
A File System for Accessing MySQL Tables as

CSV Files
by

Nizameddin Ordulu

MASSACHUSETTS INSTITUTE
jOF TEC-- OLOGY

DEC 16 2010

LIBRARIES

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

August 2010

© Massachusetts Institute of Technology 2010. All rights reserved.

/(" 111
Author

Depart~ent of Electrical Engineering and Computer Science
August 20, 2010

Certified by....
Samuel Madden

Associate Professor
Thesis Supervisor

A A

Accepted by
Cristhopher J. Terman

Chairman, Department Committee on Graduate Theses

ARCHIVES

2

A File System for Accessing MySQL Tables as CSV Files

by

Nizameddin Ordulu

Submitted to the Department of Electrical Engineering and Computer Science
on August 20, 2010, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Computer Science and Engineering

Abstract

In this thesis, we describe the design and implementation of a userspace file system
that represents MySQL tables as comma-separated values (CSV) files. The users can
access and modify the data through both the file system and MySQL's query interface.
In order to transform read and write operations to SQL queries, we maintain a reverse
index from file offsets to line numbers. Changes to the database outside of the file
system are reflected on the file system by means of MySQL's master-slave replication
feature. We evaluate our system by comparing its performance to a regular file
system's performance using popular command line tools(grep, sed, awk) and user
applications (OpenOffice.org spreadsheets). The choice of the database for this system
was MySQL because of its popularity and the availability of its source code, however,
the same ideas can be applied to any relational database with replication to create a
similar system.

Thesis Supervisor: Samuel Madden
Title: Associate Professor

4

Acknowledgments

I am indebted to my advisor, Samuel Madden, for suggesting me this idea, and helping

me transform the idea into this project. Without his generous help, it would be a lot

more difficult for me to survive at the times of frustration, uncertainty and doubt.

I am also indebted to Carlo Curino, for his suggestions for the tools that I used to

build this system and his contributions for the overall design of the system. Thank

you Carlo, I truly appreciate your help.

Finally I would like to thank my wife, Fatma Ordulu, for being supportive and

for encouraging me to work on my thesis throughout the entire process. Thank you

for keeping me going when I thought I didn't have the energy to do so.

6

Contents

1 Introduction 13

1.1 M otivation . 13

1.2 Background . 14

1.2.1 FU SE . 15

1.2.2 MySQL Replication . 15

2 System Architecture 17

2.1 FUSE Callbacks . 18

2.2 The MySQL Slave Thread . 19

3 Data Structures 21

3.1 Reverse Index Trees . 21

3.2 A Table and Its Reverse Index Tree 23

3.3 Tree Operations.. .. 24

3.3.1 Offset Search . 25

3.3.2 Adding A Row to OffsetTable 26

3.3.3 Updating or Deleting a Row from an OffsetTable 26

4 FUSE Operations and Binary Log Entries 29

4.1 Table Class . 29

4.2 FUSE Operations . 30

4.2.1 Initialization of the File System 31

4.2.2 Listing the Directory Contents 31

4.2.3 Getting the Attributes of a File

4.2.4 O pening a File .

4.2.5 Reading from a File .

4.2.6 Truncating a File .

4.2.7 Writing to a File .

4.3 Handling MySQL Binary Log Entries

4.3.1 INSERT,DELETE and UPDATE Entries

4.3.2 TRUNCATE, DROP TABLE and CREATE TABLE Entries.

5 Implementation Details

5.1 Preventing Duplicate Modifications to the Reverse Index Tree

5.2 Concurrency .

5.3 Corner C ases .

6 Evaluation and Analysis

6.1 Testing Methods .

6.2 Performance Comparison .

7 Related Work

7.1 MySQL CSV Engine

7.2 DBToy.

7.3 RDB

7.4 Flat-Text Database for Shell Scripting

7.5 QueryCell, An MS Excel Plugin

8 Conclusion

8.1 Future Work. .

32

32

33

33

33

34

34

35

37

37

38

39

41

41

42

45

45

45

45

46

46

47

48

.

.

.

.

.

List of Figures

2-1

2-2

2-3

Overview of the different modules in our system . . .

Main FUSE callbacks

Four entries from a MySQL binary log

3-1 The tree of reverse indexes .

3-2 Table named "test" .

3-3 Contents of the file "test.csv".. .

3-4 The OffsetTable tree for the table "test"..

3-5 The findRowsO method calculates the range of row ids for a given

chunk of the file. .

3-6 The appendRow() method adds a row to the end of an OffsetTable. .

3-7 The updateRowSize(method updates the size of a row.

The interface for the class "Table"

FUSE init callback

FUSE readdir callback

FUSE getattr callback

FUSE open callback

FUSE read callback

FUSE truncate callback

FUSE write callback

INSERT, DELETE, and UPDATE

. 29

. 31

. 32

. 32

. 32

. 33

. 33

. 33

ntries from a binary log 35

5-1 Functions that determine which entries should be omitted .

4-1

4-2

4-3

4-4

4-5

4-6

4-7

4-8

4-9 e

10

List of Tables

6.1 Performance Comparison to The Regular File System 42

6.2 SELECT and INSERT performances 42

6.3 Ratios of the time spent by different modules in our system 43

12

Chapter 1

Introduction

The system described in this thesis allows users to mount a MySQL database as a file

system. After the file system is mounted, the user can perform changes on the tables

as if they were CSV files. This section talks about the motivation, background and

the structure of the rest of this work.

