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Abstract
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Chapter 1

Introduction

In this document I discuss the motivation, framework and preliminary results of

the First Annual SIGMOD (Special Interest Group on Management of Data) Pro-

gramming Contest, which will culminate at the SIGMOD conference in June 2009 in

Providence, Rhode Island. The competition is to create an indexing system for main

memory data optimized for a multi-core machine running many threads over multiple

indices. The contest was designed, implemented and run by myself, Samuel Madden

and Mike Stonebraker beginning in October 2008. This thesis was written in May

2009 before the final stages of the competition were completed and the winner was

determined.

1.1 Motivations For Main Memory Database Systems

Main memory database systems (MMDBs) store their data in main physical memory

in order to provide much faster access speeds than traditional disk-resident database

systems (DRDBs) can provide. Reading data from disk is often the slowest piece of

computer systems, especially data-intensive applications like databases. By removing

disks from a system's design, the efficiency and throughput of the system can be

drastically improved.

Due to the historical costs of main memory, traditional DRDBs have been designed

to work using a combination of disk-resident data and main memory caching for a



subset of the data in an attempt to minimize the delays caused by waiting for data

to be read from the disk. As technology has improved and chip density increased,

main memory has become large enough to hold entire databases completely, opening

the door for MMDBs to emerge as a different type of database system [4].

While DRDBs can be run entirely in main memory and be fully functional, their

storage structures were specifically optimized to use the disk to store data. In order

to take full advantage of the features added by living primarily in main memory,

new systems must be designed. Not only is the access time significantly shorter for

main memory systems, but they need not be block-oriented because there is no fixed-

cost per access and sequential access cost is insignificant. Almost every aspect of a

database system can be affected by these differences. This motivates research into

the best design for a MMDB to maximize performance.

1.2 Contest Overview

The Call for Entries for the First Annual SIGMOD Programming Contest was posted

to the conference's website in October 2008. It specified that student teams from

degree granting institutions were welcome to participate for a cash prize of $5,000 by

creating an indexing system for main memory data.

We released the official API, along with an example implementation and some ba-

sic unit tests, in mid-December and tweaked them slightly over the following months

to fix bugs and clarify points of confusion for participants. We provided an initial

version of the basic benchmark test to be used to compare the different implementa-

tions at the beginning of February 2009, although it went through more significant

transformations over the following months than the rest of the released code. We also

gave participants a basic harness that allowed them to run the benchmark on their

own machines.

At the end of February, we launched a website that allowed participants to see

the results when their implementations are run on the official testing machine. The



site also contains a leaderboard to show the fastest results on a few basic benchmark

tests to give participants an idea of the speeds being reached by other teams.

The contest closed at 11:59 pm EST on March 31, 2009, at which point participants

must have turned in a working binary and all of their source code to be tested and

inspected in order to determine the finalists. We ran a few basic benchmarks over

all of the submissions, and the eight fastest were pulled out for closer inspection and

further testing. From those eight, we selected five finalists to come to the SIGMOD

conference in June to explain their design and for a final round of testing before a

winner is chosen.

1.2.1 Transactions

The primary unit of work in a database is a transaction. A single transaction is made

up of one or more smaller tasks, each reading or writing information to one or more

indices in a database. These tasks occur in a specified order within the transaction,

and once they have all completed, the transaction is committed and the changes it

produced are made permanent. Alternately, if the client wishes to undo any of the

smaller tasks performed in a transaction, all of the tasks performed in the transaction

must also be undone. This property is called 'atomicity' and is sometimes referred to

as 'all-or-nothing', as either all of the work in a transaction is done, or none of it is

done.

The atomic property of a transaction is important so that any changes made to

a database will not leave it in an inconsistent state. A database may have some

internal logic dictating relationships between different pieces of data within it. Thus,

if one piece of data is added, changed or removed, the associated data must be

adjusted as well. By guaranteeing that transactions are atomic, clients can make all

of the necessary updates within a single transaction and know that consistency will

be maintained.

Multiple transactions may be running simultaneously on a database. However,

each must behave as if it is the only transaction currently given access to the data

it accesses. If one transaction reads a piece of information from an index and then



a second transaction changes that value before the first transaction completes, the

behavior of one or both of these transactions may be significantly affected. This

'isolation' property often requires some sort of locking mechanism to give the imple-

mentation some concurrency control, although how the locks behave depends on the

implementation. The most straightforward implementation would be to remove the

parallelization between any of the threads to run one transaction at a time, but this

would deliver very poor performance.

The final property of transactions that database systems must guarantee is 'dura-

bility'. Once a transaction has completed, all of the changes made during that transac-

tion must exist in the database even if the system crashes. However, for the purposes

of this contest, crash-recoverability was not required of the implementations. Previ-

ous research [5, 8] has shown that, while crash-recoverability is important, there are

different tools that can be used to support it given different hardware performance

requirements (duplication, logging, etc.). By removing any form of long-term dura-

bility code from these implementations, the code remains a useful tool for all of these

different systems, rather than those using whatever durability scheme we might have

required.

1.3 Previous Main Memory Data Structures

As discussed briefly in Section 1.1, the optimal layout of data that lives in main

memory should be different from the layout of data that lives on disk. The structure

of this data can have a significant effect on the performance of a system that interacts

with it, and as such a number of data structures have been proposed over the years

to solve the problem.

B-trees were invented and optimized for systems that read and write large chunks

of data to disk [1], which is especially common in databases and file systems. They

are organized in block-sized chunks and occasionally reorganize themselves to support

searches, inserts and deletions in O(log n) amortized time.

T-trees were proposed in 1986 as an indexing structure that would work well for



main memory database systems [6]. A T-tree is a binary tree with many elements in a

node which gives it the good update and storage characteristics of a B-tree. However,

later research [7] found that T-trees give the impression of being cache conscious by

utilizing data in each node multiple times when searching a tree, but that the cache-

locality of the data was not properly utilized. When they were first proposed, the gap

between processor and main memory speeds was not very large and so the source of

the speed-up was not properly understood. Thus, a T-tree's fundamental behavior is

similar to a binary tree's until the bottom of the tree has been reached, at which time

a more cache-conscious behavior is exhibited. For trees large enough to require many

layers of nodes before the leaves are reached, that depth can significantly impede the

performance of a T-tree.

The Cache Sensitive Search Tree (CSS-Tree) was proposed to surpass the perfor-

mance of both B-trees and T-trees by paying closer attention to reference locality

and cache behavior [7]. CSS-trees store a directory structure on top of a sorted array

that represents a search tree. The nodes in the array are designed to match in size

the cache-line size of the machine on which it is running.

Recent research has been done [2] into Cache-Oblivious String B-trees (COSB-

trees), which are designed to improve the performance of B-trees on disk. Kuszmaul

emphet al. propose that B-trees perform suboptimally when keys are long or variable

length, when keys are compressed, for range queries and with respect to memory

effects such as disk prefetching. They present the COSB-tree as a data structure that

is more efficient when searching, inserting and deleting from a tree, performing range

queries and using all levels of a memory hierarchy to make good use of disk locality,

and also maintains an index whose size is proportional to the front-compressed size of

the dictionary. While this data structure is not specifically designed for use in main

memory, some of the optimizations it emphasizes, such as cache obliviousness, could

be applicable to main-memory-specific data structures as well.

While the creators of CSS-trees did some analysis comparing the performance of

different tree structures in main memory, there has not been a comparison done by

an independent third party. By allowing participants to use any data structures they



choose to create their database implementation, the relative merits of each system

should be made more clear.

1.4 Contributions

The contributions provided by this thesis lie mainly in the infrastructure and design

of the contest, as well as the analysis of the final submissions.

1.4.1 Benchmark Design

We designed the benchmarks for this contest to fairly measure the performance of the

different implementations without introducing excessive overhead. The distribution

and type of tests to be run over the indices was specified in the contest description.

However, the design of the mechanism to generate data for the indices, as well as how

to measure the performance of the implementations, went through several iterations

before being finalized.

