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ABSTRACT

The copper (Cu) interconnect has become the bottleneck for bandwidth scaling due to its
increasing RC time constant with the decreasing gate line width. Currently, silicon based optical
interconnect is widely pursued as the most promising technology to replace Cu in microprocessor
chips. Silicon optical interconnect is based on integrated silicon nanophotonic technologies. It can
leverage the large scale and low cost of CMOS technology and deliver higher bandwidth with no
EMI and low heat dissipation. Passive photonic component, such as waveguides, couplers, filters,
splitters, are the backbone of integrated photonic circuit. This thesis is dedicated to the
development of low loss, high performance, high index contrast optical waveguides and couplers
via materials, processes engineering, development, and device designs. We primarily focus on SOI
single crystalline silicon (c-Si or SOI), PECVD amorphous silicon (a-Si:H, or simplified as a-Si),
and PECVD silicon nitride (SiNxHy) based single mode channel waveguides.

We have previously identified that sidewall roughness scattering is the dominant loss
mechanism for the TE mode in high index contrast single mode channel waveguides. In this thesis,
we provide a comprehensive understanding of the roughness scattering and its positive
correlations with (1) sidewall optical intensity; (2) sidewall RMS roughness; and (3) sidewall
index contrast. Novel processes and designs, such as hard mask and chemical oxidation, are
developed based on the above understanding. In single mode, 500 x 200 nm2 c-Si channel
waveguides, we have achieved world-record 2.7 dB/cm and 0.7 dB/cm transmission loss
coefficients for the TE mode and the TM mode, respectively.

For deposited waveguides, bulk absorption loss is also important for both TE and TM
modes.

For PECVD a-Si, we adapt hydrogen passivation to reduce dangling bond density. We also
use a thin silicon nitride as the over cladding layer to help preserve H passivation and to reduce
sidewall index contrast, acting as the graded index layer for a-Si waveguide core. We have
accomplished the lowest reported loss coefficients in directly etched, single mode, 700 x 100 nm2

a-Si channel waveguides of 2.7 dB/cm for the TE mode, comparable to c-Si waveguide with
similar dimensions. For the first time, damascene process has also been demonstrated as a
promising process for a-Si waveguide fabrication. We have achieved a record-low loss of 2.5
dB/cm in 600 x 100 cm 2 a-Si channel waveguides. Chemical-mechanical polishing (CMP) is the
most critical step.

For PECVD SiNxHy, we have previously identified that the absorption loss is due to the
resonant absorption caused by N-H vibration. In this thesis, three different low temperature



approaches have been developed and optimized to reduce NH concentration in as-deposited
SiNxHY via (1) deposition chemistry; (2) post-deposition Ultraviolet light (UV) treatment; and (3)
post-deposition, in-situ N2/Ar plasma treatment. All three processes are compatible with CMOS
back-end processes, such as a-Si process. While changing deposition chemistry is the simplest
method to obtain low NH containing SiNxHy, it comes with high SiH concentration and may have
undesirable properties. Experimentally, for UV treatment, the highest H removal percentage is -
60%; for plasma treatment, - 90%. UV treatment shows strong compositional dependence. The
underlying mechanism of such dependence is identified and confirmed by Monte-Carlo modeling.

Low loss and spectrally broadband optical couplers are indispensable optical components
in an integrated photonic circuit. A high performance coupler should be capable of overcoming the
mode-size mismatch, mode-shape mismatch, mode-position mismatch, and polarization
mismatch, bridging different optical devices with minimal coupling loss. In this thesis, we have
demonstrated a fiber-to-waveguide coupler based on asymmetric graded index taper and
monolithically integrated cylindrical lens. It is capable of transforming single mode light between
single mode fiber and waveguides with minimal coupling loss of 0.45 dB between 1520 nm and
1630 nm. We have also demonstrated a vertical waveguide-to-waveguide coupler that is based on
complementary inverse tapers. This design is tolerant of large refractive index mismatch between
the two waveguides and also of any fabrication variation that would affect the effective indices of
the two waveguides. We have achieved a minimal coupling loss of 0.25 dB per coupler and
excellent broadband behavior is also demonstrated.

Slot waveguides are a newly developed class of waveguides with unique optical properties.
Slot waveguides can achieve exceptional high optical field in nanometer sized low index regions.
In this thesis, we have demonstrated low loss transmission of 6 dB/cm for the fundamental slot
mode in horizontal slot waveguides at 1550 nm. The horizontal slot configuration removes the
constraints of thin slot definition by lithography and allows an arbitrarily thin slot to be fabricated
via deposition or oxidation. Because the resulting interface is much smoother than the etched
interface, the transmission loss in horizontal slot waveguides is much lower than in vertical slot
waveguides. We also demonstrated that multiple slot configurations result in higher optical
confinement compared to single slot configurations with the same slot thickness. The low loss and
high optical confinement in the low index slot region realized in horizontal slot waveguides
promises many useful applications, such as Er-doped silicon-based light emitters. For integration
of slot waveguides with conventional channel waveguides, we have designed and simulated mode
couplers and polarization rotators for slot-slot, slot-channel waveguide mode transformations.

Athermal operation is important for realizing stable passive, WDM optical network on
silicon. Athermal design of silicon waveguide systems uses advanced polymer cladding of large
negative TO coefficient to provide compensation for the large positive TO coefficient in silicon.
The reduced thermo-optic (TO) effect is experimentally demonstrated by reducing TO coefficient
from 85 pm/K to 11 pm/K using polymer films.
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Chapter 1. Introduction

1.1. Challenges and opportunities in information technologies

The advance of modem electronic industry has totally revolutionalized the way human

beings are living and thinking. Moore's law has been governing the scaling of computer chip for

more than 40 years since Dr. Gordon E. Moore introduced it in 1965 [1]. It states that the number

of integrated transistors on a silicon (Si) chip will be doubled every 18 months. Looking ahead as

we are now at 45 nm technology node at the end of 2008, the trend of scaling of electronic

transistor may go on for another decade before it meets the fundamental limit for the physical size

of the device.

However, around 2002, people started to realize that while the number of the transistors

was still increasing steadily, the realized performance was not improving as fast. The difference

between the expected performance based on transistor numbers and the realized performance

creates the so-called "Moore's gap" as shown in Figure 1.1.
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Figure 1.1. The "Moore's Gap" By Agarwal, MIT. GOPS: Giga Operations Per Second.

The fundamental cause for this "Moore's gap" is because the RC time constant for the Cu
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interconnects currently used in transistors increases rapidly as the gate length decreases as shown

in Figure 1.2. The RC delay of Cu interconnects has become the bottleneck for further bandwidth

improvement. As the most recent development, Intel has terminated its plan for 4 GHz Pentium® 4

CPU in 2004, indicating the end of the campaign in bandwidth scaling of CPUs.
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Figure 1.2. Interconnect delay due to the Cu RC time constant as a function of the gate line width (Figure taken from

Ref. 2).

Information technologies will certainly not cease to evolve. Optical interconnect

technology which uses photons as information carriers instead of electrons is believed promise to

keep delivering higher bandwidths after Moore's law.

Optics and photonics are well established disciplinesl. The optical fiber system has been

around for more than 20 years. Figure 1.3 is the chronological plot of the long haul

telecommunication bandwidth of a single line, being that a Cu wire, a coaxial cable, or an optical

fiber. Since the early 1980's, the introduction of optical fiber systems has brought us a tremendous

improvement in bandwidth. The most important of all, the fiber optics technology is also scalable.

Today, the bandwidth is already in terabit per second (Tbps). In retrospect, we discover that the



entry point for optical fiber systems was - 10 Mbps-km.
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Figure 1.3. The chronological plot of the transmission bandwidth (bps) of a single line (Figure taken from Ref. 2).

If we can realize optical interconnect on a much smaller scale, e.g. on a single silicon chip,

we can have the following benefits that electrons cannot be achieved with electrons:

" High data bandwidth

" No heat dissipation

" No electromagnetic interference (EMI)

" Leveraging CMOS technologies for silicon photonics

Silicon provides an ideal platform for high index contrast, chip level photonics integration.

Silicon photonics based electronic-photonic convergence can leverage the large scale and low cost

of CMOS technologies and has been widely recognized as a promising path. According to

Kimerling et al., the economic entry point for silicon-based optical interconnects on silicon chip is

1 Tbps-cm which is equivalent to 10 Mbps-km [2].

Compared to electronic transistors, silicon photonics is still in its infancy. To demonstrate



the potential and to help the advancement of silicon photonics, the Defense Advanced Research

Projects Agency (DARPA) created the Electronic-Photonic Integrated Circuits (EPIC) programs.

The MIT EPIC chip is designed to be a high-speed, optical RF channalizer as shown in

Figure 1.4. Within a single silicon chip, a broadband RF signal (300 MHz to 2.2 GHz) is first

brought on chip, modulated into optical signals, and split into different channels. In each channel,

the optical signals are filtered, detected, and output digitally via transimpedance amplifiers (TIA).

The whole system is essentially a high-speed analog-to-digital converter (ADC). As shown in

Figure 1.5, current photonic devices are designed to be integrated with electronic transistors at

pre-metal dielectric level using the Front-End of Line (FEOL) processes, this is because we can

access to high quality single crystalline silicon and germanium for high performance photonic

devices. In the future, researchers envision integrating photonics at interconnect level (BEOL)

using polycrystalline and amorphous materials for both passive and active photonic devices where

we can have more design space and flexibility for integration.

Figure 1.4. Block diagram of an integrated optical RF channalizer (Figure taken from Ref. 3)
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Figure 1.5. Current and future electronic-photonic integration schemes

Within the program, we have successfully established an open-architecture optical

component library consisting of passive devices, such as low loss, high index contrast,

silicon-based waveguides, couplers, MMI's, tunable filters; and active devices, such as high

performance germanium-based (Ge) photodetectors as shown in Figure 1.6(a), GeSi EA

modulators as shown in Figure 1.6(b), and Si EO modulators [4,5,6,7]. We have also demonstrated

3D photonic integration using high level deposited waveguides, such as amorphous silicon, as

shown in Figure 1.7. Other indispensable silicon photonic devices, such as Si-based lasers, are

currently under development at MIT as well as Stanford University, University of California,

Santa Barbara, and Intel Corporation etc.
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Figure 1.6. (a) waveguide-integrated Ge photodetector in a butt-coupled scheme; (b) Waveguide-integrated GeSi EA

modulator in a butt-coupled scheme.

Figure 1.7. 3D photonic integration using deposited waveguides for high level optical routing.

1.2. Challenges in high index contrast (HIC) passivate photonic devices

This thesis focuses on low loss, high index contrast (HIC), silicon waveguide-based

0 ,



passive photonic devices, such as waveguides, couplers, and filters. Waveguide's optical loss is

the measure of the attenuation when light travels in waveguides. It is strongly dependent on

waveguide materials, processes, and particularly the refractive index contrast (An).

1.2.1. Low loss and HIC optical waveguides

An optical fiber consist of Ge-doped SiO 2 core with un-doped SiO2 cladding has An of

0.02. Its typical transmission loss is -0.1 dB/km around 1550 nm. Chemical vapor deposition

(CVD) developed in 1970's enabled high quality, low impurity containing optical fiber performs

that allow extremely low materials absorption at 1310 nm and 1550 nm, the telecommunication

wavelengths. The pulling process also results in defect-free, atomic flat fiber surface due to surface

tension, thus minimizing the optical scattering loss.

A planar, HIC waveguide consist of silicon core (Si, n = 3.50) with silicon dioxide (SiO 2, n

= 1.46) cladding has An of -2. Currently, the optical transmission loss of a single mode channel

Si/SiO2 waveguide is about 1-10 dB/cm around 1550 nm, orders of magnitude higher than in an

optical fiber. The typical planar waveguide fabrication utilizes current CMOS technology and

involves photolithography and etching of high index silicon which gives rise to severe sidewall

striation and roughness. Beside roughness scattering loss in HIC waveguides, for deposited

waveguide materials, such as amorphous silicon (a-Si, n = 3.2 - 3.7), bulk absorption is another

dominant loss mechanism. The typical loss in a single mode, PECVD a-Si waveguide is greater

than 10 dB/cm.

For applications like an integrated optical delay line chip which normally have about 10 m

long coiled single mode silicon waveguides and two fiber-to-waveguide couplers. The total

insertion loss should be less than 3 dB. This requires that the waveguide loss to be on the order of



1 dB/lOm or 0.001 dB/cm. Novel and CMOS-compatible processes are yet to be developed to

achieve such low loss optical waveguides.

High optical loss not only means short signal transport distance or the necessity for optical

amplifier which adds additional cost and complexity to the system, but also has huge impact on the

performance of any waveguide-based devices, such as couplers and filters.

For example, the filter in Figure 1.8 is a 4th-order tunable optical filter designed by Bell

Labs, Lucent Technologies [4]. It consists of two cascading Mach-Zehnder interferometers (MZI)

with 4 integrated ring resonators. Without any waveguide loss, the ideal filter response

characteristics consist of a flat-top like pass band, fast roll-off at the edge of the pass band, and the

largest extinction ratio as shown in Figure 1.9. The increase in waveguide transmission loss will

cause power imbalance in both arms of the MZI device, results in rounding of the pass band,

degrading the filter performance in terms of bandwidth as well as extinction ratio. Realizing low

loss in the constituent waveguides is the key to reduce the total insertion loss of the system and to

obtain high performance filters and couplers.

Tunable Ring an Phase shifter 3dB tunableresonator

Acouple couple

in (A - A)
3dBtunable -------- -2 O

Tunable MZ
coupler A2

Figure 1.8. A 4"-order optical tunable filter based on Mach-Zehnder interferometer; the bottom image is the snap shot

of the photo mask design (Figure adapted from Ref. 4).
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Figure 1.9. The simulated filter response for various waveguide transmission losses (Figure taken from Ref. 4).

1.2.2. Low loss and HIC optical waveguide couplers

Optical couplers are indispensable components in realizing photonic integration. Single

chip integration not only can reduce assembling and packaging costs significantly, but also

allowing high performance photonic devices, such as waveguide-integrated Ge-based

photodetectors. For many discrete photonic devices on silicon, direct coupling among them will

usually result in high and undesirable coupling loss, such as direct coupling between a single mode

optical fiber and a single mode HIC optical waveguide due to large mode-size mismatch;

sometimes, it is also impossible to couple two devices that are not on the same plane, for example,

directly coupling between a SOI waveguide and Ge photodetector that is grown on the same SOI

layer due to the height mismatch. High performance optical couplers need to overcome mode-size

mismatch, mode-shape mismatch, mode-position mismatch, and polarization mismatch and

achieve high efficiency mode transformation in a compact, low loss structures with good tolerance

against fabrication variations.

In this thesis, high performance fiber-to-waveguide couplers, waveguide-to-waveguide

vertical couplers, and couplers that can transform complex non-Gaussian modes with Gaussian



modes are sought.

1.2.3. Highly confined and low index guiding slot waveguides

Conventional optical waveguide guiding mechanisms are either based on total internal

reflection in high index guiding waveguides or "total internal reflection"-like external interference

effect in low index guiding waveguides, such as photonic crystal bandgap structures and

anti-resonance reflecting optical waveguides. Those waveguide core dimensions are normally on

the order of half the guided wavelength (X/2). Confining optical modes in a much smaller

dimension and particularly in low index materials can only be realized in slot waveguides. Slot

waveguide consists on low index layers sandwiched by high index layers. This unique property of

slot waveguides is believed to be ideal for electrically-pumped, Erbium (Er) based light emitters

and lasers integrated on silicon platform. However, because the potential gain coefficient that can

be realized in such system is small, reducing the cavity optical loss is very critical to realize net

gain and eventually lasing.

In this thesis, different configuration of slot waveguide is proposed and relatively low loss

optical transmission in slot waveguides is demonstrated. This validates and opens the possibilities

for slot waveguide based silicon light emission applications.

1.2.4. Athermal electronic-photonic integrated circuits

Heat generation during operation in electronic chips is already so big a problem that it

prevents clock frequency to be further scaled according to the roadmap. What's worse is that

photonic devices are even more sensitive to temperature fluctuation due to the fact that refractive

index is strongly dependent on temperature, as known as the thermo-optic (TO) effect. In an



electronic-photonic integrated circuit, heat generated by electronic transistor is dependent on the

computation load and is not constant. Photonic devices, such as filters and modulators will require

constant temperature control to stabilize the working wavelength, which adds extra costs and

consumes more energy. For ultra-large scale integration of photonic devices, such as optical

interconnect application in multi-core processors, tuning each individual filter up to tens of

thousands at the same time is near impossible. Passive temperature compensation scheme is a

must.

Silicon based photonic materials normally have positive TO coefficients while most of the

polymeric materials have negative TO coefficients. In this thesis, we have proposed athermal

operation based on TO compensation and demonstrated reduced temperature sensitivity using

polymer cladding, proving polymer claddings is a viable path toward all passive athermal photonic

circuits.

1.3. The layout of this thesis

In Chapters 2-5, we will review the waveguide fundamentals, the simulation methods that

are used in this thesis work, the causes for optical transmission loss in waveguides, and the

measurement methodologies. In Chapters 6-9, we will focus on the materials and processes

development for low loss optical waveguides. In Chapters 10-12, we will go over the optical

couplers and polarization rotators that are designed and demonstrated for realizing photonic

integration. In Chapter 13, the temperature dependence of optical devices is discussed and

athermal designs based on using negative TO coefficient polymers are suggested and

demonstrated. Chapter 14 summarizes the thesis and gives some future directions.



(This page is intentionally left blank)



Chapter 2. Planar optical waveguides

This chapter is intended to introduce basic waveguide concepts and terminologies related

to the research presented this thesis. Theese include waveguide materials, waveguide forms, and

waveguide modes etc. Slot waveguides are a newly developed class of waveguides that has

received significant attention and promise many applications in the future. The fundamentals of

the slot waveguides will be explained in this chapter. The formulation mentioned in the following

context is to help the follow of illustration. The detailed theories about optical waveguides, such as

light propagation, dispersion, and coupling can be found in Ref. 8.

2.1. Silicon-based waveguide materials and refractive indices

As we have discussed in Chapter 1, silicon photonics is very attractive because it can

leverage the large scale and low cost of CMOS technologies. CMOS compatibility is very

important when we choose the waveguide materials.

According to Snell's law, light can be guided in high refractive index medium using the

principle of total internal reflection (TIR) where the refractive light vanishes at the interface as

shown in Figure 2.1. This corresponds to the condition that the incident angle of the light can not

exceed the critical angle, 0 < 0, = sin-' n-n. = Oct,,,ca . This also defines the acceptance angle

of the waveguide, or the numerical aperture (NA), NA = cr,,,ca n H . As a result, the
nH

refractive indices are also important parameters of the materials.

The common CMOS compatible waveguide materials and their corresponding refractive

indices, nR, are summarized in Table 2.1. The refractive indices quoted are all at 1550 nm.
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Figure 2.1. (a) Reflection at a dielectric interface where nH> nL; Total internal refractive in a slab.

Table 2.1. Summary of the waveguide materials and their refractive indices

Common waveguide n Comments
materials

Single crystalline silicon 3.5 Readily available from SOI wafers
Poly-/amorphous silicon 3.2 - 3.8 Largely depending on processes
LPCVD silicon nitride 2.0 Stoichiometric

VTR silicon nitride - 2.2 Silicon rich
PECVD silicon nitride 1.8 - 2.2 Largely depending on processes

PECVD silicon oxynitride 1.5 - 1.7 Largely depending on processes
Thermal silicon dioxide 1.45 Often used as waveguide cladding layer

Polymer, e.g. PI, PMMA 1.4 - 1.5 CMOS back-end compatible, cladding layer

2.2. Optical waveguide forms

There are many optical waveguide forms suitable for different applications. For high index

guiding waveguides that operate under TIR principle, four designs are commonly used:

* Slab waveguides where a high index slab layer is sandwiched by two low index layers;

* Strip-loaded waveguide where a strip of high index layer is placed on top of a low index

slab layer to provide lateral optical confinement in the low index slab;

* Ridge waveguides where the high index layer is partially etched to create two index

contrast sidewall interfaces to provide lateral optical confinement;

Phase frontXLight beam
I



* Channel waveguides where the two sidewalls of the high index layer are completely

etched. Sometimes, also called "strip waveguides".

These designs are presented in Figure 2.2. Channel waveguides, or sometimes called strip

waveguides, are able to offer the highest optical confinement in the most compact size. This thesis

focuses exclusively on the channel waveguide form.

(a) Slab waveguide (b) Strip-loaded or ridge waveguide

(c) Ridge waveguide (d) Channel (strip) waveguides

M High index Medium index = Low index

Figure 2.2. Optical waveguide forms based on high index guiding principle.

There are also low index guiding waveguides, such as Photonic Bandgap-based

waveguides (PBG waveguides) and Anti-resonant reflecting optical waveguides (ARROW

waveguides). They are based on the external inference effect that creates TIR-like guiding

mechanism.
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2.3. Optical modes

The plane wave can be described as

u(r, t) = A exp(i(k -r - o -t)) (2.1)

where k is the wave vector, co is the angular frequency, and A is the amplitude. Ae ik -r is also

called the complex amplitude where k-r is the phase of the plane wave. The propagating wave has

all matched phase for constructive interference inside the waveguide. This means the phase

difference is always the integral numbers of 2nt. For example, in a slab waveguide as in Figure

2.2(b), the phase-matching condition for a specific propagation angle, 0, is

m 2(nn) _ 2
tan kn asinO- = n H in _ 1 (2.2)

2 2nH sin 2

where a is the half thickness of the slab. Notice that the allowed propagation angles are discretized

and are called "optical modes". At m = 0, the optical field distribution that satisfies Equation 2.2 is

called the fundamental mode. For m 2 1, they are called the higher order modes.

Analytical methods, such as the Marcatili's method [9], the Kumar's method [10], and the

effective index method [ 1 ], can solve three-dimensional waveguides, e.g. rectangular waveguides

with different aspect ratio, and ridge waveguides. For more complicated waveguide structures

with arbitrary index profile, numerical methods should be used, such as finite element method and

finite difference method.

Commercial software packages such as RSoft's latest FemSIM, Photon Design's

FIMMWave, and Apollo Photonic Suite are great tools to obtain optical modes when designing

waveguides. Figure 2.3 is an example of using FIMMWave to obtain all the guided TE modes

(optical intensity and electric field profiles) in a 1000 nm (w) x 200 nm (h) silicon channel

waveguide (n = 3.5) cladded with SiO 2 (n = 1.45). The waveguide is found to support three TE



modes. Their effective indices for modes of m = 0, 1, 2 are 2.70, 2.37, and 1.76, respectively.

Figure 2.4 summarizes all guided TM modes within the same waveguides. Only two TM modes

are found. The effective indices for modes of m = 0 and 1 are 1.82 and 1.56, respectively.

The fundamental modes in channel waveguides have the highest confinement factors

among all guided modes. They are capable of having low loss optical transmission and doing sharp

turns, ideal for applications in compact photonic integrated circuits. The details about transmission

loss and bending performance will be discussed in 0. This thesis focuses primarily on designs,

processes, and integration for single mode HIC channel waveguides.
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Figure 2.3. All guided TE-polarization modes ofa 1000 nm x 200 nm Si waveguides. (left) optical intensity and (right)
electric field distribution. m = 0 is the fundamental mode; m = 1 and 2 are the 2nd-order and 3rd-order modes.
Simulation is done using FIMMWave.
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Mode intensity

m=1
Figure 2.4. All guided TM-polarization modes of a 1000 nm x 200 nm Si waveguides. In this case, only two modes aresupported. m = 0 is the fundamental mode and m = 1 is the 2nd-order mode. Simulations are done using FIMMWave.

2.4. Summary

In this chapter, we have introduced the fundamentals about optical waveguides, especially

silicon-based CMOS compatible waveguides. Different waveguide forms and the concept of

optical modes are briefly discussed with simple examples. These terminologies will occur multiple

times in throughout this thesis. Low loss optical transmission in single mode, HIC channel

waveguide is the focus of this thesis work.

Magnetic field
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Chapter 3. Review of the simulation methods used in this thesis

In this chapter, the simulation methods used in this thesis work will be briefly reviewed.

The commercial software packages are FullWave and BeamProp from RSoft; FIMMWave and

FIMMProp from Photon Design; and Apollo Photonic Suite from Apollo. They are based on

Finite-Difference Time-Domain method (FDTD), the Finite Difference Beam Propagation

Method (FD-BPM), Eigenmode Expansion method (EME), and Finite Element Method (FEM).

Because the detailed improvement and implement of each method are mathematically intense,

only the fundamentals of the three methods will be reviewed and compared.

The above four methods can be categorized conveniently into two categories: time-domain

and frequency-domain approaches.

In time-domain, FDTD solve Maxwell's equations directly and has no inherent accuracy

limit. It can offer the wide band information when a time pulse is used in the simulation. It is very

versatile and robust. The only drawback is that it is extremely time and memory consuming.

Frequency domain approaches can only simulate one particular wavelength each time. The

most fundamental one is the FEM mode solver. It gives the eigenmodes in an infinite long

waveguide structure. These modes can be used for EME and BPM. BPM is one more step

approximation from the mode solver. It requires the structure in paraxial direction is slow varying,

such as taper structures, and solves the slow-varying envelope of the field, taking advantage of the

large propagation steps in slow-varying structure. If the structure in paraxial direction is more

step-like, such as couplers and gratings, EME is more suitable given that the complete mode set

can be obtained. Normally a complete mode set can be obtained in 2D structures, so this approach

can be a good approach for 2D simulation. In 3D, it is very difficult to calculate multiple modes



especially when leaky and radiation modes are present. Sometimes, in order to save computation

time and power, one will have to use truncated mode set instead of the complete mode set;

however, this give rises to numerical errors.

3.1. Finite-Difference Time-Domain method (FDTD)

A complete description of the FDTD method can be found in Ref. 12. Basically, the

time-dependent Maxwell's curl equations govern the behavior of electromagnetic field (EMF). In

free space,

aE 1 allH
at e= , (3.1)

aHlly 1 Ez
t Po ax (3.2)

where Ez and H, are electric and magnetic vector field, respectively; Eo is the electric permittivity

of free space, - 8.854 x 10-12 F/m; and po is the magnetic permeability of free space, 4t x 10 7 H/m.

Instead of solving the equation rigorously, the derivatives are approximated using the

"finite-difference" (FD) approximations. As shown in Figure 3.1, the derivative, f'(xo), is

approximated byf(xo+Ax/2) andf(xo-Ax/2):

df(xo) f(x o + Ax/2) - f(x - Ax/2)
dx A(x (3.3)dxb hX



fxf+Xdx12) 2

j x)
V4, 2 x0+4x/2

Figure 3.1. Illustration of the finite difference approximation of the derivative f(x,) in terms of f(x0+Ax/2) and
f(x0 -Ax/2).

Then, Equations 3.1 and 3.2 can be expressed as:

En+12 (k) En-1/2(k) 1 H(k+ 1/2)-Hn (k -1/2)
At AX (3.4)

Hn''(k+1/2)-Hn(k+1/2) 1 En+1"2(k+1)- En+112 (k)
(3.5)

At PO Ax

where n actually means the time, t = At -n and k actually means the distance x = Ax k . For lossy

media and high order dimension problems, the corresponding Ampere's law and Faraday's law

should be used.

The grid point setup for 3D simulation is commonly known as the Yee lattice with an

origin at (i, j, k) as shown in Figure 3.2 [13]. In space, every E field is located 1/2 cell width from

the origin in the direction of its orientation; every H field is offset 1/2 cell. In time, the calculations

of E and H are also interleaved. At a particular time step, all the E components are calculated and

stored using the precious H data; then all H components are recalculated using the stored E data;

and the cycle starts again for all E components using the newly computed H data.
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Figure 3.2. The electric and magnetic field vectors in a cubic unit cell of the Yee lattice. (Courtesy of Steven G.

Johnson)

Absorbing boundary conditions are required to eliminate unwanted reflections at open

boundaries. Those reflections sometimes cause numerical errors in simulations. One of the most

used method is the Perfectly Matched Layer (PML) introduced by Berenger [14]. PML can be

viewed as a specially designed absorbing material with "fictitious" electric permittivity and

magnetic permeability. In a PML, any incident waves from a non-PML medium will be

completely absorbed and thus has no reflection at the interface.