1.1 Motivation

Relational databases are widely used for storing and organizing tabular data, however,

they are not easily accessible for non-technical users. Both for technical and non-

technical users, the fastest and easiest way to create and manage small sized tables

is to use spreadsheets such as Microsoft Excel or OpenOffice.org. For example, most

researchers in Compuational Biology use spreadsheets to manage large collections of

genome data. Most spreadsheets provide tools to run simple aggregate queries over

the data. The problem occurs when users want to run complex queries, or want to

run a query on two different tables in a nontrivial way. At this point, an engineer has

to import the data into a database and run the queries that the actual data gatherers

demand.

There are two main problems with importing a spreadsheet into a database in

the previous scenario. Firstly, a non-technical user may not be able to perform this

operation; even if she can do so, it's a distraction from the actual work of managing

the data. Secondly, even after importing the data, if she still wants to continue to

add more data or edit the data, she has to either learn how to manage the database

using more technical tools, or keep the data in spreadsheets and rerun the import

script every time she wants to execute complex queries over the data. Eliminating

the need to import the data into the database would be convenient for the user.

Another difficulty with regards to managing data occurs when a small company

grows over time and it becomes necessary to switch from using spreadsheets to

database-backed applications for departments such as human resources. When this

happens, the employees have to learn the new software, and they are forced to give

up on the spreadsheets that they had used so far. With our file system, a company

can continue using spreadsheets to manage their internal data even after switching

to a database-backed application.

Another use case for the file system interface for a database is the desire to use

file system utilities on tables. Sometimes, it might be convenient for a developer to

use UNIX tools such as grep or sed to find a particular string in a table or change

all the occurrences of a string in a table quickly. He can also his favorite file editing

scripts by mounting the database as a file system.

Our system addresses the above issues by representing tables as CSV files in the

local file system. We chose CSV as the format to represent the tables because it

is supported by mainstream spreadsheet editors, it's human-readable, and it is a

convenient format for UNIX file system utilities.

1.2 Background

In this section we briefly talk about file system in user space (FUSE), and MySQL

replication. It is important to have a basic understanding of these systems in order

to understand how our system works.

1.2.1 FUSE

FUSE is a kernel module for UNIX systems that allows developers to write file systems

in user space without directly interacting with the kernel[1]. It's used to create a vast

variety of file systems, some of them solving interesting problems. Examples of FUSE-

based file systems include NTFS-3g (Tuxera, commercial version) - an NTFS wrapper

for UNIX file systems[9] and WikipediaFS [10] - a file system that allows wikipedia

entries to be read and edited as text files. The MS Windows equivalent of FUSE is

Dokan library [11]. Dokan is still under active development and not ready for serious

development.

1.2.2 MySQL Replication

MySQL replication enables the changes on the master MySQL database server to

be replicated on slave MySQL servers. MySQL replication is asynchronous, meaning

that the slaves don't need to be connected to the master permanently in order to

receive updates. A slave can connect to the master server at any time to receive the

updates that happened since the last time it connected. In our system there is a

thread that runs on the client that acts as a slave MySQL server from the perspective

of the actual MySQL database server. There is no database server that needs to be

run locally. The slave thread is started automatically when the file system is mounted.

The updates that are received by this slave thread are used to update internal data

structures that are used to read and write the tables as files.

The rest of this document is structured as follows: In Chapter 2 we discuss the

overall design of the system and explain how it works at a higher level. We explain

the internal data structures that we use to transform file offsets into SQL queries in

Chapter 3. Chapter 4 explains what happens in the system when user applications

read and write files; it also explains the slave thread that runs locally to receive the

updates that happen to the database. In Chapter 5 we talk about the details of the

implementation of the system. In Chapter 6 we describe the tests we crafted to test

the consistency and the performance of our system. We talk about the related work

in Chapter 7 and finally we talk about future work and conclude in Chapter 8.

Chapter 2

System Architecture

The architecture of our system can be seen in Figure 2-1. Our system is composed

of two main modules: One of them is FUSE Callbacks - the set of callbacks for the

FUSE kernel module and the other is the MySQL Slave Thread - the set of functions

that update the file system when the database is changed externally. FUSE Callbacks

and the MySQL Slave Thread use the Reverse Index Trees to transform between file

offsets and row ids. This structure is discussed in Chapter 3.

The read and write operations by the user applications are handled by the FUSE

Callbacks. The goal of this module is to transform read and write operations on CSV

files into SELECT, UPDATE and DELETE queries on tables. This module uses the

Reverse Index Trees in order to convert from file offsets and sizes into row ids.

The MySQL Slave Thread is responsible for monitoring the changes on the database

that are caused by the applications operating on the database other than our file sys-

tem. MySQL server is configured to log all the queries that change the database

to the binary log. This module periodically asks for the latest entries in the binary

log and modifies the Reverse Index Trees accordingly. We give the details for FUSE

Callbacks and the MySQL Slave Thread below.

Figure 2-1: Overview of the different modules in our system

2.1 FUSE Callbacks

These functions are called by the UNIX kernel when user applications open, read or

write files in the mounted file system. The main FUSE callbacks are given in Figure

2-2 below. We give a detailed explanation of what happens for each FUSE callback

in Chapter 4.