Performance Measurements

Initially, the proposed benchmark required each transaction to take only a small

amount of time. The benchmark of an implementation was supposed to count each

time a transaction took longer than that limit, with the final score being proportional

to the number of 'violations'. However, this could lead to undesirable behavior if

participants optimized their implementation too closely to this benchmark.

If a particular transaction takes significantly longer than the time limit, the

penalty would be the same as finishing only milliseconds afterward. Thus, once

the threshold has been crossed an implementation would be able to use the unpun-

ished time to do any internal reorganization or cleanup that had not been properly

completed during earlier transactions in an attempt to keep within the transactional

boundaries.

The solution to this problem was to abandon the threshold entirely, and instead

fall back on using a global timer that records how long the entire benchmark takes



to complete. The amortized time for each transaction is thus the most important

behavior in each implementation, rather than the individual transaction times.

Data Generation

We originally generated the data used to populate and provide queries for testing the

indices using a random number generator (RNG) while the benchmark was running.

This provided an even distribution of data and reproducible tests by seeding the RNG

and carefully controlling how different threads accessed it.

However, it was eventually determined that the method used to produce a new

number by the RNG introduced too much overhead relative to the time each imple-

mentation took to run a single transaction. This distorts performance measurements

by making it difficult to distinguish overhead costs from the time required for the

implementation to perform its required tasks.

In order to avoid this potential loophole, and to remove the random data gener-

ation from the performance time entirely, we pre-generated all of the random data

used to test the indices at the beginning of the benchmark and stored it in large

arrays in main memory. This method has the added benefit of restricting the number

of random keys and payloads used during testing, thus increasing the potential for

collisions. This forces implementations to handle them more often, and thus make

sure that they are handled efficiently.

The exact behavior of the benchmark cannot be predicted before it begins, so

we had to generate the worst-case amount of data required for the different tests

every time they were run. This significantly increased the amount of space required

to hold all of the generated data, which is stored in memory that would otherwise

be available to the participants to use for their implementation's internal storage

structures. However, we believe the benefit of a very small overhead for generating

data during the test itself compared to the detriment of the wasted space to be

preferable.



1.4.2 Testing Framework

We ran a multitude of tests over many different implementations a large number of

times. In order to make this easier, we built a testing framework that organized the

system at multiple levels.

We designed benchmarks themselves so that, given the same seed, the same tests

are run in the same order with the same data, independent of any other factors. This

allowed for side-by-side comparisons of different implementations that were given

the same workload. It also allows a problematic test to be repeated for debugging

purposes.

In order to automate the tests so that they could be run in bulk sequentially, we

wrote two Python scripts, one to handle the organization of the tests being run, and

one to run a specific test in isolation.

The outermost script queried the database of tasks to find any pending tasks that

participants had issued, such as running the unit tests or one of the benchmark tests

over their implementation. For each test, the script used the information provided to

calculate parameters that are passed into the benchmark test. Parameters include:

how many times to run the test, which test should be run, how many inserts are done

per thread, how many tests are run per thread, how many threads are used in the

test, and how many indices are created in the test. The script inserts this information

into the database, and then starts the inner script. While the inner script is running,

the outer script keeps track of how long it has been running, and if it exceeds a

predetermined time threshold, it kills the test and moves onto the next one. If the

inner script finishes testing within the time limit, the outer script parses the results

of the test and enters them into the database. It also copies the output files from the

test into a location that can be accessed by the participant via a web interface, so

that the debug output can be analyzed.

The inner script provides isolated security for the test being run by building a

jail directory into which all of the relevant test files are copied (further described in

Section 3.1). It then runs the relevant benchmark test multiple times, compounding



the results from each of them. Once the benchmarks have completed, the inner script

runs various tests over the binary, such as the Phantom Test, and then returns the

results to the outer script.

This modular framework can be easily adapted to run a variety of tests over a

collection of binaries. This was done for the final testing of the submissions, thus

exhibiting its usefulness.

1.4.3 Analysis of Submissions

The third significant contribution of this project is the analysis of the submissions to

the contest. After winnowing down the submissions with an initial round of testing,

we more thoroughly tested and hand inspected the code of the remaining submissions

in order to determine their methodology and to identify some common aspects to

their designs that are effective on the supplied benchmarks. The most important

design decisions for any implementation were isolated and some of the more effective

choices were identified.

In Chapter 2 I discuss the development of the API and what test and benchmarks

we used to compare the submissions to the contest. In Chapter 3 I describe the

website provided for the participants to test their implementations. In Chapter 4 I

discuss the general design decisions each team made during their design. In Chapter 5

I discuss the results of the tests on the implementations and analyze the effectiveness

of some of the design decisions and draw conclusions about the effectiveness of our

benchmarks.
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Chapter 2

API, Testing and Benchmarks

We first devised a standard application programming interface (API) for' a database

application to allow standardized testing and comparison of the submissions to the

contest. The API is written in C but was also designed and tested to support C++

implementations. We also developed unit tests and a benchmark script to verify that

the participants' code supported all behavior defined in the API and to determine

which implementations ran the fastest under different loads.

2.1 API Overview

The API defines the function calls that the submissions must implement in order

to be a valid solution and provides a small number of standardized data structures

and constants. As a database application, the API supports a few basic features:

the creation of indices in which data is stored in an organized manner, the ability to

insert and remove data from an index, and the ability to retrieve data from an index

or scan through the data in an index. Data is organized in each index in pairs of

associated Keys and payloads, where the Keys have an absolute order relative to each

other, but each Key can have multiple payloads associated with it.



ErrCode create(KeyType type, char *name);
ErrCode openIndex(const char *name, IdxState **idxState);
ErrCode closeIndex(IdxState *idxState);
ErrCode beginTransaction(TxnState **txn);
ErrCode abortTransaction(TxnState *txn);
ErrCode commitTransaction(TxnState *txn);
ErrCode get(IdxState *idxState, TxnState *txn, Record *record);
ErrCode getNext(IdxState *idxState, TxnState *txn, Record *record);
ErrCode insertRecord(IdxState *idxState, TxnState *txn, Key *k, const char* payload);
ErrCode deleteRecord(IdxState *idxState, TxnState *txn, Record *record);

Figure 2-1: Function calls defined in API.

2.1.1 Function Calls

The API contains ten function calls that a valid submission must implement. Those

functions are used in the unit tests and benchmarks to verify and compare the different

implementations. To lessen the performance impact of the testing infrastructure, the

parameters passed to the functions are pointers to variables rather than the variables

themselves. This minimizes the amount of data written to the stack for each call so

that it takes less time to make the call.

Index Management

There are three functions that deal specifically with the creation and access to indices.

The create function makes a new index with a KeyType (see Section 2.1.2) and name

specified. It is called only once per index after which the index is available to any

thread in the process. The name must be a unique string of characters used to identify

the index when opening it via the openIndex function. If create is called with a

name that was already used to make an index then the function returns an ErrCode

(see Section 2.1.2) indicating the issue.

The openIndex function provides access to an index. The arguments specify

the index by its unique name and include a handle to an IdxState pointer (see Sec-

tion 2.1.2) pointing to whatever information the implementation will need to uniquely

identify and support the thread's access to the specified index. If the name specified

has not been used in a successful call to openIndex then the function returns an

ErrCode indicating that the database does not exist.



Once a thread has finished using an index it can close its connection to it using

the closeIndex function. The only parameter passed in is the IdxState pointer that

was passed by the implementation in the openIndex call. Once the closeIndex call

has completed this pointer is no longer a valid index identifier for the thread and its

access to the index is closed until it calls openIndex again.

Transaction Management

There are three functions that manage transactions. Each thread can have only one

outstanding transaction running at a time, but a single transaction can span multiple

indices with a single thread. Other transactions should not see a transaction's updates

until it has committed, but later operations within the a transaction must be able to

see the previous effects of the transaction. Also, the transactions must be serialized

so that the changes made to a database are equivalent to running the transactions

in some serial order, one after another. The implementation may serialize concurrent

transactions in any order.

