of these models

is shown in Figure 4-2a (left panel). Results are plotted as the fraction of antiparallel sequences
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Figure 4-2: Parallel vs. antiparallel discrimination performance of different methods. The fraction of antiparallel
structures correctly predicted is plotted versus the fraction of parallel structures correctly predicted. Curves were
generated by varying Ecut = EAp - Ep. A structure was predicted to have an antiparallel orientation if the energy of
the antiparallel state was lower than that of the parallel state plus Ecut. If this energy was higher, the orientation was
predicted as parallel. Ecut = 0 denoted by black dot. (a) Comparison of ESMs. At left, a comparison of Rosetta
evaluated on structures without (repacked only) or with structural relaxation. At right, all candidate ESMs evaluated
using relaxed structures. (b) Comparison of ISMs. At left, candidate ISMs including NULL control; at right, several
variants of the RISP model. (c) Comparison of best ESM and ISM models. (d) Comparison of the performance on
the test set (red) and the performance when hetero- and homodimer results are weighted equally (green). Clockwise
from top left, the panels are for RISPstut, RISPcore, CE and RISPcc.
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predicted correctly vs. the fraction of parallel sequences predicted correctly. Because including

minimization in step 2 significantly improved performance, this protocol was adopted in all

remaining calculations, for all ESMs. Using this approach, the predicted structures for the correct

orientation provided a good approximation of the real structures, with backbone RMSD values in

the range 0.4-2.2 A (all but 7 within 1.5 A) and X-angle recovery rates only slightly lower than

can be achieved on the native backbone (Table 4-3).

Models GK, FoldX, DFIRE and RISP used different potentials to select the lowest-

energy structures. Model GK, developed by Grigoryan et al., 18 is based on the CHARMM

paraml9 force field45 and includes van der Waals interactions and a combination of EEF1

desolvation 46 and generalized Born screening of electrostatic interactions. This model previously

showed good performance predicting coiled-coil binding partners. 18 GK describes similar

physical terms to those captured by Rosetta, but it is more physical, with no statistical terms or

empirical weighting. It performed slightly less well on orientation prediction than Rosetta. FoldX

is a scoring function developed by Guerois et al.47 It consists of physically descriptive terms

weighted to predict experimental mutation free energies of primarily large-to-small mutations. Its

performance was intermediate between that of Rosetta and GK (Figure 4-2a).

DFIRE and RISP are statistical potentials derived from the frequencies of interactions in

the PDB.48 They were applied to coiled-coil structures by scoring pairs of atoms or residues that

met certain criteria. DFIRE is an atom-based potential that has been reported to predict protein-

protein complex affinities accurately from experimental structures. 48 On our orientation-

prediction test, it performed slightly worse than GK. RISP is a Residue-based Interfacial

Statistical Potential consisting of 210 weights for scoring pairs of inter-chain residues that fall
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Table 4-3: Chi angle recovery of repacked structures

Repacked Crystal Structure Lowest Energy Ideal Structure

Antiparallel Core Residues 0.69 ± 0.14 0.60 ± 0.14

Antiparallel Edge Residues 0.60 ± 0.18 0.55 ± 0.16

Antiparallel other residues 0.55 ± 0.15 0.52 + 0.15

Parallel Core Residues 0.68 ± 0.12 0.61 + 0.097

Parallel Edge Residues 0.56 ± 0.14 0.52 ± 0.13

Parallel other residues 0.56 + 0.11 0.53 0.11

Values shown are for average repacking performance. This is defined as the fraction of y1 and X2 angles recovered
(within ± 400), evaluated on the native crystal structure or the lowest-energy repacked structure as evaluated by
Rosetta on relaxed structures. Chi angle recovery broken up by core (a or d), edge (e, g) and the remaining other
residues (b, c and f).

within a distance cutoff; it is very similar to the residue-based potential developed by Lu et al.49

Applied to the relaxed structure set as RISPstruct, it performed relatively poorly (Figure 4-2a).

To address test-set bias, we approximated the performance expected if there were equal

proportions of homo- and heterodimers in the parallel and antiparallel test sets. This was done by

calculating the average performance on homodimeric and heterodimeric examples, weighted

equally, for each orientation class, at each Ecut value (Ecut is defined in Figure 4-2). Figure 4-2d

shows that RISPstruct was quite sensitive to this adjustment. This potential favored homodimers,

and some of its success in predicting parallel structures was a result of this bias. The DFIRE,

Rosetta, FoldX and GK potentials, on the other hand, performed similarly in the two tests.

Performance of implicit-structure models

In our ISM models, the energy of a structure is expressed as a sum of contributions from

pair-wise residue interactions. The models differ from one another in the choice of pairs and/or

the weights assigned to them. Our selection of residue pairs took advantage of the known heptad

register of the test-set structures. Heptad assignments for coiled-coil sequences with unknown

structures can be made using programs such as Paircoil. ' 3 We considered only interactions
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among the a, d, e, and g residues that make up the coiled-coil dimer interface. A summary of the

notation and residue pairs for all ISM models is shown in Table 4-4. To approximate the

RISPtct method using an ISM, we scored seven pairs involving residues that commonly satisfy

the RISPstruct distance cutoff. These pairs were assigned their RISP weights, giving method

RISPcc-all. Like RISPstruct, RISPcc-all did not perform very well (Figure 4-2b). Interestingly,

however, when we scored only 5 types of interactions for each coiled-coil orientation, giving

model RISPcc, the performance was much better and rivaled that of the best ESM methods

(Figure 4-2c). The pairs in RISPcc include those that have been described many times as being

important for coiled-coil associations (i.e. a-a', d-d' and g-e' for parallel 50-53 and a-d', g-g' and

e-e' for antiparallel 54) as well as core-to-edge terms (g-a' and d-e' for parallel and a-e', d-g' for

antiparallel) that have been investigated in some systems and that were previously predicted to

be important. 18' 55' 56 Further reduction of the number of pairs, i.e. using only core a-a', d-d'

(parallel) or a-d' (antiparallel) pairs, giving model RISPcore, or only edge g-e' or g-g' (parallel) or

e-e' (antiparallel) pairs, giving RISPedge, degraded performance (Figure 4-2b).

Given the success of model RISPcc, we tested model CE. This model includes the same

heptad-position pairs, but draws weights, where possible, from experimentally reported

interaction energies. These include weights for a-a' and g-e' interactions in the parallel

orientation, taken from coupling energies measured in the Vinson laboratory. Weights for a-d'

interactions in the antiparallel orientation were taken from measurements by Hadley et al.57 This

model also did well, despite the limited number of available measurements (Figure 4-2b). The

performance of two control models is also shown in Figure 4-2b. Model ELEC scores only the e-

and g-position electrostatic complementarity and did not provide good parallel vs. antiparallel
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Table 4-4: Summary of pair terms used in ISM models

Model Parallel Antiparallel

ELEC g-e' g-g' e-e'

CE a-a' g-e' a-d' g-g' e-e'

RISPcore a-a' d-d' a-d'

RISPedge g-e' g-g' e-e'

RISPcore,edge a-a' d-d' g-e' a-d' g-g' e-e'

RISPcc a-a' d-d' g-e' g-a' d-e' a-d' g-g' e-e' a-e' d-g'

RISPCC-all a-a' d-d' g-e' g-a' d-e' a-d' d-a' a-d' g-g' e-e' a-e' d-g' d-d' a-a'

A prime (') designates a residue on the opposite helix. All interaction pairs listed involve structurally adjacent sites
on opposite helices. For edge interactions where there may be some ambiguity as to what pair is indicated, the
interactions are as follows: g-e' pairs in parallel coiled coils are between a g residue and the e residue of the next
(more C-terminal) heptad of the opposite helix; in antiparallel coiled coils g-g' pairs are between a g residue and the
g residue of the previous (more N-terminal) heptad of the opposite helix and e-e' pairs are between an e residue and
the e residue of the next (more C-terminal) heptad of the opposite helix.

discrimination. We also illustrate the performance of a null model in which weights were

assigned to the restricted set of pairs randomly.

Of the ISM models, RISP,,re and CE showed significant amounts of homodimer bias, i.e.

their performance was worse when we weighted the homo- and heterodimer results equally

(Figure 4-2d). For RISPcore, this effect came from more favorable weights for a-a' and d-d'

homotypic interactions than heterotypic interactions. This bias was somewhat surprising, as the

RISP energy function was designed to minimize such effects by excluding cases where a residue

interacts with a symmetry-related copy of itself in the training set. Increasing the number of pair

terms to make the RISPcc model, e.g. by adding edge and core-edge interactions that occur

between positions not related by symmetry, diluted this effect, and the overall bias decreased

(Figure 4-2d). The CE model is based on a much smaller number of terms than the RISP models,

and so homodimer bias here is likely a result of the unequal numbers of weights available for

scoring homo vs. heterodimers.
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Analysis

The performance of all methods on all examples indicates that some structures are easier

to predict than others. For 23 dimers (18%), all 8 methods predicted the correct orientation, and

for 74 dimers (56%), at least 6 out of 8 methods were correct. Seventeen structures (13%) were

predicted correctly by three or fewer methods. Some of the examples that are rarely predicted

correctly may contradict our assumption that the PDB reflects the structure that coiled-coil

fragments would adopt in isolation. For example, 10V9, VicH H-NS histone-like protein,

consists of an antiparallel coiled coil flanked by N-terminal swap domains that pack against it;

any influence on helix orientation from these domains was not considered in our models.