The space grid size is chosen such that the EMF does not change significantly. For example,

the maximum grid size in each direction, Ax, Ay, and Az, should be no greater than 1/20 of the

wavelength [12]. This also determines the maximum time step, At, that can be used. In a

homogeneous medium, At < (Ax) 2  (y) 2 +(A) 2 e.g. At = or At = [12]. As the
c c 2c

discretizations in both space and time approach zero, the solutions of each field component

becomes exact. As the result, FDTD method has no inherent accuracy limit. On the other hand, the

way the N h grid (N-dimension) is setup in the entire computation space, the discretizations, and

___ __ Y_ _ _ __



the propagation in time step result in extremely long computation time and large

memory consumption, making it very difficult to simulate large structure/distance.

The frequency domain calculation can be obtained in one simulation using

computation

a broadband

Gaussian source, f = expL(t 2 . The range of frequency content is determined by the pulse

width, a. This is particularly useful for simulations on resonators, directional coupler, and

Mach-Zehnder interferometers where the exact resonance response is not known. Its time domain

nature also gives the evolution of the EMF in the system. A flow chart of FDTD analysis is shown

in Figure 3.3.

Set initial values for all E
and H components

t=o

Configuration of the medium

Figure 3.3. The flow chart of FDTD simulation (Adapted from Ref. 15).

3.2. Finite-element mode solver (FEM)

The waveguide analyses and derivations based on solving the homogeneous core planar

waveguides will have difficulties in solving inhomogeneous waveguides with arbitrary index



profiles, such as the graded index planar waveguides. Directly solving the corresponding

Helmholtz Equations is extremely difficult if not impossible. The finite-element method (FEM) is

a numerical technique that can provide approximated solutions to those partial differential

equations (PDE). The common methods include the Variational formulation, the discretization,

and the choice of a basis set. Although FEM is intended to solve complicated waveguide structures,

it can be used to analyze homogeneous planar waveguides as well. For polarization dependent

mode problems, several vectorial FEM have been developed [16,17,18], but it is found that scalar

wave solutions (the Helmholtz Equation with respect to x and y directions) can have sufficient

accuracy [19]. The scalar wave equation is not solved directly. Instead, the solutions are obtained

using Variational functional of the electric field. In addition, if the structure has symmetry, then

the computation domain can be reduced according to the order of the symmetry.

First, the computation domain is discretized into small triangular grids. The boundaries

should be placed far away from the waveguide core so the EMF amplitude becomes nil at the

boundaries. The electric field in each region is approximated by a linear function of x and y and

connected at the nodal point. The form of the Variational functional is rewritten accordingly. In the

end, a global Nth-order linear simultaneous equation can be constructed with each element

representing the contribution of each electric field component. Solving the global matrix using

numerical calculation libraries such as Jacobi's method gives the eigenvalue for the electric field

distribution. The detailed discussion can be found in Ref. 15.

3.3. Beam Propagation Method (BPM)

The beam propagation method (BPM) is an approximation technique used to solve the

Helmholtz equation for light propagation in slowly varying optical waveguides. The detailed

formalisms and derivation can be found in Ref. 15. The most important equations are selected and



represented as follows.

The scalar wave equation, or the Helmholtz equation, can be expressed in 3D as

(V2 + kn2)E= 0  
(3.6)

V2 a2 a2

where V2 is the Laplacian operator, V2 - - ; kis the wave number, k = /c; and
ax

2 +0) 2 az

n is the refractive index of the core.

One important assumption of the BPM is that the electric field, E, can be separated into the

axially slowly varying envelop term of p and the rapidly varying term of exp(-jknz) as

E = cexp(-jknz). Also, when light is assumed to be weakly guided, it is approximated

that (n2 - no ) a 2no (n - no) . As the result, Equation 3.6 can be rewritten as

V 2 9 - j2kno +k 2 - n = 0 (3.7)
az

az 2kn - jk(n -no ) (3.8)

where V2 = 2  a2
where 2V +- and no is the refractive index of cladding layer. The elimination of the

term 2 is known as the paraxial approximation, << 2kn 0  , meaning the propagation is
az 2 az 2  az

restricted to a narrow range of angles along the z axis. The first term on the right hand side in

Equation 3.8 describes the free-space light propagation in the medium of no; the second term

shows the influence of the medium of n. However, this separation of two effects is only valid for

small distance along the z axis based on the slowly varying approximation.

The numerical solution of BPM can be obtained using the finite difference approach, e.g.

the Crank-Nicholson scheme [20]. One can obtain the following:



o,'1 + q, + p,+ - d,m  (3.9)

where i and m are grid points along x- and z- directions, respectively (i = 0 - N; m = 0 - M); and

q= -2+k 2 (Ax) 2 [(+112 2 +j 4kn (Ax) 2 - j2kno(A) 2 ,m+1/2

One common boundary condition for FD-BPM is the transparent boundary condition (TBC)

[21,22]. In this method, the electric field at the boundary, i = N, is assumed to be the plane wave

with certain amplitude and direction: (p = C exp(-jkx) where C and k are complex numbers. The

basic idea is to let the electric field at the boundary (radiation) freely escape the computational

domain.

Later improvements over the FD-BPM include the vectorial BPM that can solve the

transverse electric and magnetic fields independently [23], the bi-directional BPM that handle the

simultaneous propagation along the negative z axis (e.g. reflections at interfaces) [24], and the

wide-angle BPM that can remove the paraxiality assumption and allow a cone of ± 900 from the z

axis [25].

For ultra high index contrast optical waveguides (An > 0.5) in 3D, the polarization

coupling always exists so the polarization states are hybrid. Although the 3D full vectorial BPM is

found to be very unstable for such applications, if we assume the coupling is weak enough to be

negligible, then the two polarizations can be treated independently using a semi-vector BPM. This

method is robust for planar waveguides with An up to 2.0, e.g. Si/SiO 2 waveguides, and it has been

used extensively in this thesis.

3.4. Eigenmode Expansion Method (EME)

The Eigenmode Expansion Method can be used to solve long, slowly varying structures

efficiently and provide the rigorous solution of the Maxwell's Equations. The comprehensive



description of EME method can be found in Ref. 26. The following derivations follow Ref. 27

closely.

In a z-invariant structure, e.g. an optical waveguide with uniform refractive index in the z

direction, the time harmonic (exp(iot)) eigensolution of the Maxwell's Equations has the form

of E(x, y, z, t) = (. (x, y) exp(ifm z) , where (pm is the eigenfunction and im is the eigenvalue. There

are a finite number of guided modes, leaky modes, and an infinite number of radiation modes.

Together, they form a complete basis set for the solution of the Maxwell's equations:

M

E(x, y,z) = (ak e kz +bke - i kz )Ek (x, y) (3.10)
k=1

M

H(x, y,z) = (ak eifkz -bke-if')Hk (x, y) (3.11)
k=1

where ak and bk are the forward and backward amplitude; and flk is the propagation constant,

2nn
Pk = "7f These two equations are an exact solution of the Maxwell's Equation. They describe

both the forward and the backward propagating modes, meaning EME algorithm is readily

bi-directional. All the modes of E(x,y) and H(x,y) are orthogonal to each other.

Take the electric field as an example. Using the scattering-matrix theme, a waveguide joint

is shown in Figure 3.4. The boundary conditions for the electric field determine that the tangential

electric field must be continuous: E, = E/, or

N N

L (a e ifik - a ei )Ea (x, y) = (b'ekz - b'k e- ikz)E (x, y) (3.12)
k=1 k=1

Together with the orthogonality condition, one can show that

a S al where
b, bH (3.13)
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where S is the scattering matrix, the S-matrix, for the joint. S can be solved easily using the

computed eigenmodes. With the use of the complete basis set of eigenmodes for the S-matrix, one

can obtain the exact solution for the Maxwell's Equation. However, in practice, a truncated

S-matrix is used and this results in numerical errors.

b] . ,all

.. .. ...........

Figure 3.4. Mode coefficients at a joint in waveguides I and II in an S-theme.

For boundary conditions for EME method, the TBC is used at the input and output

interfaces of the computation domain. PML is used inside the computation domain to obtain the

complete basis set for the eigenmodes.

Using full vectorial EME, both TE and TM polarization can be simultaneously calculated

by the S-matrix. EME is also capable of doing wide-angle simulation by using more corresponding

modes. On the other hand, the accuracy of EME depends on finding the correct basis set of

eigenmodes. For large cross-section structures which can support many guided modes and leaky

modes, the computation time scales on the order of N3 in terms of optical resolution [27].
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3.5. Summary

In this chapter, we have briefly reviewed 4 different numerical methods that have been

applied in this thesis work. The photonic simulation suites that are based on these methods

generally offer a very convenient CAD tool to generate waveguide structures and mesh/grid setup.

Although each tool is easy to use, the operator must have good understandings in order to pick the

best method to his/her best advantage.
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Chapter 4. Optical waveguide transmission loss

Optical waveguide transmission loss is commonly defined in decibels (dB) per unit length,

e.g. dB/cm where dB is given by the common logarithm of the relative power ratio.

dB = 10 log unt (4.1)

The presence of optical loss not only provides unwanted signal attenuation while traveling

inside the waveguides, but also affects the performance of many waveguide-based optical devices,

such as filters and couplers. Compared to optical fused silica fibers which only has a fraction of dB

per kilometer, high transmission loss associated with silicon-based waveguides is due to the high

index contrast in these waveguides and their planar geometry. This chapter is dedicated to

understand various loss mechanisms and to provide information to assist in reduction or even

elimination of waveguide loss.

4.1. Optical loss mechanisms in channel waveguides

Optical waveguide transmission loss is strongly dependent on waveguide fabrication

processes. Silicon-based planar optical waveguides can be fabricated with a minimal 8-step

process flow. Generally, starting with a silicon substrate, a SiO 2 layer is first deposited on the front

side or thermally grown on both sides of the substrate. SiO 2 has a low refractive index of 1.46 and

can provide optical insulation between high index contrast waveguides and the silicon substrate (n

= 3.5). Then, various waveguide core materials are deposited on top of the under cladding layer.

Using silicon-on-insulator substrate, one can access to crystalline silicon as waveguide core

material directly. There are several techniques for pattern transfer: photolithography provides

high-throughput, high consistency, and standardized platform; electron-beam lithography has also



been widely used in academic environments because it has the relative low maintenance cost and

does not require making physical photomask; molding techniques, used to fabricate plastic optical

waveguides, have been adapted to fabricate silicon waveguide [28]. The photoresist patterned

waveguide layer is etched into either ridge or channel waveguides. Finally, after the photoresist is

stripped and the wafer is cleaned, another low index top cladding layer is deposited to protect the

waveguide devices. The process flow is illustrated in Figure 4.1.

Under cladding deposition Waveguide layer deposition

Resist coating
Photo mask -Exposure

8 8 8 3 J
Resist developing

Waveguide etch Resist strip Top cladding deposition

Figure 4.1. Schematic representation of channel waveguide fabrication process steps. Note that positive photoresist is
used in this example.
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Figure 4.2. Illustration of the dominant waveguide transmission sources using a cross-sectional SEM image of a
deposited a-Si waveguide.

Figure 4.2 is an illustration of the four dominant waveguide transmission loss mechanisms

that we can identified in an optical waveguide. They are:

1. Side-wall roughness scattering;

2. Top surface roughness scattering;

3. Material absorption (including surface states or free carrier absorption);

4. Substrate leakage.

Other waveguide loss sources that are listed above but will be important in many cases are:

5. Waveguide bend loss (radiation loss);

6. Waveguide comer imperfection;

7. Trapped Air voids at waveguide sidewall during top cladding deposition;

8. Any other fabricated caused effective index variation that may lead to reflection or

scattering.
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The top surface roughness can be reduced using chemical-mechanical polishing (CMP). In

the following context, transmission loss due to sidewall roughness scattering, material bulk

absorption, bending, and substrate leakage will be discussed in details.

4.2. Sidewall roughness scattering loss

Waveguide sidewall roughness often presents as vertical line striations. It originates from

the line edge roughness (LER) in photoresist during the photoresist exposure and develop steps

and this LER in photoresist is transferred to underlying waveguide during dry etch. LER is

primarily caused by the standing wave effect and aggressive develop process. The light intensity

variation along the direction perpendicular to the photoresist surface creates unevenly exposed

interface, which makes critical dimension control difficult and creates line edge roughness.

Prebake and postbake processes can reduce this effect to some extent. Because aggressive develop

dissolves the bulk polymer more than that at the interface, it also creates "scum" (residue

photoresist) along the photoresist/substrate interface. LER is also affected by the exposure dose,

the absorbance of the photoresist, and the glass transition of the photoresist. Sequentially,

anisotropic dry etch turns LER in photoresist into sidewall line striation. One example of as-etched

SOI silicon waveguide is shown in Figure 4.3 where vertical line striations are clearly visible.



Figure 4.3. An example of as-fabricated SOI waveguide. The sidewall line striations are clearly visible.

There are several theories which provide mathematical description of sidewall roughness

scattering, including the most recent 3D volume current method (VCM) [29,30,31,32]. According

to VCM, a small index perturbation inside a waveguide, in our case at the waveguide sidewall, is

an induced polarization current source and acts as the radiation source from the waveguide.

Basically, the sidewall roughness loss (a) has a positive correlation with (1) Sidewall roughness

RMS value (a) where a is proportional to a2. (2) Sidewall optical intensity. The sidewall roughness

scattering affects mostly the TE mode in a rectangular HIC waveguide. The boundary condition on

the electric field states that there is no discontinuity in the transverse component of the electric

field across an interface, or n, Ell = n2  E),2 . The index difference between waveguide core and

cladding layer determines that there is discontinuity in the electric-field at the interface, a is

proportional to the normalized optical intensity, IE12. (3) Index contrast at sidewall interface, a is

proportional to (nlre 2 ad ). The comprehensive understanding about sidewall roughness

scattering provides paths to reduce this effect by design and process optimizations.
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4.3. Materials bulk absorption loss

Material bulk absorption can be caused by many different mechanisms, such as

band-to-band transition and free carrier absorption in single-crystalline semiconductors, dangling

bond absorption in non-single-crystalline materials, and chemical bond vibration absorption in

dielectric materials.

Many optical devices operate based on band-to-band transition, or bandgap absorption,

such as diode laser, photodetector, and electro-absorption modulators. Single-crystalline silicon

has an indirect bandgap of 1.1 eV. It is transparent to light with wavelength larger than 1.2 p~m,

which is ideal for operations around 1550 nm.

Unlike in single-crystalline silicon where every Si atom is tetrahedrally bonded with four

nearest neighbor silicon atoms in an ordered lattice, amorphous silicon does not have long range

ordered structures. Distortion of Si-Si bond angle and length creates band tails into the bandgap. In

this case, the bandgap of amorphous silicon is described as the mobility gap and is smaller than 1.1

eV. In addition, the unpaired electronics, or the dangling bonds, form mid-gap states in the

mobility gap as shown in Figure 4.4. An incoming photon with wavelength of 1550 nm or 0.8 eV

can either excite a ground-state electron to one of these dangling bond states or an electron at these

states to the conduction band, and gets absorbed.



EV EC

Figure 4.4. The schematic band diagram of amorphous silicon. The band edge extended into the bandgap caused by
localized states in a-Si. Dangling bonds form mid-gap states in the mobility gap to cause absorption of photons with

energies less than the normal bandgap energy.

Semiconductor surface where lattice structure is terminated abruptly will have dangling

bonds if not well passivated. These surface states will contribute to absorption loss in a similar way

as bulk dangling bonds. Waveguide top cladding layer, e.g. SiO2, can provide passivation to some

extent to reduce the surface state density.

In large bandgap materials and dielectric materials bond vibration absorption can introduce

loss around 1550 nm. For example, PECVD silicon nitride uses silence (SiH 4) and ammonia (NH3)

as precursors. Smith et al. studied the plasma chemistry of PECVD silicon nitride and discovered

that in the gas phase, clusters called amino-silane molecules are first formed and then condense

onto the substrate [33]. Different amino-silance clusters react to form Si-N network and evolve

NH3 molecules back to the gas phase. This process is shown in Figure 4.5.



H'N'HH H

HN- SI -N

plasma

NH

surface H N-SS,NH'
H-N

I

"condensation N -Si
zone" "Si N

N -Sibulk / t
film 'Si H-N

Figure 4.5. The condensation process of PECVD silicon nitride.
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Figure 4.6. Example of FTIR spectrum of as-deposited PECVD SiNxHY, plotted in absorbance versus wavenumbers.

As-deposited PECVD silicon nitride inevitably contains a high concentration of hydrogen

in the forms of SiH and NH bonds and is best described as SiNxHy. Figure 4.6 is an FTIR spectrum

of as-deposited PECVD SiNxHy thin film. The characteristic peaks

* N-H in-plane vibration mode around 3450 cm'

* Si-H in-plane vibration mode around 2150 cm-1

* H-N-H out-of-plane vibration mode around 1200 cm'-

* Si-N in-plane vibration mode around 800 cm l



One of the high-order vibration modes of NH has resonance absorption centered at 1510

nm. Although this absorption is too weak to be detected in FTIR at 6600 cm 1', it clearly shows up

in the transmission spectrum of a PECVD SiNxHy waveguide as in Figure 4.7. Normally,

waveguide transmission loss has only very small wavelength dependence due to refractive index

dispersion resulting in changes in waveguide confinement factor. This rapid rising in waveguide

insertion loss is clearly due to SiNxHy material bulk absorption. The fact that this is not observed in

PECVD a-Si waveguide which contains a high concentration of SiH bonds confirms that this is

due to the resonant absorption of NH bonds.
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Figure 4.7. A PECVD SiNxHy waveguide transmission spectrum.

Free carrier absorption is essentially intra-band absorption and it occurs when a photon

excites an electron in the conduction band, or a hole in the valence band, to a higher energy level

within the same sets of bands. Free carrier absorption occurs when waveguide material is not

intrinsic, meaning it is either doped intentionally or has impurities. Free carriers can also be

injected into waveguides. The change in waveguide refractive index and absorption coefficient in

silicon can be calculated using [34,35,36]:



An = Ane + Anh = -[8.8 x 10-22. AN + 8.5 x 10- '18 .(AP)8] (4.2)

Aa = Aae + Aah = 8.5x 10-'8 -AN + 6.0x 10-'8 AP (4.3)

where AN is the electron concentration change, [cm-3]; AP is the hole concentration change,

[cm-3]; Ane is the refractive index change due to AN; Anh is the refractive index change due to

AP; Aae, [cm'], is the absorption coefficient change due to AN; and Aah, [cm-'], is the

absorption coefficient change due to AP. Coefficients 8.5 x 10-18 and 6.0 x 10-', [cm 2], are also

called the absorption cross sections for electron and hole, respectively.

4.4. Substrate leakage

Substrate leakage happens when the low index undercladding layer is too thin to provide

sufficient optical insulation between the high index Si substrate. This can be prevented easily with

a careful designed substrate separation as shown in the example in Figure 4.8. For a 0.5 x 0.2 tIm 2

Si waveguide, in order to have less than 10-3 dB/cm substrate leakage loss, the TE mode requires

the undercladding SiO2 layer to be at least 1.5 jtm; and for the TM mode, 2.7 tm [37]. For most of

our devices, the undercladding Si0 2 layer is chosen to be 3 [tm.
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Figure 4.8. The leakage loss vs. substrate separation. The radiation loss into the substrate for TM mode will cause
great loss for substrate separation distance less than 3 Atm (Figure adapted from Ref. 37)

4.5. Bend loss

Bend loss is very important to consider when designing ring resonators, arrayed waveguide

filter, and spiral-shaped optical delay line. It determines how compact the photonic circuit can be

when the refractive indices of waveguides are given.

Gambling et al. showed that the fundamental mode in a bent waveguide is shifted slightly

toward the outer rim of the bend due to conversion to higher order modes [38]. As the result of this

shift in optical intensity inside the waveguide, the evanescent field outside the waveguide is

enhanced; and when waveguide transform back to straight the elongated evanescent tail can not be

fully reconfined and becomes radiative loss. Analytical models developed by Marcatili and

Marcuse can be used to obtain curvature loss but are limited to low index, weakly guided

waveguide with large bend radius. Various numerical methods have also been used to design and

analyze waveguide bends, such as the eigenmode expansion [39], the method of lines [40], the
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finite difference method [41], the variational method [42], the matrix method [43], the

Wentzel-Kramers-Brillouin analysis [44], the beam propagation method [45,46], and a

full-vectorial finite-element method [47]. Today, using commercially available photonic design

tool kits, designing an arbitrary bend becomes straightforward. However, design should take into

account the real waveguide transmission loss because beside the radiative loss, the shifted optical

fundamental mode will increase the optical intensity at the sidewall, thus enhancing the sidewall

roughness scattering loss as we discussed in previous section.

4.6. Summary

In this chapter, we have discussed the dominant loss mechanisms in high index contrast,

single mode channel waveguides. For TE mode, sidewall roughness scattering loss is the dominant

loss source. Due to the high index contrast in silicon waveguides, this effect is amplified orders of

magnitude higher than in an optical silica fiber. For both TE and TM modes, bulk absorption loss

in deposited waveguides is also very important. Bend loss is dependent on both the optical

confinement and field orientation. Substrate leakage loss is the crosstalk between the waveguide

and the substrate. Both bend loss and substrate leakage loss are largely dependent on structure and

can be minimized with careful design.



Chapter 5. Optical waveguide insertion loss measurement

As we discussed in Chapter 1, waveguide transmission loss contributes to the attenuation

of optical signal when it travels inside a waveguide. While the optical signal is transported and

routed on chip, firstly it has to be coupled from optical fiber to on-chip. Generally, the combination

of waveguide transmission loss and fiber-to-waveguide coupling loss is called the insertion loss

which represents the total attenuation of the system, [dB]:

a, = ac +a, L (5.1)

where a, is the total insertion loss, [dB]; ac is the total coupling loss, [dB]; a, is the waveguide

transmission loss coefficient, [dB/length]; and L is the waveguide length, [length].

The waveguide transmission loss coefficient, a,, can be accurately measured by the

following four techniques with improved accuracy.

1. Fabry-Perot resonance technique

2. "Paperclip" method

3. Ring resonator resonance technique

4. Ring resonator based "paperclip" method

5.1. Fabry-Perot resonance technique

A common method to measure optical waveguide is to launch signal from optical fiber into

waveguide from the input port on one edge of the chip and pick up the output signal from the

output port on the other edge. In order to reduce scattering during fiber-to-waveguide coupling,

chip edges where waveguides are exposed are either polished or cleaved to obtain smooth facets

prior to measurement. This creates a resonance cavity along the waveguide between the two highly



reflective facets and it is called Fabry-Perot cavity. Each facet has a positive finite reflectance,

given by Fresnel equations, assuming normal incidence at parallel waveguide facets:

R = r_nc_enti -n neff (5.2)
nincident + neff

where R is the reflectance; nlncident is the refractive index of the medium from which light enters or

exits the waveguide; and neff is the effective refractive index of the waveguide.

Each set of cavity length and effective index has a characteristic resonance feature created

by interference effect due to the phase difference for different path length. The constructive

interference satisfies

L = m (5.3)
neff

where L is the length of the waveguide; m is an integer number and represents the order of the

resonance or the number of round-trip that light has traveled in between the two facets; and A is the

resonance wavelength in vacuum. Figure 5.1 is an example of tuning resonance periodicity using

the thermo-optic effect by thermal heating [48]. The waveguide loss can be calculated from

1+ Pm"
1 1Pmax

at =In R "- (5.4)

\ Pmax

co -

a, = ILn R S (5.5)
L I-sin

where Pm. and P . are the transmitted power of the resonance peak and valley, respectively, as

denoted in Figure 5.1; R is the reflectance of the waveguide facet; and F is the finesse of the

resonant cavity, F = A(D
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Figure 5.1. The normalized transmitted power versus heating time and phase shift for a LiNbO3 waveguide. A( is the
FWHM bandwidth and S~ is free space range (Figure taken from Ref. 48)

The drawback of the Fabry-Perot resonance technique is that the actual reflectance, R,

always deviates from ideal case due to tilted facet, roughness, and tilted incident angle. For HIC

waveguides, 3D-FDTD method must be used to simulate the effective index for calculation.

Nevertheless, it can give quick waveguide loss estimation by just measuring one waveguide.

5.2. "Paperclip" method

From Equation 5.1, we know that the total insertion loss is dependent on waveguide length.

If we keep the coupling loss constant then the total insertion will become a linear function of

waveguide length with the slope being the waveguide transmission loss as shown here.

a t = (5.6)AL

The "paperclip" method, sometimes called the "cutback" method, is based on this principle

[49]. Figure 5.2 is a schematic representation of how a simple "paperclip" testing chip can be

designed and an example of transmission loss coefficient measurement. In Figure 5.2(a), the

waveguide length varies from L to L5 with L5 being the longest. The two parallel chip edges are



also the waveguide facets for fiber coupling measurement. The benefit of having such design is

that all waveguide facets can be prepared at once, either by polishing or by cleaving, to ensure

similar coupling condition. The usage of automatic fiber-to-waveguide alignment station can also

provide optimal coupling each time with high consistency. Bends are inevitable in this design. The

bend angle can be arbitrary but can not introduce significant bend loss comparable to waveguide

transmission loss. In some occasions when waveguide transmission loss coefficient is low and

much longer waveguides are needed to provide large enough differentiation between waveguides,

multiple bends and different numbers of bends can be used provided that the total bend loss should

empirically be at least two orders of magnitude lower than the total waveguide transmission loss,

a, -L.

(a) * Experimental data (b)
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Figure 5.2. Example of a "paperclip" testing chip for waveguide transmission loss measurement. The transmission
loss coefficient at 1550 nm is derived from the linear fit of 5 insertion loss values for 5 waveguides with length of 0.5,
0.75, 1.0, 1.5, and 2.0 cm.

Transmission loss coefficient (dB/cm) is the slope of the linear fit of a transmission (dB)

versus waveguide length (cm) plot as shown in Figure 5.2(b). For each individual waveguide

measurement, in order to calculate the transmission loss coefficient, one needs to substrate the

system loss and coupling loss from the total transmission loss. Accurate, direct measurement of
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system loss and coupling loss is difficult and they vary from time to time. The "paperclip" method

is very accurate given the fact that random variation can be eliminated by the linear fit. However,

this method requires fabricating a dedicated testing structure; both sample preparation and

measurements are very time-consuming.

5.3. Ring resonator resonance technique

Ring resonators (or racetrack resonators) are not only important photonic devices for filter

and modulator applications, but also useful to derive waveguide transmission loss coefficient.

A typical first-order ring resonator device has one bus waveguide, or through port, coupled

with the ring, sometimes, there is a second bus waveguide to drop the resonance wavelength, or

drop port as shown in Figure 5.3.

a output

a 2  b2

a -K*

t t b

input output input output

(a) (b)

Figure 5.3. Schematics of (a) a ring resonator with only through port, and (b) a ring resonator with both through and
drop ports

The following method and derivation closely follow Yariv's paper in Ref. 50. Yariv

showed that the interaction of the ring resonator and the bus waveguide can be expressed by

Equations 5.7 and 5.8 is the normalization condition. Equation 5.9 relates a2 and b2 with round trip

loss a.



b t ia
b2  t a2  (5.7)

I21 + t2 = 1 (5.8)

a2 =a.e'0 b2  (5.9)

a: round trip loss. When bend loss is negligible, a = at

a1: input power, normalized, a, 2 =1

a2 : power in the ring considering round trip loss

bl: transmitted power

b2 : power in the ring

t: transmission coefficient

I: coupling coefficient

From Equations 5.7 to 5.9, we can derive that

-a+ te-'
b1  - (5.10)

- at * +e -'°

- a *
a2 = * (5.11)

The total transmission power is

2 = + tI2 -2alt cos(O + 0,)
1+ a 2 It - 2atcos(O + , )5.12)

where t = tl exp(i,); and total power in the ring resonator is

Ia2 2 2 (5.13)1+ t - 2at cos(O + ,)(5.13)

At resonance wavelength, 0 + 0, = m 2;r , then the extinction ratio is



bI al (5.14)

The extinction ratio is dependent on the round trip loss in the ring and the coupling strength

between the bus waveguide and the ring.