The beginTransaction function signals the beginning of a transaction. Its only

parameter is a pointer to a TxnState pointer (see Section 2.1.2) that the implemen-

tation uses to uniquely identify this transaction in the future. If the thread calling

beginTransaction has a transaction that is currently open then the function returns

an ErrCode indicating that a new transaction cannot be opened.

Once a thread has finished all of the operations involved in its transaction any

changes it has made are committed using the commitTransaction function. The

only parameter passed to the call is the TxnState variable that was used during

beginTransaction, and after commitTransaction completes the variable is no longer

valid. However, if the TxnState variable is not a valid identifier then the function

returns an ErrCode indicating the problem. Alternatively, if the transaction was

valid but could not commit due to deadlock with one or more other transactions

then the function returns an ErrCode telling the client that the changes could not be

committed at that time.

If a client wants to discard the changes made in a transaction, rather than calling



commitTransaction to make the changes permanent, a transaction can be discarded

using a abortTransaction call. Any changes made to the database over the course

of the transaction will be rolled back as though the transaction had never happened.

However, if the TxnState variable is not a valid transaction identifier or if rolling

back the changes in the transaction caused a deadlock, then the function returns an

ErrCode indicating the specific problem.

Database Calls

There are four functions used to access and manipulate the data stored in an index.

Each function can only act upon one index at a time, even if multiple indices are open

for a given thread. Each function call can be part of a larger, complex transaction by

handing in a TxnState variable created during a beginTransaction call. If, instead

NULL is passed in as the TxnState value then any changes made in the function call

are immediately committed.

Information is inserted into an index using the insertRecord function. Beyond

specifying the index and transaction, the other parameters for the function are the

Key and payload for the entry. If that particular Key/payload pair already exists in

that index only a single copy of the entry is kept and the function returns an ErrCode

indicating what occurred. Alternatively, if inserting the record into the index causes

a deadlock, the function returns an ErrCode indicating this.

Information is deleted from an index using the deleteRecord function. A Record

variable is handed in as a parameter that specifies what information should be deleted

from the index in question. The Record can either specify a specific Key/payload

pair to be removed, or it can set the payload to NULL. If the latter is done then all

Records in the index with the specified Key are deleted. If, in either case, the specified

Key is not found in the index then the function returns an ErrCode indicating the

problem. Alternately, if deleting the data from the index would cause a deadlock, the

appropriate ErrCode is returned.

There are two functions that are used to retrieve a Record from an index. To

retrieve a Record given a specific Key a client may use the get function. A Record is



passed in as a parameter in which the Key is specified by the client and the payload

is left blank. The implementation copies in the payload information associated with

that Key into the available space. If there is more than one payload associated with

that Key then the implementation can choose which to return. If the specified Key

does not have any associated payloads in the index then the function returns an

ErrCode indicating the issue.

The other payloads associated with a Key can be accessed using the getNext

function. It is passed an empty Record object into which it copies both the Key and

payload to be returned. If there are n payloads associated with a Key then a single

call to get followed by n-1 calls to getNext should return all n Records with the

specified Key. However, getNext can scan an entire index of information, not just the

values associated with a single Key. It will always return the Record following the

previous Record retrieved by a call to either get or getNext in the same transaction.

Also, if a call to get was made specifying a Key that did not exist in the index,

getNext should return the first Record in the index that does exist after that Key.

If there have not yet been any get or getNext calls then getNext returns the first

Record in the index. When getNext is called after the last Record in an index has

already been accessed then an ErrCode is returned indicating that the end of the

index has been reached.

Unspecified Functions

The functions defined in the API were designed to allow the various implementations

to be tested and compared using standardized tests. As such, some functions were

not included that would be needed for a launch-worthy API. Most noteworthy of the

missing functionality is the lack of a deleteIndex function which would completely

delete an entire index from the database.

Memory Management

While the parameters handed into the function calls described above have space al-

located for them in memory at the time of the function call, many of them are not



typedef enum KeyType {
SHORT,
INT,
VARCHAR

} KeyType;

typedef struct {
KeyType type;
union {

int32_t shortkey;
int64_t intkey;
char charkey[MAX_VARCHAR_LEN + 1];

} keyval;
} Key;

typedef struct {
Key key;
char payload[MAX_PAYLOAD_LEN + 1];

} Record;

Figure 2-2: Data structures provided by API.

guaranteed to remain at that location after the call has completed. The Records,

Keys and payloads are allocated by the client and the client is in charge of freeing

that memory, which can be done any time after the call has completed. If the imple-

mentation needs to access the information stored in these parameters once the call has

completed, it must copy it into some other location in memory that it has allocated.

However, the implementation-specific data types (see Section 2.1.2) are allocated by

the database implementations, which are also in charge of freeing them once they are

no longer in use.

2.1.2 Data Structures

Record Information

The database records being passed in and out of the database are defined by a col-

lection of C structs in the API. A Record is made up of a Key and a payload, where

the Key can have three possible KeyTypes: 32-bit int, 64-bit long or a variable-length

string of up to 128 bytes. These values are all stored in structs which have the smallest



typedef enum ErrCode {
SUCCESS,
DB_DNE,
DB_EXISTS,
DB_END,
KEY_NOTFOUND,
TXN_EXISTS,
TXN_DNE,
ENTRY_EXISTS,
ENTRY_DNE,
DEADLOCK,
FAILURE

} ErrCode;

Figure 2-3: Error codes provided by API.

possible size while still allowing for all possible Key types and holding both a payload

string and a Key string.

The structs passed into the database are kept as small as possible so that the

amount of data passed in a function call can be minimized. In C, structs are of a

constant size and of union type so that they have a known layout, but this means

that if a Record contains a 32-bit Key, the Record will still be allocated large enough

to hold a string-valued Key.

It would have required significantly less space to have the payload and varchar

Key values in the struct be pointers to a string on the heap, cutting down the size of

the Key struct by 120 bytes and the payload struct by 92 bytes. However, passing

a pointer to a string on the heap leaves it ambiguous who is in charge of freeing the

memory, as well as when it will occur. By including the entire string in the struct

this ambiguity is removed.

Error Codes

The API also defines a set of error codes that are used to allow a database imple-

mentation to indicate the success or reason for failure of a function call. Not all of

the error codes are applicable for every function call, so the specifications for each

function define the circumstances under which a given error code is returned. Every



function can return SUCCESS when the function completed successfully and FAILURE

if some unknown error occurred.

Implementation-Specific Data Types

The API provides two unimplemented data types, IdxState and TxnState. They are

used to pass implementation-specific information into function calls so that index- and

transaction-specific information can be recorded and accessed by the implementation

without requiring that the API specify what this structure contains.

The contents, structure and size of the data type are defined entirely by the

implementation. It is also in charge of allocating and deallocating the memory that

holds the structure, and simply hands the API a pointer to its location on the heap.

The IdxState structure is used to keep track of an index that has been opened by

a specific thread. It is used when opening and closing connections to an index, as well

as when a query is being run on an index. It is not needed for transaction-specific

function calls. It is created by the implementation during the openIndex call and it

is destroyed during the closeIndex call.

The TxnState structure is used to keep track of transaction-specific information

that is also particular to a specific thread. It is the only argument needed for the func-

tions that begin, commit or abort a transaction, and is included in all of the function

calls in which a query is sent to an index. It is created by the implementation during

the beginTransaction call and it is destroyed during either the commitTransaction

or abortTransaction calls.

2.2 Unit Tests

Unit tests were developed with a dual purpose: to verify that the implementation

behaves properly and to show the participants the basic idea behind the way their

code will be used and what the expected edge-case behaviors are.

There are three threads that run during the unit tests, and the tests are run over

three indices. The primary thread creates the primary index before branching off



two other test threads to run other tests. Meanwhile, it inserts, deletes and accesses

data in the primary index in a series of transactions designed to work the basic

functionality of the API, including supplying multiple payloads for the same Key,

scanning through the index using getNext and then properly indicating the end of

the index, ensuring that duplicate Key/payload pairs cannot exist in the same index,

aborting transactions and executing transactions that use multiple indices.