When the file system is mounted, the init () function is called. Inside this func-

tion, we scan all of the tables in the database sequentially and build our internal

reverse index that will be used for reads and writes to or from the tables. These

indexes store the mapping between CSV file offsets and line numbers. The file names

in the directory are the table names in the selected database appended with ".csv"

extension. We don't physically store the tables on the disk in CSV format, instead,

every time a read () is performed we craft the appropriate SELECT query to fetch

the corresponding rows and then we fill the read buffer with the data in CSV for-

mat. When write () is called, a similar process is applied - the bytes written are

void* init(struct fuseconninfo *conn);

int open(const char* path, struct fusefileinfo* fi);

int readdir(const char* path, void* buf,

fusefilldirt filler, offt offset,

struct fusefileinfo* fi);

int getattr(const char* path, struct stat* stbuf);

int read(const char* path, char *buf, sizet size,

offt offset, struct fusefileinfo* fi);

int truncate(const char* path, offt size);

int write(const char* path, char *buf, sizet size,

offt offset, struct fusefileinfo* fi);

int flush(const char* path, struct fuse file info* fi);

Figure 2-2: Main FUSE callbacks

transformed into an INSERT query. All writes are assumed to be append-only, there-

fore write () s aren't transformed into UPDATE queries. The justification for this

assumption is given in Chapter 4.

Most user applications use temporary files for their operations, so we support the

creation of these files. Temporary files are created and saved in a directory other than

the mounted directory. The operations on temporary files under the original mounted

directory are redirected to the files under the temporary directory. We assume that

any file name not ending with ".csv" represents a temporary file. This can cause issues

if the application tries to create a temporary file that ends with ".csv", however, this

didn't happen for any of the applications that we used to test our system.

2.2 The MySQL Slave Thread

The MySQL Slave Thread queries the server for the binary log size every second. If

the log size has changed, then the changes are requested from the server by issuing

the MySQL-specific command "SHOW MASTER STATUS".

The binary log on the MySQL server is configured to store the changes on a per-

row basis. Each log entry is either an insertion or an update or a deletion of exactly

one row. You can see a sample part from a binary log in Figure 2-3. The changes

reflect INSERT, UPDATE, DELETE and TRUNCATE operations on the table named

INSERT INTO sqlfs.test SET @1=11 @2='apple' @3=123

UPDATE sqlfs.test WHERE @1=11 @2='apple' @3=123

SET @1=11 @2='orange' @3=12345

DELETE FROM sqlfs.test WHERE @1=11 @2='orange' @3=12345

TRUNCATE TABLE test

Figure 2-3: Four entries from a MySQL binary log

test in the database sqlfs. Note that the first column is rowid so the actual

contents of the file are formed by the second and third columns.

A caveat is that our system doesn't support concurrent changes by the user appli-

cations editing CSV files and other applications connected directly to the database.

The user must make sure that the table is not changing in the database while she is

editing the corresponding CSV file. This prevents the changes on the database from

interfering with the changes from the user applications. This is a restriction of the

FUSE interface which we discuss in more detail in Chapter 5.

Chapter 3

Data Structures

The file system calls read () , write (), and truncate () deal with file offsets

and file size. The database, however, doesn't know about the offsets and file sizes, so

these operations must be transformed into SELECT, INSERT, DELETE, and UPDATE

queries before executing them on the database.

Most databases, including MySQL, provide no guarantees on the order of the rows

that are fetched from the output of a SELECT query. This causes a problem as new

rows are introduced, because the order of the lines in the CSV file may change every

time the user opens the file. In order to make sure that the order of the lines are

fixed, we introduce an auto-incremented rowid column to all of the tables. The

rowids can be seen as the line number of each row, however, they are only used for

sorting the rows. The particular rowid of a row may not exactly correspond to the

line number that the row appears when the file is read, because certain rows may be

deleted from the database. However, it is always the case that for two consecutive

lines in a CSV file, the lower line corresponds to a row with a higher rowid than the

higher line.

3.1 Reverse Index Trees

The data structures that help us determine the rowids from file offsets are called

reverse index trees, because they form a tree and they perform the reverse of what

Figure 3-1: The tree of reverse indexes

regular indexes do. A visualization for these data structures is given in Figure 3-1.

We have a different tree for each table in the database. Each tree has depth 3. Each

node of the tree corresponds to a number of rows with contigious rowids. The root

node is of type Of fset Table and it corresponds to the entire table. The first level

nodes are OffsetBlocks and the leaves are RowBlocks. This tree structure is

similar to a B-tree except that the branching factor is not bounded from above and

the leaf nodes do not contain any data nor a pointer to the data.

The size in each node represents the size in bytes of the rows of that node in

CSV format. Calculation of size takes the commas and the newlines into account.

The startOf fset field represents the byte-offset of each node relative to the be-

ginning of its parent node. So for example, if an Of fsetBlock's startOf fset

is 100 and one of its children RowBlock's startOf fset is 50, then the absolute

offset of the beginning of the child RowBlock is 150. The maximum size for a

RowBlock is ROWBLOCKSIZE and the maximum size for an Of fsetBlock is

OffsetTable
size
firstOffsetBlock,
lastOffsetBlock

Figure 3-2: Table named "test"

Yonkers disco evictions,917815
soother consented grouts,244026

scramming Wong Lear,767339

ingrates airsicknesss soberer,841790

reproachfully Avogadro agendas,628429
arsenic refectorys snarls,484099

yeasty years nonprescription,748860

Amadeuss mixtures televisions, 980288
havoc Blatzs clinchers,646756
gymnosperm homestretches inoculations,959294

Figure 3-3: Contents of the file "test.csv"

OFFSETBLOCKSIZE. We discuss the optimal values for ROWBLOCKSIZE and

OFFSETBLOCKSIZE in Chapter 6.