Other important parameters for a ring resonator are the quality factor, Q, and the finesse,f

Q is defined as the ratio of the resonance wavelength to the full width at half maximum (FWHM),

AAR,, of the resonance:

QZR (5.15)
AAR

And the finesse is defined as the ratio of the free spectrum range (FSR) to the FWHM:

FSR
f=

= A R  (5.16)

The Q factor can also be denoted in terms of b112 at FWHM. Experimentally, the extinction

ratio and the Q factor are derived from the Lorentzian fit of the resonance peak. We can obtain at

and t by solving the above equations for the Q factor and the extinction ratio. Notice that we

assume the round trip loss, (a, . L), is much greater than the bend loss of the ring resonator.
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Figure 5.4. Example of a ring resonator resonance around 1558 nm (the red dots) and its Lorentzian fit (the black line).

The large fringes are Fabry-Perot fringes caused by the bus waveguide flat facet as we discussed in Section 5.2.

Figure 5.4 is an example of applying this method to obtain waveguide transmission loss

coefficient. The red dots are the measured resonance of a racetrack resonator around 1558 nm. The

extinction ratio and Q factor are derived from the Lorentzian fit of the measured spectrum. The

effective index of the waveguide is 2.1; bend radius is 50 ptm; and the periphery of the resonator, L,

is (100r + 200) .tm. The transmission loss coefficient is calculated to be 12.0 ± 1.8 dB/cm as

listed in Table 5.1. We will revisit this example later.

Table 5.1. Important parameters and transmission loss coefficient of a racetrack resonator.

Resonance Extinction -3 dB Q factor Loss
wavelength ratio (dB) bandwidth (pm) (dB/cm)

(nm)
1558.146 12.3 69.4 22452 12.0 ± 1.8

This method is as simple as the Fabry-Perot resonance technique but more accurate

because it involves only one measurement and the nature of coupling does not affect calculation.

However, the two most important parameters, extinction ratio and Q, are derived under the
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assumption that the resonance line shape is Lorentzian. For rings with a large Q factor, the

resonant peak only consists of a few data points due to the resolution of the tunable laser that is

used. The Lorentzian fit will have large uncertainty. Overall, the measurement uncertainty is

estimated to be less than 15%.

5.4. Ring resonator based "paperclip" method

This method is based on the same principle in the previous section, but improves the

accuracy of the single ring resonator resonance technique by measuring a series of ring resonators

with different periphery length. This is similar to the "paperclip" method.

L1 L2 L3 L4 L5, L6, ...

Figure 5.5. Schematic drawing of a waveguide transmission loss coefficient test chip. Different L's denote different
racetrack periphery length.

Figure 5.5 is a schematic drawing of a test structure based on resonator "paperclip" design.

The bus waveguide's length, width, bend radii, and the ring-bus coupling gaps are kept identical

while the length of the straight racetrack part varies from device to device. Notice that the

racetrack resonator is coupled with bus waveguide at bends, not at straight racetracks. This is to

ensure the identical coupling condition for each racetrack resonator. For each individual resonator

device, extinction ratio, Q, and round trip loss, (a -L), can be calculated. Then using similar

method as "paperclip" method, the transmission loss coefficient can be obtained with the best



accuracy compared to the above three methods. This method also requires that the bend loss is

negligible compared to the round trip loss.

5.5. Deriving bulk absorption loss using TM-polarization

We know that for single crystalline silicon waveguides, the transmission loss of the

TE-polarization is largely dependent on sidewall roughness scattering. Because c-Si has minimal

bulk absorption loss, the measured TE-polarization transmission loss is in fact the sidewall

roughness scattering loss (assume other loss sources are carefully eliminated already, such as

substrate leakage loss and bend loss etc.). Comparing TE-mode loss coefficient one can readily

compare different process conditions to find the one that gives the minimal sidewall roughness.

Here we present a technique that can provide direct measurement of the bulk absorption loss

coefficient using the TM-polarization for deposited waveguides.

The total TM-mode transmission loss of a deposited waveguide is

TM = aside + atop + asub + abulk (5.17)

where arT is the TM-mode transmission loss, aside is the contribution of sidewall roughness

scattering, atop is the contribution of top surface roughness scattering, asub is the contribution of

substrate leakage, and abulk is the contribution of bulk absorption.

Because the TM-mode is relatively insensitive to the sidewall roughness scattering, aside

can be ignored without introducing too much difference. We can also eliminate the top surface

roughness loss and the substrate leakage loss using CMP process and a thick SiO 2 under cladding

layer, then the terms atop and asub can be left out of the equation. The total transmission loss of

TM-mode is solely dependent on abulk. Furthermore, because the bulk absorption loss depends on

the bulk absorption loss coefficient, a, a constant and a measure of the waveguide absorbing



strength; and the confinement factor, F, because only the optical power overlapping the absorbing

waveguide will be affected, the equation can be rewritten as

aTM abulk = a F (5.18)

This technique involves measuring the TM-mode transmission loss of many waveguides

with different widths. The derivative of arMwith respect to waveguide width, w, is

= a-- (5.19)

where X is the change rate of the confinement factor with respect to width.
8w

The confinement factor can be calculated using photonic design tool kits, such as

FIMMWave and Apollo. One example of the confinement factor for a-Si/SiO2 (n = 3.64/1.46)

channel waveguide is given in Figure 5.6. Within the interesting waveguide width range from 0.4

to 0.6 pm, the confinement factor can be approximated to have a linear dependence on waveguide

width, thus becomes a constant as well.
8w
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Figure 5.6. Confinement factor versus waveguide width for the TM-mode.
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Figure 5.7. TM-mode transmission loss versus waveguide width. The M is derived from the corresponding linear
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fit.

The measured TM-mode transmission loss as a function of waveguide width is plotted in

Figure 5.7. Combining and w , the bulk absorption loss coefficient can be derived.
w 'w

5.6. Waveguide measurement setup and techniques

Typical waveguide measurement setups use fiber-to-waveguide coupling techniques,

being from the edge or from the top using special designed grating coupler [51]. Figure 5.8 is a

schematic diagram of our measurement setup using an edge fiber-to-waveguide coupling scheme.

It consists of a Newport Autoalign Station and LUNA Optical Vector Analyzer integrated with HP

tunable laser.
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Figure 5.8. Schematic diagram of a Newport Autoalign station. The bottom is the top view of the sample stage and
fiber holders where light is coupled from fiber to the device under test (DUT) (Courtesy of Dr. Daniel K. Sparacin).

A single wavelength alignment laser is first used to align the fiber-to-waveguide coupling,

and then the optical path is switched to tunable laser and conduct wavelength sweep measurement.

Details about our JDSU-SWS2000 system can be found in Ref. 37. The latest upgrade to the

system is the addition of the LUNA Optical Vector Analyzer (OVA) system. Integrated with 2

Agilent tunable lasers, LUNA OVA is capable of measuring, not exclusively, (1) insertion loss, (2)

polarization dependent loss, (3) group delay, (4) chromatic dispersion, optical phase, and (5)

polarization mode dispersion as a function of wavelength in the range of 1470 nm - 1630 nm

within 1 minute. For comparison, using the JDSU-SWS2000 system takes up to 3 minutes for the

same wavelength scan. Both methods operate under the principle of the Jones Matrix method [52].

A typical optical system supports both TE and TM polarizations. Each input polarization can
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couple into either of the two output polarization modes. A 2-by-2 complex matrix can fully

characterize the system, as called the Jones Matrix:

I a() b(m)
c (w) d() (5.20)

where a, b, c, and d are the four scalar transfer functions; and co is the frequency. LUNA OVA can

simultaneously measure all four elements of the Jones Matrix and calculate all 5 parameters listed

above. For example, insertion loss, IL, is defined as

IL = -10log 2 - (5.21)

Using LUNA system to measure waveguide transmission is straightforward with the

integrated control software. However, sometimes, we need to control polarization by external

polarization controller. The algorithm used by LUNA OVA as well as JDSU-SWS system can

only give 2 eigen values (min. and max.) of the Jones Matrix, but it can not differentiate when two

polarizations crossover.

Figure 5.9 is an example of the transmission spectrum of the drop port of a silicon ring

resonator filter. This ring is designed for TE mode operation and has a coupling gap of 170 nm.

The red line, denoted as min. power by the software, is the TM mode transmission response of the

drop port. It is expected to be flat across the measurement wavelength range. The black line,

denoted as maximum power, is the TE mode transmission response of the drop port. It is expected

to have resonance according to the transmission spectrum of the through port shown as the inset in

Figure 5.9. The TE mode response crosses the TM mode at around -30 dB at three resonance

wavelengths. The software mistakenly treats that part of the TE mode response that is smaller than

the TM mode as the TM mode response and record accordingly. Without attention, if one uses the



TE mode data directly, he would see an unrealistic flat-top shaped response for the TE mode of a

first-order filter. This TE-TM crossover problem also happens in other cases.
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Figure 5.9. Transmission spectrum of a ring resonator's drop port. The red line is TM mode and has flat response; the
black line is TE mode which has resonance response and crosses the TM mode response around -30 dB at three
resonance wavelengths. The inset is the transmission spectrum of the through port of the same ring resonator.

We can solve this problem by filtering out the unwanted polarization in the output signal.

In the above example, we are only interested in TE mode so we can block the TM mode by using

an external polarization controller, e.g. HP 8169A Polarization Controller, as shown in Figure 5.10,

before the photodetector.
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Figure 5.10. A schematic representation of a polarization controller. Incoming random polarized light, or unpolarized
light becomes linear polarized at the output.

After the polarization is connected in the optical path and the DUT is aligned properly, the

LUNA is set to do continual scan around one of the resonant wavelengths. To operate the

polarization controller, linear polarizer, Pol, is first adjusted to obtain maximal transmission.

Choose the "time domain amplitude" in the lower window in LUNA control software, there are

two peaks in the time domain window. For a single mode silicon waveguide with rectangular cross

section (width > height), the effective index of the TM polarization is smaller than the TE

polarization, which means the TM polarization travels faster than the TE polarization in

waveguide given v, = Co where co is the speed of light in vacuum. In time window, the TM
neff

polarization reaches the detector first and the peak of the TM polarization shows up earlier than the

TE polarization as shown in Figure 5.11(a). By watching the time domain amplitude window

while we adjust the half plate, V2, and the quarter plate, /4, we can minimize the peak

corresponding to the TM polarization as shown in Figure 5.11(b). As the result, the output power

entering the photodetector will contain mostly the TE polarization.



intensity

U t, t2  time (ns) 0 t1  t2  time (ns)

Figure 5.11.Schematic drawings of the time domain amplitude (a) before and (b) after polarization controlling. In this
example, the TM polarization is stopped by polarization controller; only TE polarization is allowed to pass and enter
the photodetector.
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Figure 5.12. One of the drop port transmission spectra of the same ring resonator shown in Figure 5.9. This spectrum
consists of two separate measurements in which only one polarization spectrum is obtained each time. Using
polarization controlling, we can successfully solve the crossing problem using LUNA system.

Figure 5.12 shows one of the drop port resonant responses of the same ring resonator as

shown in Figure 5.9, except polarization controller is used here to allow measurement on one

polarization state each time so the figure consists of two separate measurements. Notice that the

incorporation of polarization controller in the optical path introduces additional - 5 dB loss in total
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transmission. Nevertheless, using polarization controlling method we can obtain the real response

of any devices without worrying the issue of TE-TM crossing.

5.7. Summary

In this chapter, we have reviewed the various measurement methodologies that have been

developed and used in this thesis work. The "paperclip" method is suitable for measuring

waveguides with large transmission loss (> 5dB/cm) with relative large length difference in

"paperclips"; for small transmission loss, resonator method and resonator based "paperclip"

method are recommended. The polarization controlling measurement is also very important

technique to overcome the TE/TM crossing problem caused by the Jone's matrix when measuring

either straight waveguides or resonator devices when the transmission loss of either polarization

has large wavelength dispersion.



Chapter 6. Process development for low loss silicon channel waveguides

As we have discussed in Chapter 1, the dominant optical transmission loss mechanism in

single-crystalline silicon (c-Si) is sidewall roughness scattering; and in amorphous silicon (a-Si),

the bulk absorption loss is another important loss source. In order to reduce sidewall roughness

scattering loss, we can reduce the sidewall optical intensity, RMS roughness, and optical index

contrast. For a-Si waveguides, H passivation is proven to be an effective method to reduce the

dangling bond absorption. In this chapter, we will discuss new designs and new processes to

improve c-Si and a-Si waveguide optical transparency.

6.1. Photolithography process optimization technologies

Because sidewall roughness, also known as sidewall line striation, is originated during

photolithography step, we need to go back and re-examine the related photolithographic processes.

This study is conducted in Integrated Circuits Laboratory (ICL) in Microsystems Technology

Laboratories (MTL) at MIT. The key equipment is the 6 inch wafer stepper is Nikon NSR-2005i9.

This i-line stepper has a designated wavelength, A, of 365 nm and a variable numeric aperture (NA)

of 0.6 - 0.66. According to R = NA ' this corresponds to resolution, R, of 550 nm - 600 nm. The

average photon flux measured during experiments is calibrated to be - 420 mW/cm 2 .

The photoresist (PR) used is MEGAPOSIT SPR-700 series from Rohm and Haas

Company. Using coater track, wafers go through a vacuum HMDS (adhesion promoter) vapor

prime oven, photoresist spin coater, and soft bake oven at 95 OC for 60 seconds. 1 gm thick

photoresist is coated before entering stepper for exposure. During exposure, the exposed

photoresist becomes dissolvable in developer and the unexposed part stays. The starting recipe for



post exposure bake (PEB) is at 115 oC for 30 seconds. PEB is necessary to eliminate standing wave

effect (SW) as shown in Figure 6.1. The developer is MEGAPOSIT LDD-26W from Rohm and

Haas Company. The starting recipe is 400 RPM constant spray for 37 seconds. A post develop

hard bake (PDB) is set to be at 130 OC for 60 seconds.

Standing waves

Exposed
photoresist

(a) exposure (b) Striations (c) PR diffusion during PEB (d) After develop

Figure 6.1. Schematic representation of standing wave effect in positive photoresist and post exposure bake (PEB)

effect. Negative photoresist works in a similar way except the unexposed photoresist is dissolvable in developers.

First, PEB is optimized to be 120 oC and 60 second for improved SW effect at sidewall for

both clear and dark field features as shown in examples in Figure 6.2 where 0.8 pm photoresist

patterned on silicon substrate directly. The critical dimension (CD) control is studied with respect

to exposure time for both clear field and dark field features. Figure 6.3 summaries the critical

dimension change as a function of exposure time ranging between 120 ms and 180 ms for both

clear and dark field features. It is found that 120 ms exposure, working with current develop recipe,

gives the best CD control. This corresponds to photon energy of only 50.4 mJ/cm2 for 0.8 pm thick

photoresist. The feature dimension can be controlled within + 30 nm after Reactive Ion Etch (RIE).

Shorter exposure time will result in severe under exposure of photoresist.
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(a) Clear field (a) Dark field

Figure 6.2. SEM images of improved SW effect at sidewall in (a) clear field and (b) dark field. No striation pattern are
visible on sidewalls.
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Figure 6.3. Critical dimension change vs. exposure time for both clear and dark field features.

The continuous spray develop recipe is an aggressive develop process that is optimized for

high photospeed photoresist and manufacturing processes. However, in our study, the process

results in scum and roughness in the developed photoresist. The formation of scum is due to the

fact that aggressive developing process dissolves bulk photoresist more than at the

substrate/photoresist interface. An SEM image of an as-developed photoresist is shown in Figure

6.4. Low normality developer (e.g. MICROPOSIT MF-26A or 24A developers) and less

aggressive, static puddle resist develop method can be used to reduce both effects [53]. Due to the

d



equipment constraints, we can not fully implement these techniques in ICL. Alternative

approaches are used and include a descum step prior to RIE and photoresist reflow at moderate

temperatures.

Figure 6.4. Photoresist scum formed at the PR/substrate interfaces due to aggressive develop process.

Photoresist scum on surface will be transferred into structure during etch step. The descum

step is carried out in the RIE tool (Applied Materials, AME-P5000) instead of photoresist stripper

(Asher). The reason is that the oxygen plasma descum in AME-P5000 is more anisotropic than in

photoresist stripper. The descum step is set to 5 seconds and is found to have little effect on feature

dimension. Due to the formation of thin oxide on silicon surface due to the 02 descum step, a short

oxide "break-through" etch step is inserted before the silicon etch. This step can remove up to 10

nm oxide. The improved etch result is compared to standard process as shown in Figure 6.5.



(a) Control process (b) With 5 sec descum in AME-P5000
Figure 6.5. Examples of descum effect on as-etch silicon structures using oxide hard mask. The oxide hard mask is
defined using positive photoresist mask. Photoresist is removed (Asher) and wafer is cleaned (double Piranha
cleaning) prior to SEM.

Photoresist reflow experiments are carried out at temperatures between 150 oC and 200 OC

for 3 minutes. It has been found that for this particular photoresist, the bulk or large area always

reflows before small features and edges. As a result, the clear field, isolated structures behave

vastly different from the dark field structures.

Figure 6.6 is the SEM images of photoresist clear field structures reflowed at 4 different

temperatures, including the standard 130 oC PDB. For isolated clear field structures, it is easily

seen that the photoresist top surface starts to reflow immidiately at 150 oC, resulting in rounding of

the top surface; the top half of the photoresist shows some degree of reflow. Unfortunately, the

bottom half which is also the most important part in affecting the etch does not undergo significant

shape changes. Especially there is no visible striation reduction along the photoresist/substrate

interfaces. The standing wave pattern is somehow more noticeable at higher temperatures.
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Figure 6.6. The SEM images of the photoresist clear field structures reflowed at different temperatures.

Figure 6.7 is the SEM images of photoresist dark field structures reflowed at temperatures

from 150 oC to 200 oC, including the standard 130 OC PDB for comparison. Generally, the bulk

photoresist is much easier to reflow compared to more isolated clear field structures. The

photoresist sidewall angle changes from 60 o to 33 o after reflow. The photoresist/substrate

interface does not retreat, possibly due to the strong adhesion of photoresist at substrate surface.

Although this is good for CD control, the bottom half of the photoresist does not show significant

signs of reflow.



Figure 6.7. The SEM images of the photoresist dark field structures reflowed at different temperatures.

Because this particular photoresist, MEGAPOSIT SPR-700 series, can not be reflowed

effectively on either silicon or silicon dioxide surface, Sidewall roughness reduction will be

pursued using alternative approaches, such as hard mask and damascene process (for deposited

waveguide only).

6.2. Hard mask vs. photoresist mask

In standard CMOS process, oxide, or sometimes oxide/nitride, hard mask is commonly

used to reduce the LER of ploy-silicon gates. The photoresist mask process flow is already given

in Figure 4.1. Figure 6.8 shows a modified process flow where oxide/nitride hard mask is used to

define c-Si waveguides.
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LPCVD SiN dePosition

Photo mask Exposure
Photoresist coating Photoresist developing

Hard mask etch Silicon etch Photoresist strip and
hard mask removal

Figure 6.8. Example of the process flow for fabrication of c-Si waveguides using oxide/nitride hard mask. The last step
of the process, which is not shown in this figure, is deposition of PECVD top cladding layer on fabricated optical
waveguides.

For single-crystalline silicon waveguide (SOI waveguides), the hard mask used in our

process consists of 90 A thermal pad oxide layer and 1190 A LPCVD silicon nitride layer which

can also be used as ion-implantation mask and local oxidation of silicon (LOCOS) mask. The

oxide/nitride mask etch uses CHF3 and CF 4 chemistry; and silicon etch uses Cl2 and HBr

chemistry. The nitride layer can also be etched using SF 6 chemistry. From experimental results, we

observed that the usage of hard mask can reduce 1/3 of the sidewall LER in silicon waveguides.

Pad oxide growth



The reason for LER reduction is because the hard mask is resistant to degradation during

the etch step by the reactive ion species. Regular photoresists are vulnerable to F and O radicals

generated during the etch step which leads to photomask erosion at the sidewalls. The erosion is

not uniform and creates additional sidewall striation. Photoresist selectivity relative to the silicon

etch is typically low, e.g. -3:1 or lower at higher powers and temperatures. Oxide or nitride

selectivity relative to the silicon etch is much higher, e.g. -10:1 up to -100:1. With this selectivity,

the hard mask can be thin which also helps with its own etch of the hard mask. A thin hard mask

film can be etched with a photoresist film in a short period of time and thus not suffer significant

erosion and sidewall degradation that is transferred into the etching hard mask.

The fabrication of SOI waveguides are done at BAE Systems' clean room facility in

Manassas, VA. The waveguide measurements are conducted at MIT. The results will be presented

later in 0.

For fabrication of amorphous silicon waveguides, PECVD oxide-only hard mask can be

used because both thermal oxide and LPCVD nitride are not compatible with the a-Si process

temperatures. The rest of the a-Si process flow is similar to SOI waveguides, except that we can

insert a wet etch step on oxide hard mask using dilute HF (H20:HF, 50:1) to remove some sharp

sidewall roughness. Unlike the dry/wet oxidation of c-Si, this process is generally isotropic and

only effective to large RMS roughness.



(a) Control process (b) Oxide HM with 1 min HF etch

Figure 6.9. (a) Control sample with standard processes. IkA oxide HM as etched using photoresist mask, followed

immediately by 30 seconds RIE silicon etch. Photoresist is removed before SEM. (b) After oxide HM is etched,

photoresist is removed by double piranha; and then, the oxide is etched for 1 minute in diluted HF (50:1 H20:HF); the

wafer is cleaned properly and finally etched for 30 seconds using the same silicon etch condition as in control sample.

The scales are both 200 nm.

Figure 6.9 shows the comparison of a process split with and without 1 minute HF wet etch.

Although the sidewall line striation can only be compared qualitatively using SEM with the same

scale, we do see some extent of roughness reduction effect in sample (b). Other observations are:

* The wet etch rate for a-Si in freshly-made dilute HF solution is about 10 nm per minute.

The waveguide dimension as well as the gap in between the waveguide will change

accordingly.

* In sample (a), the presence of photoresist during silicon etch can help passivate the

etched sidewall with the formed polymeric etch product, silicon etch is thus more

anisotropic than in sample (b) where the photoresist is removed prior to silicon etch.

The sidewall in sample (b) is curved inwards, indicating a more isotropic etch process.

* In AME-P1000, due to the presence of this polymeric intermediate etch product

passivating the sidewall as well as the bottom silicon surfaces, the silicon etch rate in
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sample (a) is much smaller than in sample (b). With the same 30 second etch, the

silicon trench in sample (b) is - 3x deeper than in sample (a).

In this study, the effect of using oxide hard mask for amorphous silicon waveguide

applications is proven. In addition, as we will discuss later, a thin, PECVD silicon nitride

overcladding layer on a-Si waveguide has much larger loss reduction effect. The usage of oxide

hard mask complicates the whole process flow because it is required to remove this oxide hard

mask prior to the PECVD nitride deposition and treatment. This approach of using PECVD oxide

hard mask for a-Si waveguides is not further pursued for waveguides fabricated at MIT, but hard

mask has proven to be a better process than photoresist mask for fabrication of optical c-Si

waveguides and is used as the standard process for c-Si waveguide fabrication.

6.3. Local oxidation (LOCOS) for c-Si waveguide fabrication: simulations

The abbreviation "LOCOS" stands for "Local Oxidation of Silicon" and was used to create

the oxide insulation between single transistors. Using a mask consist of an oxygen diffusion barrier

layer with local openings, e.g. CVD silicon nitride, oxygen (02) or water (H2 0) molecules diffuse

into and react with Si to form SiO2 through the openings at elevated temperatures (1000 - 1100 oC).

Because the formed SiO 2 is about 2 times the volume of consumed Si, the edges of the nitride hard

mask get pushed up due to the stress effect as shown in Figure 6.10.



Pad oxide growth CVD SiN deposition
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02 02
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Figure 6.10. Example of LOCOS process flow. The waveguide sidewall definition can be done by oxidation. This

substitutes directly etching of the waveguide sidewalls, avoiding striation-like sidewall roughness.

Most recently, LOCOS method has been adapted to fabricate low loss c-Si optical ridge

waveguide on SOI substrate with TE-, TM- mode transmission losses below 1 dB/cm [54, 55]. At

MIT, Dr. Yi has previously demonstrated c-Si channel waveguides and racetrack resonators

fabricated by LOCOS process [56]. The prototype waveguides have 2.5 dB/cm transmission loss

for the TE-mode at 1550 nm and the quality factors, Q, of the racetrack resonators range from 104

to 105. Limited by i-line stepper resolution, these racetrack resonators feature relative wide

coupling gaps ranging from 500 nm to 700 nm between the bus waveguide and the racetrack

waveguide. However, the oxidation in such narrow gap may not have a uniform oxidation rate as

in isolated structures. This section is dedicated to study the pattern effect for fabrication of c-Si

channel waveguides and resonators using LOCOS process.

The numerical simulation is based on the VISCOELA model in TSUPREM 4 software

package. The oxidant first diffuse to the oxide surface, diffuse through oxide, and react with Si at

the SiO2/Si interface as shown in Figure 6.11.
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Figure 6.11. Schematic representation of oxidation of silicon.

According to Deal and Groove [57], the incident flux of the oxidant is

F = h(C -C o n (6.1)

The diffusion flux of the oxidant in the oxide is

F=DVC (6. 2)

The reaction flux of the oxidant at SiO2/Si interface is

F = kC, ni (6.3)

In steady state, V. F = 0, the oxide growth rate is

F
GR = - + r (6.4)

N

where

F: the flux of oxidant

h: the gas-phase mass-transfer coefficient

C*: the oxidant concentration in ambient

Co: the oxidant concentration at the oxide surface

ns: the unit vector normal to the oxide surface, pointing at the oxide

D: the diffusivity of oxidant
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C: the local concentration of oxidant in oxide

ks: the surface reaction rate

C,: the oxidant concentration at Si0 2/Si interface

n,: the unit vector normal to the interface pointing away from the oxide

GR: the growth rate of oxide, or the interface velocity relative to the oxide

N: the number of oxidant molecules needed to form 1 cm 3 of oxide

The VISCOELA model solves the above equations directly to obtain the growth rate at

each point on the SiO 2/Si interface in two dimensions by considering different crystal orientation

at the interface and their effect on oxidation rate. It also takes into account the shear stress effect

during oxidation [58,59].

In our simulations, two masks are considered. The first one is the silicon nitride mask

which has been used in experiments by Dr. Yi; the other one is the standard pad oxide + silicon

nitride mask. The temperature is set to be 1000 oC.

For silicon nitride mask, we first examine the isolated structure, e.g. a semi-infinite nitride

mask opening on a c-Si slab layer as shown in Figure 6.12. The c-Si thickness is 200 nm and the

nitride thickness is 200 nm. The result of the simulation is shown in Figure 6.13. Generally, the

lateral diffusion of oxidant under the nitride hard mask is limited. Because there is little oxide

formed close to nitride/Si interface, the interface does not move after oxidation. However, sharp

"bird beak" like corners occur at the top edges of silicon structures. These sharp corners are not

desirable as they normally act as radiation centers when interacting with light, resulting in high

optical scattering loss.
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Figure 6.12. The screen snap-shot of the structure and simulation grid structure in TSUPREM 4.
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(a) The resulted contours of (b) An SEM image of
hydrostatic pressure waveguide cross section

Figure 6.13. (a) Simulation results of the contours of hydrostatic pressure after oxidation using nitride mask; (b) an
SEM image of the fabricated waveguide using nitride hard mask.