While the main tests are running in the primary thread, a second thread simulta-

neously runs some basic tests over a separate index to ensure that the two can exist

simultaneously and their data is kept separate from one another.

A third thread runs a test to ensure that the transactional guarantees required

from the index are respected by the implementation under test. It continuously

queries the primary index, checking to make sure that it cannot see data that only

exists mid-transaction during the primary tests. It loops the same test over and over

until the primary test has finished all of its transactions.

Phantom Problem

One test that was not handed out to the contestants during the contest but was run

over the each implementation is a test to ensure that an index properly handles the

phantom problem. The phantom problem is a bug which arises when "phantom" data

suddenly appears in an index mid-transaction. This generally occurs when a database

uses a fine-grained locking scheme within an index, and so when a transaction is

scanning through a section of data, only the data that is in the index at that time is

locked, rather than the range as a whole. Thus, when a second transaction inserts a

new piece of information within that range and commits while the first transaction

is still running, the conflict is not detected and the first transaction sees this new

information, which violates the 'repeatable reads' requirement of transactions.

The test for this situation uses two threads, one of which is a single transaction

which loops continuously over an entire index using getNext. Meanwhile, a second

thread attempts to add data into the index at the same time in a separate transaction.

If at any time the first thread sees any of the new data appear, then the implementa-



tion does not properly handle the phantom problem. However, if the implementation

either does not allow the second thread to insert new data while the first thread is

looping through the index, or if the first thread does not see any new data, then the

implementation properly handles the phantom problem.

2.3 Benchmarks

We developed a suite of benchmarks to compare the run-times of different implemen-

tations under the same work load. Different benchmarks stress different aspects of a

system by making small adjustments to the workload, such as the number of threads

running, how much data is used to populate each index, or the distribution of keys.

2.3.1 Initialization

We released the primary benchmark along with the API and unit tests so that the

participants would be aware what behavior the contest emphasized and what exactly

was being timed. Constant arguments to the benchmark control how many indices are

created for the benchmark, how many threads are used to populate and run queries

over the indices, and how many populate inserts and queries each thread runs. It is

also passed a value used to seed the random number generator so that it performs the

same inserts and queries in the same order when given the same seed, even though it

is run across multiple threads.

When the test begins, it initializes all of the data structures and generates random

values to be used for the tests. Pre-generating all of the values used in the test

significantly decreases the overhead time required to run the benchmark so that the

reported time is primarily spent in the implementation rather than the benchmark

itself.

Each type of Key has its values stored in its own array, as well as the payload

values. The threads share these arrays, which allows for repeated Keys and payloads

to appear. Furthermore, each thread has its own array of random integers. Whenever

a new random value is needed by a thread, it grabs the next integer in the array and



uses it as an index into the relevant array, or simply as a random number. Because

each thread has its own array, the rate at which one thread uses the random num-

bers does not affect what numbers the other threads see. Furthermore, because the

numbers are generated using a seeded random number generator, they are consistent

across multiple runs of the test.

2.3.2 Testing

Once the initialization stage is complete, the actual testing of the implementation

begins. The time it takes for each part to run is recorded by the benchmark. First

each of the indices being used in the test is created, each in a separate thread, using

as many threads as there are indices. Therefore there will not be fewer threads than

indices used overall for the benchmark.

Once each of the threads has finished the creation step, the threads populate the

indices with randomly generated Key/payload pairs. Any thread can populate any of

the indices; in each iteration a random index is selected and then a Record is inserted

with a randomly generated Key and payload combination.

Once the threads have finished populating the indices, each thread begins running

tests over them. There are three possible tests a thread can run on an index: scan,

get and update. Each test runs in its own transaction, and if the implementation

deadlocks during the test, the transaction is aborted and the same test is re-run. The

benchmark keeps track of how many deadlocks the implementation reports, as well

as how many transactions complete successfully and how many fail. These numbers

are reported at the end of the benchmark, along with how long it took to run.

The scan test, chosen 10% of the time, picks a random index and a random Key

that may be in that index. It then calls get on that Key and then scans forward

through the index using getNext between 100 and 200 times. This test is meant to

determine how well an implementation can go through an index in order.

The get test, chosen 30% of the time, picks a random index to test and then calls

get between 20 and 30 times with a series of random Keys of the appropriate type.



This test is meant to determine how well an implementation can jump from one place

in an index to another.

The update test, chosen 60% of the time, picks a random index to test and then

generates a random Key/payload pair to insert into the index. It then generates a

new Key and deletes all entries under that Key from the index. This is done between

5 and 10 times for that index before the transaction is complete. This test is meant

to stress an implementation's ability to update its contents quickly. It should be

noted that, while inserting a Record into an index will almost always succeed (it

will only fail if the Record is already in the index), the call to delete all Records

under a Key will not always remove any information from the index due to the fact

that the Key is not guaranteed to have been inserted into that index. However, this

discrepancy should be counterbalanced by the fact that the deletion will sometimes

remove multiple Records from the index under the same Key.

Once all of the threads have finished testing the implementation, the time it took

for all three stages to occur is recorded and reported back, along with the number of

deadlocks, failed transactions and completed transactions accrued over the course of

the benchmark.

2.3.3 Benchmark Variations

The primary benchmark can be run with a variety of behaviors by varying the con-

stants controlling the number of indices, threads, insertions and tests run each time.

However, in the system described above, the distribution of data used for Keys and

payloads is drawn from a uniform distribution, and only one index is used at a time

for each test. This is not necessarily the most stressful test to run over a database,

and so two variations of the benchmark were developed.

One variant behaved similarly to the primary benchmark described above. How-

ever, instead of using all three possible Key types, only 64-bit integer Keys were used.

Furthermore, only the 8 highest bits were varied between Keys in one instance of

the test, and only the 8 lowest bits in the other. This causes an unfriendly Key dis-



tribution with many duplicates that exposes weak hash functions and non-general

optimizations.

The second variation on the benchmark also compared the different implemen-

tations using the standard Key distribution, but used multiple indices in each test

transaction. For this test, two indices are opened at the beginning of the transaction.

Then, a random Key is generated and an associated Record is retrieved from the

first index. The payload associated with this Record is then used as a Key to do

a lookup in the second index. Because Keys must also be possible payloads, only

variable-length string Keys can be used.

2.4 Example Implementation

We provided an example implementation of the API that used Berkeley DB. The

point of the example implementation was twofold. It tested the API to ensure that it

contained enough information for the required tasks to be completed appropriately.

It also gave a baseline example for the participants to see what behavior was expected

of their implementations that was not specifically covered in the API or unit tests.

Berkeley DB [3] is an open-source library that provides an embedded database

capability. It originated at UC Berkeley in the early 90s and has since been acquired

by the Oracle Corporation for further development and distribution. It is designed

to provide all of the traditional database behavior, including full crash recoverability

and scalability while eliminating the client/server communication and SQL processing

delays by allowing users to embed the code directly into their software.

However, Berkeley DB's wide range of features makes it a much slower system

than one that is aimed specifically for this competition. It is not a main memory

system, and in order to provide crash recovery it makes many disk writes that could

have been dropped for the purposes of our competition. Furthermore, it supports

significantly larger databases than any of our benchmarks so has a large overhead to

keep track of this potential information. However, because it was not designed with

this competition in mind, Berkeley DB does not allow for these features to be turned



off, and as such it has very poor performance with our benchmarks relative to the

submissions to the competition.



Chapter 3

Website

A website was created to allow users to test their implementations on the machine

used to test the submissions once the competition was closed. The machine is a dual-4

core 2.6 GHz Intel Xeon 5430 (64-bit) with 16 GB of RAM. It runs Red Hat Fedora

Core 10.

In order to ensure that every test run on the machine had the same resources

available for every user, we created a submission system to run the users' tests. Users

submit their binary to be tested, at which point it is entered into a queue. One at a

time, a test is taken from the queue and run in isolation. Once the test is complete,

the results from the test are entered into a database and the next test is begun.