3.2 A Table and Its Reverse Index Tree

In order to illustrate the data structures and the operations on them, we give a simple

example of a randomly generated table in Figure 3-2, the contents of the corresponding

CSV file in Figure 3-3, and its corresponding Of fsetTable in Figure 3-4.

The table test originally consisted of two columns: a and b which are of type

VARCHAR (256) and INT. The rowid column is of type INT AUTOINCREMENT

and it was automatically added when our file system was mounted. The contents of

the file te st .csv are shown in Figure 3-3. In order to illustrate all of the data struc-

rowid a b

1 Yonkers disco evictions 917815
2 soother consented grouts 244026
3 scramming Wong Lear 767339
4 ingrates airsicknesss soberer 841790
5 reproachfully Avogadro agendas 628429
6 arsenic refectorys snarls 484099
7 yeasty years nonprescription 748860
8 Amadeuss mixtures televisions 980288
9 havoc Blatzs clinchers 646756

10 gymnosperm homestretches inoculations 959294

Figure 3-4: The OffsetTable tree for the table "test"

tures properly, we set ROWBLOCK_SIZE=64 and OFFSET_BLOCK_SIZE=192. The

resulting Of f setTable is given in Figure 3-4

3.3 Tree Operations

In this section we describe the interface that supports the file system operations

described in Chapter 4. For the sake of precision we use C++ notation.

struct RowOffset {
long long int offset;
long long int firstRowId;
long long int lastRowId;
long long int size;

}
RowOffset OffsetTable::findRows(long long int offset,

long long int size);

Figure 3-5: The findRows(method calculates the range of row ids for a given chunk
of the file.

3.3.1 Offset Search

Offset search is the process of finding the range of rowids that correspond to a

particular byte range in the file. This functionality is implemented as a method of

Of f setTable. Its signature is given in Figure 3-5. Of f setTable: : findRows ()

finds the range of rows that contain the part of the CSV file that starts at offset

offset and spans size bytes. The return value is of type RowOffset and it

contains the first and last rowids of the rows that need to be fetched from the

database. The of f set field of the return value represents the number of bytes that

need to be skipped from the beginning of serialization of the fetched rows. The s i ze

of RowOf f set is the total size of the serialization of the rows; it is the same as the

size argument passed to the method, unless the chunk described by the arguments

is past the end of file.

The implementation of this method works as follows: For each node in the reverse

index tree, we maintain a map from offsets to the child nodes. Each child node is

the image of its startOf f set in this map. For each of fsetBlock with parent

offsetTable, we have

offsetTable->offsetMap[offsetBlock->startOffset] = offsetBlock.

Similarly, for each child rowBlock of an of fsetBlock, we have

offsetBlock->offsetMap[rowBlock->startOffset] = rowBlock.

void OffsetTable::appendRow(long long int rowid,

long long int size);

Figure 3-6: The appendRow() method adds a row to the end of an OffsetTable.

void OffsetTable::updateRowSize(sizet rowid,
sizet oldsize,
sizet newsize);

Figure 3-7: The updateRowSize(method updates the size of a row.

In both cases offsetMap is of the type map of the standard C++ library, which

itself is a self balancing tree. This allows us to regard the of fset values as keys to

the offsetMap and find the in-order predecessor of of fset. Using

offsetTable->offsetMap, we first find the OffsetBlock that contains the

given of fset. Then we find the RowBlock that contains the given of fset in a

similar fashion. After finding the initial RowBlock, we keep scanning the successor

RowBlocks and summing their sizes until the total size reaches the given size.

3.3.2 Adding A Row to OffsetTable

The signature of the function that adds a row to the OffsetTable is given in

Figure 3-6. This is a rather straightforward operation; we update the size of the last

RowBlock if it has capacity for more rows, otherwise we add a new RowBlock or a

new Of fsetBlock to accommodate for the new row.

3.3.3 Updating or Deleting a Row from an OffsetTable

The signature of this function is given in Figure 3-7. This method works by first

doing a binary search on OffsetBlocks to find the Of fsetBlock that contains

the row with id rowid. Then a binary search is performed on the RowBlocks of

that of fsetBlock. When the RowBlock that contains the given rowid is found,

its size is updated. Furthermore, the startOf fsets of the succeeding siblings of

the found Of fsetBlock and the RowBlock are updated. Deleting a row means

updating its size to 0.

28

Chapter 4

FUSE Operations and Binary Log

Entries

In this chapter we give a thorough explanation of how FUSE Callbacks handle the

changes on CSV files and how the MySQL Slave Thread handles the binary log

entries. We often refer to the example given in Section 3.2 in the sections below.

For the purposes of clarity and consistency, we assume that we are mounting our file

system on the directory /tmp / f s and the database that we are mounting is sqlf s.

4.1 Table Class

The Table class acts as a wrapper for Of fsetTable and maintains a write buffer

for the CSV file. The contents of the buffer are transformed into an INSERT query

and executed every time a newline character is written to the file. The interface

class Table {
Table(string table-name);
OffsetTable* offsetTable;
sizet read(char *buf, sizet size, offt offset);

void truncate(offt size);

void write(const char* buf, int size, offt offset);

}

Figure 4-1: The interface for the class "Table"

for the class Table is given in Figure 4-1. The methods of this class are used in

performing the FUSE operations described in this chapter.

The Table: : read () method is used for reading the part of a file of size size

starting at offset offset. It calls offsetTable->findRows (size, offset)

to determine the corresponding range of rows that need to be fetched from the

database. It fetches those rows, serializes them, and discards the first ro. offset

bytes of the serialized data. Finally, it copies the string into buf.