The 2-dimensional SiO2/Si interface movement as a function of oxidation time is plotted in

Figure 6.14. It is found that it takes - 100 minutes to oxidize through 200 nm c-Si; a long tail with

sharp comer is formed at the bottom of c-Si, denoted as the black dots in Figure 6.14. For longer

oxidation times, c-Si is undercut due to the lateral diffusion of oxidant through under cladding

oxide; as a result, the bottom SiO 2/Si interface becomes tilted and the bottom corners of c-Si are

rounded.
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Similarly, we can obtain the oxidation profiles through a nitride mask opening that is only

500 nm wide. The corresponding simulation results are plotted in Figure 6.15. We discover that it

takes 160 minutes to oxide through the 200 nm thick c-Si with 500 nm wide mask opening. This

indicates that the oxidation rate is dependent of the opening width. If we measure the height of the

remaining c-Si at the end of each oxidation with different oxidation time as shown in Figure 6.16,

we can see that for c-Si thicker than 100 nm, the oxidation rates will be different in the isolated

regions and the more confined region, such as the coupling gap of a ring resonator and its bus

waveguide or directional coupler.
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* 240 min
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Figure 6.14. Simulated oxidation in semi-infinite mask opening. The scatter plots of the 2-dimensional SiO2/Si
interface movement as a function of oxidation time from 40 minutes to 240 minutes. The nitride hard mask is also
shown as the reference position.
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Figure 6.15. Simulated oxidation through finite mask opening of 500 nm. The scatter plots of the 2-dimensional
SiO2/Si interface movement as a function of oxidation time from 40 minutes to 240 minutes. The nitride hard mask is
also shown as the reference position.
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Figure 6.16. Comparison of simulated oxidation rate in semi-infinite and finite mask opening of 500 nm. The
oxidation rate (growth rate, GR) becomes different after the first 100 nm c-Si oxidization. The oxidation in more
confined is slower than in semi-infinite region.

To summarize the LOCOS process using nitride only hard mask, we observe the following

in simulations:

* "Bird beak"-shaped sharp comers at top of the c-Si waveguides
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* The top surface of the c-Si waveguide will not be oxidized

* The narrow window opening (e.g. 500 nm) will have a significant different oxidation rate

than the semi-infinite opening for c-Si thicker than 100 nm. For ring resonators or

directional couplers, the gap region and the regular waveguide region may have different

geometries after oxidation

* For very long oxidation that removes silicon completely in the opening area, the silicon

waveguide will be undercutting by oxide due to the lateral diffusion of oxidant through the

under cladding oxide

The pattern effect is also studied in the case where the hard mask consists of pad oxide and

silicon nitride. Example of the simulation structures for both semi-infinite and finite opening mask

are given in Figure 6.17. The most significant difference from the nitride only hard mask is that

using the pad oxide under the nitride will allow oxidant diffusion through this oxide layer and

result in oxidation of c-Si top surface as shown in Figure 6.18. As the result, the "bird

beak"-shaped sharp corner will not occur; also, the conversion from Si to SiO2 result in - 2x

volume increase in SiO2 so that the nitride hard mask gets pushed up due to the stress in Si0 2.

- M
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// /

Dtstanoe (aIcrorwo Oittrnco (aicrons)

(a) (b)

Figure 6.17. The screen snap-shots of the layered structures with (a) semi-infinite SiN hard mask; (b) finite-opening
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Figure 6.18. The contours of simulated hydrostatic pressure after oxidation using pad oxide and nitride mask in (a)
semi-infinite mask opening and (b) finite mask opening.

The time series of three different oxidation processes are studied where semi-infinite mask,

500 nm wide mask opening, and 700 nm wide mask opening are used in oxidation simulation as

shown in Figure 6.19. Similarly, the growth rates can be calculated as the slopes of the relatively

linear portion of the remaining silicon thickness versus oxidation time plot as in Figure 6.20. We

can see clearly that the three oxidation rates at lateral distance 0.8 pLm are different due to different

mask opening width. In order to achieve uniform oxidation and low pattern effect, it is found that

the mask opening width has to be at least 700 nm for c-Si thicker than - 70 nm.

In conclusion, the usage of the LOCOS process for c-Si channel waveguide fabrication is

examined theoretically using TSUPREM4. We have found that the pattern effect on oxide growth

rates is significant for thick c-Si and narrow mask opening. Careful designs for waveguide

geometry and oxidation condition are required in order to prevent this pattern effect.
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Figure 6.19. Simulated oxidation using pad oxide and nitride hard mask. The scatter plots of the 2-dimensional SiO 2/Si
interface movement as a function of oxidation time. (a) semi-infinite mask opening; (b) 700 nm wide mask opening;
and (c) 500 nm wide mask opening.
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Figure 6.20. Comparison of simulated oxidation rates in semi-infinite and finite mask opening of 500 nm and 700 nm.
The oxidation rate (or growth rate, GR) becomes different after the first 50 nm c-Si gets oxidized. The oxidation in
more confined is considerably slower than in more open mask region.

6.4. Damascene process for deposited waveguides

Damascene process was first developed for copper interconnect technologies by IBM in

1990's [60]. Because there is no CMOS compatible process that can etch copper to define metal

interconnects for transistors, the method of opening a trench, filling metal (copper) in the trench,

and using chemical-mechanical polishing to remove excess copper outside the trench is developed,

shown as an example from Intel in Figure 6.21. This technology has facilitated the adaptation of

copper technologies and helped electronic industry to successfully follow the Moore's scaling law

since it was introduced.
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Figure 6.21. Example of advanced 8-layer copper interconnects from Intel (Figure adapted from Ref. 61)

Damascene process can also been applied for photonic device fabrications. The technology

of the selective growth of germanium directly on silicon is one example of utilizing

damascene-like approaches to fabricate high performance photodetectors and optical EA

modulator devices [62]. Damascene process can also be used for fabrications of deposited

waveguide fabrications, e.g. PECVD amorphous silicon waveguides. An example of the

damascene process flow is depicted in Figure 6.22. Starting with a thermal oxide substrate with 2 -

3 jpm thermal oxide, which can be either grown by wet oxidation or bought from vendors directly),

a layer of positive photoresist is coated and patterned using dark field photo mask and developed;

the oxide trench is opened up using RIE and then the remaining photoresist is cleaned; a layer of

PECVD a-Si is deposited in the trenches and complete fills them; the excess of a-Si on surface is

removed by CMP process and the residue chemical and debris are cleaned using double Piranha

cleaning; and finally a layer of 2 - 3 p.m PECVD Si0 2 is deposited as the top waveguide cladding

layer.
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Photo mask UV exposure

Photoresist coating

Photoresist develop Oxide trench etch Photoresist strip

a-Si deposition CMP Top cladding deposition

Figure 6.22. Process flow for a-Si waveguide fabrication using damascene process. In this example, positive
photoresist and dark field photo mask are used.

Another advantage of using damascene process to fabricate a-Si waveguide is that some of

the post-etch waveguide smoothing methods that are not compatible with a-Si process temperature

can be applied to the oxide trench prior to a-Si deposition, such as high temperature annealing and

thin LPCVD interlayer GRIN layer. The smooth sidewalls in oxide trench can translate into

smooth sidewall a-Si waveguide if the trench is completely filled. Of course, one unique process

associated with damascene process, the chemical-mechanical polishing (CMP), is the most critical

for a-Si channel waveguide formation.
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In experiments, the oxide trench is defined using positive photoresist with dark field photo

mask. The positive photoresist works more consistently with our Nikon i-line stepper to achieve

the smallest feature size than negative photoresist. The oxide etch chemistry is CHF3 and CF4.

Figure 6.23 shows a couple SEM images of the top view of an as-etched oxide trenches in

a racetrack resonator configuration and the cross sectional view of the coupling region. The

photoresist is then removed either by Asher and cleaned using Piranha recipe, or by double Piranha

cleaning. From here, the oxide wafer is ready for the next step which is the PECVD a-Si deposition;

or we can do a quick dilute HF treatment to smooth out some sharp roughness.

Figure 6.23. SEM images of the top view of an as-etched oxide trenches in a racetrack resonator configuration and the
cross sectional view of the coupling region. The waveguide is designed to be 700 nm in width and the coupling gap is
600 nm. The trench depth is set to be 100 nm. The dimension is well controlled.

As mentioned in previous sections, diluted HF (50:1, H20: HF) can etch thermal oxide at a

rate about 10 nm per minute. The roughness smoothing comes at the price of scarifying the precise

dimension control. However, this deviation in dimension is not a concern for straight waveguides

because these waveguides are generally wider than 500 nm. Such dimension change will not result

in a large change in terms of confinement factor and bending performance. For resonator devices,

any dimension deviation from design will result in resonance wavelength shift and changes in

finesse. For these devices, we can make fresh HF solution to have relative constant etch rate of
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thermal oxide; in design, we can adjust the dimension on photo mask according to the processes to

compensate this deviation. Figure 6.24 is the comparison of the same oxide trench structures (the

coupling region of a racetrack resonator device), as-etched and etched by diluted HF for 2 minutes.

The measured dimensions on SEM images are not exact, but generally, the width of the coupling

region is decreased and the oxide trenches are widened, depending on the HF concentration and

treatment time.

Figure 6.24. The top SEM images of the same oxide trenches, as-etched or undergone 2 minutes diluted HF treatment.
Both oxide trenches are designed to be straight; the slightly wavy-shaped edges in the SEM images are due to small
sample displacement caused by charging or vibration during multiple vertical scans.

These 1 pm deep trenches are filled with 3 pm PECVD a-Si using Applied Materials

Centura 5300 DCVD. 2 pm extra a-Si is removed by CMP. The CMP step is outsourced with MTL

approval to the Semiconductor Processing Company, Boston, MA. After double piranha cleaning,

the wafers are examined by SEM. Examples of the waveguide cross-section SEM images are given

in Figure 6.25. The measured a-Si thickness after CMP ranges from 84 A to 99 A from - 800

angled SEM images. Finally, 3 pm PECVD Si0 2 is deposited as the waveguides' top cladding

layer. The waveguide performance will be discussed in the following chapters.
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Figure 6.25. SEM images after CMP: (a) the top view, showing the uniform coupling spacing; (b) the tilted view of a
racetrack resonator, showing the well controlled coupling region and the clean surface of SiO 2; (c) a cross sectional
view of a bus waveguide, showing the a-Si thickness is well controlled during CMP; and (d) a cross sectional view of
the racetrack coupling region.

6.5. Summary

In this chapter, we have discussed c-Si and a-Si waveguide process optimization. First, the

general photolithography and the application of hard mask were discussed. For c-Si, local

oxidation method is a promising technique to achieve line-striation free waveguide sidewalls. For

a-Si waveguides, damascene process is particular interesting because the oxide trench smoothing

can be done prior to a-Si deposition therefore it is not constrained by a-Si process temperature

which is below 600 oC.
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Chapter 7. Low temperature, low loss PECVD Silicon Nitride

Amorphous silicon nitride is an excellent dielectric material for photonic waveguide

applications. Its large bandgap (- 5 eV) ensures its transparency for wavelength up to UV-Vis

range. Its refractive index ranges from 1.7 to 2.2, ideal for compact high index contrast integrated

photonic circuit applications. This material's processing is also compatible with standard CMOS

processes.

As we discussed in 0, for waveguide applications near the telecommunication wavelength

of 1.55 um, the dominant transmission loss mechanism in PECVD SiN waveguide is the bulk

absorption due to the broad NH resonant absorption centered around 1510 nm.

The Low Pressure CVD (LPCVD) silicon nitride contains minimal H and has excellent

optical transparency around 1550 nm. It also has good step coverage due to its thermal process

nature; very low wet etch rate in diluted HF; large break down voltage; and minimal leakage

current. However, this furnace nitride are normally deposited at relatively high temperatures (e.g.

730, 760, or 825 OC) which is not readily compatible with a lot of the processes which requires

lower temperatures, such as processes involve amorphous silicon, phase change memory, and NiSi

contacts etc..

Plasma Enhanced CVD (PECVD) silicon nitride uses silane (SiH 4) and ammonia (NH3)

chemistry. Assisted by plasma in the gas phase, SiH 4 and NH3 precursors dissociate and condense

onto substrates, enabling low temperature deposition of silicon nitride below 600 C. The

as-deposited thin film normally contains a large amount of H in the forms of SiH and NH, and is

best described as SiNxHy. However, many techniques can also give us low NH containing silicon

nitride, including:
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1. High temperature annealing [63]

2. N2/SiH 4 chemistry [64]

3. SiH rich chemistry

4. N2/Ar plasma treatment

5. UV treatment

Table 7.1 qualitatively compares the above 5 methods in terms of thermal budget

compatibility and film qualities. The first two methods have been studied in details by our two

previous Ph.D. students. Here, only the last three methods will be discussed.

Table 7.1. Comparison of different techniques to obtain low loss PECVD silicon nitride

Technique Pros Cons
* Minimal H concentration

High temperature * High temperature processes (>annealing Good step coverage
* Good stability
* Low temperature process

N2/SiH4 * Relative low H concentration, * Poor sidewall coverage
chemistry e.g. 9.9% (compared to 18.3%

using NH3/SiH 4 chemistry) [64].
* Low temperature process

* Large leakage current* Relative low NH concentration
SiH rich recipe * High refractive index • Small breakdown voltage

* High refractive index * Poor stability* Good step coverage
* Low temperature process
* Low H concentration
* Good step coverage
* Small leakage current
* Large breakdown voltage
* Good stability
* Low temperature process
* Low H concentration * Extremely low throughput
P Good step coverage * Only applicable for ultra thinPlasma treatment
o Small leakage current film applications (< 50 nm)
* Large breakdown voltage
SGood stability
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7.1. Low NH, SiH rich PECVD silicon nitride

The composition of PECVD SiNxHy films can be controlled directly during deposition.

The NH and SiH bond concentration is largely dependent on NH3, SiH 4 flow rates, RF powers, and

deposition temperature etc. as all these listed parameters can effectively change the extent of

dissociation for both NH3 and SiH4 molecules.

In the gas phase, for example, aminosilane radicals are formed as hydrogen atoms get

stripped from the SiH and NH bonds. For a given RF powers, the SiH bonds are easier to break

than the NH bonds. With high NH3 flow rate at high RF power, the dominant intermediate radical

clusters are the 3-aminosilane radicals.

SiH4 + NH 3  plasma > eSiH2 (NH 2)+ H 2

* SiH 2 (NH 2)+ NH 3  plasma .SiH(NH )2 +H2

* SiH(NH2) 2 + NH 3  plasma > .Si(NH 2 ) 3+H 2

By reducing NH3 flow rate, the above three reactions are favored to move to the left hand

side of the equations to form less NH2 containing aminosilane radicals. As a result, the NH

concentration is reduced. For example, when SiH 4 flow rate is 40 seem, RF power is 75 W, with

everything else fixed, reducing NH3 flow rate from 900 to 100 seem can reduce the NH/SiH ratio

from 10 to 0.7 in the SiNxHy films deposited at 200 oC. More quantitatively, according to Rand's

method [65], the absorption cross sections for SiH, NH, and SiN are 7.4 x 10
"'s, 5.3 x 10-", and 2.1

x 10-18 cm 2, taken from Ref. 65 and 66. The concentration can be calculated using
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Table 7.2. Summary of other film property variations s a function of NH3 flow rate

NH3 (scem) RF (W Uniformity ( o) Dep.Rate (A/s) RI St ss (MPa)

900 75 0.49 9 1.6951 -154
600 75 0.59 8 1.7216 4

300 75 0.78 7 1.7594 131

100 75 1.01 9 1.7900 122

Increasing SiH4 flow rate can achie

SiNxHy film as shown in Figure 7.2. The c(

ve the same effect, obtaining low NH containing

irresponding FTIR spectra are plotted together for
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Figure 7.5. FTIR comparison of the same SiNxHy films before and after plasma treatment.

This effect of plasma treatment is strongly dependent on the film thickness because *N

radical's penetration depth is extremely limited because the treatment is done in-situ in a

deposition tool. In a deposition tool, the substrate is grounded, radicals in the gas phase could not

response to the RF frequency (13.56 MHz, used in this case) due to its large mass. As a result, they

can not accumulate enough kinetic energy; the reactions with H atoms are only skin-deep. In order

to deposit a film thicker than a few nanometers, a cyclic deposition-treatment process has to be

used. The schematic representation of such process is shown in Figure 7.6. During the deposition

step, both NH3 and SiH4 gases are flowing and the RF power is 60 W. Upon plasma treatment, both

NH3 and SiH 4 are turned off. A large flow of Ar and N2 are injected into the chamber; meanwhile

the RF power is increased to 250 W.
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Figure 7.6. Schematic representation of the process flow for in-situ plasma treatment. One cycle is defined as one
deposition and one following plasma treatment. The drawing is not to the scale.

Figure 7.7 shows the comparison for concentrations of [NH], [SiH], and total [H] in

SiNxHy film after plasma treatment for 4 different processes/samples, where Sample 1 is without

plasma treatment; Sample 2 yields 15 A per cycle; Sample 3 yields 10 A per cycle; and Sample 4

yields 5 A per cycle. The reduction percentages and the film refractive indices are summarized in

Table 7.3. The [NH] and [SiH] concentrations can be reduced from 5.3 x 1021 /cm 3 and 1.1 x 1022

/cm 3 in as-deposited Sample 1 to 1.1 x 1021 /cm 3 and 5.5 x 1020 /cm3 in plasma treated Sample 4,

respectively.
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Table 7.3. Measured NH, SiH, and total H reduction percentages and film refractive indices as a function of layer
thickness per treatment.

Sample ID Thickness per A[NH] A[SiH] A[H]
amp treatment (A) (%) (%) (%)

1 not applicable 0 0 0 2.089
2 15 -32.5 -47.5 -42.7 1.97
3 10 -59.9 -80.8 -74.1 1.917
4 5 -79.5 -95.1 -90.1 1.896

Although this method may be too slov to deposit films that are more than 100 nm thick, for

some applications, such as a thin a-Si wavegui e interlayer cladding layer, this approach can be very

useful.

Beside film thickness, the H removal effect also depends on the plasma power and

treatment time when SiNxHy films are thicker than the penetration depth of the *N radicals.

Generally, high RF power and long treatment time can help to reach saturation more quickly as

shown in Figure 7.8 in relative scales.
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Ultra-Violet (UV) i 400 nm) can induce chemical reactions that
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experimental results and the curves are exponential fits, showing how quickly the saturation is reached.

7.3. Post-deposition UV treatment: experimental and theoretical studies

7.3.1. Experimental studies of UV treatment effect on PECVD SiNxHy

Ultra-Violet (UV) illumination (X = 200 - 400 nm) can induce chemical reactions that

evolve hydrogen in SiNxHy film at temperatures below 500 C. UV light refers to the photons with

wavelength between 200 nm and 400 nm which corresponds to the photon energy between 6.4 eV

and 3.2 eV. The bond energies for N-H and Si-H are 4.0 eV and 3.3 eV, respectively. Intuitively, a

photon with wavelength shorter than 310 nm will have enough energy to disassociate both N-H

and Si-H bonds. Using Ab-initio calculation and density functional theory (DFT) method, Zubkov

et al. showed that UV illumination can induce bond weakening in N-H and Si-H by lowering the

excited state energies of the N-H and Si-H bonds [68]. This method is shown experimentally to be

effective for relative thick film (up to - 100 nm) comparing to plasma treatment. For thicker film,

the evolved H2 molecule out-diffusion becomes difficult. A hydrogen concentration gradient is

expected to form and the film properties will become non-uniform.
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There are three possible reactions among SiH and NH groups that can evolve H2 during UV

treatment as in Figure 7.9:

\Si \ \ /
S \ H2

/ t
SI --- Si--Si- + HL

N--

-- N \ ..... N- N + H2

Figure 7.9. Reactions among SiH and NH groups in SiNxH, film.

According to chemical ordering theory, unlike bonds are preferred because of larger bond

energies. In this case, SiH-NH reactions are dominant while SiH-SiH and NH-NH reactions are

possible with reduced reaction constants at the same temperature [69]. Thus the total H removal

must depend on the film composition as denoted as SiH/NH ratio.

The total H removal percentage as a function of SiH/NH ratio in PECVD a-SiNxHy film is

studied experimentally and the results are plotted in Figure 7.10(a). These films are deposited at

400 oC and then UV-treated at 400 oC under high vacuum with identical conditions until saturation.

Using FTIR, the total H removal is measured as the ratio of the total H concentrations in the film

before and after UV treatment. The highest total H removal measured is about 60% for the film

with SiH/NH ratio of 1. In regime 1, as the SiH/NH ratio increases to 1, H2 evolution is increased

as more N-H reacts with Si-H to form Si-N bonds; in regime 2, as the SiH/NH ratio increases

beyond 1, the released H is trapped in Si-H bonds. The mechanism will be discussed later in this

section. Figure 7.10(b) shows the FTIR spectra before and after UV treatment.
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Figure 7.10. (a) The total H removal percentage in a UV-treated a-SixNyHz film as a function of the as-deposited
SiH/NH ratio. Different regimes highlighted by red lines have different underlying mechanisms to be explained later.
(b) FTIR spectra of a-SixNyH film with SiH/NH ratio of 1 before and after UV-treatment (the latter is shifted down
slightly for clearer view). Both FTIR spectra have been normalized with film thickness

7.3.2. Monte Carlo studies of UV treatment effect on PECVD SiNxH

In order to explain the compositional dependence of UV treatment effect on PECVD

SiNxHY and give predictions about the theoretical limits for total H removal percentage using UV

treatment, a statistical Monte Carlo model is built to simulate the H2 evolution processes.

Although SiNxHY does not have a real lattice as in crystalline materials, small clusters can

be identified in short range [68]. We approximate the local chemical environment by using a 1D or

2D matrix with each lattice site representing a SiH or NH group. The size of the matrix is small

compared to the number of atoms in the network (1023) but large enough to be statistically

representative. Due to the size of the clusters, the average nearest neighbor coordination number of

less than 4 is a reasonable estimation. Mathematically, they can be represented as in Figure 7.11.
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1D array:
Coordination Number = 2

(a)

2D square matrix: Modified 2D square matrix:
Coordination Number = 4 Coordination Number = 3

(b) (c)

Figure 7.11. Schematic representations of mathematic models with different nearest neighbor coordination numbers.
Black sticks represent possible bonding between the nearest neighbors and filled circles represent sites which can be
occupied by either NH or SiH group.

We assume that SiH and NH groups, represented by "1" and "-1", are randomly distributed

in our models. The numbers of SiH and NH groups are initialized according to the SiH/NH ratio.

The total initial H concentration is the sum of the original numbers of SiH and NH groups in the

matrix. A Monte Carlo algorithm is called to randomly select a lattice site (1 or -1) and search its

nearest neighbors for counterparts to obtain "0" in a summation step, which corresponds to the

evolution of one H2 molecule. If there is more than one option in the nearest neighbors, a decision

algorithm is called to randomly pick only one among many with the same success probability. This

unique decision and the equal probability are guaranteed with a random number created by a

uniform random number generator [70]. This random selection step is greater than 5 x (matrix

size)2, ensuring that less than 0.05% lattice sites would be unexamined which contributes to our

simulation uncertainty. The remaining H is calculated as the sum of the remaining numbers of SiH

and NH groups in the matrix. To obtain a statistic result, we used a large-size Monte Carlo
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sampling step of at least 1000 times for one given matrix size and each time the matrix is uniquely

re-initialized. The total H removal is then defined as one minus the average ratio of remaining H to

original H. Figure 7.12 is a visualized representation of the H distribution in SiNxHy matrix before

and after H removal simulation in which the SiH/NH ratio is 1 and the nearest neighbor

coordination number of 4. Initially, the whole matrix is filled with SiH and NH (black and white

pixels). After simulation, the area where H atoms are removed is represented by orange color. The

matrix size in our simulations was carefully evaluated, for example, 2D square matrix is 1000 x

1000. Larger size matrices gave diminishing improvements but increased computation times

exponentially as shown in Table 7.4.

Before After

0 SiH O NH * Background

Figure 7.12. A visual representation of the H distribution in a-SixNyH, matrix before and after H removal simulation.
Before simulation, the matrix is fully filled with SiH and NH (black and white pixels); after, the orange colored area is
the area where there is no H.

Table 7.4. The effect of matrix size and its effect on the simulation results: the total H removal percentage and
computing times. The SiH/NH ratio is kept as 1 in these simulations for consistency. The computing time is the time to
proceed 1000 times on a workstation with Pentium 4 3.2 GHz CPU and 1 GB RAM.

Matrix Size 1000 x 1000 5000 x 5000 10000 x 10000

Monte Carlo Sampling Steps 1000 500 100
Average total H Removal 0.7595 0.7604 0.7605

Standard Deviation 6.1329 x 104  1.3616 x 104 0.7059 x 104

Computing Times - 40 minutes - 28 hours - 42 hours
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The approach we take is to start with a simple mode where we only consider the preferred

Si-N bond formation between two nearest neighbor SiH and NH groups.

Figure 7.13 shows the simulation results of the total H removal percentage versus SiH/NH

ratio for different nearest neighbor coordination numbers. The highest H removals all occur at

SiH/NH = 1, which is consistent with our experimental results. The total H removal decreases as

the nearest neighbor coordination number decreases because fewer nearest neighbors result in

lower probability for either SiH or NH to react with NH or SiH, respectively. At SiH/NH of 1, the

theoretical total H removal ranging from 62% to 75% are higher than experimental results (60%).

This is due to the following reasons. First, besides SiH and NH groups which are considered in our

modeling, there are also SiH 2 and NH2 groups in a real SiNxHy network. The presence of NH2 is

clearly shown by its H-N-H out-of-plane vibration at -1100 cm-' as shown in Figure 4.6. The

presence of SiH 2 is also possible. However, due to the fact that its absorption peak around 860-890

cm-1 overlaps with the broad Si-N absorption peak, there is no direct evident of its presence in a

SiNxHY FTIR spectrum [71]. The evolution of the second H in either SiH 2 or NH2 groups leads to

formation of a second bond with another NH or SiH, respectively. However, this process should

have lower probability than the first H due to the reduced nearest neighbor coordination number.

Incorporation of H rich groups in our simulation is simple, for example, we use "2" to represent the

presence of NH2 groups. Figure 7.14(a) is an example showing that increasing NH2 concentration

can reduce the total H removal percentage for films with overall SiH/NH =1. Figure 7.14(b) is the

measured relative percentage of NH2 in total N-H bonds at different as-deposited film

compositions from FTIR spectra which indicates that a significant amount of N-H bonds are

present as in NH2 groups. Secondly, un-favored short range ordering, for example, silicon or

nitrogen clustering may further reduce the probability for SiH-NH reaction, because reactions



among like groups are less likely than between SiH and NH groups due to the chemical bonding

energy difference. This becomes more obvious in SiH-rich or NH-rich films with SiH/NH : 1.

80% -

70% ---- Coordination=2
-*- Coordination=3

60%- ' z -"- Coordination=4

> 50% -
E

40%
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20% -
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Figure 7.13. Simulation results on total H removals for different SiH/NH ratios considering only SiH-NH reactions.
Different coordination numbers are considered to represent different local environment of SiH and NH groups.
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(a) (b)

Figure 7.14. (a) An example of total H removal vs. NH2 percentage as in total N-H bonds with overall SiH/NH =1; (b)
Measured relative NH2 percentages as in total N-H bonds at different film compositions.

We then allow SiH-SiH and NH-NH reactions with SiH-NH reactions at the same time and

capture the reduced likelihood for SiH-SiH and NH-NH reactions by assigning each an arbitrary

reaction constant, k (O<k<l), while setting SiH-NH reaction constant to 1. In the case that there is

no unlike groups in nearest neighbor sites, a random number, r, is generated. Reactions among like
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groups are only allowed when r < k is satisfied. Then another random number is called to

determine to which nearest neighbor site that the reaction occurs. For example, for coordination

number of 4, Figure 7.15 summaries the simulation results on total H removal when we

simultaneously consider SiH-NH reaction with reaction constant of 1; (a) NH-NH reaction (b)

SiH-SiH reaction with reaction constants from 0 to 0.4, respectively. The experimental results are

also plotted for comparison. From observing the slopes of the experimental results in the N-rich

and Si-rich regimes, we can derive that at 400 oC the relative reaction constants for SiH-SiH and

NH-NH reactions are approximately 0.2 and 0.1, respectively, while relative reaction constant for

SiH-NH is 1 as shown below.