3.1 Security

We took a few precautions in order to provide a modicum of security against the

unknown and unchecked binaries being executed on the testing machine. We use a

special user account on the machine whose sole purpose is to run tests for partici-

pants. When a test is run, the participant's binary and various testing binaries and

supporting files are copied into a new folder by a system call. Then, the working

directory is switched into that folder, and chroot is called for the process in order to

isolate it from the rest of the system by changing the apparent disk root directory. At

this point, the process that executes the tests on the participant's unknown binary



believes that the root of the system is that folder, and cannot see or access any other

files on the machine.

Creating a jail using chroot does provide some security, but care must be taken

not to provide any hard links to files outside of the directory. This would negate

the isolation and allow users access to the entire system. Even without creating any

obvious ways out of the jail, this system does not ensure security. A binary might

be able to exploit a buffer overflow in the provided C libraries to escape the limited

scope of the system. However, this would require a lot of work by an attacker, and

would have to be a deliberate attack. This system may not block all malicious users,

but it does defend against accidents.

The script used to run each test and enter the results of the test into the database

once it completes also keeps track of how long an individual test has been running.

If a test runs longer than desired, the test is killed and no results are reported back

to the user. There is also a system thread running in the background that checks for

stray processes related to the tests and kills them if they have been running longer

than is reasonable. Not only does this prevent a buggy implementation from never

completing its benchmark test and thus hold the machine hostage against all other

users' tests, but it also ensures that each user is given the same resources while his

test is running.

3.2 Individual Results

The results of participants' tests are displayed on the web interface. Each user creates

a unique login on his first visit to the website. Once he has logged in, any tests he

requests to be run are associated with that user name. On his home page, a table

of test results and pending tests for his account are available. For completed tests,

the information available includes when the test was originally requested, the user-

supplied description for the test, a link to a file of output produced by the test

(containing the output from any printlines the user inserted into his code, as well

as some general output of results from the benchmark itself), how many deadlocks



2009-03-28 12D934 1752 hederboard test comtple not tin failed Delete

2009-03-27 23044 1663 unit & speed complete file failed Delete

2009-03-27 2302 7 16e63 ast 1 CompleS fle notrun Delete

2009-3-27 1409 47 algmodso complee ie 0 0 80000 141.8 failed Delete

2009-03-27 1154,35 re-downloadeddummy complete file failed Delete

Figure 3-1: Screen shot of example results for a participant.

occurred during the test, how many transactions failed during the test, how many

transactions completed during the test, how long the test took to run, and the output

from the unit tests, if the user chose to execute them as well.

When a test is requested and a binary is provided, the binary is saved to disk to

be used when the test is run. Furthermore, once a test is run the output produced by

the benchmark and the the output produced by the unit tests are each saved in a file

that is also saved to disk. These results are made available to the user for inspection

so they can see how their code behaved, including their own debugging or informative

printlines.

The web interface also allows users to delete their own results from the database

that keeps track of all of the tests. When a result is deleted, the entry is completely

removed from the database, although the supplementary files (the binary and the

output files) remain on disk. This allows us (the contest managers) to look at the

results from any old tests and re-run any old tests, even if the user can no longer

see the results via the web interface. However, because the output files are kept in

a location accessible via the Internet, there is no system in place to prevent anyone

from looking at the output of other user's tests, including those that have been deleted

from the database.

Over the month and a half that the website was available before the contest was

closed, we revised the benchmark several times. The changes made to it varied from

small bug fixes to changing how the random numbers were generated, and could

affect the run-time of participant's code. In order to distinguish between the different

benchmarks, a version number was included in the database information for any test



run. Whenever the benchmark was updated, the version number attached to all new

tests was incremented. After this occurred, a button was shown on the users' home

page that allowed them to re-run the benchmark test on an old binary. This button

only appeared next to results for an older version of the benchmark, and only if the

test had not already been re-run.

3.3 Leaderboard

The website also provided a leaderboard of the 10 fastest results for two basic bench-

mark tests. Each user was allowed no more than three spots in the table, preventing

the fastest user from re-running the same code multiple times to fill up the table with

identical results. When submitting a binary to be tested on the site, participants were

required to specifically state that it is being submitted for the leaderboard test. This

automatically forces the system to run the unit tests over the binary, and if the binary

does not pass all of the unit tests it is not eligible for the leaderboard. Furthermore,

if a test does not complete all requested transactions (due to transaction failures or

deadlocks), it is not eligible for the leaderboard. Finally, only tests run on the most

recent version of the benchmark would appear on the leaderboard. Whenever a new

version of the benchmark was released, all of the results on the leaderboard for the

previous version of the benchmark would be re-run to immediately repopulate the

leaderboard. This has the potential to show slow results on the leaderboard, but

they quickly fall off the leaderboard when faster runs complete. Also, users have the

ability to delete any of their own records from the system if they do not want them

to appear on the leaderboard.

The two benchmark tests for which leaderboards were created were variants of

the basic benchmark tests, with different loads. Each ran with a random number of

indices and 50 threads, created indices of all three key types and ran all three types

of benchmark tests (see section 2.3.2). One leaderboard test ran with 400 inserts per

thread in the populate phase and 1600 tests in the testing phase. The final values

of this leaderboard are shown in Figure 3-2. The other leaderboard ran 10 times as



dementgenzmer 3215 0 0 800000 2009-03-31 22:0325

dexter 450.4 0 0 800000 2009-03-31 14:18:13

bcagd@studentethz.ch 452.1 0 0 800000 2009-03-30 172833

bcagd @studentethz.ch 453.1 0 0 800000 2009-03-30 1725:17

xrebomer 4592 0 0 800000 2009-03-31 1851:13

Figure 3-2: Leaderboard displayed on the contest website.
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Figure 3-3: Second leaderboard displayed on the contest website.

many inserts and tests per thread, which increased the overall size of the database and

the number of tests run by a factor of 500 each. The final values of this leaderboard

are shown in Figure 3-3.

By providing two different leaderboard tables, we acknowledged that different

implementations could excel under different workloads. Some implementations could

handle small databases extremely fast, but not scale well. Some implementations

could scale nicely, but have a lot of overhead to support the scalability that would

slow it down with smaller databases.

Participants were informed that the results displayed on the leaderboard were only

used as reference, and did not indicate who would win the contest. Other factors than

simply how fast the code ran would be involved in the decision.



3.4 Organizational Website

A separate website was also maintained to post announcements and basic information

about the contest for participants. When the contest was announced, it contained a

basic overview of the challenge and requirements and a list of important dates. Once

we released the API, benchmarks and example implementation, the site contained

instructions on how to access and build the relevant files. Whenever we updated

benchmarks, API or unit tests, we also posted an announcement on the website

explaining what changes had been made and any relevant additional information. All

of the benchmarks, unit tests and phantom test are now posted on the website, which

can be found here: http://db. csail.mit. edu/sigmod09contest/.



Chapter 4

Submissions

While there were over 90 different accounts created to access the testing site, by the

deadline of 11:59 pm on March 31st, 2009 only 17 binaries had been submitted. Of

these 17 submissions, one had not turned in a valid binary and there was no response

to an email sent to the provided email account. A second submission could not run on

our 64-bit Linux machine and so was also not a valid submission. The 15 remaining

submissions were tested using the various benchmarks, unit tests and phantom test.

Submissions were received from teams associated with schools in countries all over

the world, including Australia, China, Denmark, France, Germany, Poland, Switzer-

land and the United States. The number of people on a team varied from one person

to up to three people listed as working on the code.

Five different versions of the basic benchmark test were run over all 15 submissions,

along with the unit tests and the phantom test, in order to get a basic idea how each

implementation performed. The five tests run were the two leaderboard tests used

on the website (see Table 5.1), a test using 30 threads and indices, a test using 55

threads and indices, a test that inserts 1000 times as much data per thread during the

populate phase in order to push the limits of the available memory and a test that

only uses 5 indices (see Table 5.2). Each test was run multiple times with different

random seeds for each implementation, and the average time was reported back.

From the results of these tests, eight submissions were chosen that successfully

completed all of the benchmark tests in a short time. Some of these implementations



did not successfully pass the phantom test, but this was considered a fixable issue,

and the test had not been released to the participants.