Another example is 1X75, DNA gyrase subunit A, in which an intramolecular antiparallel coiled

coil is packed against a large structured loop. Again, structural elements that we did not model

may contribute to the observed orientation.

The various prediction methods work very differently, as is evident when comparing their

performance on subsets of the test complexes. Figure 4-3a clusters both methods and examples

by the similarity of predicted orientation preferences. Classifying all methods as statistics-based

(DFIRE, RISPstruct and RISPcc), knowledge-based (ELEC, CE) or pseudo-physical (Rosetta, GK,

FoldX) shows that the knowledge-based potentials are least similar to the other methods and also

not closely related to one another. The simple ELEC model had poor performance overall

(Figure 4-2b). Figure 4-3a shows that much of this poor performance resulted from the model's

frequent failure to make a prediction (gray boxes), due to equivalent attractive and repulsive

charge-charge interactions in both orientations. There are also examples where ELEC made a

strong, yet incorrect, prediction. Model CE performed much better than ELEC; in overall
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Figure 4-3: Overview of prediction performance and component analysis. All predictions were made using Eut = 0.
(a) Predictions clustered by method and example. Color (red: parallel, blue: antiparallel) denotes orientation
prediction, and intensity (bright to dark) corresponds to the score of that prediction (AE), binned into deciles, where
darker color indicates low rank (AE close to zero). CRYSTAL column denotes orientation in the x-ray structure. (b-
e) Prediction results for subsets of sequences, re-clustered. Color scheme as in (a). CRYSTAL column denotes
known orientation. Remaining columns are energy terms contributing to overall orientation predictions for the best
ESM and ISM methods. Terms favoring parallel orientation are red; those favoring antiparallel are blue. Intensity is
in units of sigma (standard deviation of all energy components on all test sequences for a given prediction method),
capped at 2.5 C. In (b-e), energy terms are shown for examples with: (b) the largest absolute magnitude Rosetta
Erep, (c) the largest absolute magnitude Rosetta Eatr, (d) the largest FoldX electrostatic components, and (e) paired
a-a' Asn residues in the parallel orientation. N indicates that the sequence pair contains Asn at one or more a-a'
positions in the parallel orientation; I indicates that the sequence pair contains an Ile pair at d-d' in the parallel
orientation. FoldX, Rosetta, and GK energy components are described further in the Methods and in Table 4-5.
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prediction rate it was similar to the very good RISPcc (also an ISM). Yet, the clustering in Figure

4-3a shows that CE is not at all similar to the other ISMs in terms of how orientation is assigned

for specific sequences. This is understandable, as CE and RISP are based on completely different

methods of deriving pair-wise scoring weights (experiments vs. PDB frequency analysis).

Comparisons of ELEC, CE, and RISPcc further illustrate how three types of terms (edge

interactions involving e and g positions, core interactions involving a and d positions, and core-

to-edge interactions) are all important (Figure 4-4a). The inclusion of these heptad-position pairs

in RISPcc (absent from ELEC or CE) help to account for its better performance. Finally, it is

interesting that the RISPstruct and RISPcc methods cluster quite tightly, despite significant

differences in their prediction performances, underscoring their basis in the same contact

potential.

Differences among the structure-based methods can be dissected using component

analysis, which potentially offers insights into physical determinants of helix orientation. For 5

methods (the ISMs CE and RISPcc and the ESMs FoldX, Rosetta and GK), we broke the

predicted energy differences into their component terms for all of the examples in the test set.

Figures 3b-e show subsets of these (all examples are included in Figure 4-4b). For the ESMs, we

also examined the predictive power of individual components, as well as the co-variation of

individual energy-term differences with the total parallel vs. antiparallel energy difference. These

data are summarized in Figure 4-5 (descriptions of components are included in Table 4-5).

Figure 4-5 panels a-c illustrate the contributions of different energy terms to prediction

performance. The prediction accuracy of each important term when used alone is shown, along

with the effect of removing terms individually from the total energy. The Rosetta terms Eatr and

Erep, which together give the total van der Waals energy, gave reasonable prediction
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Figure 4-4: Component analysis of ESMs and ISMs. Methods and components are as in Figure 4-3. (a) ISM
methods. Sequences are grouped (from top to bottom) as follows: correct with all three methods, incorrect with
ELEC only, incorrect with ELEC and CE only, incorrect with all three methods. Remaining groups contain
sequences not in the other groups. This figure illustrates the value of including all pairs in RISPcc. (b) ESM
methods, with color scheme and magnitudes as in Figure 4-3.
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Figure 4-5: Energy component contributions to performance. (a-c) The performance of each component or sum of
components was considered alone (Only) or was excluded from the total (All But). The lower axis shows absolute
performance and the upper axis shows performance relative to the total energy. (a) Rosetta components as described
in the methods with Total VdW including Eatr + Erep, and Total Elec + Sol including Epair + Esol. (b) GK energy
components as described in the methods with Total VdW including VdWatr + VdWrep, and Total Elec + Sol
including GB + EEF. (c) FoldX energy components as described in the methods with Total Elec including Elec +
HDipole + Eleckon, Hbond including SideHbond + BackHBond, Total VdW including VdW + VdWclash and Total
Elec + SolvP including Elec + HDipole + Eleckon + SolvP. (d-f) Histograms illustrating how different components
of the energy functions co-vary with the overall predicted Eparaei - Eantiparallel values. Only energy terms with strong
covariances are shown. Covariance for all sequences is shown in black, for sequences predicted to be parallel in
gray, and for sequences predicted to be antiparallel in white. (d) Rosetta components are the same as in (a). (e) GK
energy components are the same as in (b). (f) FoldX energy components are the same as in (c) with TotElec the
same as Total Elec.
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Table 4-5. List of ESM energy components

Rosetta Energy Components
Eatr Lennard-Jones attractive term

Erep Linearized Lennard-Jones repulsive term

Esol Lazardis-Karplus solvation model EEF1

Edun Rotamer preference from Dunbrack library

Ehbnd Hydrogen bonding

Epair Statistical-based pair term

From Rosetta documentation

FoldX Energy Components
VdW Surface area based VdW contributions of all atoms with

respect to the same interaction in solvent
VdWclash Steric overlap between atoms
Elec Electrostatic contribution of charged groups
HDipole Electrostatic interaction with helix dipole
Eleckon Electrostatic contribution between chains associated with

the kon rate.69

SideHbond Side chain hydrogen bonding
BackHbond Backbone hydrogen bonding
SolvP Surface area based solvation energy of polar groups
SolvH Surface area based solvation energy of hydrophobic groups
EntropySC Side-chain entropy
EntropyMC Main-chain entropy
From FoldX documentation and references 4 and 7o

GK Energy Components
Eatr Lennard-Jones attractive term
Erep Lennard-Jones repulsive term
GB Electrostatics with Generalized Born screening
EEF Lazardis-Karplus solvation model EEF1
From reference 18

performance when used alone (73%). Although the Rosetta electrostatics terms were poorly

predictive in isolation, they significantly enhanced overall performance (removing them reduced

performance from 82% to 76%). Interestingly, FoldX relied much more on a single type of term.

The electrostatics term alone gave 73% prediction performance (just 3% below that of the FoldX

total energy). Removing this term from the total energy reduced performance to 63%. The GK

model is more similar to Rosetta than to FoldX, although it describes a more important role for

electrostatics than Rosetta does. Interestingly, omitting the repulsive van der Waals energy

contribution from the total energy had little effect on the performance of any of the models.
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Note, however, that repulsive van der Waals terms were included when selecting the most

appropriate backbone structure, and may contribute significantly in this way.

The strong predictive ability of the Rosetta van der Waals energy and the FoldX

electrostatics terms suggests that these complementary descriptors could possibly be combined to

give a better-performing model. However, we observed that linear combinations of these two

terms performed worse than Rosetta on the test set. Extensive fitting of multiple terms to give

optimal performance is not appropriate, given that the limited size of the test set restricts our

ability to do rigorous cross-validation testing.

Co-variation is another way to assess which energy terms are most important for making

predictions. Seeking physical insights, we used this approach to explore whether component

terms contribute differently to the total energy depending on whether the final prediction is

parallel or antiparallel. For both Rosetta and GK, the van der Waals energy terms co-varied

strongly with the total energy (Figures 4d and e). The largest contribution came from the

repulsive term, and interestingly, steric clashes were more important for examples predicted to

be antiparallel than for those predicted to be parallel. Other Rosetta and GK terms, including

those that describe electrostatic and solvation contributions, were smaller and exhibited less

dramatic differences between parallel and antiparallel predictions. The FoldX electrostatic terms

co-varied to a significant extent with the total energy (Figure 4-5f), consistent with the analysis

of Figure 4-5c. However, the FoldX energy terms that differed most between parallel and

antiparallel predictions were the van der Waals energy (VdW), solvation terms (SolvP and

SolvH) and side-chain entropy contribution (entropySC); these each showed stronger co-

variation with the total energy for parallel predictions than for antiparallel. The observations for

all three energy functions described above are consistent with parallel structures being packed
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more tightly than antiparallel, such that van der Waals interactions are more attractive, side-chain

motions are more restricted, desolvation is greater, and clashes are more likely in the parallel

orientation.