100% (a) NH-NH reaction 100 (b) SiH-SiH reaction

70%/ 70%4 P

60% - do do " ... ... ..60% "d D 0 6 0 01 - D- rr -------
o 50% , - 50% /

_ 40% - 401% i
30% 53 30% i

20% -Prob_0.1 20/ -ProbSi 0.0 ProbSi 0.1

10% -ProbN 0.2 - ProbN_0.3 10%o - ProbSi 0.2 -ProbSi 0.3
a Experiment result o Experiment result

0 1 2 3 4 5 6 0 1 2 3 4 5 6
SiH/NH Ratio SiHINH Ratio

Figure 7.15. Simulation results on total H removals for different SiH/NH ratios for nearest neighbor coordination
number of 4. The reaction constants for (a) NH-NH and (b) SiH-SiH reactions are 0 to 0.4.
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The Monte Carlo models are in good agreement with experiments and provide

fundamental understanding of this process. The models suggest that the compositional

dependency for H2 evolution during UV treatment is due to the preferred SiH-NH reactions over

SiH-SiH, NH-NH reactions with relative reaction constants derived to be 1, 0.2, and 0.1 at 400 oC,

respectively. The total H removal percentage depends on the maximal availability of nearest

neighbor SiH and NH groups which can be quantified by their coordination numbers. The maximal

H removal percentage is also affected by the presence of hydrogen rich SiH2 and NH2 groups.

Nevertheless, for PECVD SiNxHy the tensile stress enhancement is naturally associated

with H removal. Understanding the underlying mechanisms and finding new meanings to further

increase the total H removal percentage can certainly improve the attractiveness of UV treatment

process for many important applications.

7.4. Summary

In this chapter, we have discussed three different processes that can produce low NH

containing PECVD SiNxHy film for optical application around 1550 nm. Changing the deposition

conditions can yield low NH containing SiNxHy film but the film also contains high concentration



of SiH. The plasma and UV treatments are post deposition methods. They will not change some

properties governed by the deposition chemistry, such as step coverage. After the films are

deposited, the two processes can remove both SiH and NH from the film at temperatures

compatible with a-Si processes. The plasma treatment is a slow process because in the deposition

tool the reactions in which H atoms are removed almost only happen on surface. The UV treatment

is more efficient when removing H from thicker films. However, it requires a dedicated chamber

equipped with UV lamp, heating stage, and high vacuum.
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Chapter 8. Low loss horizontal slot waveguides

Slot waveguides are a newly developed class of waveguides that has received significant

attention in recent years and promise many applications in recent years [72,73,74,75]. A slot

waveguide consists of at least one narrow low index region sandwiched between high index

regions as shown in Figure 8.1. Because of the refractive index discontinuity at the high index

contrast sidewall, the boundary condition for transverse electric-field (E-field) in the horizontal

direction determines that there is also a discontinuity in the E-field at the high index region

sidewall interface. The E-field outside of the high index region decays exponentially as it moves

away from the waveguide as we call the evanescent field. When two high index regions move

close to each other within the decay length, 1/yl, of the evanescent field, the E-field overlaps and

gets enhanced. When the gap in between the two high index regions is much smaller than the

E-field decay length, the optical field is strongly enhanced in the low index region nears the

interfaces, also shown in Figure 8.1. This property of high confinement in low index medium is

unique to slot waveguides and promises many important applications.
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8.1. Low loss optical transmission at 1550 nm in horizontal slot waveguides
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On the other hand, a horizontal slot structure featured with a horizontal low index slot can

be fabricated by layered deposition or thermal oxidation of silicon. The corresponding slot

waveguide devices have virtually no fabrication constraints on slot thickness and location.

Horizontal slot waveguide can have very lo, scattering loss due to small surface or interface

roughness for the fundamental slot mode, the quasi-TE mode in the vertical direction. We have
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also previously proposed multiple slot configurations in a horizontal slot waveguide to provide

enhanced optical confinement in the low index slot region [77].

The experimental demonstration of low loss optical transmission at 1550 nm in horizontal

slot waveguides are carried out using horizontal single and triple slot waveguides consisting of

deposited amorphous silicon (a-Si, n = 3.50) and silicon dioxide (SiO 2, n = 1.46). On a 3 Im

thermal oxide silicon wafer, we deposit amorphous silicon and silicon dioxide using Plasma

Enhanced Chemical Vapor Deposition method (PECVD). To show differences in waveguide

properties resulting solely from single slot or multiple slot configurations, we design waveguide

geometries such that the overall waveguide height, total a-Si layer thickness, and total SiO 2 layer

thickness are approximately the same for both single and triple slot waveguides. For the fabricated

single slot waveguide, the stack has two 223 nm a-Si layers and one 55 nm SiO 2 layer. For the

fabricated triple slot waveguide, the stack consists of two 152 nm a-Si outer layers, two 56 nm a-Si

inner layers, and three 17 nm SiO 2 slot layers. All waveguides and ring resonators are 500 nm wide,

patterned by E-Beam Lithography (EBL), and Reactive Ion Etch (RIE). No post-etch waveguide

smoothing has been applied on these very early structures. Finally, 3 gtm PECVD SiO 2 is deposited

as the top cladding layer. The schematic structures as well as their normalized optical field (IE 2)

distributions are shown in Figure 8.2(al, b ). The absolute value for the E field can be calculated

with Poynting vector, <S> - cocnEI2/2, where <S> is the time-averaged energy flux, o. is the

permittivity of free space, c is the free space speed of light, n is the refractive index, and E is the

electric field. For example, for 1 mW transmitted optical power in our triple slot waveguides, the

maximum E field in SiO 2 slot regions is about 2.5 x 108 V/m, one order of magnitude larger than in

the Si regions. All the simulations were carried out using a numerical model solver based on

finite-difference time-domain (FDTD) methods. The corresponding Scanning Electron
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Microscope (SEM) images of the cross sections of the layered structures are also shown Figure

8.2(a2, b2). The deposited layered structures and each layer thickness are well controlled.

S A - 02
.06 . -02 .02. 0 0 01 02 0.3 OA

V (Im)

200nm

.04 -03 -02 -01 0 0.1 0.2 03 04
v tt )

Figure 8.2.Schematic representation of the structures of a single (al) and a triple slot waveguide (b ). The normalized
optical field (IE12) distributions are simulated using a numerical mode solver based on finite-difference time-domain
(FDTD) methods. Their corresponding cross-sectional SEM images to the right of the schematic drawings (a2) and
(b2) show that the layered structures and each layer thickness are well controlled in fabrication.

We measured waveguide propagation loss using the cut-back method. As shown in Figure

8.3, at 1550 nm for the quasi-TE modes, the waveguide losses for single and triple slot waveguides

are measured to be 6.3 ± 0.2 dB/cm and 7.0 ± 0.20 dB/cm, respectively. The relatively small

difference in waveguide loss indicates that the addition of a-Si/SiO2 interfaces in triple slot

140

_ __~_I~ I I_ ~I~IIC~IIIC~



waveguides does not introduce significant scattering loss under the same process conditions as the

single slot waveguides. The horizontal single slot waveguide loss is much lower than that in a

vertical slot waveguide with slot width of 50 nm (-11.6 ± 3.5 dB/cm) [76]. The excellent low loss

performance for the quasi-TE modes of horizontal slot waveguides are due to (1) the fact that this

quasi-TE mode is relatively insensitive to interface roughness at the etched waveguide sidewall;

and (2) low interface roughness for deposited films (interfaces that are parallel to the substrate).

For both deposited a-Si and SiO 2 layers, the surface roughness is less than 5 A as measured by

Atomic Force Microscopy (AFM). The dominant loss source in our a-Si/SiO2 waveguide devices

is the a-Si bulk absorption.
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Figure 8.3. Single and triple slot waveguide losses: waveguide total insertion loss (dB) versus waveguide length (cm).
The waveguide propagation loss in dB/cm is derived using the "paperclip" method.

The optical confinement factors in the SiO 2 slots, defined as the ratio of the optical power

in the SiO 2 slot(s) and the total optical power, are calculated to be 36 % and 56% for the single and

triple slot waveguides, respectively. The confinement factors can be verified directly by measuring

the thermo-optic coefficients of the slot ring resonator devices. For a silicon or SiO2 waveguide,

the refractive index increases as temperature increases, causing the ring resonator's resonant



wavelengths to shift to longer wavelength. But because the thermo-optic effect in SiO2 is about ten

times weaker than that in a-Si [78], the overall thermo-optic coefficient in an a-Si/SiO2 slot

waveguide is expected to be much smaller than in a regular a-Si waveguide with similar

dimensions due to the high optical confinement in the SiO 2 slot region(s).

The fabricated single and triple slot ring resonators have the same ring-bus gaps of 250 nm

and the same ring radii (R) of 10 pm. Figure 8.4(a) shows their spectra between 1535 nm and 1555

nm. Their free spectral ranges (FSR) and group indices (ng) around 1550 nm are summarized in

Table 8.1. The corresponding simulation results are included for comparison. Their theoretical

values were calculated using Equations 8.1 and 8.2. The effective indices (neff) used in calculations

were simulated directly using the mode solver. The on-resonance extinction is about 15 dB. Figure

8.4(b) shows the Lorentzian fitting on one of the resonance of the triple slot ring resonator. The

-3dB bandwidth is 0.119 + 0.008 nm. According to Equation 8.3, this corresponds to a quality

factor (Q) of 13000 ± 1000 at around 1550 nm. The low Q factor is due to non-critical coupling

conditions. Over all, the quality factors for single and triple slot ring resonators are estimated to be

around 12500 ± 2500.
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Figure 8.4. (a) Ring resonator spectra of a single and a triple slot waveguide. Both ring radii are 10 pm and bus-ring
gaps are 250 nm; and (b) the Lorentzian fitting on triple slot ring resonator. Slot ring resonators are fabricated using
e-beam lithography and reactive ion etches. Silicon etch uses Cl2 and HBr chemistry; oxide etch uses CHF3, CF4
chemistry.

Table 8.1. Summary of the measured and simulated FSR and group index around 1550 nm of the single and triple slot
ring resonators with 10 m radius.

FSR Group Index

Measured Simulation Measured Simulation

Single Slot 9.8 9.4 3.902 4.055

Triple Slot 11.2 12.2 3.401 3.139

Figure 8.5 shows the thermo-optic coefficient measurement results of a single and a triple

slot ring resonator. The tunable laser we used in experiments has a resolution of 2.5 pm. The

measurement errors on the resonance wavelengths are minimal. The measured thermo-optic

coefficient of the triple slot waveguide is 65.4 pm/oC, which is 12% lower than that of the single

slot ring resonator, 74.6 pm/oC; their simulated thermo-optic coefficients are 64.6 pm/oC and 76.8
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pm/C, respectively, which correlates well with the measurement results. The difference in

thermo-optic coefficient is due to the enhanced confinement in the low index SiO2 slot region in

the triple slot ring resonator. For comparison, the thermo-optic coefficients for the fundamental

TM mode in a 500 nm tall, 500 nm wide, a-Si channel ring resonator is calculated to be 102.7

pmfC. The overall low thermo-optic coefficients for the slot ring resonators confirm the optical

concentration in low index SiO2 slot region(s) in our slot waveguides devices. The lower

thermo-optic coefficient in the triple slot ring resonator directly proves that multiple slot

configuration provides greater optical confinement in low index slots compared to the single slot

configuration.
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Figure 8.5. The measured and simulated thermo-optic coefficients for the quasi-TM modes of a single (a) and a triple

(b) slot ring resonator. The simulations match well with the experimental results. The thermo-optic coefficient of the

triple slot ring resonator is lower than that of the single slot ring resonator due to the improved confinement in the slot

region. The difference between simulation and measurement is possibly due to ring radius and layer thickness
variation
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8.2. Summary

We have demonstrated experimentally optical transmission in horizontal a-Si/SiO2 single

and multiple slot waveguides and ring resonator devices. Low propagation loss has been achieved

in these early devices. The thermo-optic coefficient measurements verify that the multiple slot

configuration can further enhance optical confinement in the low index slot regions. With the low

propagation loss for the fundamental slot mode and enhanced optical confinement realized in low

index slot regions, horizontal slot waveguides with multiple slot configurations are very promising

for applications such as dielectric gain media and non-linear optics.
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Chapter 9. Experimental results in low loss silicon waveguides

This chapter will summarize the experimental results from optical waveguides, including

crystalline silicon and amorphous silicon waveguides, under different processing conditions.

9.1. Single crystalline silicon, single mode channel waveguides

The SOI c-Si channel waveguides work is associated with the DARPA sponsored EPIC

program. All the fabrications were carried out in BAE Systems' clean room facilities. SOI wafers

with 3 gim thick buried oxide and 200 nm thick c-Si are used for c-Si channel waveguides.

Photolithography was done using Deep-UV stepper and positive photoresist. Process variation

included (1) photoresist mask and (2) pad-oxide/silicon nitride hard mask. Waveguides were

etched using poly silicon etch recipe with Cl2 and HBr chemistry. Post-etch wet chemical

treatment, e.g. 3 cycles of RCA SC1 clean (6:1:1, H20, H20 2, NH40H), and 10 seconds dip in

diluted HF (50:1), has been proven to be able to reduce the sidewall roughness and was generally

applied [37]. Finally the waveguides were cladded with another layer of 3 [tm PECVD SiO2.

Under this baseline condition, the waveguide transmission loss values at 1550 nm measured by the

"paperclip" method are summarized in Table 9.1. For the TE-mode, within the interesting width

range, the transmission loss coefficient decreases as waveguide width increases as we expect the

sidewall roughness scattering effect will decrease in wider waveguides. For the TM-mode, the

transmission loss does not change for different width, indicating that the bulk absorption loss in

c-Si is negligible.
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Table 9.1 Transmission loss coefficients (dB/cm) at 1550 nm for the baseline c-Si waveguides using photoresist mask.

"SL" stands for substrate leakage, meaning the loss is too high to be measurable due to loss caused by substrate

leakage. The wafer ID is "SL IA-Wf 8-P".

Designed Waveguide Width (nm)
Polarization 400 450 500 550 600

Loss TE mode 11.6 ± 0.4 8.2 ± 0.5 5.7 ± 0.4 4.6 0.4 4.3 ± 0.6

(dB/cm) TM mode SL > 2 1.6 ± 0.4 1.7 ± 0.3 1.7 ± 0.3

The substrate leakage effect strongly affects the TM-mode and can be identified easily

using TM-mode waveguide transmission spectrum. Figure 9.1 is an example of the TM mode loss

profiles with respect to wavelength from the samples in Table 9.2. The significant increase in

TM-mode waveguide transmission loss can only be explained by substrate leakage. Even with 3

itm thermal oxide under cladding layer, because, as wavelength increases, the confinement factor

for the optical mode inside the c-Si waveguide actually decreases. This leads to longer evanescent

tail outside the waveguide core, increasing the amount of optical power coupling with the Si

substrate. The narrower the waveguide width, the smaller the confinement factor is. From the

results, for 400 nm wide waveguides, the onset for substrate leakage occurs at the shortest

wavelength as shown in Figure 9.1. Note that from SEM studies, some waveguides can be as large

as 30 nm narrower than the designs due to over etch [37].
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Figure 9.1. The total insertion loss spectra for three waveguides with different waveguide widths. The waveguide
height is 200 nm. Total insertion loss includes measurement system loss, coupling loss, and waveguide transmission
loss. The rapid increases in transmission losses at longer wavelengths are due to substrate leakage.

The pad-oxide/silicon nitride hard mask is adopted lately and the resulting waveguides

show noticeable and consistent improvement in terms of the transmission loss. After the

waveguide is etched and cleaned, a thin liner oxide is formed by dry oxidation process to improve

the silicon interface quality. The hard mask is then removed by hot phosphoric acid etching of

nitride or dry etch. The waveguides are again wet treated. Finally 3 tm PECVD is deposited as the

waveguide top cladding layer. This process has become the standard process for the EPIC program.

The typical loss values are summarized in Table 9.2. The waveguide heights are all 200 nm. The

TM-mode performance, although relatively insensitive to sidewall roughness scattering compared

to the TE-mode, is also improved significantly. Using hard mask processes, we have consistently

achieved transmission loss less than 3 dB/cm for the TE-mode and less than 1 dB/cm for the

TM-mode in 500 nm wide single mode c-Si waveguides.
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Table 9.2. Transmission loss coefficients (dB/cm) at 1550 nm for the c-Si waveguides using hard mask process. The

wafer ID for this process is "SuperNitContr-Wfl-789M".

Designed Wave ide Width(nm
ID Sample Polarization 400 450 500I 550

Control TE mode 8.4 ± 0.3 4.9 ± 0.2 2.3 ± 0.2 2.0 ± 0.1
1 No nitride TM mode 5.9 ± 1.4 2.2 ± 0.2 1.0 ± 0.1 0.8 ± 0.1

We have also studied the transmission loss of c-Si with the presence of a thin, LPCVD

silicon nitride intercladding layer, because LPCVD silicon nitride (Si 3N4) has excellent optical

transparency, 100% sidewall step coverage, and its process temperatures at around 750 oC is

compatible with c-Si waveguide processes. A total of 5 different processes are studied. The

process conditions and their according loss values at 1550 nm are summarized in Table 9.3.

According to Barwicz and Haus [32], an intercladding layer with intermediate refractive index can

help reduce the sidewall roughness scattering effect, resulting in lower transmission loss for the

TE-mode. Processes 1-3 have 20 A, 50 A, and 1000 A thick nitride layers directly on c-Si

sidewalls and top surface, respectively. Processes 4 and 5 insert a 20 A liner oxide layer prior to

nitride deposition and the nitride thickness varies from 10 A to 20 A. The purpose is to see which

interface, thermal oxide/silicon or nitride/silicon, has better passivation on c-Si surface and to see

which variation, the surface passivation or index contrast, would have more positive effect on the

TE-mode loss reduction.

The TM-mode loss values remain relatively unaffected by the incorporation of the nitride

layers. In order to compare these 5 processes as well as compare them with the baseline process

more visually, the TE-mode data are re-plotted together as shown in Figure 9.2.
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Table 9.3. Transmission loss coefficients (dB/cm) at 1550 nm for the c-Si waveguides in 5 different processes. LOX
stands for liner oxide formation prior to Si3N4 and LTO depositions. LTO stands for low temperature oxide.

ID Variation Polarization Designed Waveguide Width (nm)ID Variation Polarization
400 450 500 550

TE 8.9 ± 0.3 5.0 ± 0.3 3.2 ± 0.2 2.2 ± 0.2
2 20A Si3N4

TM 6.6 ± 1.8 2.1 0.4 1.1 ± 0.1 0.6 ± 0.1

TE 8.3 ± 0.1 4.6 0.2 2.9 ± 0.1 1.3 ± 0.1
3 50A Si3N 4

TM 3.3 ± 0.6 1.3 0.2 0.8 ± 0.1 0.8 ± 0.1

oo100A TE 8.2 ± 0.1 3.1 0.2 2.7 ± 0.1 0.8 ± 0.4
Si3 N4  TM 2.1 + 0.3 0.7 ± 0.1 0.7 ± 0.1 0.7 ± 0.1

20A LOX TE 8.5 + 0.2 4.8 ± 0.2 2.7 ± 0.2 2.4 ± 0.2
5 10A Si3N4

o100A LTO TM 9.1 ± 1.8 3.0 ± 0.5 0.9 ± 0.2 0.8 ± 0.1

20A LOX TE 8.7 0.2 4.6 0.2 2.8 0.2 2.5 0.1
6 20A Si 3N4

100A LTO TM 5.4 ± 0.8 1.6 ±0.2 1.0 + 0.1 0.8 ± 0.1

M Control: no nitride
M Nitride: 20 Angstroms
M Nitride: 50 Angstroms
1I Nitride: 100 Angstroms

TE-mode at 1550 nm

0-

500 nm 550 nm

= Control: no nitride
M 20 Angstroms LOX + 10 Angstroms Si1N4

S20 Angstroms LOX + 20 Angstroms SIN 4

TE mode at 1550 nm

400 nm 450 nm 500 nm 550 nm

Waveguide width (nm) Waveguide Width (nm)

Figure 9.2. Column charts of waveguide loss vs. waveguide width for different intercladding layers for the TE-mode.
(a) Nitride only processes; (b) LOX and nitride processes.

Unexpectedly, the initial incorporation of 20 A nitride intercladding layer result in higher

loss values for the TE-mode than the control samples without any nitride cladding (shown in Table

9.2). This could be caused by the change of interface from thermal oxide/silicon to nitride/silicon

interface. Among the samples all with nitride intercladding layers, as nitride thickness increases,

400 nm 450 nm

_ C~___ _



waveguide loss consistently decreases, indicating a positive correlation between nitride thickness

and sidewall roughness scattering reduction. The effective index change as a function of nitride

thickness is examined using ring resonators. As an example, the resonance wavelengths for the

same sized ring resonators with different nitride thickness are plotted in Figure 9.3(a). The

resonance wavelength shifts to longer wavelength indicates an increase in effective index of the

resonators which is confirmed by calculation as shown in Figure 9.3(b). However, even at 1.2%

effective index change, e.g. from 2.5 to 2.525 for TE-mode, may not cause a significant optical

power reduction by increased confinement factor along. We believe that the dominant effect here

is the sidewall index contrast reduction.

1.4%

0-

1.2%

" E 10%

. -10 -
_ o 0.8%-E (a) (b)

-15 

J_ 0.6%-

--20
N- 04%

-.25- (D

o i 0.2%Z Control: no nitride = Effective index change percentage
-30 - Nitride: 20 Angstroms w

- Ntnde; 50 Angstroms 0 0% - - Linear fit
Nitride: 100 Angstroms

1560 1565 1570 1575 1580 1585 1590 1595 1600 0 20 40 60 80 100 120

Wavelength (nm) Nitride thickness (Angstroms)

Figure 9.3. (a) Resonance wavelength shift as a function of nitride thickness; (b) the calculated effective index change

percentage as a function of nitride thickness. The ring resonators have cross sections of 500 nm x 200 nm (W x H) and

diameters of 6 pm. The coupling gap is 170 nm. The FSR is - 34 nm. The resonance peaks shown in (a) only span over
20 nm, meaning they are the same order resonance peaks.

For LOX/nitride intercladding splits, no consistent patterns have been observed at 1550 nm.

One concern is that because at 1550 nm the optical confinement in c-Si waveguide core for both

TE and TM modes is relatively high, the change in intercladding layers may not have significant

impacts on scattering and surface-state related absorption at the interface. We extend our analyses

to 1580 nm where the possibility for NH absorption in the nitride layer can also be eliminated even
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though we know LPCVD nitride generally does not have such absorption. Moving from 1550 nm

to 1580 nm, the changes for optical mode properties in a 500 nm x 200 nm (w x h) c-Si channel

waveguide are summarized in Table 9.4. We expect that the TM-mode waveguide loss will change

noticeably because the confinement factor for the TM-mode reduces more than 10% at 1580 nm

compared to at 1550 nm. The corresponding waveguide loss values for processes 1-6 are

summarized in Table 9.5. Figure 9.4 shows that there are distinct patterns for both nitride and

LOX/nitride intercladding layers. In both cases, it is believed that the incorporation of

intercladding layers helps reduce the substrate leakage loss for the TM-mode. From Figure 9.1 we

can see that even with 3 jtm oxide under cladding layer, there is still significant loss increase at

around 1580 nm. The nitride cladding helps increase the reduced effective index at 1580 nm

compared to 1550 nm, reducing the substrate leakage effect at 1580 nm. Using nitride

intercladding layer, we are able to achieve consistently less than 1 dB/cm transmission loss for the

TM-mode operation. For the LOX/nitride intercladding processes, we can still see thicker nitride

can reduce waveguide loss. Especially for two different intercladding layers with the same nitride

thickness, the waveguide loss values are comparable. However, with limited data, we can not

explain why 20 A LOX/10 A nitride intercladding layer results in higher loss than the control

sample.

153



Table 9.4. The calculated effective index, confinement factor,
1580 nm.

F, and E-field at sidewall boundary at 1550 nm and

Polarization Wavelength Optial PrPEr atsdewall

1550 nm 2.395 0.723 26.236 (V/m)
TE-mode 1580 nm 2.363 0.711 25.582 (V/m)

A -1.34% -1.66% -2.50%
1550 nm 1.673 0.290

TM-mode 1580 nm 1.648 0.259
A -1.49% -10.69%

Table 9.5. Transmission loss coefficients (dB/cm) at 1580 nm for the c-Si waveguides in 6 different processes.

ID Variation Polarization Desiged Wave ide Width (nm)
ID _Vitio Pl_____t__ 400 450 500 550

Control TE 8.00.2 5.0 0.1 2.80.2 2.3 0.1

: No nitride TM 14.4 + 2.9 5.3 ± 0.9 2.0 ± 0.2 1.0 ± 0.2

TE 8.7 ± 0.2 5.0 ± 0.2 2.4 ± 0.2 2.4 : 0.2
2 20A Si3N42 2A N TM 12.0 3.4 4.0 ± 1.0 1.4 ± 0.4 0.8 -0.1

TE 7.6 0.2 4.8 ±0.2 2.6 0.1 1.6j0.2
3 50A Si3N4

TM 6.0 + 1.4 2.0 + 0.4 0.8 ± 0.1 0.5 ± 0.1

100A TE 7.8 0.2 3.6± 0.2 2.7 ± 0.2 2.2 0.2

Si3N4  TM 3.6 ± 0.8 1.2 ± 0.1 0.7 ± 0.2 0.4 - 0.1

20A LOX TE 7.8 ± 0.1 4.8 s 0.2 2.9 0.2 2.4 0.2
5 10A Si 3N4

100A LTO TM 15.6 ± 2.0 6.0 - 1.0 2.0 ± 0.4 1.0 ± 0.3

20A LOX TE 8.3 0.1 4.8± 0.2 2.8±0.2 2.4 ±+0.2
6 20A Si3N4  :
: 100ALTO TM 10.1- 1.9 3.2 ±0.5 1.4 ± 0.1 0.7 0.1

No



18 Control, no nitride 18 Control: no nitride

16 l Nitride: 20 Angstroms 120 Angstroms LOX + 10 Angstroms Si N4Nitride: 50 Angstroms 16 M 20 Angstroms LOX + 20 Angstroms Si3 N
1 Nitride: 100 Angstroms

S14 14 TM-mode at 1580 nm
E TM-mode at 1580 nm E
D 12n 12
a0 Ta 12

Vo 10 (a) o10 (b)

(-8
.8 a 8

r 0)r

2 2

0 1 0 _L-

400 450 500 550 400 450 500 550
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Figure 9.4. Column charts of the TM-mode waveguide loss vs. waveguide width for (a) nitride only intercladding
layers and (b) LOX/ nitride intercladding layers

To summarize the thin nitride intercladding layer on c-Si channel waveguides study, we

believe that the index grading effect is more significant when either the confinement factor is

lower or the nitride thickness is thicker. We also discovered that 3 jLm under cladding layer may

not be sufficient for the TM-mode operation in longer wavelength even though previously we have

shown that the theoretical substrate leakage should be lower than 10-3 dB/cm for 3 jtm thick oxide.

The lowest losses we have achieved in single mode, c-Si channel waveguide are- 2.7

dB/cm for the TE-mode and - 0.7 dB/cm for the TM-mode in 500 nm x 200 nm waveguides with

100 A nitride intercladding layer.
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9.2. Amorphous silicon, single mode channel waveguides

In the EPIC program, parallel to c-Si waveguide work, we have also studied amorphous

silicon (a-Si) waveguides. Our goal is also to realize low optical transmission in single mode, a-Si

channel waveguides. This is achieved using

(1) H passivated a-Si waveguide material;

(2) PECVD silicon nitride intercladding layer with intermediate refractive index;

(3) Low optical loss PECVD silicon nitride.

The a-Si waveguide process is similar to SOI c-Si waveguides. Instead of using SOI wafers,

a-Si (n = 3.64 at 1550 nm) is deposited on 3 jtm thermal oxide wafers using PECVD at 350 oC in

BAE Systems facilities. Because the as-deposited film has top surface roughness, lately we use

CMP process to smooth the top a-Si surface. The deposited film is 400 nm thick and thinned down

to 200 nm which is the waveguide thickness. Deep-UV lithography is used to define the

waveguide structures using photoresist mask because pad-oxide/LPCVD nitride hard mask

process temperature is not compatible with a-Si process. After poly etch, a-Si waveguides go

through wet treatment to smooth out the sidewall roughness. Figure 9.5 shows two examples of the

fabricated a-Si waveguide cross section. The sidewall angle is nearly 900. The top surface

roughness problem has been addressed lately using CMP as the standard process. A 3 jpm top

oxide cladding layer is finally deposited at 400 oC (n = 1.46 at 1550 nm).
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Figure 9.5. SEM images of the cross sections of the as-fabricated a-Si channel waveguides. The sidewall is nearly
vertical. The texture on waveguide facets are due to sample preparation using Au coating.