The implementations not chosen for closer inspection were left behind for various

reasons. Some of the implementations timed out before being able to complete the

given benchmarks or failed the unit tests. Others completed all of the tests success-

fully, but were significantly slower than the eight that were chosen for closer inspection

on all of the benchmarks, and so were not investigated further.

4.1 Data Structures

One important decision in every design is the data structure used to store the Records

in memory. However the information is stored, Records must be able to be accessed

either via a direct lookup using get, or while scanning the indices using getNext.

Furthermore, the data cannot be static, as Records are occasionally added to or

removed from the indices, even after the indices have been populated.

Most participants chose to use some form of tree to store the database information.

Trees allow for roughly O(log n) lookup times, while maintaining a global order among

the Keys, so the index can be scanned as well. There is a wide range of different tree-

based data structures, however, so even implementations using a tree must decide

what type of tree to use.

One implementation uses T-trees, which were invented with the intent to be better

for main memory databases than B-trees. Rather than keeping all of the data stored in

the structure itself, T-trees hold onto pointers to the data since all of the information

is kept in memory and so can be accessed quickly without the random seek penalties

of data stored on disk. By moving the core of the data out of the main tree structure,

this also allows the tree to be restructured more quickly when it requires balancing,

because less data is moved.

Another implementation uses CSS-(cache-sensitive search) B+-Trees. Cache-concious

data structures treat the lines in the cache as the unit of memory of which they must

be most aware, as opposed to blocks on the disk. This optimization is merged with a



design feature of B+trees to keep the children of a node contiguous in memory so that

only one pointer must be kept, thus minimizing the overhead of the data structure.

The trees are also occasionally restructured once they have grown significantly in size.

This keeps the trees balanced so that none of the data is particularly unfavorable to

access in the future, but does take the system offline for a significant amount of time

while each tree is being reorganized.

A few different implementations used variations on a prefix tree, or trie, as their

primary data structure. Tries use the location of a node in the tree to indicate the

key with which a value is associated. This helps minimize overhead in the trie by

lessening the amount of key information stored in each node, while still keeping the

keys in an absolute order. Further analysis of tries can be found in Section 5.3.1 in

the discussion of dexter's implementation.

A few implementations chose not to use a tree as the primary data structure.

Instead, they chose a hash-based method of storage, like a multimap or a collection

of simple hash tables. This allows for extremely fast access times, but forces the

implementer to create a scheme to keep track of the global ordering of the keys. One

implementation that does this, by clement is described in more detail in Section 5.3.1.

4.2 Concurrency Control

All of the official tests are run on a multi-core system and use multiple threads to

run tests at the same time. This means that two different transactions may attempt

to read or update an index at the same time. If this occurs, transactional guarantees

are broken and the information stored in the database can be corrupted.

4.2.1 Locking

In order to prevent this problem, many implementations use some form of locking

to prevent different threads from interfering with each others' behavior. Of the im-

plementations that used locking, all of them used whole-index locking rather than

locks on smaller pieces of an index. However, while some implementations used a



more traditional locking system using both shared and exclusive locks, others chose

to avoid handling two types of locks by holding exclusive locks on all open indices for

each transaction.

Other implementations did not emphasize locks as much, but instead relied on

either optimistic concurrency control in order to isolate transactions, or created a

multi-version isolation system that takes a 'snapshot' of an index for each transaction.

Both of these designs work in a similar manner. When a transaction begins, some

data from the index is copied into a local 'sandbox' for the transaction to update

as needed. Once the transaction is ready to commit, an algorithm checks to see if

the updates conflict with other transactions that have committed or are currently

running in the system. If there are no conflicts, the changes are committed. If the

updates do conflict, the transaction is aborted. This is particularly effective when

most transactions do not conflict with each other, as is the case with the benchmarks

used to judge this contest.

4.2.2 Deadlocks

If the locking system in the implementation allows situations in which one transaction

cannot possibly complete due to another transaction's behavior, then one of the two

transactions must be reported as being in a deadlock and aborted by the client code.

Deadlocks can be detected either by tracking the resources being used by different

transactions and checking for conflicts, or simply by keeping track of how long a

transaction has been waiting for a specific resource. If it has been longer than some

predetermined time, the system declares it to be deadlocked and aborts it. While

this is not always strictly true, it can vastly simplify the deadlock handling code in

an implementation.

Some implementations do not require any deadlock-detecting code due to the

locking system used. However, this often means that the locking system may be

overly conservative, or that not all of the desired features have been fully realized or

are buggy in the implementation in question. Some cannot properly handle opening

an index partway through a transaction, whereas others cannot handle using multiple



indices for a single transaction, which is common behavior in databases although was

not part of our originally released benchmark.

4.3 Memory Management

Many participants chose to create custom memory allocators optimized for their im-

plementation's needs. By reserving space from the operating system using a malloc-

like call, they can then choose exactly how to subdivide the space so that fragmen-

tation due to variable block sizes can be avoided. The preallocated space is held in

a memory pool controlled by the implementation. Whenever new space is needed for

the database, it is released from the memory pool rather than going all the way down

to the kernel with the request. This allows for much tighter control over where dif-

ferent pieces of the system live relative to each other in memory. In Section 5.3.1 the

custom memory management scheme used by clement is discussed in further detail.

4.4 Multicore Support

The machine used to test all of the implementations has a quad-core processor that

can run multiple threads for a single process at the same time. The benchmark uses

this fact to run transactions on many threads at the same time, which will ideally

increase overall throughput. We implemented this using Pthreads, a C library that

creates multiple threads within the same process. Once the threads have been created,

Linux manages mappings of threads to cores.

This multi-threaded strategy can also be used by the implementations to speed up

internal operations that do not depend directly upon each other. Another potential

way to take advantage of the multi-core system is to assign specific tasks to a partic-

ular CPU and keep all of the relevant information for it stored in the local memory.

This core affinity can decrease the penalties for non-uniform memory access between

the different CPUs.



While these strategies were available to the participants to use in their implemen-

tations, none of them appear to have taken advantage of any of them.



Chapter 5

Evaluation

The eight implementations that were evaluated and investigated most thoroughly

used a variety of methods to handle the different design issues. As a result, their

behavior excelled in different ways, which will be evaluated below.

5.1 Tests

As discussed in Section 2.3, a variety of benchmarks were developed for performance

testing. Each benchmark accepts five control variables that adjust how many times

the test is run, how many inserts each thread runs during the populate phase, how

many tests each thread runs during the testing phase, how many indices are created

and tested and how many threads are used to do the creation and testing in the

benchmark.

We made two instances of the primary benchmark available to participants to test

their code while it was being developed. Table 5.1 shows the control variables used for

these two instances of the primary benchmark. The number of indices used for these

tests is a randomly generated number between 1 and 50, inclusive, that varied for each

iteration of the benchmark. However, due to the seeded random number generator, we

tested each implementation with the same random number of indices. All of the other

control variables were constant values that remained consistent between iterations of

the test.



Table 5.1: Control Variables For Preliminary Benchmark Instances

Instance Runs Inserts/Thread Tests/Thread Indices Threads
Preliminary 1 10 400 1,600 [1,50] 50
Preliminary 2 10 4,000 16,000 [1,50] 50

Table 5.2: Control Variables For Additional Primary Benchmark Instances

Instance Runs Inserts/Thread Tests/Thread Indices Threads
30 Threads 10 400 8,000 30 30
55 Threads 10 400 8,000 55 55
Fill Memory 3 400,000 1,600 50 50
5 Indices 10 4,000 16,000 5 50

Once the official submissions to the contest were in, we used four more instances

of the primary benchmark to examine the 15 different implementations along with the

two preliminary instances. These benchmarks were used to distinguish the broken and

slow submissions from those that ran quickly enough to be of interest. The control

variables for these iterations are listed in Table 5.2 and were designed to stress some

basic edge cases within the standard framework. These six instances of the primary

benchmark identified eight implementations of interest. The code for each of these

implementations was hand inspected to determine their methodology and to ensure

that their code behaved appropriately with respect to our tests.

