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Abstract

In order to understand the e�ect of small scale forcing on turbulent 
ows and its implications on control,
an experimental investigation is made into the forcing of the inertial scales in the wall region of a turbulent
boundary layer. A wall-mounted resonant actuator is used to produce a local vortical structure in the
streamwise direction which is convected downstream by the boundary layer 
ow. The frequency associated
with this structure is governed by the resonant frequency of the device and falls in the range of the inertial
scales at the Reynolds number of the experiment (Re� � 1200). Single and multiple point measurements
have been made to determine mean and 
uctuating statistics as well as dual-point correlations. These data
can be used to infer changes in the structure of the near wall region of the boundary layer that are due to
the actuator forcing and subsequently, to construct transfer functions between the actuator and the 
uid
necessary for active control.

This report is the Dipl. Ing. Thesis of Thomas Lorkowski, supervised by Prof. Kenneth Breuer, and
submitted to the University of Stuttgart in December, 1996. For more inforation contact: breuer@mit.edu
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Chapter 1

Introduction

Coherent structures in turbulent 
ows are known to be important for turbulent transport. In recent years the
active control of such structures has been of considerable research interest for the purpose of drag reduction,
noise control, mixing enhancement, and other technologically important applications in aeronautics and
turbomachinery. One crucial aspect of the successful implementation of an active control scheme in a
turbulent 
ow is the robust understanding of actuator e�ects on the structure of the turbulent boundary
layer.

Several actuators have been proposed for such turbulent control. One of the most promising is a class
of \resonant structural actuators" [1, 2, 3] which introduce disturbances via the resonant vibration of a
controlled structure such as a cantileved beam or supported membrane. However, such actuators force
the 
ow at high frequencies (i.e. small scales) which are then \recti�ed" into larger scale disturbances by
viscosity.

In order to understand the e�ect of such small scale forcing on turbulent 
ows and its implications for
control, an experimental investigation is made on the forcing of the wall region of a turbulent boundary layer
using small-scale (high-frequency) resonant actuators. The research program involves the active control of
turbulent boundary layers to minimize turbulent pressure 
uctuations (responsible for structural vibrations
and noise production, and associated with turbulent drag production). This control will be accomplished
using wall-mounted sensors and actuators operating in an adaptive feed-forward control loop designed to
a�ect the statistics of the near-wall turbulent boundary layer in a controlled manner. One requirement for
the successful design of control algorithms is a clear understanding of the e�ect that the open-loop operation
of the actuator has on the turbulent 
ow. A series of actuators which are sized to interact with the turbulent

ow at a very small scale (1-3 viscous units in width, approximately 100 viscous units in length) have been
designed.

A brief review of the theoretical background on turbulent boundary layers and coherent structures is
presented in Chapter 2. The experimental setup and the utilized resonant membrane actuator are described
in Chapter 3. Implications on the 
ow statistics as well as the coherent structures when small scale forcing is
applied is discussed in Chapter 4 of this paper. The conclusions and an outlook towards the implementation
of the results into active feedback control are given in Chapter 5.
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Chapter 2

Background

2.1 Incompressible Turbulent Mean Flow

The basic equations of 
uid dynamics, namely the continuity equation and the Navier-Stokes equation
covering the momentum transport, also characterize turbulent 
ow. However, the mathematical complexity
of turbulence precludes exact analysis. Thus, two approaches are made to describe turbulent 
ows: statistical
theory, which is well developed and will be discussed brie
y later in this paper, and on the other hand
con�ning the analysis to mean 
ow parameters.

2.1.1 The Reynolds Equations

Following the idea of Reynolds (1895), it is assumed that the 
uid is in a random unsteady turbulent state.
Any variable Q(t) is resolved into a time-averaged mean value Q plus a 
uctuating value Q0, where by
de�nition,

Q = lim
T!1

1

T

Z t0+T

t0

Qdt; (2.1)

and

Q0 = lim
T!1

1

T

Z t0+T

t0

Q0dt = 0: (2.2)

Only incompressible turbulent 
ow with constant transport properties but with possible signi�cant 
uc-
tuations in velocity, pressure, and temperature is considered. Introducing a three-dimensional cartesian
coordinate system with x in the downstream direction, y normal to the wall, z in spanwise direction, and
the velocity components are u,v, and w respectively, this leads to:

u = u+ u0 ; p = p+ p0 ;
v = v + v0 ; T = T + T 0 ;
w = w + w0:

(2.3)

Substituting u, v, and w from Equations (2.3) into the incompressible continuity equation and taking the
time average, the result is

@u

@x
+

@v

@y
+

@w

@z
= 0; (2.4)

and
@u0

@x
+

@v0

@y
+

@w0

@z
= 0: (2.5)

The mean and 
uctuating velocity components each separately satisfy an equation of continuity.
The same procedure of substitution is attempted with the nonlinear Navier-Stokes equations. The mean

momentum equation is then complicated by a new term involving the turbulent inertia tensor u0iu
0

j . This
new term is never negligible in any turbulent shear 
ow and introduces nine new variables (the tensor
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components). Viewing the turbulent inertia as if they were additional stresses, the mean Navier-Stokes
equation is given by

�
D~v

Dt
= �~g �rp+r � �ij (2.6)

where

�ij = �

�
@ui
@xj

+
@uj
@xi

�
| {z }

laminar

� �u0iu
0

j| {z }
turbulent

: (2.7)

In a two-dimensional turbulent boundary layer (w = 0, @=@z = 0 ), the only signi�cant term reduces to
��u0v0 which is called turbulent shear stress, or Reynolds stress.