Because hydrogenation is the key to low loss a-Si materials at 1550 nm, we first optimize

the deposition power for PECVE process. The process condition variation and the waveguide loss

values are summarized in Table 9.6. The bulk absorption coefficient is derived using the technique

introduced in Chapter 5. The corresponding results are summarized in Table 9.7.

Table 9.6. Transmission loss coefficients (dB/cm) at 1550 nm for the a-Si waveguides using photoresist mask. The
wafer ID's for these processes are "SLIA-Wf5-c3/b3", "SL1B-Wfl-hl/16", and "SL1B-Wf6-hl/lb".

RF Power Polarization Designed Waveguide Width (nm)
(W) 400 450 500 550 600

TE mode 22.6 0.8 16.6 ± 1.1 14.2 ± 0.6 14.0 ± 0.3 13.9 ± 1.2
100

TM mode 6.2 ± 0.4 7.8 ± 0.4 8.8 ± 0.5 9.8 ± 0.4 10.5 ± 0.7
TE mode 11.2 1.1 8.6 ±0.2 7.2 ± 0.5 8.4 ± 0.5 8.1 0.3

50
TM mode 7.6 ± 0.5 8.1 ± 0.4 8.2 ± 0.6 8.5 ± 0.5 8.6 ± 0.6
TE mode 9.4 0.6 6.8 ± 0.4 6.8 ± 0.2 7.1 ± 0.1 6.9 0.2

25
TM mode 6.8 + 0.6 7.0 ± 0.5 6.9 ± 0.4 7.0 ± 0.4 7.0 + 0.4

Table 9.7 RF power and the resulting a-Si bulk absorption loss coefficients.

RF Power (W) Bulk absorption loss coefficient (dB/cm)

100 15.2 + 1.0

50 6.3 + 1.0

25 0.6 ± 0.6
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As we have discussed in 0, a thin silicon nitride intercladding layer can effectively reduce

the a-Si waveguides' transmission loss by

(1) Acting as H diffusion barrier to prevent H from out diffusion, thus keeping the H

passivation during later processes. This should work for both TE- and TM-modes; or

(2) Reducing the interface index contrast to reduce the sidewall roughness scattering

effect for the TE-mode.

We have demonstrated this effect experimentally using the "paperclip" waveguide

structures. Since 100 W a-Si is our initial baseline condition, the following data are obtained from

a-Si waveguides using the same recipe. A 10 nm conformal PECVD nitride layer is deposited at

400 oC after a-Si waveguides are etched, cleaned, and wet treated. Finally, the 3 plm top oxide

cladding is deposited. The results are summarized in Table 9.8. Compared to the standard 100 W

a-Si waveguide loss listed in Table 9.6, the incorporation of such thin nitride intercladding layer

reduces transmission loss by average 40% for the TE-mode and 27% for the TM-mode.

Table 9.8. Transmission loss coefficients (dB/cm) at 1550 nm for the a-Si waveguides using photoresist mask.
Waveguides are over cladded by 10 nm thick PECVE silicon nitride. The wafer IDs for these processes are
"SLIA-Wfl5-il/i3".

RF Power Designed aveuide Width (nm)

(W) Polarization 400 450 500 550 600
100 TEmode 11.1 ± 3.0 9.8 0.4 8.6 0.4 8.10.4 9.7 1.3

TM mode 5.3 1.1 5.8 1.1 6.4 0.6 6.4 0.5 7.2 0.3

We are aware that as-deposited PECVD silicon nitride has optical absorption at 1550 nm.

By improving the nitride transparency, we could potentially achieve even lower loss in a-Si

waveguides. The related process development for such a low loss nitride has been discussed in

Chapter 7. The improved nitride contains only 10% of the original H in as-deposited nitride film.
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We fabricate our new a-Si racetrack resonators in Microsystems Technology Laboratories

(MTL) at MIT. Starting with a 6 inch silicon wafer with 1 jtm thermal oxide undercladding layer,

we deposited 100 nm PECVD hydrogenated a-Si thin film (n = 3.71). Because the deposition tool

is different (Applied Materials Centura 5300 DCVD) from previous process in BAE Systems, the

hydrogenated a-Si process is re-developed and the deposition power is optimized at 75 W. The

as-deposited film has a refractive index of 3.71 at 1550 nm and the top surface roughness is

measured to be less than 5 A using Atomic force microscope (AFM), thus CMP step is not required.

This film was patterned with I-line stepper (X = 365 nm, NA = 0.6) using positive photoresist; and

then etched using reactive ion etch method (RIE) with C12 and HBr chemistry. Because we want to

study the effectiveness of the nitride intercladding layer on sidewall roughness scattering

reduction, we intentionally skipped the standard post-etch sidewall-smoothing wet treatments.

The waveguide has a cross-section of 700 nm x 100 nm (w x h). The transmission loss

coefficient is derived using resonance structure. The calculated effective indices are 2.06 and 1.47

for the fundamental TE- and TM-modes, respectively. The fundamental TE-mode has mode height

of 1.2 jim and mode width of 1.5 tm; and for the fundamental TM-mode, they are 3.4 jim and 3.4

jIm, respectively. To study the effect of the different silicon nitride intercladding layers, the wafer

was broken into quarter-size pieces and the following experiments were performed:

Sample 1: Control, with no SiNxHY intercladding layer;

Sample 2: Deposited with 10 nm un-treated nitride intercladding layer (n = 2.089);

Sample 3: Deposited with 10 nm treated nitride intercladding layer (n = 1.896).

Different nitride deposition rates (A per deposition-and-plasma-treatment cycle) were

carefully calibrated prior to depositions. In the final step, all samples are cladded with 1 jtm
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PECVD SiO2 as the top cladding layers. With 1 Lm thick under cladding layer, the TM mode is

lost due to substrate leakage. As a result, we obtain the resonator spectrum for TE mode only.

Racetrack resonator design helps enhance the optical coupling for large coupling gaps. In

our case, the coupling gap is 600 nm and the coupling distance is 100 tm. The bend radius is 50

Im at which radiation loss due to bending is negligible. As a result, the round trip loss which

determines the unloaded Q factor is dominated by waveguide transmission loss. A schematic

representation of the racetrack resonator and an SEM image of the coupling region are shown in

Figure 9.6. The waveguide cross section and the corresponding index profile are also shown.

Input Through port

Waveguide cross section

. PECVD SiN

Top view of coupling region Index profile of the structure

3.7

~1.9

1.46

Figure 9.6. schematic representation of the racetrack resonator; the SEM image of the coupling region shows that the
critical dimension is well controlled in fabrication; the waveguide cross section and its associated index profile are
also given.

Waveguide transmission loss can be derived from the resonance spectrum of a first order

resonator structure as we have discussed in Chapter 5. Figure 9.7(a) is an example of the resonant

spectrum of one of the a-Si racetrack resonators. The FSR ranges from 1.35 nm to 1.36 nm as

shown in the inset. Figure 9.7(b - c) highlights the three resonance spectra for Samples 1 - 3,
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respectively. The extinction ratios and the -3dB bandwidths and Q factors are calculated from their

Lorentzian fits. The fitting results and loss values are summarized in Table 9.9. We estimate that

the uncertainty due to Lorentzian fitting and the real effective index deviation of the fabricated

device from the design would result in ± 15% variation at most in the final waveguide transmission

loss results. Incorporation of 10 nm as-deposited SiNxHy intercladding layer on the a-Si channel

waveguides reduce the transmission loss from 12.0 + 1.8 dB/cm (Sample 1) to 6.5 ± 0.9 dB/cm

(Sample 2). These results are in good agreement with previous results derived using the

"paperclip" method from straight waveguides in Table 9.6 and Table 9.8. The plasma treated

nitride used in Sample 3 further reduces the loss to 2.7 + 0.4 dB/cm.

Our current optimal PECVD SiNxHy still contains about 21.5% of the NH bonds compared

to the as-deposited SiNxHy as shown in Figure 7.7. Comparing Samples 2 and 3, if we assume that

the loss reduction of 3.8 dB/cm (0.876 cm'- ) is solely due to the NH reduction of 4.21 x 1021 cm-3

or 2.87 x 1016 cm -2, then we can obtain the effective absorption cross section for NH resonance

absorption at -1560 nm to be 3.05 x 1017 cm 2. This absorption cross section is expected to

increase as wavelength approaches 1510 nm. We can derive that the same a-Si channel waveguide

transmission loss coefficient can be further reduced by 0.4 dB/cm down to -2.3 dB/cm at 1560 nm.
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Figure 9.7. (a) The normalized resonance spectrum of an a-Si racetrack resonator with 10 nm nitride intercladding

layer. (b-c) Three resonance spectra for Samples of3. The black lines are the corresponding Lorentzian fittings. The

large periodic ripples are Fabry-Perot resonance from the waveguide input and output facets.

Table 9.9. The fitted data from Samples 1-3.

Resonance Extinction -3 dB bandwidth
Sample wavelength (nm) ratio (dB) (pm) Qfactor Loss_(dB/cm)

1 1558.146 12.3 69.4 22452 12.0 + 1.8

2 1559.587 5.4 25.8 60449 6.5 + 0.9

3 1560.319 6.9 11.0 141847 2.7+0.4

9.3. Damascene processed single mode, a-Si channel waveguides

We have evaluated damascene processed a-Si channel waveguide samples in the form of

racetrack resonators. There are two sets of samples: oxide trenches are as-etched (Wafer #2) and

are treated with diluted HF (50:1 H20:HF) for 2 minutes (Wafer #3). The waveguide transmission

losses are derived using the resonator method. Because the bend radii are all 50 jim, for the round

trip loss, bend loss is negligible compared to transmission loss. The obtained round trip losses (dB)
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are approximated to be transmission loss only and then converted to transmission loss coefficients

(dB/cm) using the periphery lengths of the racetrack resonators.

The measured waveguide transmission loss (dB/cm) is summarized in Table 9.10. The 4

measured chips are taken from the outmost periphery of each wafer with the same radial distance

to the center. Wafer #2 receives no HF treatment prior to a-Si deposition. Wafer #3 receives 2

minutes HF treatment after the oxide trenches are fabricated and prior to a-Si deposition. The

resulting oxide trenches are - 50 nm wider than the mask width and the resonator-bus gaps are ~

50 nm narrower accordingly. The inner chips on both wafers are found to be mostly ridge-shaped

due to non-uniform CMP and those racetrack resonators are generally not working.

Table 9.10. Summary of the measured waveguide transmission loss in dB/cm (in red).

Sample ID Loss (dBlcm)
Waveguide width Comments

Wafer# Chip 650 nm 600 nm 550 nm
2 1 n/a 3.57 ± 0.58' 7A9 ± 1.31 Oxide trenches received NO
2 .2 n/a 2.46 ± 0.09 4.71 0-53 diluted HF treatment

3 1 5.91 ± 0.80 6.71 ± 0.83 10.54 = 0.87 Oxide trenches received 2 min
3 2 5.62 ± 0.66 6.15 + 0.67 8.98 ± 1.20 diluted HF treatment

For a-Si waveguides fabricated directly by RIE and without nitride cladding layer in

previous sections, e.g. 700 nm (w) x 100 nm (h), the loss coefficient is 12.0 ± 1.8 dB/cm. Our

damascene processed a-Si waveguide devices have much lower transmission loss coefficients

even though they are much narrower in width. In general, the transmission losses increase as

waveguide widths decrease, indicating that sidewall roughness scattering is the dominant loss

mechanism. Unexpectedly, the HF treated samples from Wafer #3 have higher loss than the

as-fabricated ones from Wafer #2. The diluted HF solution (- 10 nm/min for thermal oxide) should
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be considered as aggressive isotropic etchant for surface treatment purpose. The 2 minute

treatment time may be too long for roughness removal at trench sidewalls because the RMS

roughness is normally less than 10 nm. The isotropic nature of HF etch has no selectivity to the

capillarity effect caused by the roughness peaks and valleys, compared to the dry oxidation

smoothing of SOI waveguide sidewalls.

Figure 9.8 shows some of the resonance spectra from the devices on Wafer #2. The

resonance features have well spaced free spectrum range (FSR) and > 10 dB extinction ratio. The

smaller fringes are he Fabry-Perot resonances due to the two flat waveguide facets.

-25 J. 25,

FSR - 2.81 nm FSR - 1.90 nm

A Wafer 2 Wafer = 602

-W = 600 nm W = 600 nm

L 50 pm L =100 pm
15. 3G = 550, nm G = 550 nm

1564 1555 1556 134 6 156 1537 1636 1539

Wavelength (nm) Wavelength (nm)

0-

.s- FSR - 4.47 nm FSR - 2.73 nm
= -35 4

Wafer 2 {Wafer 2
W = 550 nm W= 550 nm
L = 10 m L = 50 jm
G = 500 nm G = 550nm

1569 1570 1571 1572 1573 1574 1535 153 1537 1538 1539 1540

Wavelength (nrm) Wavelength (nm)

Figure 9.8. Examples of the resonance spectra from the racetrack resonator devices on Wafer #2. This is the first
demonstration of racetrack resonators using damascene process.

Table 9.11 summarizes all the measured transmission losses from Wafer #2. For each

waveguide width, the derived intra-chip losses from different resonators are relative consistent.
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The inter-chip losses vary greatly with Chip 2 has generally lower losses than Chip 1. This is

another sign of CMP non-uniformity: while the waveguide widths are similar in different chips,

the actual waveguide heights may vary quite a lot.

Table 9.11. Summary of measured loss transmission loss at - 1550 nm for different devices from Wafer #2.

Chip IDI Width (nm) neff IL (g) gap (nm)Loss (dB/cm)

Chip 2 600 2.052 50 550 2.61
50 600 2.36
100 650 2.51
100 600 2.35

Assuming that the sidewall roughness scattering effect is dominant in the transmission

loss, we calculate the E-field strengths at the sidewall interface for different waveguide thickness

as the result of non-uniform CMP. The E-field profiles are plotted in Figure 9.9. Because thinner

channel waveguides have high E-field strengths at sidewall interface, it is likely that the higher

transmission loss in Chip 1 of Wafer #2 is caused by over-CMP. Also, because ridge waveguide

configuration has lower E-field at sidewall interface, Chip 2 of Wafer #2 is possible to contain

ridge waveguides with very thin slab layer.
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Figure 9.9. The theoretical E-field profiles for 6 different waveguide thicknesses. The waveguide sidewall is at 1.7
gtm. Waveguide width is kept at 600 nm. The first 3 samples are channel waveguides with 60 nm, 80 nm, and 100 nm
in height. "100 nm + 20 nm ridge" means that because CMP is not completely to the depth, there is 20 nm thick a-Si
slab layer remaining and so forth, resulting in an "upside-down" ridge waveguide.

Similarly, Figure 9.10 plots the resonant spectra of devices from Wafer #3. The

corresponding measurement results from the chips on Wafer #3 are summarized in Table 9.12. The

variations among the two chips from Wafer #3 are smaller compared to Wafer #2, indicating that

our current CMP is really on a case-by-case basis! More reliable and repeatable CMP is required in

order for damascene process to be a robust alternative fabrication method for deposited

waveguides.
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Figure 9.10. Resonant spectra from the racetrack resonator devices on Wafer #3. The variation in extinction ratio is

caused by different coupling conditions. The extinction ratio is maximized at critical coupling condition where the

power coupled into resonator is equal to the round trip loss of the resonator.
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Table 9.12. Summary of measured loss transmission loss at - 1550 nm for different devices from Wafer #3.

550 1.99 10U UU 10.32
10 650 7.99
10 700 8.62

Chip 2

9.4. Summary

We have demonstrated the low loss optical transmission in single mode, c-Si channel

waveguides with minimal TE mode loss of 2.7 dB/cm and TM mode loss of 0.7 dB/cm,

respectively. For single mode, a-Si channel waveguides, we have achieved the lowest transmission
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loss of -2.7 dB/cm for the TE-mode operation using H passivated a-Si and a thin, low loss PECVE

nitride intercladding layer. We have also successfully demonstrated the damascene process for

deposited waveguide fabrications. The resulting a-Si channel waveguide devices have much lower

loss than those directly fabricated by RIE etch of a-Si. The diluted HF solution treatment does not

reduce the transmission loss, possibly due to too aggressive and isotropic etch.
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Chapter 10. Lensed, asymmetric GRIN fiber-to-waveguide couplers

10.1. Overview

While optical signals can be routed and processed on an integrated photonic chip, they

have to be transmitted from optical fiber to on-chip first and be coupled off the chip after process.

Low loss, broadband fiber-to-waveguide couplers are indispensable I/O components in an

integrated photonic system.

For HIC waveguide, low loss fiber-to-waveguide coupler design is always challenging.

Direct coupling is very inefficient because of three major mismatches:

1. Mode size mismatch

2. Mode shape mismatch

3. Modal index mismatch

A regular single mode fiber (e.g. SMF-28) consists of a doped silica core, a silica cladding,

and a protective polymer coating and has a mode field diameter (MFD) around 10 ptm. Its effective

index is 1.4681 at 1550 nm. For Gaussian-like mode, the MFD is defined as the diameter at which

power is reduced to l/e 2 of the maximum power. Figure 10.1 is a schematic representation of the

cross section of a SMF-28 fiber and its mode distribution.

On the other hand, a HIC planar silicon waveguide has much different mode size and mode

shape. The MFD of a typical single mode silicon waveguide (500 nm wide, 200 nm tall) is 0.49 x

0.55 p.m (w x h) for its fundamental TE mode and 0.92 x 0.67 ptm (w x h) for its fundamental TM

mode.

The rectangular-shaped waveguide also has high birefringence. The effective indices for

the fundamental TE and TM modes are 2.395 and 1.673, respectively. Direct coupling from fiber



to waveguide through free space will cause severe loss due to reflection at the waveguide and fiber

facets.

Doped silicon core

- Normalized optical intensity
10 - --- e1/ of the maximum optical Intensity

0.2

0.0 ..

125 pm 0o to
Spatial distance (Am)

245 pm
(a) (b)

Figure 10.1. schematic representation of (a) a cross section view of a SMF-28 fiber and (b) its mode distribution. The
black curve in (b) is a representation of the optical intensity distribution; the red line in (b) corresponds to l/e 2 of the
maximum intensity. The locations where two curves intersect show the boundary of the MFD which is around 10 pm.

A number of methods have been developed to improve the fiber-to-waveguide coupling.

For the optical fiber, lens tipped fibers and tapered fibers offer reduced MFD. For example, a

typical lens tipped fiber has a MFD of 3 ltm (Nanonics Imaging Ltd.); and for a tapered fiber, 1.7

gim (Nanonics Imaging Ltd.). The smaller MFD and non-flat fiber facet helps reduce the mode size

mismatch as well as the reflection, improving coupling efficiency.

Index matching fluid (IMF) can also be used to reduce the reflection. IMF has various

refractive indices ranging from 1.45-1.81 and normally wets both fiber and waveguide surfaces.

They can effectively reduce the index contrast at fiber and waveguide facets compared to free

space coupling (nair, = 1).

For waveguides, fiber-to-waveguide couplers can be used to increase the waveguide's

MFD. The common ones are linear inverse taper couplers [79,80], parabolic inverse taper couplers
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[81], normal 3D taper fabricated by grayscale lithography [82], grating based planar coupler [83],

nonperiodic segmented waveguide coupler [84,85], and graded index based couplers [86,87]. The

coupling loss can be reduced to be less than 1 dB per coupler.

Our design of a low loss fiber-to-waveguide coupler consists of an asymmetric taper made

of 7 graded index layers with a monolithically integrated lens. Our prototype devices are made of

silicon nitride and silicon oxynitride. A minimal loss of 0.45 dB per coupler is achieved when

coupling a single mode SiOxNy waveguide with a MDF of 1.45 tm to a single mode fiber with

MFD of 6.8 pm (Nufern980TM). The averaged coupling loss is 0.4 dB between 1520 nm and 1620

nm.

10.2. Previous design of an asymmetric graded index taper coupler

Grade index (GRIN) structures are widely used in optical fiber application to reduce the

modal dispersion caused by the different propagation velocities of the optical signals. Governed by

the Snell's law, light is refracted toward the highest index core. A parabolic index step profile

works the best in terms of providing confinement. The same idea can be utilized for a planar

waveguide coupler.

Nguyen designed a coupler which has an asymmetric stepwise parabolic index profile to

confine light vertically and a non-adiabatic taper structure to change the mode size in the

horizontal direction as shown in Figure 10.2 where w is the taper width at the outer flat facet; w, is

the taper tip width and also the waveguide width (0.9 pm); and L is the taper length [88]. The

GRIN structure is made of 7 layers of SiOxNy with refractive index increasing from the top layer to

the bottom which is also the waveguide level. The layer thickness and index is carefully designed

to form a stepwise parabolic index profile as shown in Figure 10.3(a). The single mode SiOxNy
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waveguide has a cross section of 0.9 x 0.9 pm 2 with a MFD of 1.45 pm. 2D-FDTD simulation

shows the efficient focusing effect of fiber mode to the waveguide mode as in Figure 10.3(b). The

coupler length is designed to match the focal distance of the GRIN layers. The SiON waveguides

and the GRIN coupler were deposited by plasma-enhanced chemical vapor deposition on 3 pm

thermal SiO2 on a silicon wafer. The refractive indices are tuned by changing deposition

parameters (More details can be found in Ref. 88). The coupler structure is defined by a plasma

etch using trifluoromethane chemistry. Because waveguide and coupler are fabricated in 2

separated steps, good alignment is critical. An example of the SEM image of the fabricated coupler

is shown in Figure 10.4 [89].

Non-adiabatic taper

w Low index

GRIN Layer
Single mode SiOxN, waveguide

SI_ High index

Fiber mode L Waveguide mode

Figure 10.2. Schematic representation of a 7-layer GRIN coupler capable of transferring the fiber mode to waveguide
mode and vice versa. The highest index layer is at the bottom which is also the waveguide level.

174

CC ab~ -- ---- ---



2-

1.45 1.50 1,55 1.60 1.65 1.70

Refractive index

(a) (b)

Figure 10.3. (a) The index profile for asymmetric GRIN layer stack with bottom and top cladding layers being SiO 2 (n
= 1.46). The lighter curve is the ideal parabolic index profile; (b) 2D-FDTD simulation shows the optical focusing
effect from fiber mode to waveguide mode (Figure taken from Ref. 88).

Figure 10.4. The SEM image of an uncladded coupler. The waveguide alignment with the coupler is well controlled
(Figure taken from Ref. 89)

Nguyen studied the coupling efficient variation as a function of w and L and discovered

that the lowest coupling loss is 2.2 dB per coupler in a 6 gtm high, 20 gim long, and 8 gm wide

coupler. In addition, from 1520 nm to 1620 nm, this coupler has a coupling loss ranging from 1.9

dB to 2.7 dB per coupler with minimal coupling loss at around 1540 nm.
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10.3. Lensed, asymmetric graded index taper coupler

An improved design of the above fiber-to-waveguide coupler is proposed and

demonstrated. The most significant change is the incorporation of a monolithically integrated lens

at the couple facet. Because the focal distance of the GRIN layer determines the coupler length, L,

and to keep the coupler footprint as small as possible, the taper structure has to be non-adiabatic.

The lens structure can help light confinement in the horizontal direction in the taper structure,

improving the coupling efficiency. The deposition and etch of the GRIN taper is as before. The

incorporation of the lens does not increase the complexity of the process because the lens and the

coupler structure are defined simultaneously in both photolithography and etch steps. The lens

structure is shown as a scanning electron microscopy SEM image in Figure 10.5. Due to the

improved plasma etching process, a less slanted sidewall of 940 is obtained. This requires only an

index matching fluid with index of 1.4587 to obtain the maximal transmission, as opposed to the

higher index matching fluid required to correct the slanted facet for the sloped sidewall in Ref. 89.

At the end of the 6 tm deep lens formation etch, the silicon substrate beneath the coupler juts out

and precludes efficient coupling between the coupler facets and fiber. An additional process step

includes an anisotropic etch at this stage which removes 100 ptm of the silicon substrate under the

coupler and allows the optical fiber to be brought into close proximity of the input and output

facets of the coupler. The effectiveness of the lens has been verified using finite-difference beam

propagation code using the TE mode qualitatively.
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(a) (b)

Figure 10.5. (a) Schematic representation of the asymmetric GRIN lensed coupler and (b) cross-sectional SEM image.
The etch profile has a slope of 94' . The coupler structure is buried in the oxide top cladding but the cylindrical lens can
be seen clearly. The layered structure in the silicon wafer is due to the dry-etch process and is not the GRIN coupler
itself.

The coupling loss per coupler was obtained by subtracting waveguide loss and system loss

from the total propagation loss. First, the waveguide loss is evaluated from the SiOxNy waveguides

using tapered Nanonics fibers for input and output to match the small MFD of the waveguides. The

waveguide loss coefficient, a,, is measured to be 4.13 ± 0.28 dB/cm at 1550 nm, slightly lower

than the first run of 4.8 ± 0.50 dB/cm in Ref. 88. Then, the total insertion loss of the SiOxNy

waveguides with the same length but with two GRIN couplers is measured using non-tapered

Nufern fibers. Here, we use IMF with n = 1.4587 to eliminate the reflection loss at the facets of the

coupler as well as the fiber. In both measurements, the Auto-Align station optimizes the coupling

between the input and output facets and the fiber. The coupler's loss is calculated by subtracting

waveguide loss from the total insertion loss. The detailed formulation is as follows:
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t L =ainsertion(1)- 2a nanonics
= insertion- coupling (10.1)

coupling = insertion(2)-a L (10.2)

where

* ainserton (1) is the total insertion loss measured from waveguides without couplers using tapered

fiber (Nanonics fiber);

* a naon p s is the fiber-to-waveguide coupling loss included in a,,sert,,on (1); it is simulated to be 0.8

dB per coupler using FIMMWave.

Sain,,serton(2) is the total insertion loss measured from waveguides with couplers using

Non-tapered single mode fiber (Nufern fiber); and

* a unfern is the fiber-to-waveguide coupling loss included in a,nseo, (2).

First, expecting that the improved reactive ion etch may improve the flat-end coupler's

performance we revisit the old design of flat-end couplers without lenses. The coupler's lengths

are fixed at 20 pm. The couple widths vary from 4 to 14 tpm. The coupling losses are collected and

summarized in Figure 10.6. The lowest loss obtained is 0.9 dB per coupler for the TE polarization

for the coupler with 7 pm wide flat-ended facet. From the optimized etching, there is 300%

improvement over what was previously reported.
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Coupler flat-ended facet width (rim)

Figure 10.6. (a) An SEM image of the exposed facet with flat-end coupler. The waveguide and actual couplers are
buried by oxide already, although the outline of the coupler is still visible; (b) the experimental results of the couplingloss with error bar. The red line is there to guide the eyes.

To test the effect with different lens radii, the chord lengths are kept constant and match the

coupler outer flat facet width, w, which is fixed at 8 jm, so the lens structure can cover the entire

facet. The couplers are also 20 im long. The lens radii vary from 4 to 20 jim. A schematic drawing

of the lens structure is shown in Figure 10.7(a). These lensed couplers perform better than flat-end

couplers as expected. In Figure 10.7(b), we observed the lowest coupling loss of 0.45 dB for the

TE polarization for a 9 gm radius lensed coupler. The polarization dependent losses of lensed

couplers are averaged to be 0.2 dB. The lens provides 300% improvement over the 8 gm wide

flat-ended coupler shown in Figure 10.6(b). Because the chord length is fixed at 8 im, the

curvature for large radius lens becomes very small and virtually it behaves like a flat-ended

coupler. The abnormal behavior ofa 9 jim wide flat-end coupler and a 7 jim radius lensed coupler

is because of the remained lens obstruction that prevented the fiber tip from moving to the optimal

coupling position; optimal coupling position could not be achieved, resulting in much high

coupling losses.
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Figure 10.7. (a) Schematic drawings of the top view of the lensed couplers with different radii. The chord lengths are

fixed at 8 tjm while the radii change. (b) Measurement results of coupling loss vs coupler width for lensed asymmetric

GRIN couplers with couple chord width of 8 gm. The red line is to guide the eyes.