As discussed in Section 2.3.3, two variations on the primary benchmark were

developed to stress the implementations in ways that the primary benchmark was

not designed to do. Table 5.3 shows the control variables used to run these variations

on the benchmark.

5.2 Results

The results of the various benchmark tests are shown in Tables 5.4, 5.5 and 5.6. Table

5.4 shows the results of the preliminary benchmark that the participants could run

via the contest website while developing their implementations. Table 5.5 shows the



Table 5.3: Control Variables For Variations On Primary Benchmark

Instance Runs Inserts/Thread Tests/Thread Indices Threads
Vary High 10 4,000 16,000 50 50
Vary Low 10 4,000 16,000 50 50
Double Lookup 10 8,000 1,600 50 50

Table 5.4: Results of Preliminary Benchmarks

Team Preliminary 1 Preliminary 2
bcagri 4,112 49,151
clement 2,946 37,540
dexter 3,949 46,914
frame 5,960 77,756
ji 8,272 100,545
kastauyra 4,881 65,968
qbolec 6,522 55,957
xreborner 4,487 49,096
Berkeley DB 9,809,710* could not complete*
NULL Implementation 1,577 13,794
* These tests did not complete all iterations in the allotted time. The
times were extrapolated from the completed iterations, if any completed

Numbers represent time to complete the benchmark in milliseconds.

results of the additional instances of the primary benchmark that were used for extra

insight into the implementations while determining the top eight implementations.

Table 5.6 shows the results from the additional benchmarks developed once the

final code had been looked over. Because the behavior in these benchmarks is non-

standard, some of the implementations could not finish all of the iterations in the

allotted time, either because the implementation ran slowly under the given condi-

tions, or due to an undetected deadlock. In these situations the time reported is

extrapolated from all of the iterations, if any, that completed.



Table 5.5: Results of Additional Instances of Primary Benchmark

Team 30 Threads 55 Thread Fill Memory 5 Indices
bcagri 13,112 24,101 105,369 9,235
clement 10,261 19,319 35,209 8,061
dexter 12,135 21,296 77,004 18,207
frame 21,480 34,701 157,435 13,780
ji 31,685 56,647 240,752 8,857
kastauyra 13,191 26,947 193,954 9,142
qbolec 18,503 32,406 84,217 12,554
xreborner 13,120 23,886 683,506 9,939
NULL Implementation 3,633 7,310 13,984 13,296

Numbers represent time to complete the benchmark in milliseconds.

Table 5.6: Results of Benchmark Variations

Numbers represent time to complete the benchmark in milliseconds.

Team Vary High Vary Low Double Lookup
bcagri 34,177 35,660 3,109,263*
clement 41,973 34,794 stall*
dexter 29,241 32,714 61,703
frame 57,160 58,701 393,169
ji 2,049,315* 1,457,565* 822,015
kastauyra 34,370 35,600 365,249
qbolec 1,524,100* 927,516* 307,270
xreborner 28,396 30,825 258,227
NULL Implementation 11,593 11,809 99,995

These tests did not complete all iterations in the allotted time. The
times were extrapolated from the completed iterations, if any completed
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5.3 Discussion

In this section I discuss some of the implementations that exemplify the methods

used. I explain their results relative to the other implementations and analyze the

reasons for this behavior by discussing the corresponding code.

5.3.1 Individual Submissions

Clement

In all instances of the primary benchmark, team clement ran the fastest. However, for

the benchmark variations clement was not the fastest implementation. In the Vary

High and Vary Low benchmarks, clement was not the fastest implementation, but it

was never more than 1.5 times slower than the implementation that did run the fastest.

The one exception to this was the Double Lookup benchmark. Because clement's

locking scheme cannot handle opening two indices for the same transaction, it stalls

out before a single iteration of the benchmark can complete and so no estimated time

could be extrapolated.

Clement chose to use hash tables as the primary data structure for each index.

By using an order-preserving hash function, which inserts keys into the hash table so

that the global ordering of the keys is preserved, and merging the Key and payload

together into a single value, the cost of a get is 0(1) and getNext is amortized 0(1)

if the table is not too sparse. The 'hash function' uses the log2 (size) most significant

bits of the Key/payload 'key'.

This system works very well for keys that vary uniformly in the higher order bits,

but other distributions of keys have a detrimental effect on performance, as shown

with the Vary High and Vary Low benchmarks. In particular, one adversarial set

of keys that could significantly affect the performance of this implementation would

be a truncated uniform distribution in which the most significant bits of the key

remain constant in all of the keys, while the less significant bits vary. While the keys

themselves would be different, they would all hash to the same bucket in the array

and the performance benefits from the hash table would be lost.



The benefit to using this as the hash function is that it preserves the global

ordering on the Key/payload pairs inserted into the table. By preserving this order in

the table, a range search is easily supported and does not require the implementation

to search through the entirety of the index to determine the next value to return.

In order to allow the performance of this hash function to be uniform across all

three provided Keys, clement created a system by which the first 10 characters of

a string Key are compressed down to 64 bits. This is done by mapping the ASCII

representations of the characters onto a numerical system designed specifically for this

implementation. The non-printable characters are all mapped to the lowest possible

value and are treated identically. The printable characters are each given their own

unique numerical representations so that they may be distinguished in the hash. By

throwing out the distinctions between the non-printable characters, it allows for the

total number of bits required to represent each character to be lowered, which in turn

allows for the strings to be compressed down to 64 bits.

This optimization is effective for the provided benchmarks because the only char-

acters being used to generate Keys and payloads are the 52 alphabet characters in

upper- and lower-case. In fact, the system provided by clement's implementation

handles more than the range of characters generated by the benchmarks. However, if

the relative ordering of the non-printable characters is considered relevant, then this

optimization would become less effective because there are not enough bits to sustain

the distinction. This would prevent the compression of 10 characters into 64 bits, and

fewer characters would need to be used for the hash function.

Clement created two types of custom memory allocators in order to optimize the

use of and access to available space. The first allocator is for string Keys and payloads.

A separate list is maintained for each possible string length, containing all the string

of a specific length have have been deleted but whose space has not yet been reused.

When a new string is being allocated, the relevant list is accessed and a location in

memory of the appropriate size is determined and used. This prevents fragmentation

and updates the pool of available memory when an insertion or deletion occurs in

0(1), although it does create an overhead that can waste space if not many values



are in the index.

The second allocator is a typical pool allocator for the structures that maintain

the non-string Keys. It maintains a pointer to the Key, a hash of the Key, a pointer

to the payload, and a pointer to the next element in the index if one exists.

Deadlocks are avoided by using whole-index locks. However, this design decision

does not support multiple indices being used within the same transaction, which is

why the Double Lookup benchmark cannot complete without deadlocking. The im-

plementation assumes that there will never be any conflicts between the transactions

due to the initial locks acquired, and so does not supply any further deadlock de-

tection. However, the Double Lookup benchmark can create a deadlock because the

order in which indices are opened for a given transaction is not guaranteed, and so

two separate transactions can each hold a lock on the index that the other transaction

is attempting to acquire.

By locking the whole index to avoid deadlocks, concurrency control does not re-

quire much extra support. Clement chose to insert the updates into the index imme-

diately while logging the deletes to be completed when the transaction is committed.

This allows the custom memory allocator to free the memory from the deleted ele-

ments all at once. If the transaction is aborted, the deletions are ignored and the

inserts are rolled back, reclaiming the memory used for them, instead.

The logging system uses an array to keep track of the update operations performed

over the life of a transaction. The array is not designed to dynamically resize relative

to the requirements of a specific transaction, so the total number of update operations

that can be recorded during

This implementation is highly tuned to the assumptions provided by the primary

benchmark, including a uniform distribution of keys, only supporting the relative or-

dering of printable characters in the strings and only using one index per transaction.

The issues that arise from these assumptions have been mentioned to clement and

the code is being adjusted for the final competition at the SIGMOD conference in

June.