Figure 4-3 panels b-e further emphasize differences between the methods and also

support the characterization of parallel and antiparallel structures suggested by the co-variation

analysis. Figure 4-3b illustrates cases where differences in steric repulsion between parallel and

antiparallel structures were important, as reflected by a large magnitude for the Rosetta Erep

term. The GK model also recognized an effect from repulsive van der Waals interactions for

these examples. All but one of the cases with large Erep terms were predicted to be antiparallel

by Rosetta and GK, most of them correctly so. Further analysis revealed that 11 out of 13 such

examples, including 2 incorrect predictions, had Ile residues paired at d-d' positions in the

parallel structures; this is an interaction that is known to lead to unfavorable sterics for some

well-studied parallel coiled-coil dimers.5 1'58 The examples in Figure 4-3b were treated differently

by FoldX, RISPcc, and CE than by Rosetta and GK, as is expected because the former energy

functions do not include a strongly repulsive steric term. Despite this, RISPcc and FoldX

performed well on these structures. These methods capture the influence of poor packing due to

steric clashes using other terms, in an overall balance that gives correct results.

Because steric clashes involving Ile residues are a candidate motif for determining

orientation, we examined all such examples in the test set. There are 18 complexes in which two

Ile residues were paired at d-d' when modeled in the parallel orientation. Rosetta correctly

predicted 10 out of 10 of the antiparallel coiled coils, and only 3 of 8 of the parallel. Notably, all

8 of these parallel-orientation paired Ile residues are in terminal heptads. From the crystal

structures, it is clear that the helices often fray slightly towards the ends of the supercoil to
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accommodate these [-branched residues (Figure 4-6). Such fraying is not included in our

idealized backbone models. To compensate for this, we tested models in which each coiled-coil

heptad, or each residue, contributed its minimum energy when evaluated over all backbones.

This provided a way for the radius of the supercoiled bundle to effectively vary, potentially

accounting more accurately for the local context of key interactions. However, this did not

improve overall performance. FoldX, which does not contain a strong repulsive term, did slightly

better at predicting these structures, with 5 out of 8 parallel structures predicted correctly but

only 9 out of 10 antiparallel structures correct.

Figure 4-3c highlights examples where there was a substantial difference in the Rosetta

attractive van der Waals component between the parallel and antiparallel states. In these

examples, this component favored the parallel orientation most of the time and indeed,

complexes with large values of this term were mostly parallel. Similar patterns are seen in the

CE and RISPcc COREatr terms, in the FoldX VdW and SolvH terms and, to a lesser extent, in

the GK Eatr term. Favorable packing was offset in most models by solvation penalties,

presumably because polar residues were more buried in better-packed structures. Thus, clear

preferences for the antiparallel structure showed up in the FoldX SolvP and Rosetta Esol terms

for examples in this panel, and, to a lesser extent, in the GK EEF term. These trends support a

model where closer packing and more burial (both favorable hydrophobic burial and unfavorable

polar burial) can be achieved in the parallel orientation relative to the antiparallel orientation.

Differences in electrostatics between orientations were predicted to be important by some

models. For FoldX, electrostatics terms co-varied most strongly with the total energy (Figure 4-

5f). Figure 4-3d shows examples that had large contributions from FoldX electrostatics (Elec,

HDipole and Eleckon); these terms more often favored antiparallel structures. The GK potential
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Figure 4-6: Distribution of Ca-C, distances for core residues in parallel and antiparallel coiled coils. All Ca-Ca
distances between core residues (a-a', d-d' in parallel and a-d' in antiparallel) were binned by distance. For the test-
set structures, residues were divided into two sets: Central heptads (black) include positions that are not among the
first or last seven residues of a coiled-coil helix, and terminal heptads (gray) include residues that are among the first
or last seven in a coiled-coil helix. All core positions of the ideal backbone set are binned together and shown in
white.

also showed some of the FoldX trends for these examples, but the overall importance of

electrostatics relative to other terms was reduced. Finally, electrostatics contributed very little to

the Rosetta potential, which uses a combination of a statistically derived term (Epair) and an

orientation-dependent hydrogen bond term (Ehbnd) to account for electrostatic effects.

Figure 4-5d shows a preference for parallel coiled coils in the Rosetta hydrogen-bonding

term, which we suspected could include a contribution from Asn residues. A preference for

paired, hydrogen-bonding Asn residues at a-a' positions in parallel coiled coils has been well

documented and described as a determinant of coiled-coil orientation and alignment. 11,12 ,21 We

explored whether this effect was evident in our data. Among all 131 sequence pairs tested, there

were 28 examples where two Asn residues could be paired at a-a' sites in a parallel model. Of

these, 27 were from parallel structures and only one was from an antiparallel structure (Figure 4-
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3e). At least in our test set, therefore, the potential to pair Asn residues at a-a' is a strong

indicator of a parallel orientation. This is recognized by models CE and RISPcc. CE includes a

strong preference for Asn-Asn pairing, as determined experimentally, 5 3 and its influence was

clear in the CE COREatr term. RISPcc also assigns a favorable weight to this term, reflected in

its COREatr term. However, the structure-based prediction methods did not show a strong

energy component pattern typifying paired Asn groups. No single term dominated the

predictions for these structures, although many seemed to be determined by more favorable

packing in the parallel than in the antiparallel orientation. Further analysis at the residue level

using Rosetta revealed that Asn hydrogen bonding favored the parallel state for only 16 out of 27

parallel examples, and the total energy of Asn residues at paired a-a' positions favored the

parallel state in only 14 out of 27 cases. Nevertheless, 23 of 27 parallel dimers containing a pair

of Asn residues were predicted correctly by Rosetta, similar to the performance on all sequences.

Thus, although Asn pairs at a-a' positions correlate strongly with a parallel orientation in the test

set, the Rosetta method did not rely heavily on this interaction to make correct predictions. This

is consistent with previous observations by Grigoryan et al. 18 that the experimental preference for

Asn-Asn over Asn-Val a-a' pairs in coiled-coil dimers is difficult to capture using these types of

methods.

Confidence

To explore whether the predicted energy differences between parallel and antiparallel

models can be used as a measure of confidence, we modified our scheme such that a structure

was assigned as parallel (or antiparallel) only if the absolute energy difference |Eantiparallel -

Eparalleil was greater than some cutoff. Increasingly stringent cutoffs left larger numbers of test set
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Figure 4-7: Performance as a function of increasing the gap requirement. Performance was evaluated only for those
examples with lEparallel -Eantiparallell > x*cy and is plotted (thick lines, left axis) as a function of x. The size of the
test set at each value of x is plotted using thin lines and the right axis.

examples unclassified. Figure 4-7 illustrates the tradeoff between performance and the number of

classifiable structures. For the three best-performing methods, the number of predicted structures

falls off quickly as performance improves. A gain of 10% prediction accuracy requires predicting

between 40-60% of the test set as "unknown". Thus, although it is possible to improve the

confidence of the predictions by imposing a larger energy gap, this comes at a very severe

penalty.

Discussion

Our results illustrate that coiled-coil helix orientation prediction is not a trivial problem.

Standard methods, applied either at the sequence or structure level, do not give good

performance. Nevertheless, refinement of these approaches can provide effective predictors. For

our ESMs, we found that allowing structural flexibility was important. To increase the

probability that an appropriate backbone was available for each complex, each dimer was

modeled on 120 different parallel and 81 different antiparallel templates. This was critical;
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ultimately 52 parallel and 44 antiparallel backbones were used to construct the minimum-energy

structures of both orientations for the 131 complexes modeled. Although we found in post-

analysis that a much smaller set of backbones could provide the same total prediction

performance, it would have been difficult to determine in advance which scaffolds these should

be. Thus, although it may be possible to capture backbone variability more efficiently than we

have done here (e.g. by using a better-targeted backbone library or some different approach), we

have found that it is important to model flexibility to achieve good results. We also found that

small amounts of structural relaxation following rigid-backbone/rotameric side-chain repacking

were important. Comparing the performance of Rosetta on ideal vs. minimized backbones

(Figure 4-2a) illustrates the significance of energetically costly clashes that can be removed

relatively easily with minimization.

Analysis of the complexes for which ESMs gave incorrect predictions suggested that our

models do not yet include sufficient structural plasticity. In particular, we found that our parallel

dimer models cannot accommodate pairs of Ile residues at d-d' positions. This is consistent with

earlier observations by Harbury et al. that P-branched residues confer a preference for trimers or

tetramers over dimers when located at the d position of parallel homo-oligomers. 13 In native

parallel structures, relatively rare Ile residues at d positions towards the end of the coiled-coil

chain are accommodated by fraying of the ends (Figure 4-6). In contrast to this, the backbones on

which we modeled these coiled coils were uniform over the length of the sequence.

Incorporating greater local structural variation may be important for improving performance in

the future, although our attempts to approach this in a systematic way have not succeeded so far.

For now, knowledge that the structure-based methods can fail in cases where there are terminal-

heptad 13-branched clashes can guide appropriate use of these methods.
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In the absence of more structural sampling, softening the steric repulsive term is a way to

approximate structural variability. However, it is not easy to modify the ESMs to accommodate

small clashes, because such clashes can be important for determining the correct helix

orientation. For example, softening the repulsive terms in Rosetta or GK to accommodate Ile

pairs at terminal d positions may prevent the proper identification of clashes elsewhere.

Interestingly, FoldX lacks such a rigid repulsive term, yet is still able to correctly predict the

orientation of many sequences that contain these paired residues (Figure 4-3b). Overall, our

analyses support a model in which packing constraints are more demanding on parallel than on

antiparallel backbones. Features of this model are captured differently by different methods.

