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Abstract

A linear reduced�order aerodynamic model is developed for aeroelastic analysis of turbo�
machines� The basis vectors are constructed using a block Arnoldi method� Although the
model is cast in the time domain in state�space form� the spatial periodicity of the problem
is exploited in the frequency domain to obtain these vectors e�ciently� The frequency do�
main proper orthogonal decomposition is identi�ed as a special case of the Arnoldi method�
The aerodynamic model is coupled with a simple structural model that has two degrees
of freedom for each blade� The technique is applicable to viscous and three�dimensional
problems as well as multi�stage problems with inlet and exit disturbance �ows� although
here results are presented for two�dimensional� inviscid �ow through a twenty�blade single�
stage rotor� In this case� the number of states of the model is on the order of ten per blade
passage� making it appropriate for control applications�

� Introduction

With the current trend towards increased operating speeds and more �exible blading� aeroe�
lasticity has become a critical consideration in the design of compressors� Understanding
and predicting aeroelastic phenomena are crucial to ensuring that a compressor will operate
within stability boundaries� and thus has a large impact on the design process� Appro�
priate blade design� together with strategies for controlling the onset of instabilities� can
signi�cantly impact the stable operating range� potentially leading to better compressor
performance� In addition� understanding high cycle fatigue is important to prolong engine
lifetimes�

Aeroelastic phenomena involve a complicated interaction between the aerodynamics
and the structural dynamics of the blades� Typically� very simple aerodynamic models
have been used for aeroelastic analyses of turbomachinery� The �ow is usually assumed
to be two�dimensional and potential �	
� These methods are useful near design conditions
but inadequately predict the �ow o��design� as blade loading e�ects become important ��
�
The simple models are also inapplicable to transonic �ows where shock dynamics play a
signi�cant role in determining the aerodynamic response� Transonic �ow in a blade passage

	



can be determined by numerically solving the unsteady Euler or Navier�Stokes equations
using computational �uid dynamics 
CFD� methods� however such techniques are generally
too computationally expensive to use for unsteady analyses� especially if the full rotor and
more than one blade row need to be considered� More e�cient methods for time�varying �ow
can be obtained if the disturbances are small� and the unsteady solution can be considered
to be a small perturbation about a steady�state �ow ��
� In this case� a set of linearised
equations is obtained which can be time�marched to obtain the �ow solution at each instant�
However for control applications� any of the CFD based techniques will generate models
with a prohibitively high number of states�

Reduced�order modelling for linear �ow problems is now a well�developed technique and
is reviewed in ��
� The basic idea is to project the high��delity CFD solutions onto a set
of basis functions which span the �ow solution space e�ciently� Models are obtained which
retain the high��delity aerodynamics of the CFD analysis� but which have only a few states�
One possibility for a basis is to compute the eigenmodes of the system� This can lead to
e�cient models and the eigenmodes themselves often lend physical insight to the problem�
However� typical problem sizes are on the order of tens of thousands of degrees of freedom
per blade passage even in two dimensions� and solution of such a large eigen�problem is
in itself a very di�cult task� The proper orthogonal decomposition technique 
POD� has
been developed as an alternate method of deriving the basis functions ��
 ��
 and has been
widely applied to many di�erent problems� An e�cient frequency domain use of the POD
has been developed for solution of turbomachinery �ows ��
� Since the basis vectors are
obtained from solutions of the system� the reduced�order model produced by the POD is
only applicable to �ows very similar to those considered in the construction of the model�
This raises an issue if the model is to be applied in a control framework� as we expect the
dynamics of the controlled and uncontrolled systems to di�er signi�cantly ��
�

In this paper an Arnoldi�based method is developed which provides an alternative to
both the eigenmode and the POD approaches� The Arnoldi algorithm can be used to
generate basis vectors which form an orthonormal basis for the Krylov subspace� The full
set of Arnoldi vectors spans the same solution space as the system eigenvectors� An e�cient
reduced set can be constructed by considering both inputs and outputs of interest� Pad�e�
based reduced�order models have been developed for linear circuit analysis using the Lanczos
process ��
� This approach matches as many moments of the system transfer function as
there are degrees of freedom in the reduced system� While the Arnoldi vectors match only
half the number of moments as the Pad�e approximation� they preserve system de�niteness
and therefore often preserve stability �	�
�

Generation of reduced�order models from the two�dimensional linearised Euler equations
will be considered here� however the approach could be easily extended to three�dimensional
and viscous models if the underlying CFD model were available� The model will be devel�
oped in the time domain and cast in state�space form� and the resulting reduced�order model
will have roughly ten states per blade passage� Simulation in the time domain allows for
arbitrary forcing to be considered� It also enables the aerodynamics to be easily incorpo�
rated within a global engine model or coupled to an active control model� The small size of
the reduced�order model makes it amenable to control design and mistuning analyses� and
also allows for the full rotor to be considered and for the analysis of multi�stage problems�
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In section � of this paper the underlying CFD model will be described� Some techniques
for deriving reduced�order models will be discussed in section � and the reduction algorithm
using the Arnoldi method will be presented and compared to the POD approach which
is identi�ed as a particular case of the Arnoldi method� Model reduction results will be
presented in section � for a twenty�blade transonic rotor� The performance will be compared
to both the linearised CFD simulation and the POD method� The aerodynamic reduced�
order model will also be coupled to a simple two degree of freedom structural model for
each blade and the coupled system behaviour investigated� Finally� in section � we present
some conclusions�

� Computational Model

��� Non�Linear Model

Consider an arbitrary two�dimensional time�varying control volume �
t� with boundary
�
t�� The Euler equations governing the unsteady� two�dimensional �ow of an inviscid
compressible �uid can be written in integral form as

�

�t

Z
�
Wdxdy �

I
�

Fnx �Gny� d� � �� 
	�

where nx and ny are unit vectors pointing out of �� W is the unknown vector of conserved
variables given by

W � 
�� �u� �v� e�T 
��

and F and G are the inviscid �ux vectors given by

F �

�
BB�

�
u� xt�
p� �u
u� xt�
�v
u� xt�

pu� e
u� xt�

�
CCA

G �

�
BB�

�
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�u
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p� �v
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pv � e
v � yt�

�
CCA � 
��

Here �� u� v� p and e denote density� cartesian velocity components� pressure and total energy
respectively� xt and yt are the speeds in the x and y directions with which the boundary
�
t� moves� Also� for an ideal gas the equation of state becomes

e �
p

� � 	
�

	

�
�
u� � v��� 
��

where � is the ratio of speci�c heats�
To obtain a rectilinear two�dimensional representation of the cascade� the rotor is un�

wrapped in the circumferential direction as shown in �gure 	� The boundaries extending
upstream from the leading edge and downstream from the trailing edge of the blade surfaces
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are periodic boundaries� To preserve the circumferential nature of the physical problem� a
condition is enforced that the �ow along the upper periodic boundary is the same as that
along the lower periodic boundary� The governing equations are discretised using a �nite
volume formulation on an unstructured triangular grid covering this computational domain
and approximations to the unknown �ow vector W are sought at the vertices of that grid�
For an interior vertex j� equation 
	� can be written

d

dt

VjWj� �

Z
�j


Fnx �Gny�d� � �� 
��

where Vj is the volume consisting of all the triangles having vertex j� �j is the boundary
of Vj and Wj represents the average value of W over volume Vj � The integral in equation

�� is evaluated by considering weighted summations of �ux di�erences across each edge in
the control volume �		
� At boundary vertices� some of the �ow variables are prescribed
via appropriate boundary conditions� These prescribed quantities are contained within the
vector Ub� while the remaining unknown �ow quantities are contained in the vector U� For
interior nodes the components of the unknown vector U are the conservative �ow variables

��� while for boundary nodes a coordinate transformation to other appropriate �ow quan�
tities is performed� The particular transformation depends on which �ow quantities are to
be speci�ed via the boundary condition at that node�

Evaluation of 
�� at each node combined with appropriate variable transformations leads
to a large set of non�linear ordinary di�erential equations for the unknown �ow vector U�
which can be written as

dU

dt
�R
U�Ub�x� � �� 
��

where R
U�Ub�x� represents the non�linear �ux contributions which are a function of the
problem geometry x� the �ow solution U and the boundary conditions Ub�

We consider unsteady motion in which each blade can move with two degrees of freedom�
For blade i the bending displacement 
plunge� is denoted by hi and torsion about an elastic
axis 
pitch� by �i� In general� blade shape deformations could also be included� The grid
geometry x depends directly on the positions of the individual blades� that is for r blades

x � x
h�� ��� h�� ��� ���� hr � �r�� 
��

At the passage inlet and exit we prescribe constant �ow conditions� however �ows with
unsteady disturbances in the passages could be considered in an analogous way� For the
speci�ed quantities� we can therefore write

Ub � Up
q� �q�� 
��

where q is a vector containing the plunge and pitch displacements for each blade

qi � �hi �i

T � 
��

and Up
q� �q� contains the appropriate prescribed quantities�
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��� Linearised Model

Steady�state solutions can be evaluated by driving the non�linear residual R
U�Ub�x� in

�� to zero� however to integrate the full non�linear equation in time for unsteady �ows is
computationally expensive� especially if the disturbances considered have circumferential
variation� If we limit ourselves to the consideration of small amplitude unsteady motions�
the problem can be considerably simpli�ed by linearising the equations� We assume that
the unsteady �ow and grid geometry are small perturbations about a steady state

U
x� t� � U
x� �U�
x� t�

Ub
x� t� � Ub
x� �U�
b
x� t�

x
t� � x� x�
t�� 
	��

and that the blade motions q and �q are small� Performing a Taylor expansion about
steady�state conditions� for the unknown �ow variables the non�linear residual in 
�� can
be written

R
U�Ub�x� � R
U�Ub�x� �
�R

�U

U�Ub�x�U

� �
�R

�Ub


U�Ub�x�U
�
b �

�R

�x

U�Ub�x�x

�� 
		�

Using the fact that R
U�Ub�x� � � and assuming that the perturbations are small so that
quadratic and higher order terms in U�� U�

b and x
� can be neglected� the linearised form of

equation 
�� is
dU�

dt
�

�R

�U
U� �

�R

�Ub

U�
b �

�R

�x
x� � �� 
	��

where all derivatives are evaluated at steady�state conditions� Note that due to the linear
assumption� the grid is not actually deformed for unsteady calculations� however the �nal
term on the left�hand side of equation 
	�� represents the �rst order e�ects of grid motion�
Likewise� the boundary conditions can be linearised to obtain

U�
b �

�Up

�q
q�

�Up

� �q
�q� 
	��

We can further simplify the system by condensing U�
b out of 
	�� using 
	�� and writing

the grid displacement as a linear function of blade displacement

x� � Tq� 
	��

where T is a constant transformation matrix� The �nal set of ordinary di�erential equations
then becomes

dU�

dt
�

�R

�U
U� �

�
�
�R

�x
T �

�R

�Ub

�Up

�q

�
q�

�R

�Ub

�Up

� �q
�q� 
	��

which can be written equivalently as

dU�

dt
� AU� �Bu� 
	��
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Here u � �q �q
T is the input vector containing the displacement and velocity of each blade�
and the matrix B contains the appropriate forcing terms of equation 
	���

To determine the unsteady response of the cascade� the inputs u
t� are speci�ed and
the large system 
	�� is time�marched to determine the resulting �ow� Often we are not
interested in obtaining the actual �ow itself� but in relevant output quantities� These are
typically the forces and moments acting on the blades� but could be any feature of the
response� We de�ne an output vector y as

y � CU�� 
	��

which for the analysis presented here contains the aerodynamic force and moment acting on
each blade� C is a matrix containing the geometric contributions to the force calculation�

� Reduction Using Congruence Transforms

The idea behind developing a reduced�order aerodynamic model is to project the large space
used by a high��delity CFD model� such as that described in the previous section� onto a
lower dimensional space which is characterised by a set of basis vectors� If these vectors are
chosen so as to accurately span the solution space� the model behaviour can be captured
with just a few states� In this way a low�order� high��delity aerodynamic model can be
obtained� There are several options available for selecting the basis vectors� a few of which
will be outlined here� It is desirable to choose an orthogonal set of vectors� as the resulting
congruent transformation preserves the system de�niteness� and therefore often preserves
system stability�

If the set of q orthonormal basis vectors are contained in the columns of the matrix Vq�
a qth order approximation to the perturbation solution can be made by assuming

U� � Vqz� 
	��

where z
t� is the reduced�order aerodynamic state vector� Substituting this representation
of U� into the linearised governing equations 
	�� and premultiplying the system by V T

q � we
obtain the reduced�order system

dz

dt
� V T

q AVqz� V T
q Bu� 
	��

Writing the reduced�order matrices as Ar � V T
q AVq andBr � V T

q B� it is clear from 
	�� that
the de�niteness of the original system has been preserved� This can be seen by considering
an arbitrary vector v� then

vTArv � vTV T
q AVqv � 
Vqv�

T A 
Vqv�
T � 
���

So the reduced system matrix Ar has the same de�niteness as the original matrix A� A
negative semide�nite matrix implies that all the eigenvalues have non�positive real part and
the aerodynamic system is stable� In this case� if the original system is stable� so will be
the reduced�order model� We note that this property is not preserved in transforms of the
form Ar � W T

q AVq where Wq and Vq are bi�orthogonal�
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��� Eigenmode Representation

An obvious choice might be to compute the eigenmodes of the large matrix A and to form
the basis with the eigenvectors whose eigenvalues fall within the frequency range of inter�
est� This approach has been taken for many problems� especially in structural dynamics
where the matrices are generally symmetric and the eigenmodes are easy to compute� In
�uid problems however� the eigenmodes of the very large matrix A are much more di�cult
to compute� Even in two dimensions it was found that for the full Euler equations the
matrix was badly conditioned and that the eigenmodes su�ered from non�normality prob�
lems� In addition� for a non�symmetric problem� both the right eigenvectors Vq and the left
eigenvectors Wq must be computed� and the reduced matrix representation is of the form
Ar � W T

q AVq� Although this is not a congruent transformation� a basis is obtained which
preserves system stability� since the eigenvalues of the reduced�order model are a subset of
the original system eigenvalues�

��� Proper Orthogonal Decomposition

The POD is a popular alternative to the eigenmode approach for determining a reduced�
space basis� Typically� a time simulation of the system for a characteristic unsteady �ow is
performed and instantaneous solutions or snapshots are obtained at selected times� These
snapshots are then combined to produce an orthogonal set of basis vectors which represents
the solution U� in some optimal way� More speci�cally� the basis vectors � are chosen so
as to maximise the following cost ��
�

max
�

hj
U����j�i


����
�

hj
U����j�i


����
� 
�	�

where 
U���� denotes the scalar product of the basis vector with the �eld U�
x� t� and h i
represents a time�averaging operation�

A POD approach to developing reduced�order models for turbomachinery problems is
presented in ��
 and is summarised here� To avoid performing a time simulation of the
large linearised system 
	��� the forcing is decomposed into spatial and temporal Fourier
modes� and advantage is taken of the fact that the governing equations are linear to consider
each of these modes separately� The temporal variation of the forcing can be viewed as a
superposition of harmonic components each at a frequency �� This harmonic displacement
of the N blades� u� can then be thought of as comprising a superposition of N travelling
wave modes �	�
� This can be written for blade k as

uk �
N��X
r��

ure
i��t��k��	�r	 
���

where the ur are complex coe�cients� Here� 	r is given by

	r �
r�


N

���
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and is the interblade phase angle for the rth travelling wave� It describes the phase di�erence
between the motion of a given blade and its neighbour ��
� Note that this does not mean
we are restricted to consideration of sinusoidal motions� since by superposing these modes�
any arbitrary disturbance in space and time may be represented�

Consider the component of blade motion at temporal frequency �k and spatial frequency
	j� The corresponding motion of the �rst blade can be written as

ujk� 
t� � ujk� e
i�kt� 
���

where ujk� contains the magnitudes of the blade position and velocity� The motion of any
blade r can then be written in terms of the motion of the �rst blade as

ujkr 
t� � ujk� e
i�r��	�j ei�kt� 
���

The corresponding �ow solution in each passage will also be harmonic of the form

Ujk
r 
t� � U

jk

� e
i�r��	�j ei�kt� 
���

with the same spatial frequency 	j because all blades have the same aerodynamic shape and
so the jth spatial forcing only excites the jth spatial aerodynamic response� Here the vector
Ur represents the unknown perturbation �ow variables associated with blade r� In addition�

since each U
jk

contains a single spatial frequency� if the response of the �rst blade is known�
then the response of all subsequent blades can be determined by using 
���� The governing
equations can therefore be discretised on a single blade passage making the computation
much more e�cient than a time domain calculation� The linearised Euler equations 
	��
can now be cast in the frequency domain on a single passage as

�i�k �Aj 
U
jk

� � Bujk� � 
���

where Aj represents the original matrix A for just one passage� but modi�ed to allow for
a complex periodicity condition� This condition enforces the fact that the �ow along the
upper periodic boundary is the same as that along the lower periodic boundary but shifted
in phase by the interblade phase angle 	j �

Resulting solutions of the frequency domain CFD equations 
��� provide an image of the
�ow at each temporal frequency �k� for each spatial frequency 	j � The real and imaginary
parts of this image form the snapshots for the POD analysis� Although far more e�cient
than a POD analysis in the time domain� this approach requires the factorisation of the
matrix �i�k�Aj 
 for each pair of frequencies� For a typical bladed disk� the cost of generating
the snapshots can be high if a large frequency range is to be considered� Another issue with
the POD approach is that it is necessary to arbitrarily specify a set of sample frequencies�
Typically some knowledge will be available on the range of frequencies expected to be
present in the system response� and the POD will be sampled over this range� However it
is also necessary to choose exactly which frequencies will be sampled within this range� If
samples are placed too far apart� important system dynamics may be missed� if they are
placed too closely together� a large number of matrix factorisations and solves is necessary
and so the cost of generating the model becomes high�
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��� Arnoldi�Based Model Order Reduction

An approach which can be thought of as a compromise between the eigenmode and POD
methods is developed in this section� While the basis is easy to compute� some of the issues
associated with the sampling requirements in the POD are addressed� Our basic goal is
to obtain a reduced system which has many fewer states than the original system� can be
computed with a reasonable cost� but which still represents the original system�s dynamics
accurately� One approach to ensuring accurate representation of system dynamics is to try
to match the transfer functions of the reduced and the original systems� Consider �rst a
single input� single output system

�U� � AU� � bu� y � cTU�� 
���

The transfer function between input u
t� and output y
t� is

H
s� � cT 
sI �A���b� 
���

which can also be represented as a rational function

H
s� �
N
s�

D
s�
� 
���

where the numerator N
s� and denominator D
s� are both polynomials in s� A qth order
Pad�e approximation to the transfer function is de�ned as

Hq
s� �
bq��s

q�� � ���� b�s� b�

aqsq � aq��sq�� � ���� a�s� 	
� 
�	�

The �q coe�cients of the Pad�e approximation� aj� bj� can be selected so as to match the
�rst �q terms in a McLaurin expansion of the transfer function 
���� We can write

H
s� � �
�X
k��

mks
k� 
���

where
mk � cTA��k��	b 
���

is the kth moment of H
s�� A qth order Pad�e approximation can be constructed via the
Lanczos process and will match the �rst �q moments of H
s� ��
�

An alternative approach is to use the Arnoldi method to generate a set of vectors which
spans the qth order Krylov subspace de�ned by

Kq
A�b� � spanfA��b� A��b� ���� A�qbg� 
���

The set of q Arnoldi vectors matches q moments of the system transfer function� that is half
the number matched by the Pad�e approximation� however since the Arnoldi approach has
the advantage of generating a congruent transformation� in many cases it generates models
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with guaranteed stability� It is possible to reduce systems with multiple inputs using the
block Arnoldi method� For example� if we consider a system with two inputs u� and u��

�U� � AU� � b�u� � b�u�� 
���

then the block Arnoldi method is used to generate vectors which span the Krylov subspace