2.1.2 Two-Dimensional Boundary Layer Equations

As in laminar boundary layer analysis it is assumed that the boundary layer thickness �(x)� x, which leads
to the approximations:

v � u ;
@

@x
� @

@y
(2.8)

Adopting the two following relations, the mean pressure distribution obtained by the integrated y-momentum
equation with Bernoulli's relation at the edge of the layer, and the notation for total shear,

p = p1(x) � �v02 (2.9)

and

� = �
@u

@y
� �u0v0; (2.10)

Equations (2.4) and (2.6) reduce to the following two-dimensional turbulent boundary layer equations:

@u

@x
+

@v

@y
= 0; (2.11)

and

u
@u

@x
+ v

@u

@y
= U1

dU1
dx

+
1

�

@�

@y
(2.12)

It is assumed that the freestream conditions U1(x) are known and the boundary conditions are met, i.e. no
slip, at the wall: u(x; 0) = v(x; 0) = 0, and free-stream matching: u(x; �) = U1(x).

2.1.3 Integral Relations for the Turbulent Boundary Layer

The integral relations are formed by using continuity to eliminate v(x; y) in favor of u(x; y) and then inte-
grating the resulting equations with respect to y across the entire boundary layer. Foremost is the integral
momentum relation of von K�arm�an (1921) which gives the di�erential equation

d�

dx
+ (2 +H)

�

U1

dU1
dx

=
�w
�U2

1

=
Cf

2
(2.13)

where

momentum thickness � =

Z
1

0

u

U1

�
1� u

U1

�
dy;

shape factor H =
��

�
;

displacement thickness �� =

Z
1

0

�
1� u

U1

�
dy:
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For a 
at plate, where a zero pressure gradient is usually assumed at zero angle of attack, Equation (2.13)
reduces to

Cf = 2
d�

dx
: (2.14)

Prandtl (1927) found a relation between the friction coe�cient Cf and � by assuming that the relations
found in pipe-
ow experiments, where the skin friction �w can easily be determined by the pressure drop,
are approximately applicable to plates. This leads to a series of power-law expressions:

Cf � 0:0592Re
�
1
5

x ;

�

x
� 0:37Re

�
1
5

x ; (2.15)

�

x
� 0:036Re

�
1
5

x :

Rex, together with another important Reynolds number based on the momentum thickness �, are de�ned
by:

Rex =
U1x

�
; Re� =

U1�

�
: (2.16)

2.1.4 Semitheoretical Considerations

Experimentally-found velocity pro�les of turbulent boundary layers are divided into a three-layer concept.
The inner layer, closest to the wall, is dominated by viscous shear, whereas the outer layer is dominated by
turbulent shear. Between these two layers, in a third layer (the so called overlap layer) both types of shear
are important.

For the inner layer, Prandtl proposed that the mean velocity depends only on local properties, that is
the wall shear stress �w, the 
uid physical properties, and the distance y from the wall:

u = f(�w; �; �; y): (2.17)

Von K�arm�an suggested for the outer layer, that the wall tends to act as a source of retardation, reducing the
local velocity u below the freestream value in a manner which is independent of viscosity , �, but dependent
upon the wall shear stress and the distance y:

u1 � u = f(�w; �; y; �): (2.18)

The overlap layer is characterized by ful�lling both the inner and outer law, and the exact form can be
determined by dimensional analysis. The proper nondimensionalization of the inner law is

u

u�
= f

�yu�
�

�
; (2.19)

where

u� =

r
�w
�

; (2.20)

and for the outer law
u1 � u

u�
= g

�y
�

�
: (2.21)

The variable u� has units of velocity and is called the skin-friction velocity. The exact forms of the functions
f and g are not speci�ed yet. However, it is assumed that in the overlap layer both laws are valid, hence

u

u�
= f

�
�u�
�

y

�

�
=

u1
u�

� g
�y
�

�
: (2.22)
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Mathematically it can be shown that this can be true only if both f and g are logarithmic functions. In the
overlap layer, using inner variables, the relation is

u

u�
=

1

�
ln

yu�
�

+ C: (2.23)

Experimental data shows that (�;C) � (0:4; 5:0). It is convenient to introduce dimensionless inner variables,
denoted by a superscript +:

x+ =
x

l�
; y+ =

y

l�
; z+ =

z

l�

u+ =
u

u�
; t+ =

t

t�
(2.24)

with
l� =

�

u�
; t� =

�

u� 2
(2.25)

where l� is called the viscous length scale and t� is the inner time scale. The extent of this logarithmic
layer is approximately 30 � y+ � 500. Above that region the outer layer with its turbulent shear becomes
dominant and its form is highly dependent on the pressure gradient dp=dx.

Below y+ = 30, the viscous shear becomes dominant and the logarithmic law is not an appropriate way to
describe the pro�le. Very close to the wall, where u; v; u0; v0 ! 0, the shear stress � given in Equation (2.10)
is reduced to

� = �
@u

@y
� �u0v0| {z }

=0

� �w = const: (2.26)

Integrating Equation (2.26) leads to the streamwise velocity component u as a linear function of the distance
to the wall y given by

u =
�w
�
y =

u2�y

�
(2.27)

or
u+ = y+: (2.28)

The linear sublayer extents approximately up to y+ = 10. As a summary Figure 2.1 shows the semitheoretical
velocity pro�le of a turbulent boundary layer with the linear sublayer and the adjactent overlap layer following
a logarithmic law.