The Table: :truncate () method is used to truncate the file to a certain size.

This means deleting the rows whose rowids are greater than the rowid that corre-

sponds to the line of the file which ends at byte s i ze of the file.This is accomplished

by calling Rowffset ro = offsetTable->findRows (size, 0) and issu-

ing the appropriate DELETE query to delete the rows with rowids greater than

ro.lastRowId.

The Table: :write () method is used to write contents to the CSV file. All

writes are assumed to be append-only, because this holds for all the end-user appli-

cations that we tested with. The updates in the middle of the file are ignored. The

contents of the write buffer are parsed and a new row is inserted into the database ev-

ery time a newline character is found in the write buffer. The crafted INSERT query

does not set any rowid columns, because the rowid column is auto-incremented by

the database.

4.2 FUSE Operations

The FUSE callbacks given in Figure 2-2 are called by the FUSE kernel module when

the user applications want to access or modify a file. FUSE is multi-threaded by

default so our system employs a basic read-write locking mechanism to prevent race

conditions and deadlocks. We discuss locking more in Chapter 5. All the FUSE

callbacks that return an int return 0 or a positive integer on success and a negative

value chosen from errno . h on error.

void* init(struct fuseconninfo *conn)

Figure 4-2: FUSE init callback

4.2.1 Initialization of the File System

The FUSE callback init ()'s signature is given in Figure 4-2. The argument conn

contains information about what features are supported by FUSE and it is ignored.

When this function is called, the list of tables are obtained by executing the query

"SHOW TABLES" on the database. We go through all of the tables and fetch all

of their rows sorted by rowid in order to build the OffsetTables discussed in

Chapter 3. For the table given in Section 3.2, the SQL query executed is

"SELECT * FROM test ORDER BY rowid".

Rows are added by making successive calls to Of f setTable: : appendRow (.

A global dictionary from the table names to the Table objects is created.

We also create the directory for the non-CSV files if it doesn't exist during the

execution of this callback. The path for this directory is /tmp/. fs for our example

and in general it is derived similarly from the path of the original mount directory.

In the subsections below, we generally omit the file system operations on non-CSV

files, because these are accomplished by calling their counterpart system calls on the

regular file system under /tmp/ . f s. So, for instance, if a user application creates a

file called file.txt under /tmp/fs, our file system creates it under /tmp/. fs.

Similarly, if an application wants to read /tmp/fs/file .txt, then, our system

reads the contents of the file /tmp/. f s/file .txt provided that it exists.

4.2.2 Listing the Directory Contents

The signature of the readdir () callback is given in Figure 4-3. Despite the some-

what complex signature, this function is actually simple; for each file under the di-

rectory, it calls the callback f iller and passes it buf fer and the file name. The

file names that are passed to filler are the table names concatenated the string

".csv" and the files under the non-CSV directory /tmp/ . fs.

int readdir(const char* path, void* buf,
fusefilldirt filler, offt offset,
struct fusefileinfo* fi)

Figure 4-3: FUSE readdir callback

int getattr(const char* path, struct stat* stbuf)

Figure 4-4: FUSE getattr callback

4.2.3 Getting the Attributes of a File

The signature for the callback get att r () is given in Figure 4-4. The get att r call-

back is passed the path of the file and a parameter of type struct stat to be filled

with file's attributes. The only field of stbuf that matters for the purposes of our

system is the size field. We set stbuf->size to the size of the OffsetTable

associated with the file. The access permissions are also stored in stbuf; we set them

so that the file is readable and writable by everyone. Adding mappings between the

database and the UNIX access control systems, while possible, is beyond the scope

of this work.

4.2.4 Opening a File

The signature for the open () callback is given in Figure 4-5. The parameter f i is

an object that can hold information about the file that's about to be opened, and

the same object is passed to the subsequent FUSE calls. We store the pointer to the

Table object in fi->fh.

Table* table = Table::Get(tablename);

fi->fh = (uint64_t)table;

int open(const char* path, struct fusefile-info* fi)

Figure 4-5: FUSE open callback

int read(const char* path, char *buf, sizet size,

offt offset, struct fusefileinfo* fi);

Figure 4-6: FUSE read callback

int truncate(const char* path, offt size)

Figure 4-7: FUSE truncate callback

4.2.5 Reading from a File

The signature for the read () callback is given in Figure 4-6. This function calls

Table: :read () if path specifies a CSV file, otherwise it reads from the corre-

sponding regular file under /tmp/ f s.

4.2.6 Truncating a File

The signature for this callback is given in Figure 4-7. The expected outcome for this

callback is that the file is truncated to the specified size. All text file editors truncate

the file before writing the changes to the file.

Our system handles truncation by first looking at whether the size is zero. If it

is, then we delete all of the rows by executing a TRUNCATE query. For our example

in Section 3.2, this query is TRUNCATE test. We also remove all the nodes in the

corresponding Of f setTable tree. If size is not zero, then table->truncate ()

is called with the argument s i ze.

4.2.7 Writing to a File

The signature for this callback is given in Figure 4-8. This function just calls

table->write () with the same arguments. All writes are assumed to be append-

only. There are some common editors that requires this call to handle special cases.

int write(const char* path, char *buf, size_t size,

offt offset, struct fusefileinfo* fi);

Figure 4-8: FUSE write callback

These special cases are discussed in Section 5.3.