Models that include steric repulsion use this to predict that certain structures are antiparallel. Yet

models that lack these terms can nevertheless recognize better packing in other ways. For FoldX,

energy decomposition shows a role for the surface-area based van der Waals and hydrophobic

solvation terms in favoring parallel structures. However, for sequences with large clashes (as

assessed by Rosetta Erep differences), the preference of these terms for the parallel state is

reduced or even reversed (Figure 4-3b). This illustrates that despite a lack of explicit steric

repulsion, FoldX can still recognize poor packing that arises in structure prediction of the

incorrect orientation.

The models used here, although all quite successful for the task of prediction, do not

reach a significant consensus about what sequence features and energy terms are most critical for

specific cases. RISPcc, FoldX, and Rosetta are based on different sets of assumptions, and each

model includes many parameters that are not derived rigorously from physical principles. GK is

a more physical model, and although it may be more informative in component analysis, it did

not perform quite as well. Thus, although structure-based models supposedly work by accurately
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capturing physical phenomena, the large extent to which they differ in their particulars here

leaves this premise in doubt (Figures 3 and 4). Our results suggest that despite good

performance, caution should be observed when attempting to gain physical insight from

individual energy terms in structure-based, yet highly parameterized, calculations. This is

especially true given that these methods are optimized to recapitulate native structures and

mutational energies, rather than to reproduce individual physical components.

Testing of various ISMs also led to interesting results. The performance of these methods

was very sensitive to the choice of interfacial pairs that were scored. In particular, scoring all

pairs of residues that satisfied a 4.5 A distance cutoff in explicitly modeled structures was not

effective (model RISPstct). Scoring all pairs of residues that could potentially be within 4.5 A,

based on sequence and known coiled-coil dimer structures, was also not effective (model

RISPcc-all). Strikingly, however, when just 5 types of pairs were included for each orientation,

performance was very good (RISPcc). The key pairs included those that have been highlighted

by many biochemical experiments over the past 10-15 years. In particular, Vinson and

colleagues have quantified contributions of a-a', d-d' and g-e' pairs in parallel bZIP coiled

coils, 50 -53 and there is an approximate structural correspondence between these and the a-d', g-g'

and e-e' pairs of antiparallel coiled coils, which have been less investigated.54 The core-to-edge

terms (g-a' and d-e' for parallel and a-e', d-g' for antiparallel) provide a slight but detectable

improvement in performance (Figure 4-4a). Interestingly, including additional core-core terms

(a-d' in parallel or a-a', d-d' in antiparallel structures) significantly degraded performance,

despite recent observations by Hadley et al. that these can be significant in some antiparallel

structures. 59 These results suggest that fold-recognition techniques applied to protein complexes,

e.g. as are implemented in programs such as InterPreTS and Multiprospector, 60 -62 could be
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improved if strategies for identifying critical specificity-determining residues in different folds

were available. A significant disadvantage of some of the ISMs is that they exhibit a parallel bias

for homodimeric structures. It is unlikely that this preference has a physical justification, as it is

not supported by the best performing ESM models. Therefore, the use of ISMs to predict coiled-

coil orientation may be subject to systematic errors that favor structures in which residues

interact with adjacent copies of themselves. This effect is also likely to show up in other related

ISM applications.

Our results illustrate that several different types of computational approaches are capable

of discriminating parallel from antiparallel coiled-coil helix alignments with reasonable

accuracy. By far the most efficient of these are the sequence-based methods, which are easily

scalable to evaluate candidate interactions at the proteomic scale. Structure-based methods are

less prone to biases, however, and these methods could also be scaled up for some types of

applications. Our recently developed cluster-expansion methodology, in which a simple

expression for energy as a function of sequence can be fit to the results of more expensive

calculations, is a promising way of approaching this problem. 63' 64 However, significant

challenges remain before accurate tertiary/quaternary annotation can be provided for novel

coiled-coil sequences. Techniques must be developed that can recognize the correct set of

interacting helices and their appropriate stoichiometries. When sequences are of different

lengths, the correct axial alignment must also be selected. Our demonstration of helix-orientation

prediction in a rigorously chosen subset of examples represents an important and necessary

component of this larger-scale genomic annotation problem.
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Possible Future Directions

The work described above and in Chapter 2 has shown that one can capture the structural

deviation of parallel and antiparallel dimeric coiled coils using the extended Crick

parameterization method. The original Crick Parameterization method had been used to generate

higher order parallel coiled coils that have Cn symmetry about the superhelical axis. 23 The

extended method could easily be expanded to include any arbitrary number of helices in any

predefined orientation. However, even though any structure could be generated, identification of

the native structure space is currently limited by the few structural examples of higher-order

coiled-coils oligomers in the PDB. This could be overcome with further development of the

energy functions to better predict the native-like Crick parameters for coiled-coil sequences.

Another improvement would be to allow for local structural sampling throughout the

coiled coil when predicting structures and orientations. This could be included in several

different ways: The simplest approach would be to relieve some of the restraints on ends of the

coiled coils to allow for some amount of fraying. This could be managed by employing the Crick

constraint with variable force constants throughout the structure. Another method would be to

allow for differing coiled-coil parameters throughout the structure. These could be varied for

every heptad or even changed every Ca position. The minimization procedure could then use

these Ca positions to constrain the structure, as has been done previously.

A significant problem that still needs to be addressed is one of alignment prediction. In

the orientation prediction test described in this Chapter only parallel and antiparallel coiled coils

with maximal overlap were included. This left no ambiguity as to the alignment of both the

parallel and antiparallel state, i.e which sets of residues would be interacting. The ability to

predict the alignment for an arbitrary pair of sequences is still a difficult problem. Some work
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has been done on a related problem, partnering prediction. Here the goal is to predict the relative

binding affinity for a set of different partners. This problem has been explored for a set bZIP

coiled coils.'16 24 ,25 However, while the current methods are successful, it has not been shown that

methods for partner prediction will perform the same for alignment prediction. Moreover, these

tests have only been limited to a small class of parallel sequences. As the test-set of coiled coil

sequences becomes more diverse the accuracy of the models and the energy functions will need

to be much improved.

Methods

For descriptions of the coiled-coil database, Crick parameterization and generation of

Crick backbones, see Chapter 2.

Evaluation of structures

Sequences were repacked on 201 parallel + antiparallel rigid backbones using Rosetta

with default parameters and expansion of the first and second dihedral angles in the rotamer

library.44 The energy of these repacked structures was recorded to provide the Rosetta energy.

Repacked structures were then converted to CHARMM 19 atom types and minimized using

CHARMM with paraml9 EEF1 parameters and topology.45,46 The energy function used in

minimization included van der Waals; EEF1 solvation; distance-dependent-dielectric

electrostatics with dielectric constant of 4r; bond length, angle, dihedral angle, and improper

dihedral molecular mechanics energy; hydrogen bond energy; and the Crick user energy.

Minimization was done with 1000 steps of steepest decent followed by 1000 steps of adopted-
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basis Newton-Raphson. These minimized structures were then re-evaluated using five ESM

energy functions.

Energy functions - ESMs

All Crick-minimized backbones were evaluated with each ESM. The lowest energy

structure in each orientation was used to determine the energy difference. All structures were

held fixed during evaluation.

The Rosetta energy was calculated using the same energy function as for repacking. All

energy terms were included in the final score; however, the structure-independent reference state

canceled in the final analysis. Energy components labeled in the figures for Rosetta are: Eatr -

attractive van der Waals; Erep - repulsive van der Waals; Epair - statistical pair electrostatics;

Ehbnd - hydrogen bonding; Esol - solvation; and Edun - Dunbrack statistical energy.

Model GK uses the physical energy function described by Grigoryan and Keating.18

Briefly, the energy function consists of three terms. First, a van der Waals energy term includes

atomic radii from CHARMM paraml9. 4 5 Second, an electrostatics energy term combines

Coulombic interaction energy in a uniform dielectric of 4 with Generalized Born (GB) screening

to account for transfer into an external dielectric of 80 and an internal dielectric of 4. Perfect

Born radii for use in the GB formulae were calculated using PEP.65 Finally, a desolvation energy

term is included from the EEF1 function in CHARMM.46 Energy components labeled in the

figures for GK are: VdWatr and VdWrep - attractive and repulsive van der Waals; GB -

screened Coulombic interaction energy; EEF - EEF1 solvation component.

The DFIRE statistical potential was applied by using binding energies computed using

the dcomplex executable, as obtained from the Zhou lab.48
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The FoldX energy was calculated with FoldX version 2.5.2 obtained from the Serrano

laboratory. 47' 66 We used the "Stability" command with all options set to their default values. All

energy terms contributed to the final score. Energy components labeled in the figures for FoldX

are: VdW - van der Waals; VdWclash - van der Waals clash; Elec+HDipole+Eleckon - sum of

electrostatic, helix-dipole electrostatic and electrostatic kon; SideHBond+BackHBond - sum of

side-chain and backbone hydrogen bonding; SolvP - polar solvation energy; SolvH -

hydrophobic solvation energy; and EntropySC+EntropyMC - sum of side-chain and backbone

entropy.

RISP (Residue-based Interfacial Statistical Potential) was derived using the framework

outlined by Lu et al. 62 It was based on protein complexes from the QS50 database at

3dcomplex.org, 67 which consists of PDB entries filtered to exclude all complexes with greater

than 50% sequence identity. We further excluded all structures showing significant sequence

homology (BLAST E < 10-10) to structures in our coiled-coil test set. An interface between two

chains was defined as the set of all residues with any heavy atom within 4.5 A of the other chain.