100 101 102 103
0

5

10

15

20

25

y+

u+

u+ = y+  (Eq. 2.28)

u+ =       ln y+ + 5  (Eq. 2.23)
1

0.4

Figure 2.1: Semitheoretical mean velocity pro�le of a turbulent boundary layer

A much more detailed discussion on turbulent boundary layers, including the energy equations and the
resulting thermal boundary layer theory, can be found for example in [4, 5].
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Figure 2.2: Pro�les of the �rst four statistical moments of the streamwise velocity in a turbulent boundary
layer (x+ = 60, z+ = 0, unforced)

2.2 Statistical Theory of Turbulence

2.2.1 Fluctuation Analysis

Besides the knowledge of the mean velocity pro�le discussed in the previous section, it is also import to know
the distribution of the 
uctuating components across a turbulent boundary layer. Con�ning the discussion
to the streamwise velocity 
uctuation u0, Equation (2.2) already showed that u0 = 0. The following equation
de�nes the moments up to order n = 4:

 
lim
T!1

1

T

Z t0+T

t0

u0
n
dt

! 1
n

=
�
u0n
� 1
n

=

8>><
>>:

0 n = 1
urms n = 2
uskew n = 3
uflat n = 4

(2.29)

The second order moment, better known as the root-mean-square
p
u02 (rms) is convenient to measure in

experimental investigations and is directly related to such important statistical properties as the standard
deviation and probability density distribution of u0.

The higher order moments are utilized for the de�nition of skewness uskew=urms and 
atness uflat=urms.
Figure 2.2 shows the measured distribution of these four moments across the boundary layer.
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Figure 2.3: Sketch of the attributes of coherent structures in turbulent 
ow

2.2.2 Coherent Structures in Near-Wall Turbulence

Turbulence appears to be entirely random motion without any possibility to predict the development of 
ow
properties. However, 
ow visualizations performed by Kline et.al. [6] revealed the existence of coherent
structures in wall bounded turbulent 
ow. In the viscous sublayer the near wall 
ow appears to be made of
neighboring regions of high and low velocity (in respect to the mean velocity). These streaks were presumed
to be the result of elongated streamwise vortices very near the wall.

If low-speed 
uid is lifted up by statistical means into the bu�er region, subsequent oscillation and violent
breakup into smaller scales (bursting) is coupled to a large part of turbulent production. The variable integral
time averaging (VITA) technique developed by Blackwelder and Kaplan [7] is useful to detect these coherent
structures in the shear-layer. A bursting event is considered to occur when the short-time variance of the
velocity signal exceeds a preset threshold level of the long-term variance. The large-scale organized shear
layer structures that evolve out of the lift-up are inclined towards the wall and relatively stable over time
and space. Figure 2.3 shows a sketch of the the attributes such as inclination angle and convecting speed
of coherent structures in turbulent boundary layer 
ow. The low-speed 
uid lifted up into outer regions is
denoted by a minus sign.

Experimental investigations by Johansson, Alfredsson and Eckelmann [8], utilizing two hot-wire probes
and the VITA conditional sampling technique for mapping the 
ow �eld, resulted in a detailed description of
these coherent structures. The maximum inclination angle � was found to be 20� in the bu�er region. The
streamwise extent of the coherent structures is about 100 l�, and they retain their nature over a traveling
distance of at least 500 l� with an almost constant propagation speed uc = 13u� up to y

+ = 30. The coherent
structures were found to be essentially con�ned within the near-wall region (up to y+ � 100). Johansson,
Alfredsson and Kim [9] found in numerical simulation a slightly lower propagation speed of 10:6u� but
con�rmed the experimental results. The spanwise spacing of these structures is widely agreed to be about
100 l� [10].

Since these coherent structures play a major role in turbulence production and transport, the sound
understanding of the evolution of these structures, especially when being actively manipulated, could lead
to active control schemes for turbulence reduction.
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Chapter 3

Experimental Setup

All experiments supporting this research were performed in the Low Turbulence Wind Tunnel Laboratory
in the Department of Aeronautics and Astronautics at the Massachusetts Institute of Technology.

3.1 Wind Tunnel and Flat Plate

The primary apparatus used to support this research was an open circuit wind tunnel shown in Figure 3.1
[11]. The tunnel is comprised of a 16:1 contraction, followed by an interchangeable test section, di�user,
and fan. Several 
ow straightening devices have been installed to improve the quality of the 
ow entering
the test section. Bell shaped surfaces were included on three sides of the inlet to reduce inlet separation.
A honeycomb structure followed by seamless screens inside the contraction reduced longitudinal and lateral
velocity 
uctuations.

A precision aluminum 
at plate was positioned vertically in the test section and fastened to the 
oor and
ceiling using support brackets (Figure 3.2). The x-direction is de�ned positive downstream, the y-direction
normal to the plate, and the z-direction is in spanwise direction, de�ned positive towards the 
oor. A sharp
leading edge extension was attached to the front end of the plate and a trailing edge 
ap was attached to
the downstream end to adjust the pressure gradient along the plate. At �ve locations along the center line,
Plexiglas plugs could be removed to hold the actuator equipment. The 
ow was tripped utilizing a Velcro
tape stretched spanwise across the plate 10 cm from the leading edge.

A stepper-motor driven, programmable, three-axis traversing mechanism was installed in the test section
for precise and automatic placement of 
ow measuring instrumentation. The x-traverse provides travel up
to 0.70 m, the z-traverse could be positioned within �0.35 m from the centerline of the 
at plate. Both the
x- and z-traverse provided a 0.007 mm resolution. The y-traverse provides positioning up to 0.10 m normal
to the 
at plate and was geared to give a 0.004 mm resolution [11].