4.3 Handling MySQL Binary Log Entries

The FUSE module allows our system to propagate the changes on the file system

onto the database, however, it can not detect the changes in the database in order to

update the file system. The changes on the database are monitored by a thread on

the client which makes use of MySQL's master-slave replication. Because we are not

storing any serialized CSV versions of tables on the disk, we only update the reverse

index trees when a change on the database is detected.

The MySQL Slave Thread works by polling the master for the binary log offset

every second. The query for this is "SHOW MASTER STATUS". Once it is detected

that the binary log offset has changed, the client requests the changes. MySQL server

binary log is configured to be row-based rather-than statement-based (see [12] for an

explanation of both formats). This is important, because if it were statement-based,

then it would be impossible to update the reverse index trees appropriately. In order

to make this clear, imagine a user executed the following query on the database:

DELETE FROM tablel WHERE column1 = 40. This statement by itself does

not describe how the reverse index tree should be changed, and it's impossible to

determine with our data structure because the deleted row data has been lost; the

only option is to recreate the entire reverse index tree from scratch. On the other

hand, row-based replication allows us to update the reverse index trees because as we

see in the following sections, both the old row data, and the new row data is preserved

in row-based replication. The configuration parameter for row-based replication is

binlogjformat and it should be set as follows: binlogjformat=row.

4.3.1 INSERT,DELETE and UPDATE Entries

INSERT, DELETE and UPDATE entries are handled by calling

offsetTable->updateRowSize (), passing the rowid, the old size of the row

and the new size of the row as parameters. For an inserted row the old size of the

INSERT INTO sqlfs.test

SET @1=1 @2='Yonkers disco evictions' @3=917815

DELETE FROM sqlfs.test

WHERE @1=7 @2='yeasty years nonprescription' @3=748860

UPDATE sqlfs.test
WHERE @1=9 @2='havoc Blatzs clinchers' @3=646756

SET @1=9 @2='CHANGED' @3=646756

Figure 4-9: INSERT, DELETE, and UPDATE entries from a binary log

row is zero; for a deleted row, the new size of the row is zero. Examples of parsed

binary log entries are shown in Figure 4-9. We assume here that rowid is always the

first column of a table and that the users do not modify the rowid column of any

row. This is reasonable, because the rowid column is added by our system in order

to keep the lines of the CSV file sorted.

4.3.2 TRUNCATE, DROP TABLE and CREATE TABLE

Entries

TRUNCATE is handled by resetting the corresponding OffsetTable to an empty

tree. DROP TABLE is handled by discarding the corresponding Of f setTable from

memory. CREATE TABLE is handled by reconstructing the Of f setTable.

36

Chapter 5

Implementation Details

In this chapter, we talk about some of the interesting challenges that we faced during

the implementation. We also talk about how we handled concurrency.

The system is implemented in C++, developed and tested on an Ubuntu Linux

10.04. We used Samba network file system to mount directories on MS Windows in

order to test common MS Windows editors such as, MS Word, MS Excel and MS

Notepad.

5.1 Preventing Duplicate Modifications to the Re-

verse Index Tree

In our first implementation of the system, when users modified the CSV files, our

system modified the corresponding Of f setTable and executed a SQL query on the

database. The SQL query caused new binary log entries to be recorded on the binary

void inctruncate(const string& table);
bool shallskip-truncate(const string& table);
void addinsert(const string& table, sizet rowSize);
bool shallskipjinsert(const string& table,
void adddelete(const string& table,

size_t rowSize);
sizet rowSize);

bool shallskip-delete(const string& table, size_t rowSize);

Figure 5-1: Functions that determine which entries should be omitted

log, and these were in turn picked up by the MySQL Slave Thread and the reverse

index tree was modified for the second time. This caused every change to be applied

twice, so if a line of size 15 was inserted, then the total file size would increase by

30, or if a line of size 10 was deleted, then the total file size would decrease by 20.

If the entire file were truncated, and then changes were made, then the file would be

truncated again when the MySQL slave thread encountered the TRUNCATE entry on

the binary log.

In order to overcome this inconsistency, we keep track of the total size changes

caused by truncate () and write () FUSE callbacks, and we ignore the binary

log entries of type DELETE and INSERT until the total size of the ignored entries

matches the size of the DELETEs and INSERTs caused by the FUSE callbacks. The

signatures of the functions that are used to determine if a binary log entry should be

omitted are given in Figure 5-1.

The FUSE callback functions call addinsert (), adddelete () and

addtruncate () functions whenever they make a change to an of fsetTable.

The MySQL Slave Thread checks if an incoming binary log entry was already applied

to the of fsetTable by calling shall-skipjinsert (), shall-skip-delete ()

and shallskiptruncate () functions. This solution assumes that the database

isn't concurrently modified by both the FUSE system and an application executing

queries directly on the database. This is a reasonable assumption, because we require

the user to be the only party interacting with the database while he or she is editing

the CSV file.

5.2 Concurrency

Even though most user applications use a single thread when editing a CSV file,

FUSE is inherently multi-threaded and it uses threads to read parts of the file in

parallel. We use a read-write locking mechanism to prevent deadlocks and race con-

ditions. Every of f setTable has a read-write lock; functions that modify the struc-

ture of the table acquire the write lock before their modification and functions that

only read data acquire the read lock. At any point in time, there can only be one

thread that has the write lock, and if a thread has the write lock, then no other

thread can have either the write lock or the read lock for the same Of fsetTable.