Interfaces containing 5 or fewer residues were excluded. To reduce the observed bias of the

derived potential towards favoring homodimeric interactions, interfaces were excluded if they

contained two or more residues making contact with copies of themselves on other chains. The

final database consisted of 2,864 interfaces containing 105,287 residues. Pair-wise residue scores

were computed according to:

P(i, j) = -log N
o

bs , (4-1)
Nexp 1, j)

where Nobs(i, j) is the number of contacts observed between residues i and j in the training

database and Nexp(i, j) is the product of the mole fractions of residues i and j in the database

multiplied by the total number of residues in the database. This reference state performed better
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at orientation discrimination compared to a reference state based on the mole fraction of residues

occurring in solvent-exposed positions. 62 The RISP potential was applied to modeled coiled-coil

structures as a sum of pair-wise residue contact scores. Contacts were determined according to

the same criteria used in the development of the potential.

Energy functions - ISMs

A null control model (NULL) was developed by assigning random scores between +1

and -1 to all possible amino acid pairs at a-a', d-d', and g-e' (parallel) or a-d', e-e', and g-g'

(antiparallel) positions.

Model ELEC assigns all occurrences of g-e' (parallel) or g-g' + e-e' (antiparallel) E-R, R-

E, K-E or E-K pairs a weight of-1, while E-E, R-R, R-K, K-R, K-K, D-E, E-D and D-D pairs are

given a weight of +1.

The CE model is constructed using 48 experimentally determined coupling energies for

each orientation. For parallel coiled coils, coupling energies were obtained from references

Krylov et al. 50 and Acharya et al.52 For antiparallel coiled coils, we computed coupling energies

for a-d' residue pairs from the AG values of Hadley et al. as double mutant thermodynamic

cycles relative to alanine.5 7 Because no published data are available for antiparallel interactions

involving g and e residues, we applied the analogous values from the Krylov study to the

antiparallel pairs g-g' and e-e'.

To apply RISP to sequence data, we predefined pairs of heptad positions to be scored.

Different models included different pairs, as follows: RISP,,,re included core interactions: a-a', d-

d' (parallel) and a-d' (antiparallel) pairs. RISPedge included edge interactions: g-e' (parallel) and

g-g', e-e' (antiparallel) pairs. RISPcore,edge included the pairs in both RISPCore and RISPedge.
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RISPcc included all pairs from RISPcore,edge as well as the core-edge pairs g-a', d-e' (parallel) and

a-e', d-g' (antiparallel). Finally, the RISPall model further included the pairs d-a' (parallel) and a-

a', d-d' (antiparallel). These lists are summarized in Table 4-4. Energy components used in

Figure 4-3 for RISPcc are: COREatr/rep - all core-core interactions; EDGEatr/rep - all edge-

edge interactions; CEatr/rep - all core-edge interactions. Based on analyses of coiled-coil crystal

structures, RISPall corresponds to selecting all pairs with the potential to be in contact according

to the 4.5 A criterion used to develop RISP.
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Chapter 5

Sequence based evaluation of protein energies using multiple

backbones

Abstract

The introduction of backbone flexibility into discrete structural models has proved vital

in many different protein design applications. However, this increase in accuracy comes at the

cost of computational complexity. Previously, Grigoryan and co-workers introduced a method

for increasing the efficiency of protein design utilizing cluster expansion.1 ,2 This method allows

for the conversion of structure-based energies into sequence-based energy functions that permit

for a rapid speed-up in the calculations. Here cluster expansion is extended to include backbone

flexibility. Using two different design applications, cluster expansion is shown to be a better

predictor of structure-based energies for flexible-backbone models than for the corresponding

fixed-backbone models.

Introduction

The fixed-backbone approximation greatly simplifies protein design by reducing the

conformation search to a set of side-chain rotamers.3 This approximation has been used
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successfully for a number of computational protein design applications. 4-10 However, as discussed

in Chapter 1, the fixed-backbone approximation limits the design space to native-like

sequences.11 -1 3 This limitation was apparent in the Bcl-XL inhibitor design where all the sequences

designed on the crystal structure backbone clustered together (Figure 3-7). Also in this Figure, it

is shown that the size of the sequence space was enhanced by including backbone flexibility. 14-16

As discussed in Chapter 1, there are many different methods for incorporating backbone

flexibility that have been used in design. However, all of these methods suffer from the same

drawback, increased computational complexity.

A significant improvement in the search time in protein design was introduced by

Grigoryan and co-workers. 1' 2 They demonstrated that structure-based energies could effectively

be translated into a sequence-based function using a technique called cluster expansion (CE). CE

generates a set of basis functions, called cluster functions (CF) that describe the energetic

contributions of particular amino acids. These are broken down into single amino-acids terms,

terms for pairs of amino acids, terms for triplets and higher order terms. The energy of each

sequence is fit as a linear combination of these CFs and the resultant weights are called effective

cluster interactions (ECI). When expanded to all terms the total structure-based energy can be fit

exactly. However, in the design of a coiled-coil, zinc finger and WW domain, Grigoryan et al.

showed that only single-body, two-body and a few three- or four-body terms were necessary to

provide a good approximation of the total energy.

One limitation of this work was that all of the designs utilized a fixed backbone and only

the side-chain placement was variable. However, if backbone flexibility is included in this

approach, each sequence will still have a unique lowest-energy structure. Therefore, the

methodology used to fit the structure-based energies should remain valid. The inclusion of
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different backbones means that pairs of side chains will have different interactions environments,

depending not only on their local sequence, but also on the backbone on which they are

evaluated. The expectation was that this increase in complexity could compromise the quality of

the fit or require a greater number of higher order terms to achieve the same quality of fit.

Despite these expectations, here we show that using flexible backbones for CE gives similar or

better results than those using only a single fixed backbone. This result was validated using two

examples previously shown to be effective for designing novel proteins: the design of helical

inhibitors of Bcl-xL, as described in Chapter 3, and the re-design of a zinc finger protein.6

Results

To test the validity of CE for the use of multiple backbones I examined two different

design cases: the design of Bcl-xL inhibitors using backbones varied through normal-mode

analysis and the re-design of a zinc finger using a set of homologous PDB structures to introduce

backbone variation.

Bcl-xL inhibitor design

It was shown in Chapter 3 that flexible backbone models could be used to design novel

BH3 peptides that bind to a Bcl-xL receptor. In that experiment, the BH3 helix was varied using

normal-mode analysis. An ensemble of starting structures was generated from a single x-ray

structure and design was performed on 11 sites of the peptide. Here, I limited the structural

search to the 16 backbones that produced the most low energy design sequences. At each of 11

design sites, all amino acids that were allowed in any design library over all backbones were

included. A list of these is in Table 5-1. From this sequence space, 10,000 random sequences
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Table 5-1: List of amino acid allowed at each position in the Bcl-xL inhibitor design.
Position Amino Acids

B3 Arg, Asn, Asp, Glu, Gly, His, Met, Phe, Ser, Thr, Tyr

B6 Ala, Gly, Ile, Leu, Met, Phe, Val

B7 Ala, Gly

B 10 Ala, Gly, Ile, Leu, Met, Phe, Val

B 11 Ala, Arg, Asn, Asp, Gln, Glu, Lys, Met, Phe, Ser

B 13 Ala, Gly, Ile, Leu, Met, Phe, Val

B14 Ala, Gly

B 15 Arg, Asn, Asp, Gln, Glu, His, Lys, Met, Phe, Tyr

B 17 Ala, Gly, Ile, Leu, Met, Phe, Val

B 18 Asn, Asp, Gln, Glu, His, Phe, Ser, Tyr

B21 Ala, Arg, Asn, Gly, Ile, Lys, Phe, Ser, Thy, Tyr, Val

were generated. Each of these sequences was repacked onto all 16 backbones in the set and the

structure-based energy was evaluated as described in the Methods. The flexible-backbone energy

for each sequence was defined as the minimum energy over all backbones. This used a wide

distribution of backbones, suggesting the importance of allowing flexibility (Figure 5-1). The

ECI values were then obtained by CE of the energy of these sequences, including all point and

pair CFs. For comparison, ECI values were also obtained for the energy of the same sequences

on the native backbone. After the training set ECI values were fit, another set of 10,000

sequences, none with 100% sequence identity to any training set sequence, was generated from

the same distribution. These sequences were also repacked and the energy evaluated on all

backbones. The flexible-backbone energy of the test set was also taken to be the minimum

energy of each sequence over all backbones. The distribution of backbones is also shown in

Figure 5-1.
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Figure 5-1: Distribution of backbones used in the cluster expansion for the Bcl-xL inhibitor design. Backbone
number 0 corresponds to the fixed backbone reference. In red are the backbones for the training set and in blue those
for the test set.