Kq
A�b��b�� � spanfA��b�� A
��b�� A

��b�� A
��b�� ���� A

�qb�� A
�qb�� g� 
���

We also note that it is not necessarily the �rst q moments which must be matched� If we
were to consider a Taylor series expansion of the transfer function about some non�zero
value of s� a model could be obtained which would give a better approximation of the
system dynamics for higher frequencies� These multiple frequency point Arnoldi methods
are described in �	�
�

In order to calculate the basis� we consider input vectors which correspond to a particular
blade having a unit displacement or velocity and all other blades �xed� Although vectors
must be constructed for each of the N blades being perturbed in turn� the calculation need
only be performed once� with the remaining N � 	 vectors constructed through symmetry
considerations� Once again� we can use linearity to decompose this forcing into a set of
orthogonal modes each containing a single spatial frequency� and the calculation for each
of these modes can be performed on a single blade passage� For expansions of the transfer
function about s � i�k� solutions of the complex frequency domain equations 
��� must be
obtained� The resulting solutions are then combined via an inverse Fourier transform to
obtain the �rst blade basis vector� Vectors for subsequent blades are computed through use
of symmetry� Further simpli�cation can be obtained by noting that for expansions about
s � �� the set of Arnoldi vectors for spatial frequencies 	 and �	 are complex conjugates
of one another� The algorithm for the single input� single output case expanded about �k
is shown below�
Algorithm ��� �Arnoldi Method�

arnoldi�input A�b� �k� qk� N� output Vq�

f
for 
j � 	� j �� N � j��� f

Factor �i�k �Aj 

Solve �i�k �Aj
v� � b

for 
k � 	� k �� qk� k��� f
Solve �i�k �Aj 
w � vk
for 
i � 	� i �� k� i��� f

h � wTvi
w � w� hvi

g
vk�� �

w

jjwjj

g
V
j
q � �v����vq


g
g

	�



Given the set of basis vectors Vq� we substitute the projection of U� 
	�� into the governing
equations 
	�� and 
	�� to obtain the reduced�order system 
	�� which can be written as

dz

dt
� Arz�Bru� y � Crz� 
���

One can see the similarities between the POD approach and the multiple frequency
point Arnoldi method� In fact� solving the system 
��� at J frequencies to obtain the POD
snapshots results in an identical data set as taking J frequency points and computing a single
Arnoldi vector at each point 
the subsequent orthogonalisation procedure di�ers between
the two methods�� Very e�cient models could be constructed by considering a range of
frequencies and using the POD analysis to choose the basis vectors� but also computing
more than one vector at each frequency as in the Arnoldi approach� One must evaluate
the relative gain in choosing a higher number of frequency points� since by far the most
expensive part of the calculation is the factorisation of the matrix in solving the linear
system� In the Arnoldi approach� the matrix is computed and factored just once for each
�k and 	j� but as outlined in the Algorithm ��	� qk vectors are obtained per factorisation�
As mentioned previously� for the POD a di�erent matrix must be factored for every solve�

� Results

��� Aerodynamic Reduced�Order Model for Transonic Cascade

Reduced�order models have been developed for subsonic and transonic cascades operating
with general unsteady blade motion� A DFVLR L����� transonic rotor which operates at
a steady�state inlet Mach number of ���� was analysed in unsteady plunging motion for a
twenty�blade con�guration� Figure � shows the grid for two passages of this rotor� The
steady�state solution is shown in �gure ��

Arnoldi basis vectors were computed for the interblade phase angles present in the
twenty�blade con�guration� For plunging motion there are two inputs per blade � the
plunge position h and the plunge velocity �h� The reduced�order aerodynamic model was
constructed and the eigenvalue spectrum of this system is shown in �gure �� For the case
shown� there are six states for the zero interblade phase angle case and ten states for all
other interblade phase angles 
twenty for each pair 	��	�� giving a total of 	�� states in
the reduced�order model� Note that 	 � � is a special case where the plunge position h has
no e�ect� and less modes are required to accurately capture the dynamics� Comparatively�
the CFD computational grid for twenty passages would have �	��� grid points� which
corresponds to ������ unknowns� Clearly a time�domain computation of this size is very
expensive� however we will show that the cascade dynamics can be accurately captured with
the above choice of less than two hundred states in the reduced�order model�

Forced response of the cascade to a pulse input is a good assessment of the model�s ca�
pability� since a pulse contains a continuous spectrum of temporal frequencies� Comparison
of reduced�order modelling predictions with results from the full simulation code 
if these
results were available� would determine how many modes are required to accurately capture

		



the system dynamics� The input takes the form

h
t� � he�g�t�t�	
�

� 
���

where g is a parameter which determines how sharp the pulse is and thus the value of the
highest signi�cant frequency present�

As mentioned� it would be very expensive to perform a time simulation of the linearised
CFD code on the full rotor� However if all blades are supplied with the same pulse input� a
motion results in which only an interblade phase angle of zero is present and which can be
solved using the linearised simulation code with just a single passage� The corresponding
blade position input and non�dimensional vertical component of force response on each blade
as a function of time are depicted in �gures � and �� It shows that excellent agreement
is obtained with only a handful of states in the reduced�order model� This same case was
considered using a reduced�order model constructed with the POD technique described in
��
� The POD samples were made at ten equally spaced reduced frequencies over the range
k � � � 	��� for each interblade phase angle� This frequency range spans the important
content of the pulse for a value of g � ���	� The response calculated with the POD reduced�
order model is also shown in �gure �� Although the POD response is more accurate than
the Arnoldi response with four modes� with six modes the Arnoldi model is very close to
the linearised simulation response� while the POD slightly underpredicts the force at both
peaks�

For this problem� a total of two hundred matrix factorisations were performed to obtain
the POD snapshots 
ten sample frequencies for each of twenty interblade phase angles��
In comparison� just eleven matrix factorisations were required for the Arnoldi reduced�
order model since all vectors were computed about s � �� The Arnoldi�based model is
an order of magnitude cheaper to obtain than the POD model� and also does a better
job of predicting the response� In addition� the POD reduced�order model is restricted
to responses containing frequencies within the 
arbitrary� sample range� The Arnoldi�
based model contains no such restriction� although more modes will be required if �ows
containing higher frequencies are to be modelled� In this case� one might choose to use a
multiple frequency point method as described earlier� The reduced�order models obtained
using the POD method are very sensitive to the choice of sample frequencies� As mentioned
previously� it is necessary to ensure not only that the correct range is sampled� but also
that enough samples are performed over this range� or the system dynamics will not be
accurately captured� Because more than one vector is computed at each frequency in
the Arnoldi method� the dynamics can be captured without considering many frequency
points 
one can liken the Arnoldi approach to computing higher�order  derivatives! at each
frequency point�� An appropriate choice of frequency points can reduce the required size of
the reduced�order models� but is not necessarily required to capture system dynamics� as
the example presented here demonstrates�

The reduced�order model was also used to calculate forced response of the twenty�blade
cascade to sinusoidal motion at an interblade phase angle of ���� The linearised CFD
solution can be obtained for this �ow using just a single passage in the frequency domain�
The calculated force on the �rst blade is shown as a function of time in �gure �� The results
for the reduced�order model with twelve� sixteen and twenty states for this interblade phase
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angle are compared to those obtained from the CFD frequency domain code� The results
obtained with twenty modes in the reduced�order model are virtually indistinguishable from
the CFD� The required size of the Arnoldi reduced�order model for this case is a little larger
than that found to be necessary for the POD approach� which typically used around twelve
modes for a purely sinusoidal motion� However� the POD snapshots were generated using
sinusoidal motions� so we expect them to predict such a response very e�ciently� As seen
with the pulse response described above� the Arnoldi approach does a much better job with
general inputs as there is no assumed relation between position and velocity when forming
the modes�

A case was then considered where just one blade was forced with the pulse input� while
all others were held �xed� This motion contains all possible interblade phase angles� The
response for each blade was computed using the Arnoldi reduced�order model with 	��
aerodynamic states� The inputs and response of each blade are shown in �gure �� This
computation was far too expensive to be carried out with the linearised simulation code�
It is clear from the plot that the largest force is generated on the disturbed blade and
its nearest neighbours� as might be expected intuitively� We can see that beyond the two
closest blades the force generated is very small�

��� Structural Coupling

For analysis of forced response� the blade motion inputs uj are speci�ed and the system 
���
is time�marched to determine the resulting aerodynamic response� For a coupled analysis�
equations of motion describing the structural states must be included in the reduced�order
model� We might be interested in investigating the stability of the coupled system� or in
determining the overall response to a perturbation in blade position� The structural model
could be a complicated system 
for example a reduced�order structural model derived from a
�nite element analysis� or a simple model 
for example a very low�order mass�spring model��
We consider here a simple mass�spring�damper structural model where each blade can move
in plunging motion with a natural frequency of �h as shown in �gure �� For plunge only�
the structural equations of motion for each blade with mass m and chord c can be written
as

d

dt

�
hj
�hj

�
�

�
� 	

�
kM�� ��kM�

� �
hj
�hj

�
�

�
�

�M�

��

�
C
j
l � 
���

or in matrix form�
�u � Su� Ty� 
���

In the above� the reduced frequency is de�ned in terms of the plunge natural frequency
k � �hc

V
� � is the structural damping coe�cient and 
 � 
mi

��c�
is the blade mass ratio�

C
j
l � yj is the lift coe�cient for blade j� and M and V are the inlet Mach number and axial

velocity respectively� This structural model is then coupled to the aerodynamic reduced�
order state�space system 
���� The coupled system is as follows �

�
�z
�u

�
�

�
Ar Br

TCr S

� �
z

u

�
� 
�	�
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At each timestep the structural and aerodynamic equations are thus solved simultaneously
to determine the blade position and velocity and the aerodynamic forces acting�

The eigenvalues of the tuned coupled system 
�	� for a reduced frequency of k � �����
no structural damping and a mass ratio of 
 � 	�� are shown in 	�� We observe some
movement of the original aerodynamic eigenvalues due to interaction with the structure�
and also the introduction of forty structural modes with frequencies around the natural
frequency kM � ������ A zoom of these structural eigenvalues is shown in �gure 		�

A time�marching simulation of the coupled system was run with k � ���� and � � ��
An initial plunge displacement was applied to one of the blades� then the coupled structural
and aerodynamic response for the entire rotor was computed� Figure 	� shows the resulting
displacement and lift force for each blade� Clearly the disturbed blade 
blade �� exhibits
the largest response� The resulting motion is decaying� although slowly since the coupled
system is lightly damped�

� Conclusions

A new method of producing reduced�order models for turbomachinery has been demon�
strated� This method provides an excellent alternative to the eigenmode and POD ap�
proaches to reduced�order modelling� The basis vectors are constructed e�ciently by ap�
plying the Arnoldi method to the frequency domain governing equations� while development
of the model in the time domain allows for ease of coupling to actuation and control mod�
els and provides a convenient framework for integration within more global engine models�
The framework developed is particularly suited to the analysis of mistuned rotors where
the interblade phase angles do not decouple and the entire rotor must be considered� It is
also straightforward to extend this approach to viscous and three�dimensional �ows if the
underlying CFD model is available�

The Arnoldi basis has the bene�ts of an eigenmode approach in that it models the
dynamics of the original high�order system� but it is much more straightforward to compute�
The Arnoldi�based models are much cheaper to compute than those constructed using the
POD since one matrix factorisation can be used to obtain many basis vectors� and are in
general applicable to a wider range of �ows� It is also possible to use Arnoldi methods with
multiple frequency points to obtain e�cient models which are valid for �ows containing
higher frequencies� however the models obtained are less sensitive than POD�based models
to the choice of sample frequencies� In addition� outputs of interest can be included in
the criterion for selecting the basis vectors� and further improvement can be obtained by
post�processing the resulting reduced�order models using a truncated balanced realisation�
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Figure �� Computational domain for two blade passages� DFVLR transonic rotor� ����
nodes� ���� triangles per blade passage�
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Figure �� Pressure contours for steady inviscid transonic �ow� M � ����� � � ������
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