Of fsetTable: : findRows () and Of fsetTable: : getSize () acquire the read

lock; OffsetTable: :OffsetTable(, OffsetTable: :updateRowSize (,

OffsetTable::appendRow(), OffsetTable::truncate(),

Of fsetTable: : clear () , and Of fsetTable: : ~Of fsetTable () acquire the

write lock before accessing the fields of the Of f set T able. We used pthreads library

for threading and locking.

5.3 Corner Cases

There are two main corner cases that we needed to handle, both of which affect only

MS Windows users: One is that MS Windows programs insert carriage return (CR)

characters before the line feed characters. Our system ignores these characters when

writing to the file. The second is that it is quite easy to accidentally insert invisible

backspace characters when using MS Notepad. These characters are also ignored

when writing to the file.

40

Chapter 6

Evaluation and Analysis

In this section, we present the performance of the system and compare it to the

performance of the regular file system. Since the system is designed for use by the

end users, high performance is of secondary importance, however, it needs to be fast

enough to provide a smooth user experience. In addition to the performance tests,

we stress tested the consistency of the system by reading and writing at different

positions in the files by different sizes.

6.1 Testing Methods

Most end user editors operate on the moderate-sized files as follows:

1. Read the file into memory.

2. While the user modifies the file, new content is kept in memory or is saved in a

temporary file.

3. When the user saves the file, the original file is truncated entirely or partially,

then the new contents are written.

In step 3, most editors truncate the entire file (equivalent to deleting all the rows

of the corresponding table) rather than truncating partially. Among the ones we

tested, the only editor that did not completely truncate the file before writing was

OpenOffice.org Spreadsheets.

We tested the file system using both command line tools such as sed, grep,

less, python scripts as well as the graphical editors such as MS Word, MS Excel,

notepad, and OpenOffice.org Spreadsheets. The performance results do not include

metrics for the graphical editors, however, in our experience their performance on our

file system was indistinguishable from their performance on a regular file system.

We chose ROWBLOCKSIZE = 512KB,OFFSET_BLOCK_SIZE = 1024KBand

they work well. The file system operations become significantly slower when

ROWBLOCK_S I ZE is as large as the size of the files that are handled and when it

is so small that only a couple of rows can fit in one RowBlock. Too small and too

big values don't work well, because the former requires too many tree operations to

fetch all the data to read, while the latter requires to fetch too many rows from the

database even to read a small part of the file.

6.2 Performance Comparison

Table 6.1: Performance Comparison to The Regular File System

small.csv big.csv
test regular FUSE regular FUSE

read 0.0 0.0 0.30 3.76
write 0.06 0.09 0.65 6.70
grep 0.01 0.02 0.23 4.36

sed 0.02 0.15 0.85 11.96

Table 6.2: SELECT and INSERT performances

test small big

SELECT 0.0 0.57
INSERT 0.03 1.52

The initalization (init ()) of the file system with the files small. csv and

big. csv takes 1.8 seconds. The results for the performance tests applied after

initializing our file system and the regular file system are given in Table 6.1. The first

column contains the names of the tests. The read test involves reading the file from

the beginning to the end. The write test involves writing to an empty file. In the

grep test, we execute

"grep apple <filename>.csv";

in the sed test, we execute

"sed -i'' -e 's/apple/orange/g' <filename>.csv".

small. csv is a CSV file that contains 1000 lines and its size is 135K. big. csv

contains 150000 lines and its size is about 20M. We see that the read operations are at

most 20 times slower and the write operations are at most 15 times slower. Although

the performance of the operations is not particularly good for a file system, it is still

usable and practical if the user wants to make changes to the table using command

line utilities. For comparison, we provide the time that it takes to run SELECT and

INSERT queries in 6.2. The SELECT test measures the time it takes to run the query

SELECT * FROM <table> and then fetch all of the rows that belong to the table

<table>. The INSERT test measures the time it takes to insert 1000 rows to small

table and 150000 rows to big table. All rows are inserted by one INSERT query.

Table 6.3: Ratios of the time spent by different modules in our system

test String Reverse Index MySQL Slave Database Other %
Ops % Tree % Thread % Ops %

read 50 5 0 44 1
write 41 6 49 3 1
grep 52 0 0 47 1
sed 49 12 16 18 5

Using gprof, we also determined how much time different parts of our system

consume. The results are given in Table 6.3. "String Ops" column represents the

percentage of time spent by the string manipulation to transform the data fetched

from the database into CSV and to transform CSV data from files into SQL queries.

"Reverse Index Tree" column represents the percentage of time spent by tree oper-

ations, "MySQL Slave Thread" column represents the percentage of time spent by

the MySQL Slave Thread to apply the changes on the database to the reverse in-

dex trees, and "Database Ops" column represents the percentage of time spent by

executing database queries. We see that the overhead in read operations is almost

equally contributed by the database queries and string manipulation. In write oper-

ations, the database queries do not contribute to the overhead as much as the string

manipulation, because it takes more time to create database queries from CSV data

than it takes to create CSV formatted strings from database query results. Database

queries and string manipulation are the main bottlenecks of our system. The former

can be improved by making database calls using MySQL C API- we currently use

MySQL++ [13] as our database wrapper. The latter bottleneck can be improved by

rewriting the string manipulation code in assembly.

Chapter 7

Related Work

7.1 MySQL CSV Engine

Most MySQL-server packages come with the CSV storage engine which stores the data

in CSV files[3]. This provides a similar functionality to our system, but supports only

reading, not writing the CSV files by user editors. If the user modifies the CSV file,

the changes are not reflected on the database. A benefit of this storage engine is

that it provides an easy way to move and replicate the tables between databases by

just copying the CSV file. A disadvantage of this system is that CSV engine doesn't

support indexing and it's much less efficient than MyISAM and InnoDB engines.