3.2 Membrane Actuator

The actuator device utilized in this study follows the original design of Glezer [2] and incorporates ideas from
Jacobson and Reynold [1]. A schematic of the actuator is shown in Figure 3.3. A thin membrane 25.4 mm in
diameter was made using a 80 �m thick brass shim bonded at its edges to steel washers. A small rectangular
Nickel plated piezo-ceramic was bonded (using epoxy and silver paint) with one short edge rigidly �xed to
the edge support. The membrane makes up an end wall of a closed sub-surface cavity. The opposite wall,

ush mounted to the plate, is rigid with an exit slit 80 �m wide and 8 mm long (1:5 � 150 l�). The slit
orientation was with its longer side parallel to the main 
ow. Working at its resonant frequency (500 Hz,
0.10 f�), the oscillating pressure in the cavity results in the generation of a pair of counter-rotating vortices
introduced by the jet emerging into the 
ow above the exit slit. Due to the closed cavity, the actuator has
an overall zero mass 
ux.
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Figure 3.4: Integral jet velocity ujet over forcing voltage amplitude at actuator resonant frequency fr =
500 Hz = 0:1f�

With the absence of a outside 
ow, the performance of the actuator is shown in Figure 3.4 with the
time averaged jet velocity ujet over the input voltage. The emitting jet could reach velocities which were
quite large in comparison to the velocities observed in the near wall region of a turbulent boundary layer,
yet the actuator geometry was not optimal. A complete discussion of the 
ow modeling and optimization of
membrane actuators is given in [3].

3.3 Instrumentation and Data Acquisition

Custom built constant temperature hot-wire anemometer were utilized to measure the streamwise velocity
component. The frequency response of the hot-wires was more than 15 kHz, much higher than needed for the
frequency range studied. The output voltage could be adjusted through di�erent gain settings for matching
the �5 Volts range of the A/D converter.

The hot-wire probes consisted of a single platinum-rhodium wire, with a length to diameter ratio of
approximately 200, welded between two prongs. The probe was mounted to the end of a long carbon �ber
sting. The length of the sting was su�cient to place the probe out of the disturbed 
ow near the traverse.
Each new probe was calibrated prior to a test series. Anemometer voltages were calibrated with pressure
transducer voltages using a cubic polynomial. Drift from the calibrated velocities was checked periodically
and the probe was recalibrated when necessary.
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Data acquisition and reduction was performed in real time using an IBM-compatible PC-486. While
acquiring a new data set through a 12 bit A/D converter, the signal conditioning and updating of the
statistics of the previous set took place.

For acquiring the cross-correlation data presented in Section 4.3, a second, stationary hot-wire probe
was �xed to the plate with the hot-wire approximately at y+ = 15. The signal of both probes was then
conditioned using a hardware high-pass �lter at a cut-o� frequency of 20 Hz. This enabled us to study only
the correlation of the coherent structures and eliminated low-frequency correlations introduced for example
by small 
uctuations in the mean velocity.

3.4 Statistical Considerations

In order to study the e�ect of continuous forcing on a turbulent 
ow, it is necessary to consider long term
average properties. According to classical theory of random data [12], average quantities converge like 1=

p
N

where N is the total number of sampled data points. However, this is only true for uncorrelated data points.
In a turbulent boundary layer, the correlation time is typically of the order of 100 t� implying a sampling
frequency (for this 
ow) of approximately 50 Hz. However, since the interest is also in capturing time-series
data, a higher sampling frequency is required. A preliminary experiment was thus made to determine the
appropriate number of data points necessary to ensure the accurate convergence of statistics using correlated
data samples. As an example, the convergence of the average velocity as a function of total sampling time,
T , is shown in Figure 3.5.
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Figure 3.5: Convergence of the mean velocity at sampling frequencies fs = 7:5 kHz (solid line) and fs =
15 kHz (dashed) over sampling time T

Each curve represent the maximum absolute error from a total of ten runs taking approximately 500
seconds at two di�erent sampling frequencies (7.5 kHz and 15 kHz). The measured values converge towards
the \real" average (which was assumed to be the average of all ten runs at the maximum value of T ). As
can be seen, at these high sampling frequencies (relative to the \uncorrelated frequency" of 50 Hz), the error
is essentially independent of the sampling frequency, but only depends on the total sampling time. On the
basis of these results, the data presented is derived from one million data points sampled at 5 kHz and the
errors in the mean were observed to be less than 0.08 u� .
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Chapter 4

Results and Discussion

The actuator, 
ush mounted with the 
at plate, was placed in a zero pressure gradient turbulent boundary
layer 1:05m downstream of the 
ow tripping device. With a constant free-stream velocity U1 = 6 m/s
for all experiments, the Reynolds number based on the momentum thickness at the actuator location was
Re� � 1200. The measured pro�les of the �rst four statistical moments of the turbulent boundary layer
were already shown in Figrure 2.2. They are in good agreement with standard boundary layer values [13].
The \wake" in the outer region of the mean velocity pro�le indicates a slightly negative, favorable, pressure
gradient along the 
at plate.

The inner length scale was l� = �=u� � 55�m (where � is the kinematic viscosity) and u� = 0:28 m/s is
the friction velocity which are used for non-dimensionalization. The skin friction velocity was determined in
a previous experiment using wall mounted shear-stress sensors [14].

With the hot-wire probe at one position, �rst the unforced 
ow statistics were measured and then,
switching the actuator on, the forced case data was acquired. The actuator was run at a continuous forcing
amplitude of 55 Volts at its resonant frequency throughout all experiments which resulted in a jet velocity
of approximately 1u� . The locations referred to in the results are in a local coordinate system having its
origin at the downstream end of the actuator.