For the fixed- and flexible-backbone designs, the performance of the respective CEs on

predicting the energies of the training set sequences and test set sequences is shown in Figures 5-

2 a and c, and 5-3 a and c. The leave-one-out cross-validated root mean square deviation

(cv_rmsd) for the training set data and the root mean square deviation (rmsd) for the test set data

were also calculated. For both the training and test sets, CE was a better predictor of the

flexible-backbone structure-based energy than the fixed-backbone structure-based energy. For

the fixed-backbone case, the cv_rmsd for the training set was 3.3 kcal/mol and the rmsd for the

test set was 3.6 kcal/mol. For the flexible backbone case, the cv_rmsd for the training set was 2.9

kcal/mol and the rmsd for the test set was 2.5 kcal/mol. To try to improve the expansion, I also

included triplet CFs. These were selected by identifying point and pairs CFs that were strongly

correlated. These point and pair CFs were combined into triplets and added to the original CE

one at a time, to see if they significantly improved the cv_rmsd. An additional 144 CFs were

added for the single backbone CE and 127 for the flexible backbone CE. The performance of the
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Figure 5-3: CE of flexible-backbone Bcl-xL inhibitor design. Plots compare the energy from a fixed backbone
design (FAK Energy) to the CE energy. (a-b) Training-set data, where (a) is for CE with only point and pair terms,
and (b) includes triplet terms. (c-d) Test-set data where (c) is for evaluation using only the point and pair terms, and
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CEs with added triplets on predicting the energies of the training set sequences and test set

sequences are shown in Figures 5-2 b and d and 5-3 b and d. The improvement in cv_rmsd was

small for both cases (3.1 kcal/mol for fixed-backbone and 2.2 kcal/mol for flexible-backbone).

This incremental improvement was not seen in the test set for the fixed-backbone (rmsd of 3.6

kcal/mol) or the flexible backbone (rmsd of 2.6 kcal/mol). This suggests that the increased

numbers of CFs resulted in over-training or the new triplets contained information already

described by the pair and point clusters.

177

(a)

-2400 -2390 -2380 -2370 -2380 -2350 -2340

0
O~39

(c)
-2330

-2350

-2360

-2370

-2380

-2390

OOo "

o

0

-24DO '""'

F3"
h
c
c
F

F1

c
c
F

o

0



Zinc finger design

Dahiyat and Mayo previously performed a de novo designs of a zinc finger protein.6 This

was one of the targets selected by Grigoryan et al. for validation of cluster expansion.' Given

this, we explored the use of CE on multiple zinc-finger backbones. To increase the structure

space for the zinc finger, additional backbones were selected using the SCOP database.' 7 In the

previous design, the second zinc finger domain of chain C from the PDB structure lzaa was

used. I searched the SCOP database to find all x-ray crystal structures of zinc fingers with a

continuous 21-residue region homologous to the lzaa structure. This produced a total of 29

structures. This set was clustered using pairwise Ca-backbone rmsd. The clustergram is shown in

Figure 5-4a. From this set of structures, 10 candidate backbones were selected that spanned the

range of backbone space and included the original backbone structure (Figure 5-4b).

For all 10 backbones, a set of 50,000 sequences were repacked and evaluated using the

same energy function as in Grigoryan et al.' The sequences were chosen randomly from a

distribution of residues described by Dahiyat and Mayo6 and Grigoryan et al.' Again the flexible-

backbone energy for a sequence was taken as the minimum energy over all backbones. The

distribution of backbones selected is shown in Figure 5-5. The number of minimum energy

sequences for each backbone was not evenly distributed. However, all of the backbones

contributed significantly to the total. This uneven distribution most likely was caused by the fact

that these backbones do not represent an even sampling of the backbone space, and are of

varying quality. As a comparison, the energy for the original structure, lzaa, was used for fixed-

backbone CE. This backbone generated the most minimum energy sequences (Figure 5-5). CE

was performed using all point terms and all pair terms for both the fixed- and flexible-backbone
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Figure 5-4: Clustering of zinc-finger structures. (a) All 29 zinc-finger structures are clustered by the pairwise C,-

backbone rmsd. The rmsd between structures is shown by the heat map coloring ranging from 0 in dark blue to 0.65

in dark red. (b) Subset of structures chosen for cluster expansion test. Structures are in the same order as in part (a)

and the color scheme is the same.
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BB number
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Figure 5-5: Distribution of backbones used in the CE for the zinc-finger design. Backbone 0 corresponds to the

fixed backbone reference, 1 zaa. In red are the backbones for the training set and in blue those for the test set.

cases. Figures 5-6 a and 5-7 a show the performance of the CE of the training set sequences for

the fixed and flexible backbone cases. It is clear from these Figures that inclusion of multiple

backbones improved the overall fit of the structure based energies. The cv_rmsd of the training

set sequences was 4.2 kcal/mol for the fixed backbone case and 2.8 kcal/mol for flexible-

backbone case.
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Figure 5-6: CE of fixed-backbone zinc-finger design. Plots compare the energy from a fixed backbone design (GK
Energy) to the CE energy. (a-b) Training-set data, where (a) is for CE with only point and pair terms, and (b)
includes triplet terms. (c-d) Test-set data where (c) is for evaluation using only the point and pair terms, and (d)
includes triplet terms.
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Figure 5-7: CE of flexible-backbone zinc-finger design. Plots compare the energy from a fixed backbone design
(GK Energy) to the CE energy. (a-b) Training-set data, where (a) is for CE with only point and pair terms, and (b)
includes triplet terms. (c-d) Test-set data where (c) is for evaluation using only the point and pair terms, and (d)
includes triplet terms.

Next, 50,000 test-set sequences were generated using the same distribution. The energy

of these sequences was evaluated on all backbones using the same structure-based methods. For

the fixed-backbone and flexible-backbone cases the performance of the respective CEs on

predicting the energies of the test set sequences is shown in Figures 5-6c and 5-7c. The rmsd for

the test set was 4.6 kcal/mol for the fixed backbone case and 3.1 kcal/mol for the flexible

backbone case. Triplet CFs were sought to improve the performance of the training set using the

same covariance method as described above for the Bcl-xL inhibitor design. This added 125 and
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44 triplet CFs to the fixed- and flexible-backbone CEs respectively. The results of the CE

prediction of the training and test set sequences are shown in Figures 5-6 b and d and 5-7 b and

d. Just as before, there was not a significant improvement for the flexible-backbone case, with a

cv_rmsd to the training set of 2.7 kcal/mol and a rmsd for the test set of 3.1 kcal/mol. However,

in the fixed backbone case there was a significant improvement for both the training set

(cv_rmsd of 3.6 kcal/mol), and the test set (4.1 kcal/mol). Comparison of the training-set and

test-set data for the fixed backbone case with and without triplet CFs (Figure 5-6), shows that

fitting for high-energy sequences was poor without triplets. Presumably, these triplets helped to

describe cases with clashing residues. The same level of improvement was not seen when

looking at the flexible backbone case, Figure 5-7. Here, much of the clashing that could occur

was compensated by evaluating over multiple backbones.

Discussion

In this Chapter, I have shown that CE is a viable option to convert flexible-backbone

structure-based energies into sequence-based functions. The rmsd for the CE prediction of Bcl-

XL inhibitor and zinc finger design energies was much smaller for the flexible-backbone cases

than the fixed-backbone cases. As was shown in Chapter 3, the use of multiple backbones in

design calculations can improve the quality of results and the diversity of design sequences.14-

16,18,19 Combining the increased performance of this type of flexible-backbone calculation with

the relative speed of the CE function allows for a much more complete search of the sequence

space, while retaining the benefits of an accurate structural model.
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Computational efficiency

The increase in computational complexity is a major limitation of the use of backbone

flexibility in design. This is true for all structural sampling, thus the ability to predict energies

from sequence allows for the advantage of increased speed and efficiency. Statistical functions

are readily available that allow for efficient sampling when examining a large set of different

structures.20-24 However, these types of methods are limited by poor physical interpretability.

Statistical functions rely on the probability of amino acids being near or far to each other in

known structures, and not on the precise three-dimensional physical interactions between

residues. By using CE, we are able to bridge the gap between the speed of the sequence based

functions and the interpretability and increased modeling accuracy of structural models with

backbone flexibility.

Variations in design methods

In Chapter 1, I reviewed the wide variety of energy components and energy functions

used in protein design. CE is not dependent on the type of energy function used, but the energy

function could determine the quality of fit. The previous CE work involved the same energy

function used for the zinc finger design.1 This energy function only contained interaction terms

that were pairwise decomposable and could be reduced to sums of interactions between sites of

residues. Additionally, it was limited to interactions between pairs of side chains or between the

side chains and the template, and did not contain backbone-backbone interactions. Here, I tested

the design of Bcl-xL inhibitors using an energy function that included interactions between all

atoms and used non-pairwise decomposable energy terms. These energy terms included a finite

difference Poisson-Boltzmann continuum solvent model and a solvent-accessible surface-area
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based cavitation term. The performance of the CE of this energy function was quite good for

both the fixed- and flexible-backbone cases. This result suggests that other non-pairwise energy

functions could be included that account for averages over multiple states, as is the case for the

implicit solvent model used here.

In addition to differences in the energy function, the Bcl-xL inhibitor and zinc finger

designs applications both used different methods to include backbone flexibility. The former

utilized normal-mode analysis to sample a parameterized space. The later utilized multiple x-ray-

structure backbones, which is similar to random sampling in fold space. Both of these showed

better CE predictions for the flexible-backbone case than the fixed-backbone. This result is

mostly likely due to a decrease in steric clashes. It appears that the type of structural flexibility

included in the design was less important than that the increased flexibility permit low energy

conformations for some sequences and allowed for a reduction of steric repulsions compared to

fixed-backbone models. However, each of these methods still contains only a small amount of

structural variation that effectively limits the sampling to a very close local-backbone space.

Further study is necessary to see how large a local-backbone space could be explored, and if non-

local-backbone sampling could be used to give a reasonable fit by CE.