7.2 DBToy

DBToy [4] is a file system in user space that represents the tables in an XML format.

This system allows database managers to view the data using browsers. This is a

read-only file system.

7.3 RDB

RDB is a commercial database that consists of 131 shell commands[5]. RDB is in-

spired by the research paper "The UNIX Shell As a Fourth Generation Language" [6]

which defines a fourth generation language to be a relational database system that

leverages the power of piping UNIX commands. RDB is highly modular and has a

light memory footprint. RDB saves its data in text files in human readable format.

7.4 Flat-Text Database for Shell Scripting

Flat-text database for shell scripting [7] is a database that efficiently handles medium

amounts of data using flat ASCII databases allowing manipulation with shell scripts.

The file format for FSDB is such that each row is on its own line, and the columns

are separated by a space character. Instead of parsing SQL queries, FSDB provides

its own language in which statements are constructed using binaries and UNIX pipes.

It has a rich set of commands that computes statistics over the columns of a table.

FSDB aims to be a lightweight toolbox for the researchers who want to keep moderate

amounts of data in plain text files and run sophisticated queries over them. FSDB

is highly influenced by RDB. It doesn't have some of the advanced feratures of the

commercial RDB, and is not as fast, however FSDB is free and it has a richer set of

tools for statisticians.

7.5 QueryCell, An MS Excel Plugin

QueryCell is not a database, but it is trying to solve a similar problem to what our

system tries to solve. It is a plug-in to MS Excel, that uses the embedded database

FireBird in order to run SQL queries. QueryCell operates by dumping all of the

data on the MS Excel cells in to a table in FireBird, then executing the SQL query

provided by the user. Although practical for small to medium sized files, this method

is inefficient for spreadsheets that contain a large number of rows.

Chapter 8

Conclusion

In this thesis, we described a userspace file system that allows the users to view and

modify MySQL tables as if they were CSV files. We examined other systems that try

to solve similar problems. Some of those systems build database functionality using

CSV files as their data storage. There are two major advantages in our approach to

this problem: first of all, building and maintaining reverse indexes is simpler than

building and maintaining the combination of indexes, SQL interface, transaction logic

and the other common database features. Secondly, the applications that use the

database interface have a higher performance-priority than the applications that use

the file interface. For example, CSV files may be accessed by applications such as MS

Excel, MS Word, or notepad each of which is used by only one user at a time where

the performance is not of utmost importance. In contrast, the database interface may

be used by a web server that is accessed by multiple users who carry out monetary

transactions that require high degree of concurrency where the performance matters.

Therefore it is more efficient to build a CSV file system interface for a database than

building a database backed by CSV files.

On the other hand, the performance of our system is worse than an optimal file

system. The main bottlenecks are the execution of the database queries and the

string manipulation for transforming CSV data into SQL queries and query results

into CSV data. None of these bottlenecks can be entirely eliminated. Nevertheless,

this doesn't constitute a big problem for the end user applications and command line

utilities as we discussed in Chapter 6.

In addition to being a good showcase for userspace file systems, our system has

many practical uses. It makes it easy for non-technical users to manipulate database

tables using user-friendly file editors. It also allows technical users to quickly search

for a string in a table or to delete a row from a table using command line utilities.

By representing the database tables as CSV files, our system allows the users to use

any application that can operate on CSV files in order to access or modify the tables

in a database.

8.1 Future Work

The two most useful improvements to the current system would be adding MS Win-

dows support using Dokan [11] instead of FUSE and adding support for databases

that have replication other than MySQL. As mentioned in Chapter 6, the slow parts of

the system can be improved by using MySQL C API instead of MySQL++ and writ-

ing the string manipulation code in assembly, however, none of these improvements

would result in a dramatic increase in performance.

Bibliography

[1] FUSE project. Home page.
http://fuse.sourceforge.net.

[2] MySQL Replication.
http://dev.mysql.com/doc/refman/5.0/en/replication.html.

[3] MySQL CSV Storage Engine.
http://dev.mysql.com/tech-resources/articles/

csv-storage-engine.html.

[4] Domenico Rotiroti, DBToy: Mapping Relational Databases to File Systems -

User's Manual
http://cloud.github.com/downloads/drotiro/dbtoy/DBToy_

UserManual . pdf

[5] RDB, Relational Database Management System for Unix
http://www.rdb.com/man/rdbman.html

[6] Evan Schaffer, Mike Wolf, The UNIX Shell As a Fourth Generation Language
http://www.rdb.com/lib/4gl.pdf

[7] John Heidemann, A flat-text database for shell scripting
http://www.isi.edu/~johnh/SOFTWARE/FSDB/Fsdb-2.21_
README . html

[8] QueryCell, A SQL plugin to MS Excel
http://www.querycell.com/GettingStarted.html

[9] Tuxera NTFS solution
http://www.tuxera.com/

[10] A file system to edit Wikipedia articles
http://wikipediafs.sourceforge.net/

[11] A FUSE Equivalent Module for Windows
http://dokan-dev.net/en/

[12] Comparison of row-based and statement-based replication
http://dev.mysql.com/doc/refman/5.1/en/
replication-sbr-rbr.html

[13] A C++ wrapper for MySQL C API
http://tangentsoft.net/mysql++/