4.1 Change in Turbulent Flow Spectrum

Figure 4.1 shows frequency spectra of the streamwise velocity component taken centerline at x+ = 60 and
y+ � 15 downstream of the actuator end. The spectrum of the unforced case (solid line) corresponds well to
those found in literature of turbulent 
ows. Forcing the boundary layer at the actuator's resonant frequency
of 500 Hz (0:10 f�) takes place directly in the inertial range of the 
ow, which is given around the �5=3-slope
of the spectrum [15]. In the forced case (dashed line) spectrum, the original forcing frequency can be seen
only by a small remaining peak, while dissipation of the forcing energy into a wide frequency range can
be observed. The energy cascades towards break-up into even smaller scales (higher frequencies) as well as
introducing large scale structures in the range of the typical coherence and bursting frequencies.

4.2 E�ect on Fluctuation Statistics

As an example of the e�ect of the forcing actuator on the pro�les of the �rst four statistical moments,
Figure 4.2 shows the near wall pro�les of the undisturbed 
ow (solid line) and the forced (dashed) case
at x+ = 60 downstream of the actuator slit centerline. The unforced mean velocity pro�le was utilized
to determine the unknown initial y-location of the hot-wire probe. The linear pro�le in the sublayer was
extrapolated towards the wall and the data was shifted accordingly in the y-direction to match the no-slip
conditions at the wall.

The location around y+ = 10:::20 is of particular interest, since in the unforced case the maximum peak
in rms is approximately at y+ = 12. The steep decrease in the skewness and the minimum in 
atness are
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Figure 4.1: Frequency spectrum of the mean streamwise velocity u for the unforced (solid line) and forced
(dashed) case at x+ = 60; y+ � 15; z+ = 0

also approximately located at this position. The same identity of location is true for the forced case with
the only di�erence that now the location is at y+ = 20, where in addition the maximum change in mean
velocity is present. Around that position the forced case pro�les approach these of the unforced case.

Near the wall it is important to note that the two pro�les almost match, indicating that the displacement
at higher values of y+ is not due to separation of the 
ow from the wall when being forced (which is blowing
into and with it destabilizing the 
ow), but probably due to the vortical structures induced by the actuator.
It seems that the pro�les themselves keep their approximate shape but are stretched in the direction normal
to the wall. Since the area of maximum turbulent production is often associated with the location of the
maximum peak of the second-order statistical moment (rms), at least the position of this production is
in
uenced. Since only continuous forcing was applied to the 
ow, an e�ect on the turbulence intensity was
not expected in a dramatic way. The intensity of the rms-value is decreased in one area and increased in
another, and the overall e�ect might cancel out.

For further discussion only the absolute change (in contrast to relative changes), i.e. the di�erence be-
tween the forced and the unforced case, is utilized to characterize the e�ect of the actuator. Thus, an increase
in any 
ow statistics when forcing is applied is given by positive, a decrease by negative numbers. For a def-
inition of the velocities used to characterize the statistics (i.e. urms, uskew, and uflat) see Equation (2.29).
The pro�les of the �rst four statistical moments shown in Figure 4.2 might be better to understand the
physics. However, the contour plots presented next are helpful to study the spanwise extent of the area
which is a�ected by the vortical structures.

Figures 4.3 to 4.5 show contour plots of the changes in 
uctuation statistics in a yz-plane perpendicular
to the streamwise direction. The original grid for data acquisition consisted of 30 locations in y by 9 locations
in z on only one side of the actuator centerline. Previous scans (in z-direction only, at di�erent heights y)
showed that the 
ow �eld is symmetrical with respect to the centerline. For better understanding the data
matrix was re
ected at the z+ = 0 axis. One row of zeros was added to the data matrix to match the
boundary condition at the wall and a two-dimensional Gaussian �lter was then applied to smooth the data.

The absolute change of the normalized mean velocity �u+ from the unforced to the forced case at two
di�erent positions downstream of the actuator is shown in Figure 4.3. The decrease in mean velocity (at
y+ � 20; z+ = 0) and the increases, on either side in spanwise direction (at y+ = 5:::10; z+ = �(20:::40)),
with only half the magnitude are indications of two counter-rotating streamwise vortical structures produced
by the jet emitting from the actuator slit. Low-speed 
uid is lifted upwards by the two vortices at the
centerline and high-speed 
uid is transported to lower speed regions on the outer side of the vortices. The
diameter of the vortices is estimated to be approximately 20 l� at the end of the actuator slit.
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Figure 4.2: Near-wall pro�les of the �rst four statistical moments of the streamwise velocity ( x+ = 60,
z+ = 0; solid line: unforced, dashed line: forced)

Jacobson, using an actuator with similar characteristics (in a laminar boundary layer), described vortices
with about the same dimensions [1]. The emitting jet from the actuator slit with a width of only 1:5 l�

induces two vortices which are much larger in diameter. The small scale forcing with high frequencies is
clearly recti�ed into larger scales.

As can be seen by the location of the maximum negative change, the vortical structures are lifted up into
outer regions of the boundary layer while convecting downstream. The inclination angle of the vortices was
calculated to be �v � 5� against the wall. The vortices are also diverging in spanwise direction, which can
be explained by potential theory in which two counter rotating vortices tend to separate. The reduction in
magnitude of the changes in mean velocity is due to dissipation caused by the mixing motion of the turbulent

ow. Yet, the vortical structures are quite stable. The e�ect of the vortices could clearly be seen as far
downstream as 250 l� from the actuator end.