Higher-order terms

For both the Bcl-xL inhibitor and zinc-finger design, additional triplets were added to try

to improve the overall performance of the CE of the structure based energy. For Bcl-xL inhibitor

design additional triplets did not improve either the fixed- or flexible-backbone case. This

observation is reasonable, considering the design positions were spread throughout the helix and

as such there were not any strong interactions between sets of three or more design sites. This
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same result was seen for the flexible-backbone zinc-finger design, but not for the fixed-

backbone. In the fixed-backbone zinc-finger design, there was clear improvement by including

some sets of triplets.

The ability of CE to predict the energy associated with a set of amino acids is likely

related to how much the background sequence affects their interaction environment. When the

backbone structure is fixed, the background sequence can only affect the placement of side-chain

rotamers. This placement will most likely be determined by close interactions. When the

backbone is flexible, the background sequences may also affect the selection of the backbone.

This effect could be distributed throughout the structure. This would suggest that collections of

amino acids would be present in more varied environments and thus require more higher-order

CFs. However, this does not appear to be the case in the work described here. Rather, the role

for the triplets in the fixed-backbone structures appears to be to improve the fit of higher energy

sequences, which presumably have a larger contribution from clashing residues. Van der Waals

clashes are the hardest part of these functions to predict, given their large range of possible

contributions to the energy for pairs of residues. This large range was somewhat accounted for

by the triplet terms. In the flexible-backbones case, clashing was relieved by allowing for

additional sampling. When the van der Waals clashing terms are relaxed, the overall prediction

performance was improved with just the pair terms. Triplet terms might still be useful for

capturing the environmental differences associated with flexible backbones, but without a large

enough number of sequences in the training set, this can not be determined.

Possible future directions

In validation of the method, I demonstrated that cluster expansion can be used to convert
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the structure-based energy used in the Bcl-xL inhibitor design into a sequence based function.

This leads to many different possibilities in terms of design objectives. The first would be to

perform design using the complete sequence space. This could include using a faster Monte

Carlo search,' or could be incorporated for use with linear programming.2 5 Using the later

method, Grigoryan et al. designed coiled coils with multiple constraints including finding

sequences with high stability that have an arbitrary energy gap to other undesired targets. 25 This

approach could allow for designing specific interactions to Bcl-2 family members that do not

bind to any other targets or are designed to bind several targets at once. The key will be to

demonstrate that the design method can in fact find good solutions that bind other receptors and

that the interaction energies with different targets are on the same scale.

Methods

Cluster expansion

CE was performed as described by Grigoryan et al. 1' 2 Briefly, for this method, the optimal

energy f(c6) of a sequence cT = [- a, 2, ... oN] (here a x is the amino acid at each position) can

be calculated as the perturbation of the energy of a sequence o = [a-,o,',o ], and is

described using the following equation:

f(e)= d) Jz (o),' (do) (5-1)
I z

Here I is a cluster of sites, y• (CT) is the Zth CF associated with cluster I and the coefficients

Jz (Co) are known as the ECI associated with V4 (do). For a set of CFs with

= [_1 " '=F' ' "" , = ]being the point basis set at a single amino-acid site,
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we can simplify this function. This becomes •,(6,8o)= •5('-a) .(1-S(-o -a)). Here for I

> 0, ~ (e) is always 0, except if the amino acid at the It h site of a given sequence is the same as

'a' and does not equal to the amino acid of original sequence at the site (o' # o- ), then it is 1.

Therefore, for any sequence & = [a', 2 .... N] the only CFs that remain are of the form

I , (d) for all 'I' such that cr' # o'. Therefore the energy can now be expressed as:
I

f(') = Jo ('o)+ I JI, J IJ (&'oI)d+(','°o) 0(,'o).. .
I I J>I

= JO(o)+ JI ( )+ JIo ( 0) ... (5-2)
I I J>I

Here J, (do) is the reference energy, J', (d o ) are the point CFs, J'•, (do) are the pair CFs,

J•,aJ (do)would be the triplets and so on.

For each CE, the CFs chosen for fitting each energy function included all point and pair

terms, along with selected triplet terms. Given a set of training sequences, the ECI values were

fit to minimize the error. These were incorporated through a leave-one-out cross validation to

ensure that they were not over-trained. When triplets CFs were included, these were identified by

finding combinations of point and pair terms that show strong correlations, as indicated by the

program look43.26 This program compared the ECI value for the selected pair CF, fit using the

entire sequence set, to the ECI value of the same pair CF, fit only using sequences that contain

the given point CF. Additionally, the standard error for fit of the new ECI value was also

determined. If the change in the ECI value for the pair CF was greater than 5 times the standard

error then this triplet CF was considered for addition to the CE. These triplets were then added

one at a time and included in the CE if the cv_rmsd decreased. Once all the ECI values were fit,

they were then used to predict the energy of test set sequences.
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Bcl-XL inhibitor design

The design of the BH3 peptide was performed as described in Chapter 3 with a few

exceptions. Briefly, a CHARMM 27 based energy function that included paraml9 van der Waals,

with 90 % radii, dihedral angle energies, distance dependent dielectric electrostatics (6 = 4r), and

EEF1 solvation28 was used to repack the structure using DEE/A*.29 34 The Richardson and

Richardson rotamer library was used. 35 For each repacked structure, 1000 steps of steepest

descent followed by 1000 steps of ABNR were used to minimize all the side chains. The energy

for the minimization included all CHARMM molecular mechanics terms and distance dependent

dielectric electrostatics with dielectric constant of Ir. The energy of a structure was evaluated

using CHARMM 19 van der Waals with 100% radii, Coulombic electrostatics with s=4, finite

difference Poisson-Boltzmann solvation using DelPhi36,37 with internal dielectric of 4 and

external dielectrics of 4 and 80, and a solvent-accessible surface-area based cavitation term with

coefficient equal to 10 cal/A 2.38 A total of 10,000 sequences were chosen randomly for 11 sites

from all residues found in design results in Chapter 3. These are summarized in Table 5-1. The

energy for each sequence was evaluated on 16 different backbones, including the native. The

lowest energy backbone for each sequence was then used for the flexible-backbone CE. CE was

also performed on the native structure. Next, a set of 10,000 additional test-set sequences with

less than 100 % sequence identity to the training set were generated from the same random

distributions. These sequences were evaluated on the same backbone set as the training set. The

minimum energy over all backbones and the energy of the native structure were predicted using

the ECI values from the training set CE.
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Zinc-finger design

Dahiyat and Mayo previously designed the second zinc finger on chain C of lzaa.7 To

expand the structure space, 28 other x-ray crystal structures of homologous zinc fingers were

extracted from the SCOP database that contained a continuous stretch of 21 residues overlapping

with chain C of lzaa (residues 34 to 54). These included the second and third zinc finger from

PDB ids: lalf, lalg, lalh, lali, lalj, lalk, lall, laay, ljkl, ljk2, lllm, lp47 and lzaa and the

only zinc fingers from PDB ids: lf2i, lubd, and 2drp. The pairwise CQ-rmsd values of all

sequences were calculated using the program VMD (version 1.8.3) 39 and then clustered using

Matlab. 40 From this set, 10 structures were chosen to sample the different clusters. These

included the second zinc finger from lalh, laay, ljkl, lp47, and lzaa, the third zinc finger from

lali, and lllm and the only zinc finger from lf2i, lubd and 2drp.

Random sequences were generated using the distribution of amino acids described by

Grigoryan et al1 and Mayo et al.6 Positions 1, 3, 5, 7, 9, 10, 12, 13, 14, 15, 16, 18, and 19

allowed Ala, Ser, Thr, Asp, Asn, Glu, Gln, Lys and Arg. Positions 2, 6, 11, 17, 20 and 21 allowed

Ala, Ser, Thr, His, Asp, Asn, Glu, Gln, Lys, Arg, Val, Leu, Ile, Phe, Tyr and Trp. Position 8 only

allowed Gly. From this sequence space 50,000 random sequences were evaluated on all 10 zinc

finger backbones. These sequences were repacked onto the backbones using the same method as

for the Bcl-xL inhibitor design described above. The repacked sequences were evaluated using

the same energy function as described in Grigoryan et al.1 The energy evaluation included

calculating the interactions between different side chains and between the side chains and the

backbones. The energy function was composed of CHARMM van der Waals with 100 % radii

and Coulombic electrostatics with dielectric of 4,27 and generalized born screening with PEP

used to calculate atomic born radii.41 From these 50,000 sequences, CE was performed using the
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minimum energy value over all backbones. Additionally, for a fixed backbone comparison, CE

was performed using the second zinc finger from lzaa. Next, 50,000 test set sequences were

generated using the same distribution and the energy was evaluated on all backbones using the

same method. Using the ECI values from the CE of the training set sequences, the energy was

predicted for the fixed-backbone and flexible-backbones cases.
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Chapter 6

Conclusions

The computational complexity associated with the large sequence space used in protein

design and prediction requires efficient sampling of the structure space. In Chapter 2, I

described two different methods for capturing the structure space of alpha helices in protein-

protein interfaces, and showed how to sample this space to generate novel interfaces. For

individual helices, the two lowest-energy modes capture most of the deformation and can be

used to sample the native structure space. Chapter 3 described the use of normal-mode

backbone sampling to design novel BH3 helices that bound to Bcl-xL. For coiled coils, I

extended Crick parameterization to allow for modeling of both parallel and antiparallel dimers.