The wavelength dependence is also studied in the wavelength range between 1520 nm and

1630 nm. The transmission spectra for the waveguides with/without couplers show strong

absorption pattern according to PECVD SiOxNy as shown in Figure 10.8. As we discussed in

Chapter 1, this is due to the NH resonance absorption centered around 1510 nm.

* Waveguide transmission loss
* Total insertion loss for waveguides with couplers

+ I I * ' I I I ' I

1520 1540 1560 1580 1600 1620 1640

Wavelength (nm)

Figure 10.8. (red) Waveguide transmission loss spectrum; (blue) the total insertion loss of the same waveguide with
two couplers at each end.

180



The coupling loss for each coupler is one-half of the loss difference in above two curves.

The NH absorption effect from the waveguide is dominant because the two couplers are very short

compared to the waveguide. The NH absorption inside the coupler is thus negligible. Figure 10.9

plots the coupling loss per coupler as a function of wavelength. The small fluctuation can be

caused by the electronically driven Autoalign stage drifting during the time span of the

measurement. The average coupling loss between 1520 and 1630 nm is 0.42 dB. The loss values

are 500/o-600% smaller than those in flat-end couplers.
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Figure 10.9. The measured coupling loss vs wavelength for a 20 Cpm long, 8 gim wide, and 9 pm radius lensed coupler.

10.4. Summary

In this chapter, we have designed a class of high performance fiber-to-waveguide couplers

for high index contrast waveguides. The couplers consist of a GRIN layered structure in the

vertical direction and a non-adiabatic taper for light confinement in the horizontal direction. The

initial design is modified to incorporate a monolithic integrated lens at the flat coupler facet to help



light confinement in horizontal direction. The fabricated couplers based on the new design have

shown a significant performance improvement in terms of loss values and broadband behavior.

The lowest coupling loss obtained is 0.45 dB per coupler and the average coupling loss is 0.42 dB

from 1520 to 1630 nm.
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Chapter 11. Impedance matching vertical waveguide-to-waveguide couplers

11.1. Overview

A common approach for integration of photonic components utilizes a co-planar design

with silicon-on-insulator (SOI) substrates. This limits the pattern density and creates restrictions

for scaling. A 3D integration approach can significantly increase the device density on a single

wafer. In order to efficiently route and transmit an optical signal among different levels of

photonic devices, a low loss vertical waveguide-to-waveguide coupler is indispensable.

One application for vertical waveguide is to enable waveguide coupled germanium-based

photodetectors and electro-absorption modulators as shown in Figure 11.1. For operations around

1550 nm, strain-engineered single crystalline germanium (Ge) will have the right bandgap and

high carrier mobilities for high performance photodetectors and modulators [90,91,92]. High

quality single crystalline Ge is epitaxially grown on single crystalline silicon (also is highly doped,

serving as bottom contact) using a two-step growth technique with a 60nm thick, defective Ge

buffer layer firstly grown on SOI at - 360 oC followed by a high quality Ge growth at -730 oC and

sequential annealing [92,93]. As a result, bulk Ge is not at the same level as SOI silicon. Directly

coupling light from SOI waveguide is not feasible. In both scenarios, optical signal is routed from

bottom SOI waveguide to top amorphous silicon waveguide through a vertical waveguide coupler,

and then coupled into bulk Ge. A low loss, broadband SOI-to-a-Si vertical coupler is the key

enabler for these applications.
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Figure 11.1. (a) a butt-coupled Ge photodetector; (b) a butt-coupled GeSi electro-absorption modulator. Both are
enabled by using a vertical waveguide coupler to route optical signal from bottom SOI waveguide to top amorphous
silicon waveguide.

11.2. Design and demonstration

11.2.1. Conventional vertical directional coupler design

The simplest design of a vertical waveguide coupler can be based on conventional

directional coupler as shown in Figure 11.2. In our case, wl = w2 = 500 nm; hi = h2 = h3 = 200 nm;

and the coupling length, L, varies depending on refractive indices of the SOI and a-Si. The

interlayer thickness of 200 nm was determined by the CMOS process flow that is used. The

vertical coupling concept itself can be used for various interlayer thicknesses.
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Figure 11.2. Schematic drawings of a vertical waveguide coupler based on conventional directional coupler design: (a)
3D view; (b) side view; and (c) top view.

A conventional directional coupler with two adjacent, parallel waveguides is well

understood [94,95]. According to Saleh, 100% power transfer requires perfect optical impedance

matching where the effective indices of the two waveguides are identical and the coupling length is

exactly equal to the transfer distance at which 100% power transfer is complete. In our previous

design, the refractive index of a-Si is assumed to be 3.5, equal to that of SOI. As a result, the

optimal coupling length, L, is found to be 7 gim using BeamProp method. However, this design is

not robust. The reasons are as follows.

First, for a vertical coupler consisting of two different waveguide materials, e.g. SOI

crystalline Si (c-Si) and a-Si, index matching is difficult to achieve because the refractive index of

a-Si depends greatly on deposition conditions and processes. Figure 11.3(a) shows the theoretical

optimal coupling efficient as a function of a-Si refractive index. As a-Si index deviates from 3.5

which matches the SOI index, the maximal achievable coupling efficient decreases rapidly. Our

a-Si refractive index is measured to be 3.64 in the final fabricated devices. This corresponds to a
a-Si refractive index is measured to be 3.64 in the final fabricated devices. This corresponds to a

185

- I -- I -- -- ---- ---



maximal 56.5% coupling efficient. The a-Si index variation also changes the coupling length as

shown in Figure 11.3(b). At nasi = 3.64, the optimal coupling length is 4.9 pm instead of 7 tpm.

Together, the 7 pm long coupling length based on nasi = 3.5 can only yield a coupling efficient of

36.8%, or 4.34 dB loss per coupler.

100% 7.0 -

(a) (b)
90% - 6 5

o 80% 6.0

S70% C) 55
C"

o o
60% 0 5o

50% * Optimal coupling efficient 4 Optimal coupling length

348 3.50 3.52 3,54 356 358 3.60 362 364 3.66 3.68 348 350 352 354 356 358 360 362 364 3.66 368

Refractive index of a-Si Refrective index of a-Si

Figure 11.3. (a) Theoretical coupling efficient and (b) the corresponding coupling length as a function of a-Si
refractive index in a vertical directional coupler. The refractive index of SOI is 3.5.

Secondly, fabrication of a vertical coupler requires multiple process steps that introduce

variations in the dimensions of the waveguides at each level. These variations in waveguide

dimension will cause a deviation in the effective index of the waveguide. An example is given in

Figure 11.4 where nas, = 3.64 and nsoi = 3.5. It shows that a-Si width variation can also change the

maximal coupling efficient as well as the corresponding coupling distance.
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Figure 11.4. The theoretical maximal coupling efficiency and the corresponding coupling distance as a function of
a-Si waveguide width. n,s, = 3.64 and nso, = 3.5.

Last, waveguide misalignment changes the effective coupling gap between the two

waveguides; and it can affect the coupling efficient and coupling length as well as shown in Figure

11.5.
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Figure 11.5. The theoretical maximal coupling efficiency and the corresponding coupling distance as a function of

a-Si waveguide offset. nasi = 3.64 and nsoI = 3.5.
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In conclusion, the vertical coupler can not use conventional directional coupler design. A

better design which can tolerate variations in materials and fabrication is needed.

11.2.2. Inverse taper vertical coupler design and demonstration

Our new vertical waveguide coupler design consists of two vertically overlapped inverse

tapers extending from the respective waveguides. Figure 11.6 shows the structure of a vertical

coupler in 3D, top and side views. Waveguides are also 500 nm wide and 200 nm tall designed for

TE single mode operation at 1550 nm. The waveguide interlayer consists of 200 nm thick silicon

dioxide.

w
-- I

(a)
h

(b)

i ,

!_ L

I w ' (c)

Figure 11.6. Schematic representation of an improved vertical coupler design: (a) 3D view; (b) top view; and (c) side
view of the vertical coupler with finite tip width (w,).

The inverse tapers have a shallow linear slope to ensure an adiabatic evolution of the

optical mode. The linear taper is the simplest design for proof of concept although nonlinear tapers

may provide a more optimized coupling performance. The top a-Si taper is designed to be central

symmetric to the bottom SOI taper for simplicity.

This design is significantly improved compared to similar designs in the literature that use

only one inverse taper with either a straight waveguide or a slab layer [96,97]. The effective index

matching condition of this design is illustrated in Figure 11.7. The figure shows the effective
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index profiles for top and bottom tapers as a function of waveguide width which is plotted along

the top and bottom x-axes, respectively. The figure illustrates the impact on utilizing a single taper

design compared to our dual taper design for the vertical coupler using a-Si with SOI. The index

for SOI silicon is constant at 3.5, whereas the index for a-Si can range between 3.3 and 3.7. If only

the SOI waveguide is tapered, an index match condition can not be met with a-Si index greater

than 3.5. Alternatively, if the upper a-Si waveguide is tapered, a matching condition with SOI can

not be found for a-Si index less than 3.5. Tapering both waveguides provides greater tolerance in

the variation of a-Si material properties and guarantees optical impedance matching for the optical

power to be efficiently transferred regardless of a-Si refractive indices.

Waveguide width of top waveguide (tm)
0.5 0.4 0.3 0.2 0.1 0.0

2.8 I I I 2.8
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_ 2.2- 2.2 0.
a, <> (

a)2.0 2.0 C
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1.8 - 1.8
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1.4- 1.4
0.0 0.1 0.2 0.3 0.4 0.5

Waveguide width of bottom waveguide (tm)

Figure 11.7. The effective index profiles in a vertical coupler of SOI and a-Si. The cross-over points indicate at which
position optical impedance matching between SOI and a-Si waveguides is achieved. The horizontal dashed and dotted
lines represent untapered a-Si and SOI waveguides, respectively.

The tolerance of this design on the a-Si index variation is examined using the eigen-mode

expansion (EME) approach in FIMMPROP. Figure 11.8(a) shows a side view of the dynamic

power transfer process inside the vertical couplers (L = 60 gtm, wt = 200 nm) for each a-Si index
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condition. The dotted rectangles outline the area of the couplers. The dashed line highlights the

location of the impedance matched condition where maximum power is transferred. As shown in

Figure 11.8(b), the loss per coupler is consistently less than 0.14 dB for all a-Si index condition

and corresponds to coupling efficiencies above 96%. Another important advantage of our vertical

coupler design is that power oscillation can be effectively suppressed. Unlike the optical mode in a

conventional directional coupler that oscillates sinusoidally between two waveguides, in our

tapered vertical coupler there is little power coupled back once it is transferred to the other

waveguide due to the fact that mode matching conditions for both waveguides are only satisfied at

the coupling point.

S0.16
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3 - - ---0.08 -
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SOl a-Si Refractive Index
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Figure 11.8. (a) Mode coupling inside a vertical coupler (L = 60 gm, w, of 200 nm) with different a-Si refractive
indices. White dotted rectangles highlight the cross section of the vertical coupler. (b) the corresponding coupling loss
as a function of the a-Si refractive index. The SOI index is fixed at 3.5.

Although the mode matching condition between waveguides can always be satisfied in our

vertical coupler, the total power transmission also depends on the coupler length and the tip width

which defines the taper angle. Figure 11.9 summarizes the calculated coupling efficiencies as a

function of coupler length for various tip widths using the same EME approach. In this analysis,
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the index of refraction for a-Si is set to 3.6 and is consistent with the index obtained in our

fabricated devices. For long vertical couplers with L > 60 ptm, coupling efficiencies of more than

99.5% (or less than 0.02 dB coupling loss) can be achieved. In this case, a zero tip width design can

be used without breaking the adiabatic condition along the taper. This is also very desirable since it

eliminates abrupt index changes thus reducing light scattering when the optical mode travels from

waveguide into coupler region. However, practical fabrication of tip widths less than 120 nm is

very challenging using 193 nm photolithography. Vertical couplers less than 60 Jtm long are

desired for reduced footprint, but they can not use zero tip width due to loss of adiabatic conditions.

Coupling efficiency decreases as tip width decreases at constant coupler length as shown in Figure

11.9. A finite tip width reduces taper angle and helps mode evolution in the vertical coupler to stay

lossless. For small refractive index differences in a c-Si/a-Si vertical coupler, high coupling

efficiency can be obtained without tapering the coupler to zero width. For a given coupler length, a

large tip width, or a small tapering angle, ensures the adiabatic mode evolution without causing

significant reflection and scattering losses. In general, although a sufficient long coupler can

ensure high coupling efficiency, more compact vertical couplers with L > 30 jpm and wt - 200 nm

can also guarantee an adiabatic transition with high coupling efficiency.
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Figure 11.9. Coupling efficiency for various taper tip widths (wt) as a function of coupler length. The refractive index
of the a-Si taper is fixed at 3.6.

Our test structures use finite tip widths of 200, 250, and 300 nm due to photolithography

and other fabrication constraints. Coupler lengths were 30, 45, and 60 ptm, resulting in 9 different

coupler variations. The prototype devices were fabricated on 6 inch SOI substrates with 200 nm

c-Si for the bottom waveguide and a 3 pm bottom oxide layer serving as the lower waveguide

cladding. The bottom level SOI waveguide and the taper structures were defined using an ASML

5500/850 Deep UV Scanner and Applied Materials Centura silicon etcher. A 400 nm thick

high-density plasma (HDP) PECVD SiO2 interlayer was deposited and chemical-mechanically

polished (CMP) to 200 nm. A 400 nm thick PECVD a-Si layer was deposited using an Applied

Materials P5000 lamp heated PECVD chamber at 350 oC and CMP back to 200 nm forming the

top waveguide material. The top a-Si waveguides were defined and fabricated with the same

dimensions as the bottom SOI waveguides. Finally, another layer of 3 m HDP PECVD Si0 2 was

deposited as the waveguide top cladding (see Ref. 98 for more detail). An SEM image of the cross

section of the vertical coupler is given in Figure 11.10.

192



Figure 11.10. One cross-sectional SEM image of the vertical coupler. The bottom waveguide is SOI and the top
waveguide is made of a-Si. The interlayer and cladding layers is SiO 2.

The loss values were derived using a design similar to the "paperclip" method. We

designed a set of waveguides containing different numbers of cascading vertical couplers, while

keeping the waveguide length constant. Under the same measurement conditions, the total

coupling losses of these cascading vertical couplers are different and result in differences in their

waveguide transmission. The vertical coupler loss can be derived from the slope of the linear fit for

a transmission versus number of vertical couplers plot. The measurement results at 1550 nm are

summarized in Table 11.1. The measurement uncertainty is mainly due to the fiber-to-waveguide

coupling which we estimated to give an average 0.03 - 0.05 dB uncertainty to the coupling loss.

Minimal coupling loss of - 0.20 + 0.05 dB per coupler can be achieved with good consistency for

30 and 45 tm long devices. Although the simulations assumed total transparency in our

waveguides and vertical couplers, the measured total coupling loss inevitably contains common

waveguide transmission losses resulting from material bulk absorption and side wall roughness

scattering. We measured different loss coefficients for test waveguides with different widths and

expressed the loss coefficient as a function of width for both SOI and a-Si waveguides. We can

alternatively derive the bulk absorption loss coefficient using the method described in Ref. 99. For

example, for a 500 nm (w) x 200 nm (h) straight waveguide, the waveguide sidewall scattering loss
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coefficients for both SOI and a-Si are measured to be 5.5 dB/cm for TE mode; the a-Si bulk

absorption loss coefficient is measured to be 5.4 dB/cm [99].

We know that the sidewall roughness scattering loss coefficient is proportional to IEl2

where E is the amplitude of electric-field at thle sidewall interface. From E we can estimate the

waveguide width dependence of the roughness scattering loss coefficient. Figure 11.11 is the

simulated E-field amplitude at the outside of the sidewall interface as a function of waveguide

width. Surprisingly, as waveguide width increases from 50 nm to 800 nm, the E-field amplitude

first increases; reaches maximum around 300 nm; and decreases afterwards. This indicates that in

an inverse taper with zero tip width, the change of taper transmission loss coefficients is not

monotonic.
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Figure 11. 11. The simulated E-field amplitude at the outside of the sidewall interface as a function of waveguide
width.

For inverse taper structures with tip width larger than 250 nm, based on Figure 11.10, we

expect that as waveguide width decreases, side wall roughness scattering for TE mode will

increase in both SOI and a-Si tapers, while bulk absorption loss will decrease in the a-Si taper
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structure due to reduced confinement factor. The method we used to estimate these waveguide

related losses is illustrated in Figure 11.12. Our previous simulations show our vertical couplers

satisfy adiabatic conditions. Therefore reflection and scattering at the boundaries of each slice can

be ignored. The measured total coupling loss and the calculated coupler transmission loss due to

sidewall scattering and a-Si absorption are listed in Table 11.1 for comparison. From Table 11.1 it

is clear that the small coupling loss contains a substantial contribution from waveguide

transmission loss.

dli
4 -- P

aa ...
aso' /a,&

(a)

Total Waveguide Loss = Scattering loss + absorption loss

=Jai .de.±j a1 .dei+ abuk ri,

Sidewall
scattering

in SOI

Sidewall
scattering

in a-Si

Bulk
absorption

in a-Si

(b)

Figure 11.12. (a) We estimate waveguide transmission loss by integrating sidewall roughness scattering and bulk
absorption loss along taper structures; (b) corresponding mathematical formula, where li is the unit length at wi, Fiasi is
the confinement factor for a-Si at wi, a1  and aasi are the sidewall scattering loss coefficients for SOI and a-Si at wi,
abuk a i is the bulk absorption coefficient for a-Si. While a, and Fi is a function of wi, abulk is constant for a-Si. Here, we
assume SOI silicon does not have bulk absorption at 1550 nm, abulkO = 0.

Table 11.1. Measured total coupling loss, a(C), and simulated transmission loss, a (T), for the 9 different vertical
couplers, e.g. a30 is the loss coefficient for 30 gm long coupler. The loss is given in dB.

(9m) Measured Simulated Measured Simulated Measured Simulated

Wt (nl) a30 (C) a30 (T) a45 (C) a45(T) a6 (C) 60(T)

200 0.23 ± 0.05 0.10 0.29 ± 0.03 0.15 0.45 ± 0.06 0.22
250 0.24 - 0.05 0.08 0.26 ± 0.03 0.12 0.39 ± 0.06 0.15
300 0.20 + 0.05 0.07 0.21 - 0.03 0.10 0.30 ± 0.06 0.13
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The difference between measured total coupling loss and simulated transmission loss, a(C)

- a(T), captures the intrinsic coupling loss as well as the scattering loss at taper tips during entry

and exit. Because Figure 11.8(b) suggests that the intrinsic coupling loss is very small, the majority

of this difference must be related to taper tip scattering and other fabrication imperfection.

Derived from our experiments, the following HIC vertical coupler design rules are evident:

1. Design trade-offs for taper length L.

a. A taper has to be long enough to satisfy the adiabatic condition;

b. A longer taper introduces higher transmission loss;

c. A longer taper requires larger footprint.

2. Design trade-offs for tip width wt.

a. A small wt increases taper sidewall roughness scattering;

b. A large wt increases the effective index discontinuity at the taper entries, thus

increasing the scattering loss when the optical mode enters and exits vertical

coupler.

11.2.3. Broadband performance: butt-coupled Ge photodetectors

The butt-coupled GeSi photodetectors are fabricated with integrated vertical couplers

based on both the conventional vertical directional coupler and the inverse taper vertical coupler

design. The rest processes are identical for both cases. The light couples from the SOI waveguide

to the a-Si waveguide, and then reaches the GeSi photodetector. Figure 11.13 shows the two GeSi

photodetector responsivity spectra. While the vertical directional coupler only offers efficient

coupling at around 1520 nm, our inverse taper vertical coupler achieves high efficiency coupling

in a much broader wavelength range of 1470-1570 nm, as manifested by the significantly
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improved responsivity in a 100 nm-wide spectral range. Detailed discussion about the

photodetector can be found in Ref. 98 and 100.

-o-Vertical coupler L =45 pm; wt = 250 nm
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Figure 11.13. GeSi photodetector responsivity comparison showing improved broadband detection using the inverse
taper vertical coupler design as oppose to regular vertical directional coupler design.

11.3. Summary

In this chapter, we have analyzed two vertical waveguide couplers based on conventional

vertical directional coupler design and inverse taper vertical coupler design. For vertical coupler

consists of two different waveguide materials, we have found that the inverse taper vertical coupler

design can ensure optical impedance matching conditions and tolerant a wide range of design and

fabrication variations. For small refractive index differences in the c-Si/a-Si vertical coupler, high

coupling efficiency can be obtained using non-zero tip width inverse taper structures. For small

coupler lengths, a large tip width can ensure adiabatic mode evolution without causing significant

loss due to reflection and scattering. Experimentally, we have achieved consistently low coupling

loss of 0.20 ± 0.05 dB in our prototype devices. Our vertical waveguide coupler has been
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successfully adopted in device applications, and it is promising for future 3D photonic and

electronic-photonic integration.
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Chapter 12. Slot waveguide based couplers and polarization rotators

12.1. Overview

Being able to realize high optical confinement in ultra-thin low index slots, slot waveguide

is unique and very promising for many applications as we have discussed in previous chapters.

Horizontal slot waveguide configuration can enable low loss optical transmission in slot

waveguides; however, it could still have higher loss than regular SOI channel waveguides. One

way to utilize slot waveguide's unique properties and to avoid high optical insertion loss is to

integrate slot waveguide structure only where its functionality is needed and to use low loss

channel waveguides for global signal transporting and routing. In order to achieve low insertion

loss, a low loss coupler between slot waveguide and channel waveguide is indispensable.

Direct butt-coupled slot waveguides with channel waveguides will result in high coupling

loss because there are (1) effective index mismatch. Since a large portion of the optical field is

concentrated inside the low-index slot regions, the effective index of the slot waveguide is much

lower than the channel waveguide with high index core. Direction coupling will result in large

reflection loss at the interfaces of two different waveguides. (2) Mode size mismatch. Slot

waveguide modes, concentrated in low index slots, are normally smaller than channel waveguide

modes. (3) Mode shape mismatch. Slot waveguide modes are very complicated and

non-Gaussian-like, while channel waveguide modes resemble a Gaussian distribution of the

confined optical power.

In the following chapter, two types of waveguide couplers are proposed to transform the

optical power between vertical/horizontal slot waveguides and channel waveguides with minimal
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theoretical coupling losses. In addition, a polarization rotator is also proposed to realize low loss

transformation of the fundamental slot modes between the vertical and horizontal slot waveguides.

12.2. Vertical-slot-to-channel waveguide couplers

Low loss waveguide couplers based on complementary taper pairs are proposed to realize

lossless optical power transfer between channel waveguides and vertical slot waveguides as

illustrated in Figure 12.1.

A /B \ C /

I

A' \h B B/ C' C xC C x

Wd C

(a) (b)

Figure 12.1. Schematics of the proposed (a) single- and (b) double-slot waveguide couplers. The dashed circles
highlight the location of the couplers. (Drawing is not to the scale)

The complementary taper pair uses the push-pull scheme and adiabatically pushes the field

out from the upper high-index region to the lower high-index region. To avoid perturbation of the

optical field in the center of the waveguide where the field intensity is the strongest, thus avoiding

high scattering loss, the proposed coupler enhances the evanescent tail of the original

Gaussian-like mode and gradually transforms it to that of a slot waveguide. This adiabatic

transforming process can be clearly observed through the field evolution demonstrated in Figure

12.2, where a strip silicon waveguide to single and double slot coupler has been simulated. The

simulation is carried out by using a finite-difference beam propagation code [101]. The structure

also demonstrates the inverse process of double to single slot and strip waveguide transforming. It

is shown that the coupler proposed here is really reciprocal even for a multiple-slot coupler.
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Figure 12.2. The Field evolution of a silicon waveguide to single and double slot waveguide coupler. The white slot
represents the highest filed intensity in BeamProp software.

In reality, the coupler itself has loss due to waveguide transmission loss. However because

the coupler does not require the phase matching condition as for the traditional directional coupler,

this loss does not affect the coupling. In our simulation, we only consider the linear tapers with no

waveguide loss.
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Figure 12.3. The taper designs for the (a) single- and (b) double-slot waveguide transformers with two different slot
widths, ds, of 50 nm and 20 nm, respectively.

In Figure 12.3, we show design examples of channel waveguide to single- and double-slot

waveguide couplers both consist of Si and SiO 2 (nsi = 3.50, nsio2 = 1.46). The structures with

channel-slot-channel waveguide coupler pairs shown in Figure 12.1 have been simulated. The

total power after passing through the whole structure is shown as a function of taper length for two

different slot widths d, = 50 nm and 20 nm, respectively. It is found that for the single-slot coupler,

a taper length of 20 Lm and 40 pm will ensure more than 99.5% and 99.8%, respectively, of

remaining power in the output silicon waveguide, which corresponding to less than 0.01 dB and

0.004 dB, respectively, of insertion losses for one-trip coupler (the structure involves one forward

and one backward couplers). It also indicates that the smaller the slot width is, the less the
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conversion loss will be. For double-slot coupler, two stages of complementary taper pairs are used

to accomplish the transforming from single to double slot waveguides. Fixing the length of the first

stage of tapers at 20 ptm, it is found that with a taper length about 40 Rpm for the second stage of

tapers, the total insertion loss for the one-trip coupler (silicon to double slot) is less than 0.02 dB. It

is noticed that the insertion loss involving the slot waveguide with a 50 nm wide slot shows a little

oscillation with short taper length. The mode mismatching causes the mode beating between the

two slots and in turn leads to the field fluctuation in the output waveguide. This fluctuation

diminishes when the taper length increases or when the slot width decreases to 20 nm. To study the

sensitivity of the proposed waveguide couplers design, we also performed simulations considering

the non-ideal tapers (with finite taper tip width w,) due to limited fabrication resolution and the

results are plotted in Figure 12.3. A non-zero taper tip width leads to a reduced transmission power

due to the unwanted power scattering at the none-zero taper tips. According to our simulations,

with a 20 nm taper tip width, the power transmissions for 20 nm wide optimized single- and

double- slot waveguide couplers decrease slightly from 99.8% and 99% to 99% and 97%,

respectively. With a finite taper tip width, the coupler generally requires a little longer taper in

order to achieve a stable, high transforming efficiency. Our further study shows that, for a 50 nm

wide slot-coupler even with a 50 nm taper tip width, 95% (0.025 dB) coupling efficiency can be

achieved. The proposed waveguide couplers are readily to be fabricated by the state-of-the-art

E-beam lithography [102].

In Figure 12.4, we show the wavelength dependence of a double slot waveguide coupler. In

the simulation, we select the taper lengths for the first and the second stage tapers to be 20 and

40 p.m, respectively. Over a 400 nm wide wavelength range, the insertion loss change per coupler

is less than 0.02dB. The proposed coupler is weakly sensitive to wavelength.
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Figure 12.4. Simulated wavelength dependence of the optimal double slot waveguide transformer with two different
slot widths, d,, of 20 nm and 50 nm. The taper lengths for the first and the second stage tapers of this transformer are 20
and 40 ptm, respectively.

12.3. Horizontal-slot-to-channel waveguide couplers

Single and multiple horizontal slot waveguides have been previously proposed and

demonstrated to realize low loss optical transmission and enhance optical confinement. The

horizontal slot waveguides are more favorable in applications where low optical loss and

extremely thin slot layers are mandated, such as in an electrically pumped SiO2:Er silicon light

emitter [103]. A possible scenario using horizontal slot coupler is shown in Figure 12.5. Ideally,

low loss transformation between the fundamental slot mode of the horizontal slot waveguide and

the fundamental TE-mode of the channel waveguide is desired.
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Figure 12.5. Schematics of a horizontal slot ring resonator with SiO 2: Er thin slot, coupled with silicon channel
waveguides using a low loss horizontal-slot-to-channel waveguide coupler (denoted as the red "box" bridging the two
types of waveguides) (drawing is not to the scale).
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t L1

-

W--

Figure 12.6. Schematics of a horizontal-slot-to-channel waveguide coupler (drawing is not to the scale).