Figure 4.4 shows the absolute change �(
p
u02=u�) (change in rms) from the unforced to the forced

case at two downstream positions. The �eld structure is more complex, however the upwards convection
and dissipation described previously can also be observed. There are three distinct areas each for increase
and decrease of the rms value. Worth noting is, that the decreased areas are all located on one level at
y+ � 15, where in the unforced, regular turbulent boundary layer the maximum rms is located and with it
the maximum production of turbulence.

Figure 4.5, where the change in skewness �(uskew=urms) is shown, indicates clearly a very distinct area
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Figure 4.3: Contour plots of the absolute change in normalized mean velocity �u+ from the unforced to the
forced case at x+ = 10 (top) and x+ = 60 (bottom)

of the actuator e�ect on the skewness. The high density of contour lines implies large changes, which are
towering out of a plane of almost zero change. However this is mainly due to the very steep gradient in
the unforced skewness pro�le at y+ � 12 (see Figure 4.2). The near wall edge of the a�ected area therefore
stays almost constant, as well as the intensity of change. A lift-up in the change of the skewness can only
be seen by the increased size in y and a more moderate roll-o� towards higher y+. However, the spanwise
extent does not depend upon the steep gradient in the skewness pro�le. The slope is less steep in spanwise
direction but shows clearly the limited area of in
uence.

As a summary, Figure 4.6 shows the change of all four statistical moments at the centerline (z+ = 0)
and at di�erent locations downstream. The decrease in magnitude as well as the upward displacement when
going downstream can be seen clearly. Although the data presented furthest downstream is at x+ = 140 the
e�ect of the vortical structures could be seen as far downstream as x+ = 250. The inclination angle �v � 5�

presented earlier in this paper was calculated using the displacement of the maximum negative change in
mean velocity in y-direction over streamwise position x+.

4.3 Cross-Correlation Measurements

The production of turbulence is attributed to the presence of coherent structures emerging from low-speed

uid being lifted up into higher speed 
ow as discussed in Section 2.2.2. To investigate the e�ect of small scale
forcing on these coherent structures, space-time correlation measurements were performed. One hot-wire
probe was kept at a �xed position on the centerline x+ = 60 downstream of the actuator at about y+ � 15.
The location in y-direction was determined as described in 4.3.2. Since the �xed hot-wire couldn't been
calibrated, cross-correlation measurements were only done with the voltage output. However, both hot-wires
had the same dimensions and with it the same voltage output. It is therefore assumed that the response of
both probes, the approximate range and statistics, was roughly matched. The second, free hot-wire probe
was placed on the traverse, and could be used for velocity measurements at all locations. The separating
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(bottom)

distance between the probes is denoted by �x+, �y+, and �z+ for the three directions in space.

4.3.1 Correlation in Streamwise Direction

As a �rst approach towards the e�ect on coherent structures by forcing the turbulent boundary layer, the
cross-correlation in streamwise direction was investigated. Initially the two hot-wire probes were positioned
close together (�y+ � 12) with no streamwise separation as shown in Figure 4.7. The free probe was then
traversed upstream in steps of approximately 10 l�. The blockage of the free (upper) probe was realized
but not found to be signi�cant since the correlation curves show no evidence of reduced correlation or other
disturbances.

One example of the cross-correlation measurements made in streamwise direction is shown in Figure 4.8,
with �x+ = 10, to compare the unforced (solid line) and the forced (dashed line) case. The location �+max of
the peak value of (Ruu)x is shifted to a lower value in the forced case. This is due only to the separation of
the hot-wires in y and already indicates a change in the inclination angle of the coherent structures, better
seen in the cross-correlation in y-direction. The magnitude of the maximum correlation value stays almost
constant and the shape of the correlation curve is not altered.

Cross-correlation data of the unforced and forced case at several separating distances �x+ is given in
Figure 4.9. Compared to the results in y- and z-direction discussed later, the maximum peak values of
(Ruu)x decreases only slightly with increasing �x+ and also stay almost constant in magnitude when being
forced. The peak moves to the right with increasing �x+.

Plotting the o�set location �+max of the peaks over hot-wire separation distance �x+ as shown in Fig-
ure 4.10 leads to the convection speed of the coherent structures. The streamwise convection speed is
determined by the slope of the linear �+max-�x+-lines well �tting the measured data. The fact that �+max 6= 0
at �x+ = 0 (and the maximum Ruu(�x+ = 0) 6' 1 in Figure 4.9) is due to the initial positioning of the two
hot-wire probes as shown in Figure 4.7. The separation of the two hot-wires in y-direction was compensated
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Figure 4.5: Contour plots of the absolute change of the normalized third-order statistical moment
�(uskew=urms) (skewness) from the unforced to the forced case at x+ = 10 (top) and x+ = 60 (bottom)

for by subtracting the time delay between the two signals at the �rst, initial position, which places the �xed
hot-wire to a virtual position at the same height as the free hot-wire probe of about y+ � 25. This procedure
also excludes the possible change of the inclination angle of the coherent structures when being forced.

Both the unforced and forced case show the same slope leading to a convection speed of uc = 10:8u� at
y+ � 25. The convection speed falls within the range of these found by Johansson, Alfredsson and Kim [9],
who determined a slightly lower speed of 10:6u� in numerical simulations, and the convection speed of 13u�
found experimentally by Johansson, Alfredsson and Eckelmann [8]. Johansson, Alfredsson and Eckelmann
also found in their experiments that uc stays almost constant up to y+ � 30. It is therefore assumed for the
following discussions that the convection speed stays constant over the y+-range studied in this paper for
both the unforced and forced case.