Dexter

For most instances of the benchmark tests, both primary and the variations, team

dexter took second place The two benchmark tests in which dexter did not take

second place were the 5 Indices instance of the primary benchmark, where dexter

was the slowest, and the Double Lookup variation, where dexter was the fastest.

Furthermore, dexter's performance on the Vary High and Vary Low benchmarks was

better than clement's. In fact, the non-uniform data did not have a significant effect

on the implementation's performance at all.

Locking is per-index, but they are only held during the actual operation, and

are read/write-specific. Transactions are isolated using optimistic concurrency con-

trol, maintaining a transaction table with time stamps to detect violations. Inserts

and deletes are performed directly, and in the event of a rollback they are undone

with deletes and inserts, respectively. This system prevents the system from stalling

completely due to deadlock, but the per-index locking prevents it from scaling much

better than other implementations with less advanced locking mechanisms.

Dexter chose to use a prefix tree with jump pointers to skip leading zeros as the

primary data structure for each index. Multiple implementations used variations on

a prefix tree as their primary data structure.

A trie, also known as a prefix tree, uses a node's location in the tree to show

with what key it is associated, rather than storing the key in the node itself. Thus,

all descendants from a given node share a common prefix represented by that node's

location in the tree. While tries are commonly used to store character strings, the

algorithm can easily be applied to the numerical Keys required by the API.

Due to the structure of a trie, given the Keys provided by the API, each tree will

have a fixed height and relatively low complexity. Furthermore, a single node in the

tree can be expanded to support multiple payloads associated with a single Key. Not

only does this not expand the overall size of the tree, it also makes it much easier to

delete all payloads associated with a single Key.

Given the randomly generated and uniformly distributed Keys used in most of the



benchmark tests, tries are generally efficient in terms of overhead. However, given

adversarial data specifically designed to create a sparse tree, a trie can have a very

large overhead relative to the amount of data it contains. If the keys do not share

many common prefixes, each key will create a series of new nodes that only exist to

support a single key, rather than many.

Bcagri

Team bcagri's implementation ran third or fourth fastest for most of the benchmarks.

One exception to this was the Double Lookup test in which bcagri's reported time

was by far the slowest of the seven that completed. In fact, bcagri's time had to be

extrapolated to reflect an estimated time for the entire test, as only a portion of the

required iterations managed to complete before the test timed out.

Locking is per-index, and uses traditional shared/exclusive locks on the indices

as they are used. This implementation does not have any deadlock detection code,

and thus deadlocks easily. Furthermore, because deadlocks are not detected explicitly

and the locks are exclusive, the Double Lookup benchmark could potentially reach a

point of deadlock that is never resolved, and the test stalls.

Bcagri's implementation has some bugs involving synchronization of indices, both

when being created and when being opened. Furthermore, this implementation fails

the Phantom Test, most likely due to some bug in the data structure implementation.

However, these issues have been mentioned to Bcagri and should be resolved before

the final competition in June.

Bcagri chose to use T-trees as the primary data structure for each index, with a

few modifications to the original design in order to maximize the cache-friendliness

of the structure. As introduced briefly in Section 1.3, T-trees are built on top of

self-balancing binary trees, but store a range of elements in a node. When searching

the tree, the two end keys of a node, containing the minimum and maximum values

of the elements in the node, are compared against the queried value. Depending on

the results of these comparisons, the search continues down the left branch of the



tree, the right branch of the tree, or within the node that was tested. Within a node,

the values are stored in order.

In spite of T-trees' attempt at cache-consciousness, their behavior is similar to

that of a basic binary tree. Their performance is improved by grouping multiple

values together in a node, thus potentially allowing fewer comparisons by virtue of

a shallower tree. However, each node is only used for two comparisons before the

search continues down the tree, and the two values are at opposite ends of the node,

so they are often kept on separate cache lines. Due to this behavior, most of the data

stored in a cache line is not utilized until the final node is searched.

T-trees do not obviously support multiple payloads being associated with a single

Key. If each Key/payload combination is stored as a separate value within a node,

then it is possible for a single Key to require up multiple nodes to store all of the

payloads associated with it. Not only is this a potentially large drain of space within

the tree, it could also require additional metadata to be stored and compared during

a query.

Bcagri made some modifications to the basic T-tree design to offset some of these

issues. Some of these changes include storing the maximum and minimum keys in

each node together on the same cache line and storing the data within the nodes

themselves in a cache-conscious manner. Duplicate Keys are stored in an auxiliary

binary search tree rather than storing duplicates within the T-tree itself. This also

allows for easy removal of all payloads associated with a single Key.

Frame

Team frame generally completed the benchmarks as one of the slower implemen-

tations, although never the slowest. However, in the Fill Memory instance of the

primary benchmark, frame's performance indicated that the implementation has a

relatively low overhead and scaled well for large data sets.

This implementation uses a variation of a cache-conscious CSS-B+-Tree, although

stays closer to the original concepts of CSS-trees in order to make full use of its

cache usage and query performance. The tree occasionally rebuilds itself while still



responding to requests to update the tree by keeping a list of pending inserts and

deletes. While this keeps the tree more balanced, it is likely also the cause of its

increased slowness for the All Memory instance of the primary benchmark.

Locking is per-index, although leaf-level locking was also implemented and can

be turned on by changing a single variable. Each granularity of locks use a standard

optimistic concurrency control system with logging, and performed similarly for all

of the benchmarks.

Deadlocks are detected using timeouts, which means that it will not perform well

under contention, such as in the Double Lookup benchmark. Also, because it does

not strip off common prefixes before inserting Keys into the CSS-tree, it does not

perform well for the vary-high and vary-low tests because it must reorder the tree

more often in an attempt to keep it balanced.

5.3.2 Optimization Analysis

All of the implementations submitted to the contest were optimized in part or in large

for the benchmarks used to compare and rate them. Some of these optimizations are

more effective than others, as seen by the varied results in Section 5.2.

One effective optimization is the use of a custom memory manager with one or

many memory pools, allowing for careful control over where and how the data is

organized. Not only does this help minimize fragmentation, it also allows some im-

plementations to lay out their data structures in a cache-conscious manner.

Another useful tactic is implementing optimistic locking. Many of the tests run

in the benchmark do not change the data stored in the indices, so multiple threads

should be able to access the same index without incident. While this does add some

bookkeeping overhead, the overall effect is still positive.

The choice of data structure has an effect on an implementation's performance

that has the potential to be much more drastic than many other design decisions.

As discussed in Section 1.3, there have been a number of different tree-like structures

proposed to be most effective for main-memory data storage. According to the results

of our benchmark, the most efficient design appears to be clement's hash table-based



system. However, that design is highly optimized for our specific benchmarking tests.

Of the more general solutions, dexter's prefix tree appear to run the fastest over our

benchmarks, although bcagri's T-trees performed admirably when not dealing with

multiple indices in the same transaction.

5.3.3 Conclusion

If a contest winner had to be chosen from this preliminary analysis, it appears that

clement's implementation would be the best choice. While it cannot properly handle

multi-index transactions, this was not explicitly mentioned as one of the original

requirements of the contest. It uses an order-preserving hash function to distribute

the data in each of the indices so that each Record can be accessed quickly, but

range searches are still easily supported. This handles all of the behavior required in

the original contest description quickly and efficiently, and without too much wasted

space.

Clement's code is highly optimized for the provided primary benchmark, which is

why we created the variations on the benchmark to stress some of the cases that were

not handled well. This will force clement's implementation (as well as other teams')

to be made more flexible before the final decision is made.

In any competition participants must optimize their implementations for the sup-

plied benchmarks. Creating benchmarks that will properly stress all of the different

aspects of a design is difficult, and given enough time and effort applied to a collec-

tion of varied benchmarks, participants will still find a way to take advantage of their

structure and assumptions.

In the future, the benchmarks provided during the development stage of the con-

test should cover a wider range of behavior so that participants cannot hone their

implementations too finely for one set of requirements. While the overall performance

may be decreased, the increased flexibility of the implementations is more important

so that the code produced can be used in other contexts.
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