Schematics of the proposed mode couplers are shown in Figure 12.6. It shows a

mode-evolution-based mode coupler for a horizontal slot waveguide to a channel waveguide. A

polarization rotator based on similar structure for channel waveguides has already been

demonstrated [104]. The structural parameters are designed to be: tH = 200 nm, tL = 20 and 60
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nm, w, = 230 nm, wd= 3 3 0 nm, td = 2 0 0 nm, wH= 2 0 0 nm, and wL= 20 and 60nm. The

refractive indices of the high-index Si and low-index SiO 2 are nH = 3.50 and nL = 1.46,

respectively, and the entire structure is cladded by the SiO2. With the parameter settings, the

fundamental mode of the horizontal slot waveguide is the quasi-TM mode with the

non-Gaussian-like mode profile. The structure consists of one low-index SiO 2 thin layer vertically

sandwiched by two high-index Si layers. The two top layers (Si + SiO2 layers) and the one bottom

Si layer are asymmetrically and oppositely tapered to gradually form a structural transition from a

horizontal slotted waveguide to a strip waveguide as shown in Figure 12.6. The principle axis of

the structure and the polarization states of the fundamental mode rotate in unison along the

transition. The performance of the structure is analyzed through the eigenmode expansion (EME)

approach. The EME approach has been used and demonstrated to be a very efficient and accurate

approach for mode-evolution-based devices and can produce comparable results to the FDTD

approach [104].

x Transverse Direction

Figure 12.7. Field evolution of the horizontal-slot-to-channel waveguide couplers simulated using FIMMWave.
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The modal field evolutions along the propagation axis of the structure are plotted in Figure

12.7. The structure is excited by the fundamental TE-polarized mode of the slot waveguide (shown

in the cross-sectional view of the right panel). Gradually interacting with the structure, the Ey

component of the mode quickly gets suppressed while the Ex component gets enhanced. With

sufficiently long taper, a complete power transition from an Ey-dominant slotted waveguide mode

to an Ex-dominant strip waveguide mode can be accomplished.
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Figure 12.8. Simulated transmissions of the horizontal-slot-to-channel waveguide couplers with different slot
thicknesses versus device length.

The power transmissions as a function of the device length are shown in Figure 12.8 for a

wavelength of 1.55 rtm. The results indicate that the power lost from the fundamental

TE-polarized slot waveguide mode is directly transferred to the fundamental TE-polarized channel

waveguide mode. For a horizontal slot waveguide with 20 nm thick SiO 2 slot layer, a complete

polarization rotation can be achieved with a merely 50 ptm long coupler. Longer coupling length is

necessary for slot waveguides with much thicker slot layer, for example, it is found that a coupling

length of 140 ptm is required for tL = 60 nm. To demonstrate the robustness of our design, we also
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performed simulations considering non-ideal tapers with finite tip width w, = 50 nm caused by the

limited fabrication resolution. The results are also plotted in Figure 12.8. As expected, the power

transmission exhibits some oscillations attributable to the weak resonance caused by the residual

reflection at the non-ideal taper tip. It is interesting to find that with finite tip width, it is possible to

accomplish polarization rotation with shorter device length. For instance, only 25 tm and 98 tm

long devices are needed for structures with slot layer thicknesses of 20 nm and 60 nm, respectively,

to ensure more than 99% power transformation.

12.4. Horizontal-to-vertical-slot waveguide polarization rotator

By cascading the two couplers shown in previous two sections, we can obtain a

horizontal-to-vertical-slot waveguide polarization rotator as shown in Figure 12.9.

W, Vertical slot fundamental mode

1H

Horizontal slot
fundamental mode

Figure 12.9. Schematics of the presented horizontal-to-vertical-slot waveguide polarization rotator and the mode
profiles at various locations inside.

It is similar to the one shown in Figure 12.6 except that a low-index gap (slot) is cut along

the propagation direction to form a vertically oriented slotted waveguide at the end. The

cross-sectional views of the modal field evolution are plotted at different locations. They clearly

illustrate the polarization state rotating process of the modal fields along the propagation direction.
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The power transmissions for the structures with two slot thicknesses are plotted versus the device

length in Figure 12.10.
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Figure 12. 10. Simulated transmissions of the horizontal-to-vertical-slot waveguide polarization rotator with different
slot thicknesses versus device length.

The device can realize a nearly perfect polarization rotation and transformation with a

comparable device length to the slot-to-channel waveguide couplers discussed in previous two

sections with minimal loss of 0.05 dB. The transmissions of the structure with the non-ideal taper

exhibit much large oscillation due to the complexity of the structure. The oscillations tend to be

smoothed out with the increase of device length. The internal resonance is so strong that it is

possible to obtain a complete power transferring between the two polarized states with much

shorter device length. With 50 nm taper tip width, the minimum device length can be as small as 32

tm and 65 gim for devices with slot layer thicknesses of 20 nm and 60 nm, respectively. Increasing

the tip width can further decrease the minimum device length at the price of reducing bandwidth

resulting from the stronger resonance. For a wideband application, longer device length is
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preferable due to weakened resonance caused by the non-ideal taper tip. According to our

simulation, the power transmissions for the devices with 60 pm and 140 pm long tapers with 20

nm and 60 nm thick slots, respectively, exhibit extremely flat response over a wavelength range of

1.45-1.65 pm.

12.5. Summary

In this chapter, two slot-to-channel waveguide couplers and horizontal-to-vertical slot

waveguide polarization rotator are proposed and analyzed. The devices are designed to convert

optical modes between channel waveguide and slot waveguide modes as well as the mode

transforming between horizontal and vertical slotted waveguides. Numerical simulation results

show that complete mode transformations and polarization rotations can be achieved within tens of

micrometers with minimal loss. The designs are very robust and the devices perform very well

even with non-zero taper tip width.
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Chapter 13. Athermal waveguides

13.1. Overview

Thermo-optical (TO) effect describe the phenomenon that material's refractive index

changes as temperature changes. This is caused by changes in both polarizability and density

(expansion or contraction) due to temperature. For most semiconductors and dielectrics that are

optical waveguide materials, the TO coefficients are positive, meaning their refractive indices

increase as temperature increases. For resonators, MZI narrow band filters, directional couplers,

and gratings, their resonant wavelengths shift to longer wavelengths as temperature increases. For

the Dense Wavelength Division Multiplex (DWDM) applications, such as in Arrayed Waveguide

Grating modules (AWG) where many channels are closely spaced, this may cause channel

cross-talks. They require constant temperature control by integrating resistor heaters to ensure

stability in the optical properties of the wavelengths being combined or split. Constant heating is

not desired because the power required for tuning large scale integrated photonic with thousands

of filter devices is prohibitive. For photonic-electronic integrated circuits, the heat dissipation

from electronics can affect photonic devices as well and is very hard to compensate. Athermal

devices are the key to realize low power consumption, temperature insensitive operations.

Early work on athermal, low index contrast systems, such as planar lightwave circuit

(PLC), involves using polymers with negative TO coefficients [105] and thermo-elastic effect

[106] to compensate for the positive TO coefficient of the devices. The typical TO coefficients,

strain-optical coefficients, and thermal expansion coefficients (CTE) for common CMOS

waveguide materials are summarized in Table 13.1.

Table 13.1. TO coefficients, strain-optic coefficients, and thermal expansion coefficients for CMOS compatible
waveguide materials [105].
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TO coefficient (K-1) Strain-optic CTE (K1)
coefficient

Si0 2, SiN, SiON 10-5  -0.4 - 0.6 x 10-6
c-Si and a-Si -2 x10 4  > 0 - 2.6 x10-6

Polymer (PMMA, PI) -104 --4 x 104 Not available - 6.8 x10-5

13.2. Athermal silicon channel waveguides

For high index contrast silicon waveguides, the strain effect is too weak to provide enough

negative index compensation for the positive index change in Si waveguide core [107]. Due to the

high optical confinement in Si waveguide core, regular polymers, such as PMMA and Polyimide,

also do not have large enough negative TO coefficients to achieve athermal condition if used as the

cladding layers. Polymer cladding layers with large negative TO coefficients, on the order of 10-3

K-1, are needed.

Because Si waveguides are sitting at the Si0 2 undercladding layer, the polymer top

cladding can only cover three sides of the Si waveguides. The resulting cross section of the

waveguide device looks like in Figure 13.1.

SiO
2

Figure 13.1. Schematic of the cross sectional of a Si waveguide core cladded with polymer

Athermal condition can be achieved because the confinement factor, F, of the c-Si

waveguide core is not 100%. There is still optical power in the cladding layer. The overall

effective index can be approximated using the power weighted indices of the waveguide core and

cladding layer, nc and net. For waveguide configuration like in Figure 13.1, without knowing any
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waveguide geometry, a generic empirical equation for the athermal condition has been derived as

determined solely by nc, nt, and F [108]:

dn dn +B) dn dn F
dT(A B) 2 +(C +D)F+E C+F=0

dT dT dT dT

where A = -4.854065 x 101

B = -2.169000 x 10-

C = 5.206713 x 10'

D = 2.326577 x 10-

E=-1.589253 x 101

F= 4.575161 x 106.

The right hand side of Equation 13.1 represents the overall effective index of the

waveguide,
dne has no temperature dependence, thus equals to 0. Figure 13.2 summarizes the
dT

dn
confinement factors that are required to achieve athermal condition, eff= 0, under different

dT

(13.1)

combinations of dnc
dT

ddn dn
and dn. Any deviation above the lines results in positive e; and below

dT dT

the lines, negative dn e

dT
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V 0.0

1 -20.0 0 r=60%
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~ -20-0- 0 rg-o%

8 -250
0 0.5 1 1.5 2 2.5

TOCO dT (X10 4 K')dT

Figure 13.2. Athermal conditions for channel waveguides. The lines represent the exact confinement factors that are
required to achieve athermal condition for different combinations of the TO coefficients of the cladding layer and the
waveguide core. (Figure taken from Ref. 108)

For a single mode c-Si waveguide, the confinement factor for the TE-mode is - 80% and

dnc is - 2 x 104 K'1. This means we need polymers with dn l of at least -10-3 K-l . DuPont's
dT dT

polymers C1 and El are specially designed polymer with excellent transparency at 1550 nm and

large negative TO coefficients, ideal for Si waveguide's athermal design. Figure 13.3 shows the

refractive index change with respect to temperature for polymers Cl and E1. Their TO coefficients

are also derived and summarized in Table 13.2. The measurements are done using ellipsometry

with 632 nm laser. The assumption here is that the TO coefficients will not change significantly at

1550 nm.
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(a) (b)
Figure 13.3. Measured temperature dependence of the refractive indices for polymer (a) Cl and (b) El (Figure taken
from Ref. 108).

Table 13.2. Refractive indices, nR, TO coefficients, and glass transmission temperatures, Tg, of C1 and E1.The TO
coefficients are derived at high temperature regions between 100 OC and 150 'C.

DuPont Polymer nR at 20 OC at TO coefficient (K) T (C)
lymerTO coefficient (Klass)  T(1550 nC)

polymer class 1550 nmCl Acrylate 1.52 -3.0 x 10-'
El Acrylate 1.51 -1.1 x 10

Because resonator's resonance wavelength is very sensitive to any effective index

variation, we use racetrack resonators to demonstrate the athermal design using polymer cladding

layer. The polymer coating and curing processes are done at DuPont. Polymer Cl is used with the

a-Si racetrack resonators fabricated at MIT. The a-Si channel waveguide has a cross section of 700

nm x 100 nm (w x h). The racetrack is 100 gm long; the bend radius is 100 lpm; and the

resonator-bus coupling gap is 500 nm. The effective index for the TE-mode, assuming SiO2 top

cladding layer, is calculated to be 2.13 and the confinement factor is 0.767.

With SiO 2 top cladding layer, the resonance wavelength as a function of temperature is

measured and shown in Figure 13.4(a). The large fringes are Fabry-Perot resonances from the bus

waveguide front and end facets. We can plot the resonance wavelength as a function of
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temperature and derive the overall TO coefficient from the slope of the linear fit as shown in

Figure 13.4(b). The TO coefficient is measured to be 84.73 pm/K.

1563.4-

1563,2

1563.0

1562.8-

S15626.8

Ca
c 1562.4

1562.24

1562.0

1561.8 1562.0 1562.2 15624 1582.6 152.8 158 3.0 1563.2 153.4

Wavelength (nm)

I I

d'= 84.73 pm/K
dT

22 24

* Resonance wavelength
Linear fit

26 28 30 32 34 36 38

Temperature (C)

Figure 13.4. (a) Resonance wavelengths at different temperatures. The black lines are corresponding Lorentzian fits of
each resonance; (b) Resonance wavelength vs. Temperature. The TO coefficient is derived to be 84.73 pm/K.

1549.6 1549.7 1549.8 1549.9 1550.0 1550.1 1550.2 1550.3

Wavelength (nm)

1550.04

1550.03

1550.02

C 1550.01isso.oi

) 1550.00

1549.99

, 1549.98

1549.97

1549.96

1549.95

dT

Resonance wavelength
Linear fit

24 25 26 27 28 29 30 31 32

Temperature (C)

Figure 13.5. (a) Resonance wavelengths at different temperatures. The black lines are corresponding Lorentzian fits of
each resonance; (b) Resonance wavelength vs. Temperature. The TO coefficient is derived to be 11.25 pm/K.

When the same racetrack resonator is cladded with polymer C1 and measured under

different temperatures, the corresponding resonance spectra change as shown in Figure 13.5. We

have achieved a reduced TO coefficient of 11.25 pm/K.
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Noticeably, the extinction ratio of the resonance peak is affected by the index change

introduced by the polymer cladding. For the straight racetrack close to the bus waveguide, the

effective index is different from the rest of the more isolated resonator, the coupling between the

resonator and the bus waveguide becomes temperature dependent. This can be eliminated by using

ring resonators for reduced coupling length.

Because the waveguide geometry has not yet optimized for this specific polymer, we do

not have zero TO coefficient. Also, the large negative TO coefficients for DuPont polymers in

Table 13.2 are obtained above 100 oC beyond their glass transition temperatures, while the

temperature variation measurements are done at relatively low temperatures under 50 OC, the

corresponding TO coefficient should be much lower than 10- K- .

13.3. Summary

We have demonstrated a minimum TO coefficient of 11.25 pm/K in a-Si racetrack

resonators and have shown the effectiveness and feasibility of using large negative TO coefficient

polymer to compensate the large positive TO effect in Si channel waveguides.

217



(This page is intentionally left blank)

218



Chapter 14. Conclusions and future directions

Silicon-based optical interconnect technology, yet promising, is still in its infancy. We

need to overcome many challenges before we can make silicon photonics a viable and mature

technology. Among those challenges, low loss passive photonic components, such as waveguides,

couplers, splitters, filters, and polarization rotators etc., are indispensable. This thesis has

advanced the development of novel materials, processes, and designs of passive optical

waveguides and couplers towards the goal of realizing electronic-photonic integration on silicon.

The chapter-by-chapter review and future directions are summarized as follows.

14.1. Chapter-by-Chapter conclusions

In Chapter 1, I have reviewed the current challenge of increasing RC time constant in Cu

interconnect technology and the benefit of using photons as information carriers on chip. Towards

realizing optical interconnects on chip, this thesis work is motivated by the importance of passive

photonic components, such as waveguides and couplers. Challenges in making low loss, high

performance are reviewed and possible paths are identified.

In Chapter 2, I have briefly reviewed the optical waveguides materials, guiding

mechanisms, different waveguide forms, and optical modes. The concepts and terminologies

introduced in this chapter are essential for understanding the works in this thesis. Among all the

variations an optical waveguide can have, we focus on single mode, silicon-based channel

waveguides for its highest optical confinement and CMOS-compatibility.

In Chapter 3, I have briefly discussed the simulation methodologies that have been used in

this thesis. FDTD is based on time-domain and it is the most accurate method for simulating EM
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waves in any arbitrary structures but it is also the most time and memory consuming method. In

frequency-domain, FEM is one of the methods that can be used to solve the optical modes. EME

and BMP are approximated methods further from the mode solver. For many particular optical

devices, they can achieve fairly high accuracy with much relaxed computation requirement

compared to the FDTD. The commercial simulation packages integrate these numerical methods

with convenient CAD toolkits, making the simulation easier and more efficient. However,

fundamental understandings about different methods and their limitations are still required.

Chapter 4 explains the origins of optical waveguide transmission loss and provides

possible paths to reduce various loss mechanisms. While bend loss, substrate leakage, top surface

roughness can be prevented upon understanding them, this thesis has focused on solve the sidewall

roughness scattering in silicon waveguides and bulk absorption loss in deposited amorphous

silicon and silicon nitride materials. Three important causes of sidewall roughness scattering are

summarized. Each can be reduced with design and process optimization. Bulk absorption in

deposited amorphous silicon waveguide is due to dangling bond absorption at 1550 nm; for

PECVD silicon nitride, it is the N-H bond vibration absorption centered at 1510 nm that introduces

excess of loss around 1550 nm. Reducing dangling bond density in a-Si and H concentration in

nitride is the key to reducing bulk absorption loss.

In Chapter 5, I have summarized the measurement techniques that have been used in this

thesis. While the "paperclip" method is simple and straightforward, it requires careful sample

preparation for uniform facets and consistent fiber-to-waveguide couplings that can only be

guaranteed with ease using auto-alignment system. For small transmission loss coefficients below

3 dB/cm or even 1 dB/cm, it is required to have a large increment in waveguide length between

adjacent waveguides in order to have large enough insertion loss different to accurately resolve the
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transmission loss coefficients. The measurement is quite time consuming because multiple

waveguides (> 5 with acceptable accuracy) have to be measured for each different design. Ring

resonator based method is simpler and less time consuming, and yet to be accurate for even small

transmission losses. Because large size resonators with long periphery length have smaller FSR,

one can resolve wavelength dependency of transmission loss at each resonant wavelength given

the corresponding effective index can be calculated. The measurement variation is shown to be

less than 15%. The drawback of this method is that ring resonator fabrication is more complex than

waveguide fabrication. Expensive and dedicated lithographic tool is required.

Chapter 6 summarizes the process development and optimization for silicon waveguide

fabrications, including c-Si and a-Si. All the processes are CMOS compatible and are done in

CMOS fabrication plants built for making electronics chips. Leveraging the CMOS technology is

the core which silicon photonics is built on. This chapter is heavily experimental oriented, yet has

some simulation works, such as the study on pattern effect for LOCOS process. By optimizing the

photolithography and etch steps, we can effectively reduce the line edge roughness or sidewall

roughness of silicon channel waveguides and reduce the optical transmission loss for the TE mode.

In Chapter 7, low loss, low temperature PECVE silicon nitride processes are developed for

waveguide applications around 1550 nm. Although silicon nitride has low refractive index

compared to silicon, it is still a very attractive waveguide material for many applications.

Moreover, low loss silicon nitride can be used as hydrogen diffusion barrier as well as interlayer

graded index layer to reduce silicon waveguide transmission loss. PECVD is very versatile and low

cost compared to other methods. Obtain low loss, low temperature PECVD silicon nitride is the key

for a-Si applications. In this chapter, three different low temperature approaches in obtaining low

loss PECVD silicon nitride are discussed in details; they are: (1) via deposition chemistry. This
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method can give low NH containing nitride with high SiH concentration. (2) via post-deposition

UV-treatment. UV-treatment can reduce both NH and SiH bonds simultaneously. The film can be

as thick as 70 nm and the total H removal percentage demonstrated is as high as 60%. However, it

requires a dedicated UV chamber. (3) via post-deposition, in-situ plasma treatment. Similar to

UV-treatment, this method can also reduce both NH and SiH bonds up to 90% demonstrated in this

thesis. However, it is only effective for ultra-thin films with thickness less than 5 nm. The last two

methods are originally developed by and are proprietary of Applied Materials Inc. The theoretical

study of UV treatment process is independent work at MIT. The Monte-Carlo simulation reveals

the nature of the hydrogen evolution in nitride film under UV illumination and shows consistent

results with experiments.

Chapter 8 is dedicated to slot waveguides, more specially, low loss, horizontal slot

waveguides. Slot waveguides have been identified as the most promising waveguide structure for

realizing Er-based silicon light emission. Horizontal slot waveguide configuration is conceptually

proposed and then experimentally demonstrated as the low loss slot waveguide form that can

eventually realize lasing in Er-doped silicon system.

Chapter 9 summarizes most of the experimental results on waveguide transmission losses

coming out of this thesis work. We have demonstrated the low loss optical transmission in single

mode, c-Si channel waveguides with minimal TE mode loss of 2.7 dB/cm and TM mode loss of 0.7

dB/cm, respectively. For single mode, a-Si channel waveguides, we have achieved the lowest

transmission loss of-2.7 dB/cm for the TE-mode operation using H passivated a-Si and a thin, low

loss PECVE nitride intercladding layer. We have also successfully demonstrated the damascene

process for deposited a-Si channel waveguide fabrication with minimal transmission loss of- 2.5

dB/cm.
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Chapters 10, 11, and 12 are dedicated to waveguide couplers. Low loss waveguide

couplers are indispensable passive optical components that can transport optical signals among

different optical devices with minimal coupling loss at the junctions. A low loss coupler is capable

of overcoming the mode-size mismatch, mode-shape mismatch, mode-position mismatch, and

polarization mismatch. Mode transformation is found to be ideal to happen where the mode

intensity is the weakest to avoid large perturbation of optical field, thus avoiding high scattering

loss. Adiabatic tapers are especially useful to transform modes without introducing scattering loss.

The couplers summarized in this chapter are (1) fiber-to-waveguide couplers; (2) vertical

waveguide-to-waveguide couplers; and (3) slot waveguide-based waveguide couplers and

polarization rotators.

In Chapter 13, athermal design of silicon waveguide system is tentatively explored both

theoretically and experimentally. In order to realize high bandwidth on-chip optical interconnect,

the consensus is that employing DWDM is inevitable. However, for the large amount of narrow

band filters, temperature will have a huge impact on their filter characteristics by changing the

refractive index. Because actively tuning of tens of thousands of such filters would be prohibitively

expensive in terms of power consumption and design space, if not impossible, passive,

temperature-insensitive filters are very attractive and may be the only way to solve this problem

given the fabrication can be advanced so that all the filters are tuning free as fabricated. Polymers

with large negative thermo-optic (TO) coefficients can be used to compensate positive TO effect in

silicon waveguides. Our preliminary experimental results shows that with polymer cladding, we

can efficiently reduce the TO coefficient ofa-Si racetrack resonators from - 85 pm/K to - 11 pm/K.
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14.2. Future directions

14.2.1. Low loss optical waveguides and waveguide materials

In this thesis work, we have achieved consistently lower than 3 dB/cm transmission loss for

the TE mode in both c-Si and a-Si single mode channel waveguides and less than 1 dB/cm for the

TM-mode in c-Si waveguides. Various high performance optical couplers are also proposed and

demonstrated with coupling loss ofjust a fraction of dB per coupler and with excellent broadband

behavior between 1510 nm to 1610 nm.

Lower transmission loss in optical waveguides is desired for many applications that require

extremely low loss, such as laser cavities, amplifiers, and optical buffers for slowing light.

For example, an integrated optical delay line chip would have about 10 m long coiled

single mode silicon waveguides and two fiber-to-waveguide couplers. The total insertion loss

should be less than 3 dB. This requires that the waveguide loss to be on the order of 1 dB/10m or

0.001 dB/cm. For c-Si waveguides with only sidewall roughness scattering loss, according to

Barwicz and Haus, this corresponds to the sidewall roughness of 0.5 A [32]. Such small

transmission loss coefficient is also the key to realize Er-doped silicon-based light emitter because

the potential gain coefficient of such Er system is - 3 dB/cm or less. Can we achieve that in the

future?

Beside the techniques that we already know and we can improve on, such as dry/wet

oxidation, hard mask, process optimization for photolithography and etch, hydrogen annealing

may be the ultimate approach to achieve atomic flat silicon waveguide surface. It is discovered that

at high temperature and in H ambient, the surface diffusivity of silicon can be greatly enhanced. H

reflow of c-Si channel waveguides and shallow ridge waveguides have been demonstrated with a

minimal 0.7 dB/cm loss [109,110] for TE mode operation.
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As we have discussed, deposited waveguides can enable 3D photonic integration on

silicon. In interconnect levels, they allow more design space and more flexibility for integration.

They offer lower cost and low thermal budget too, which makes them very attractive. Beside

sidewall roughness scattering mechanism similar to c-Si, a-Si and PECVE silicon nitride have

bulk absorption loss. While we have learnt that hydrogen passivation can reduce the dangling bond

density in a-Si, its stability is also a big concern for special applications and for integration. For

example, if a MZI filter is made of hydrogenated a-Si (a-Si:H) and uses thermo-optical effect for

filter tuning. Constant heating cycles above 300 oC would potentially alter the chemical

composition of the a-Si:H because H out diffusion and dangling bond aggregation. Can we prevent

that? For PECVE silicon nitride, the current methods of UV treatment and plasma treatment have

drawbacks of either being limited by the maximal H removal percentage or being too slow to be

useful for applications requiring much thicker film. Is there anything we can do to improve the

process?

Incorporation of a thin silicon nitride over cladding layer around a-Si waveguide has been

shown to be effective to increase its thermal stability. The reduction of the transmission loss is a

combination of preserving H passivation and providing index grading. More rigorous analyses

need to be done to derive the correlation among nitride thickness, H concentration, the highest

temperature, and duration the whole waveguide structure can sustain before its transmission loss

increases significantly. For applications with c-Si waveguides, the index grading effect of LPCVD

silicon nitride over cladding layer can be studied independently. Currently, because the high

optical confinement realized in those c-Si waveguides, no decisive conclusions on cladding effect

can be reached. Thicker nitride or smaller waveguides should be used in the future.

For low loss, low NH containing PECVD silicon nitride using UV treatment, because we

225



have already had some understanding about the H evolution from the Monte Carlo model, we may

think of processes to either increase the local coordination numbers for unlike groups of SiH and

NH to increase the total H removal percentage, or to reduce the H rich groups, such as NH2,

possibly SiH 2 groups to allow more NH-SiH reactions.

14.2.2. Low loss optical waveguide couplers

In this thesis work, important waveguide couplers have been demonstrated for

fiber-to-waveguide and waveguide-to-waveguide couplings. However, these waveguide couplers

are designed solely for TE mode operations. Ideally, we would like to have polarization insensitive

couplers or couplers that can change polarizations. The reason is because regular fibers do not

maintain a particular polarization and the output is most likely to be a random polarization

containing both TE and TM modes. If couplers only support one polarization, then one would have

about 3 dB coupling loss per coupler due to the loss of the other polarization even thought for one

particular polarization the coupling loss is much smaller. One possible way to achieve polarization

insensitive coupling and routing is to split the polarizations, rotate one polarization to the other,

and then combine them [111,112]. On the other hand, if the chip architecture is based on TE mode,

meaning all the waveguides, couplers, and filters only support TE polarization, polarization

maintaining fiber must be used throughout the system.

14.2.3. Athermal waveguides

Up till now, all the narrow band filters rely on some tuning mechanism to overcome the

fabrication variation. The same mechanism, such as using thermo-optic effect, can be used to

compensate temperature fluctuation during operation. In the future, while the process development
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can guarantee the precision required to achieve tuning-free filters, athermal operation has to be

passive as well. Polymer cladding has been demonstrated to be promising. With particular

negative TO coefficient polymers, waveguide geometry has to be carefully designed in order to

achieve the true athermal conditions. For ring resonator devices, temperature insensitive coupling

is also needed in order to retain the resonance characteristics, such as the extinction ratio and

bandwidth.

The past decade has been very exciting period for the development of silicon photonics.

Look ahead, many great breakthroughs are on the horizon including on-chip Ge-based lasers and

multi-gigahertz Ge modulator-detector links, etc. With reliable on-chip multi-wavelength laser

diodes and WDM photonic channels, optical interconnects will be realized and first applied in high

performance computers, likely around 2020. As processes and markets become mature, high

performance, silicon-based electronic-photonic circuits or integrated modules will be adapted for

more and more applications and be produced at a larger and larger scale. Eventually, optical

interconnects enabled multi-core processors will become very appearing to ordinary consumers in

terms of both high performance and low cost, likely around 2030. By then, we will all have

computers or video game consoles with the label saying something like "Light Bridge Inside".
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