4.3.2 Correlation in y-direction

Cross-correlationmeasurements in y-direction were performed in a similar way. The initial position of the two
hot-wire probes was as described in the previous section, with the free probe approximately �y+ = 12 above
the stationary probe. The free hot-wire probe was then traversed in y-direction in steps of approximately
4 l�.

Figure 4.11 shows (Ruu)y for a single value �y+ = 12 to compare the unforced (solid line) and the
forced (dashed line) case. Again, as found in the streamwise correlation, the maximum correlation values
in the unforced and forced case are almost the same and the shape of the graph is not altered. However, a
shift to the left of the peak can clearly be seen when forcing is applied. There is no geometrical problem
now concerning the positions of the hot-wire probes. The probes are in line at the same x- and z-location.
Since the convection speed uc is considered to be constant (as found in the previous section), this time
shift is associated with a change of the inclination angle of the coherent structures. The negative time-shift
indicates, with the hot-wire probes at the same location when the actuator is switched on, that with a now
smaller o�set of the peak the structure must be inclined with a higher angle against the wall in the forced
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Figure 4.6: Absolute change of the �rst four statistical moments from the unforced to the forced case at
centerline (z+ = 0). � x+ = 10, � x+ = 60, + x+ = 140

case.
Figure 4.12 shows a set of cross-correlation data for the unforced and forced case for several �y+.

At higher values of j�+j the \tails" of the correlation graphs don't match as in the streamwise direction
(Figure 4.8). The decay of the correlation with increasing �y+ is much faster and is shown explicitly in
Figure 4.13 where the maximum correlation values are plotted over the wire separating distance.

These data points �t to an exponential decay law (Ruu)y / e�k�y+ , where k = 0:0554. All correlation
data presented was non-dimensionalized with the auto-correlation of the �xed hot-wire probe only. Thus, the
exponential curve reaches a (Ruu)y ' 1 when both hot-wire locations fall together (�y+ = 0). This procedure
also determined the initial separating distance between the two hot-wires. With the known position of the
free probe (given by the calibrated velocity measurement and look-up of the appropriate location in y from
the velocity pro�les) the initial separating distance, and with it the y-location of the stationary hot-wire
probe could be determined.

In Figure 4.14, where the location �+max of the peak values of (Ruu)y is plotted versus the wire separating
distance �y+, the data was shifted accordingly in y-direction. The linear �t of the unforced data then goes
through zero. As can be imagined, the time shift between two signals at (virtually) the same location should
be zero, and the cross-correlation therefore represents the auto-correlation at that position.

With a given constant convection speed uc from the previous section, the average inclination angle of the
coherent structures at the height between the two hot-wire probes is given by � = tan�1(uc�

+
max=�y+). For

the unforced case, the inclination angle stays almost constant at �u � 20� up to y+ � 50, supported by the
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Figure 4.8: Comparison between unforced (solid line) and forced (dashed) case cross-correlation in streamwise
direction for �x+ � 10

unforced �+max-�y+-line well �tting the measured data. Johansson, Alfredsson and Eckelmann [8] found in
their experimental investigations a maximum inclination angle of 20� in the bu�er region at y+ = 20.

Keeping the two hot-wires at the same position (i.e. �y+ = const:) and switching the actuator on,
the location of the maximum (Ruu)y experiences a shift to a lower �+max from the unforced to the forced
case. This time shift is present over a wide range of �y+. It indicates an increase of the inclination angle
when forcing the turbulent boundary layer. With geometrical considerations as shown in Figure 4.15 , the
inclination angle is found to be increased more close to the wall and less increased at higher y+, approaching
the unforced inclination angle. The forced inclination angle ranges from approximately 30� where the probes
are close together (�y+ � 15) to an inclination angle of only 22� at �y+ � 35. The decrease in the change
of the inclination angle in the forced case might also be attributed to an averaging e�ect when measuring
across a wider separation distance of the hot-wires.

Figure 4.16 shows the peak value of (Ruu)y over its location �+max. The forced case peaks are always at
a lower �+max suggesting a breakup of the coherent structures. This is supported by the spectra shown in
Figure 4.1 where the forced case spectrum shows the presence of more dissipation.

4.3.3 Correlation in Spanwise Direction

For investigating the spanwise cross-correlation, the free hot-wire probe was positioned next to the �xed
probe at the same x+ = 60 and y+ � 15. The given spanwise distances �z+ are taken from centerline to
centerline of the hot-wire probes, hence the relatively large initial �z+ � 24. The free hot-wire probe was
traversed in steps of approximately 4 l� on one side of the actuator centerline only. The spatial resolution is
restricted by the hot-wire length (about 10 l�) since an averaging e�ect is probably given.

One example (�z+ = 35) to compare the unforced and forced case correlation is given in Figure 4.17.
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Figure 4.12: Cross-correlation in y-direction normal to the wall for �y+ � 12:::38 in steps of approx. 4 l�;
a) unforced case, b) forced case
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Figure 4.13: Maximum correlation value in y-direction normal to the wall (Ruu)y;max over wire separation
distance �y+
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Figure 4.14: Location of maximum cross-correlation �+max in y-direction normal to the wall over wire sepa-
ration distance �y+
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Figure 4.15: Geometrical considerations to determine the change in inclination angle � of the coherent
structures when being forced (solid line: unforced, dashed line: forced)
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Figure 4.16: Maximum correlation value (Ruu)y;max in y-direction over correlation time �+
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Figure 4.17: Comparison between unforced (solid line) and forced (dashed) case cross-correlation in spanwise
direction for �z+ � 35

The unforced case (solid line) correlation shows no speci�c features except that the peak of the maximum
correlation is at a negative �+. The forced case (dashed line) however shows reduced correlation and exhibits
two peaks, which are almost symmetrical with respect to �+ = 0.