This method was shown to be a useful tool in generating sets of idealized coiled coils that

spanned the native structure space. In Chapter 4, these structure sets were used to predict the

binding orientation of 131 coiled-coil sequences with 81% accuracy. Finally, in Chapter 5, I

demonstrated that flexible backbone methods were compatible with cluster expansion. Design

energies from the structure-based energy function used to evaluate the energy of the Bcl-xL/Bim

interaction and the stability of a zinc-finger protein were converted to sequence-based energies to

allow for rapid evaluation of the flexible backbone energy. The flexible backbone methods

193



showed better fitting by cluster expansion than fitting on a single fixed backbone. These three

applications have provided substantial information regarding the benefits and problems of

flexible-backbone models, in particular, how they relate to the accuracy of predictions and

computational efficiency. These findings are discussed below.

Flexible backbones in design and prediction.

An important aspect of the structural search in protein design is the identification of

compatible side-chain conformations in the protein core.' This identification is typically done

quite successfully when repacking the native sequence on the native structure; standard methods

are able to find the correct rotamer (X1 + X2 correct) with greater than 80% accuracy. 2,3 This

results in reasonable modeling of the wild-type structure. However, when this approach is used

to model non-native sequences using the wild-type backbone structure, many amino-acid side

chains will not fit due to steric clashes. This problem explains in part why the native structure

contains a native sequence bias,4 -6 especially in the core. The bias was demonstrated by the

design of Bcl-xL inhibitors in Chapter 3, where SCADS favored the native sequences when

evaluated on the native structure (Figure 3-4). When mutations are made, real proteins overcome

this steric complementarily problem through subtle relaxations of the side chains and/or the

backbone. 7'8 Expanding the backbone-structure space allows this type of relaxation to occur. It

greatly reduces steric clashes as seen by the increased ability to design novel sequences (Figure

3-7) and by the observation that repulsive van der Waals no longer plays as large a role in the

prediction (Figure 4-4). Reduction is steric clashes is also the primary reason that sequences

evaluated on the best backbone out of a set were more easily fit using cluster expansion.

Because van der Waals clashes have the largest variability in magnitude and greatest sensitivity
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to precise three-dimensional structure, this energy component has the largest deviation among

pairs of amino acids in variable background sequence environments. Relieving this strain

through the use of backbone flexibility and structure relaxation lowered this energy term and

thus allowed for better fitting of the total energy by cluster expansion.

Although there were positive benefits resulting from increased backbone sampling, some

problems were also encountered. As described in Chapter 3, some sampling of the backbone,

particularly when replacing the native helix with an ideal helix, did not give good predictive

results. This was somewhat remedied when the correct native helical pitch was used. Replacing

helix minimization with the evaluation of the energy over many backbones gave yet better results

(Figure 3-9). This highlights the fact that energy functions, which may be good at differentiating

sequences evaluated on similar structures, may not be able to differentiate sequences evaluated

on vastly different backbones. It appears that by sampling the normal-mode space and not

including backbone minimization we restricted the search to more realistic interfaces, and made

it easier to differentiate the relative stabilities of different sequences. Allowing too much

unrestrained minimization gave poor results, but some minimization is beneficial, as seen in the

prediction of the binding orientation of coiled coils (Figure 4-2a). In that case structures were

minimized under constraints on the Ca position derived from the Crick parameterization. This

allowed for slight relaxations of the backbone, but not so much as to introduce a large error.

Relaxations of this type improved performance over using no minimization of the backbone or

free minimization (data not shown). It appears that for both these methods staying in the native-

like structure space improves the ability to make accurate predictions.

Another important limitation found with these types of structural sampling methods is

that they only sampled global parameters of the helical structure. This was a reasonable first
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approximation in order to search over a large sequence space. However, there are examples of

native structures where deformation features were not present in any of the backbone sets. This

was particularly true for the ends of the coiled-coil structures. Many coiled coils exhibited

significant fraying, as seen in several structures with paired Ile residues at d positions in parallel

coiled coils (Figure 4-5). The C,-Ca distance of core pairs in the ideal coiled-coil structures

ranged from 5 to 7 A. However, there were native cases where the distance could be as large as

10.5 A. By not allowing for local deformation, we cannot accurately describe these types of

structures.

The structural modeling used for Bcl-XL inhibitor design also does not sample the entire

structure space. Recently Fire et al solved the crystal structure of a single mutant of the Mcl-

1/Bim-I6Y complex, 9 which illustrates a structural change that was not present in the set of

normal-mode backbones. Figure 6-1a shows native Bim in yellow and Bim-I6Y mutant in green.

The rmsd between the BH3 helices in these two structures is 1.70 A. The normal-mode

differences between these two helices show that the largest deviation is in fact one of the two

modes that we sampled (Figure 6-1b). Despite this, when these mode vectors are applied to

transform the native helix, the resultant helix (blue in Figure 6-1a) still has a 1.44 A rmsd to the

mutant helix. This results from the fact that there are a number of other normal-mode

deformations in this helix, along with additional rotations and translations that are not accounted

for. Without these other types of sampling, the accuracy of the structural model for this mutant

would be limited.
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Figure 6-1: Alignment of a native Mcl-1/Bim complex with one involving a mutant Bim. (a) The native Mcl-1

structure from the PDB structure 2n19 is shown in gray. The Bim helix from PDB structure 2n19 is shown in yellow.
The Bim-I6Y mutant from the structure solved by Fire et al. is shown in green. The native helix fit to the mutant

helix by varying the first and second normal mode values is shown in blue. (b) Difference between the normal-mode
values for the Bim helix and the mutant BimI6Y helix. The largest difference is seen in mode 2, but other modes
also contribute.

Computational efficiency

The computational complexity of protein design methods is an important fact to consider

when determining the types of calculations that can be conducted. Many approximations have

been made to account for this including using the fixed backbone approximation, limiting the

side-chain structure search to a small set of rotamers 10 and employing approximate energy

functions that are pairwise decomposable." The applications described in the proceeding

chapters all took computational time into account.

Backbone-structural search methods were selected that increased the ability to predict the

relative energy of a large number of sequences, while keeping the problems computationally
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feasible. Sampling the highly probable parts of structure space using normal-mode analysis and

Crick parameterization limited the search space to as few degrees of freedom as possible. Thus

these methods were able to search efficiently search a large native-like structure space that

improved performance of energy prediction.

As seen in Chapter 1, there are many methods used for backbone-structure searches

appropriate for discrete modeling. These methods can be broken down into two categories:

global backbone searches and local backbone searches. The global search methods sample the

backbone space using parameters that describe the structure of the entire protein. For design this

has involved parameterized searches,12- 16 including the normal-mode analysis and Crick

parameterization methods described here, as well as ridged-body docking. 17' 18 Local backbone

searches sample the local changes in backbone-structure space that are independent of changes

occurring in other parts of the protein. This type of local search includes fragment library

searching, 19' 20 random backbone sampling21,22 and continuous minimization. There are

advantages and disadvantages for both types of methods. For the global search, a structurally

diverse set of backbones can be sampled, allowing for a much broader range of sequences to be

found. However, since the types of backbone deformations are pre-determined, there is no fine-

tuning of the backbone space for any particular sequence. Local searches can sample the

backbone space much more finely and may find more appropriate backbones for single

sequences. However, to sample a diverse set of backbone structures will require much more time

than the global search. These two types of searches can be merged together to incorporate the

beneficially aspects of both. Global searches could be used to identify parts of structure space

particularly suitable for design, and then local searches could be made to fine-tune each of these

structures. An example of this is described in Qian et al., where they used principal-component
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analysis to define the structure space of a protein family and then used a fragment-based method

to search locally in this confined space.23 This combination of global and local searches was also

used in both the Bcl-xL inhibitor design and coiled-coil orientation prediction applications

described in this thesis. In both cases a global parameterization space was searched, and then for

each structure local relaxation was allowed through continuous minimization. The global search

step was important to increase the diversity of sequences with reasonable structural models, and

the minimization step fine-tuned the interaction and allowed for many of the clashes associated

with the discrete structural model to be removed.

In addition to the structural search, constraints were imposed on the sequence search.

This was addressed in the sequence library used for the design of novel BH3 proteins. For each

design experiment, there were 11 variable positions with a total of 5 x 1011 possible

combinations of amino acids. To sample quickly over this large sequence space we used the

efficient statistical algorithms SCADS24,25 allowing all sequence combinations to be explored

simultaneously. This reduced the sequence library for each backbone to a range of 103 to 106 for

use in the Monte Carlo design phase. Reducing the sequence space enabled the search for

individual sequences to use a more accurate energy function.

The final speed-up approach was the use of cluster expansion to convert the structure-

based energy function to a sequence-based function. This approach removed the bulk of the

computational time for the calculation of each sequence and, as has been demonstrated by

Grigoryan et al., can decrease the search time by 7 orders of magnitude.26 This allows for a much

more complete search of the sequence space. Moreover, this additional benefit does not come at

the cost of reduced interpretability that is associated with the use of statistical methods.
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Summary

I have demonstrated that normal-mode analysis and the Crick parameterization are

reasonable methods to sample the global structure space of helices in protein-protein interfaces.

Increased structural flexibility has improves the ability to design a widely diverse set of Bcl-xL

inhibitors and to accurately predict the relative stability of parallel and antiparallel orientations of

coiled coils. By limiting the search to the highly probable parts of native-structure space, these

methods sample structural deformations as efficiently as possible. Finally, I have shown that

cluster expansion is a reliable method for fitting a sequence-based energy function to flexible-

backbone structural models. This technique will allow for additional sampling of sequence

space, despite the increased computational complexity of the structure space. These tools enable

the exploration of a wealth of possible helix-mediate interfaces using design and prediction.
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