Plotting several cross-correlation data in z-direction for the unforced and forced case (Figure 4.18) shows
the development of this behavior. At smaller values of �z+ both cross-correlations, the unforced and forced
case, exhibit only one peak and the location is almost perfectly at �+max = 0. Increasing the distance between
the two hot-wires, the peak in the unforced case correlation is shifted to negative �+. The correlation curves
are then observed to develop two maxima which are symmetrical with respect to �+ = 0.

However, two very interesting phenomena occur: the peak of the correlation in the forced case does not
shift to one side before separating into two peaks, which are in addition developing earlier, that is at a lower
�z+. The forced case cross-correlation (at small �z+) is in general smaller in absolute magnitude than in the
unforced case. As in the y-direction, the correlation decreases rapidly with increasing wire separation �z+

and the \tails" at higher j�+j are spread further apart. The spanwise extent (or diameter) of the coherent
structures can be estimated by the �z+ for which the correlation at �+ = 0 �rst crosses zero. For both the
unforced and forced case this is true at �z+ � 50. As shown earlier (in the contour plots of the changes in
mean velocity Figure 4.3) the diameter of one introduced vortex (at the same downstream location where the
correlation data was taken, i.e at x+ = 60) was found to be about 20...30 l�. An averaging e�ect across the
hot-wire length might account for this di�erence. However, the numbers are of the same order of magnitude
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Figure 4.18: Cross-correlation in spanwise direction for �y+ � 24:::64 in steps of approx. 4 l�; a) unforced
case, b) forced case

and similar to those found by Johansson, Alfredsson and Kim [9].
In Figure 4.19, the locations �+max of the maximum correlation value is plotted versus wire separation

distance �z+. With the same technique used to calculate the inclination angle � of the coherent structures
against the wall, the sideways angle (or yaw angle) of the structures (see Figure 2.3) is found to be �u � �8�
against the streamwise centerline to both sides. The structures can be tilted to one side or the other, hence
the two peaks in the correlation curves. Forcing the 
ow increases this angle slightly. A separation into two
peaks can be seen �rst at �z+ � 42 for the unforced case, and �z+ � 35 for the forced case.

The slightly increased yaw angle of the coherent structures when being forced could explain the earlier
detection of two peaks in the spanwise correlation. The lower correlation peak values in the forced case
suggest that the forcing breaks up the existing structures. This break-up is also supported by the forced case
spectrum presented earlier. Thus, the coherent structures, and with them the production of turbulence, is
directly in
uenced by the actuator.
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Figure 4.19: Location of maximum cross-correlation �+max in spanwise direction over wire separation distance
�z+
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Chapter 5

Conclusions and Outlook

Small-scale forcing of a turbulent boundary layer utilizing a resonant membrane actuator was investigated.
The emitting jet from the actuator exit slit introduced two counter-rotating vortical structures convecting
downstream with the main 
ow. The e�ect on the 
ow statistics as well as the coherent structures present
in turbulent 
ow was studied. Hot-wire anemometry and two-point space time correlation measurements
were performed to characterize the 
ow �eld.

Forcing took place at the actuator's resonant frequency which falls within the inertial range of the
turbulent 
ow. Spectrum analysis showed that the forcing energy is distributed over a wide frequency range.
In the forced case spectrum, break-up into even smaller scales was observed. More important however is the
introduction of larger scale structures by the very small jet.

Continuous forcing of the turbulent boundary layer has an signi�cant e�ect on the 
uctuations statistics.
The transport of 
uid packets in the near wall region by the two counter-rotating vortices could be examined.
Further, a spatially limited e�ect on the skewness and an e�ect on the rms-distribution was found. Flow
�eld mapping at several downstream location showed the dissipation due to turbulent mixing. Decreasing
magnitude of the e�ects as well as its divergence in spanwise and y-direction was observed.

A well-de�ned and repeatable in
uencing e�ect was also examined on the coherent structures. For the
unforced case, their properties, such as inclination angle and propagation speed, were in good agreement
with those found in literature. Forcing the turbulent boundary layer showed no e�ect on the propagation
speed, it stayed constant at uc = 10:8u� . The inclination angle however has been increased and the coherent
structures were bent into a kind of sausage-shaped form. The inclination angle of the coherent structures
was found to be increased to � � 30� close to the wall and approaching the unforced case inclination angle at
higher y+. The yaw angle was also slightly increased. The detection of two peaks in the spanwise correlation,
attributed to the sideways orientation of the structures, was earlier in the forced case. Reduced correlation
in spanwise direction suggests a break-up of the coherent structures which is additionally supported by the
characteristics of the forced case spectrum.

Since coherent structures are coupled with a major part of turbulence production, small-scale forcing
is considered to be a good approach for turbulence control. Direct e�ects on these structures could be
clearly seen. However, in this study the performance for turbulence reduction is far from being e�ective.
For example a decrease in rms of only about 5% has been examined at some locations. The increase in the
near-wall inclination angle of the coherent structures when being forced could be followed by a reduction in
wall shear stress.

Continuous forcing might not be optimal, however it can lead to a good understanding of the changes
in turbulent boundary layer 
ow. Amplitude modulation and di�erent exit slit geometries should be ex-
amined in future investigations. The more advanced technique of upstream detection of structures worth
in
uencing and feed-back control of the performance of the actuator with downstream sensors is currently
investigated and shows �rst promising results. The implementation of independent actuator arrays, manu-
factured inexpensively in large quantities using MEMS technology, with integrated sensors and hard-ware
control processors would be the ultimate goal for turbulence control.
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