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Abstract

Mesoscale eddies mix and transport tracers such as heat and potential vorticity lat-
erally in the ocean. While this transport plays an important role in the climate
system, especially in the Southern Ocean, we lack a, comprehensive understanding
of what sets mixing rates. This thesis seeks to advance this understanding through
three related studies. First, mixing rates are diagnosed from an eddy-resolving state
estimate of the Southern Ocean, revealing a meridional cross-section of effective dif-
fusivity shaped by the interplay between eddy propagation and mean flow. Effective
diffusivity diagnostics are then applied to quantify surface mixing rates globally, using
a, kinematic model with velocities derived from satellite observations; the diagnosed
mixing rates show a rich spatial structure, with especially strong mixing in the trop-
ics and western-boundary-current regions. Finally, an idealized numerical model of
the Southern Ocean is analyzed, focusing on the response to changes in win( stress.
The sensitivity of tie mneridional overturning circulation to the wind changes denon-
strates the importance of properly capturing eddy mixing rates for large-scale climate
problems.

Thesis Supervisor: John Marshall
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Chapter 1

Introduction

Understanding the physics of the planet we live on is an essential task for humanity.

But beyond practical concerns, something subtle and fascinating beckons scientists

to the study of ocean dynamics. At the heart of this fascination lies the inmnense

range of scales present, not merely superimposed on each other, but in interaction.

Interaction among different scales is a hallmark of complexity and underlies many

of today's great scientific challenges, from the brain to the cell to the stock market.

Added to the inherent difficulty of understanding such interactions is the fact that

the ocean is so difficult to observe directly. The "long" time scales in the ocean span

millennia, far to long for humans to observe directly, while the "short" scales involve,

for instance, turbulent wave-breaking events that occur in minutes. The richness of

the physics, together with a paucity of observations, makes physical oceanography

an exciting and dynamic field to work in, with no shortage of open problems ripe for

progress!

One of the great challenges of the past forty years has been to understand the

physics of "nesocale" eddies. This unfortunately sterile term has nevertheless achieved

universal usage in the field to refer to fluctuations in ocean circulation with the fol-

lowing general properties:

* Spatial scales of roughly 10 - 200 kim, the same order as the deforTmation radius

" Low Rossby number; the motions are geostrophically balanced and consequently...



9 The circulations are primarily horizontal

* The eddies are believed to arise from baroclinic instability

These notions are ubiquitous in the world oceans and contain an important fraction

of the ocean's total energy. Furthermore, mesoscale eddies typify the challenge of

scale interaction. It has long been recognized that they derive their energy from an

instability of the large-scale background flow. More recent research has led to a grow-

ing appreciation of the role in eddies in actually setting the large-scale circulation and

stratification, in particularly in the Southern Ocean. This two-way scale interaction

makes the study of mesoscale eddies a truly rich problem.

One way to frame the role of mesoscale eddies in the large-scale ocean, and the

perspective adopted by this thesis, is with the concept of mixing: the eddies stir their

environment and tend to homogenize background properties. If the mixing rates are

known, then the overall effect of the eddies on the large-scale can be understood.

Because eddies cannot be resolved in current-generation climate models, their effects

must be "parameterized" be specifying a predetermined mixing rate, which in most

cases is constant in space and time. Although this thesis is not concerned directly

with eddy parameterization, the hypothetical state of constant mixing rates is an

important reference point throughout. This assumption of spatially homogenous and

unchanging mixing rates underlies all model-based predictions about anthropogenic

climate change over the next century, as well as models of past climates such as

the last glacial maximum. Our results challenge the assumption of unifonn mixing

rates and describe some potential consequences for the large-scale ocean circulation

of departures from that state.

The three chapters of the thesis each examine the issue of mixing in a different

way. The first chapter explores how mixing rates vary with latitude and depth in

the Antarctic Circumupolar Current, a region where eddy effects are known to be

particularly important, making use of a high-resolution state estimate of the ocean

circulation. The second employs satellite observations to calculate mixing rates glob-

ally using a diagnostics based on the tracer variance budget. The final chapter de-



scribes an idealized model of the Southern Ocean and shows how the eddy mixing

rates, and consequently the meridional overturning circulation, vary with changes in

surface wind forcing.

Before delving into these chapters, however, we first give a phenonenological

description of ocean eddies. We then review two topics central to the understanding

of mesoscale eddies: (1) eddy-mean flow interactions and eddy-driven circulations,

and (2) some basic results from baroclinic instability theory. Although this material

is by now well-understood in the oceanographic community, it provides a foundation

and motivation for the subsequent studies.

Figure 1-1: A satellite image of sea-surface temperature in the gulf-stream region,
from the Advanced Very High Resolution Radiometer (AVHRR) instrument. Color
scale is 50 C (dark blue) to 30' C (dark red). Image courtesy of the Ocean Remote
Sensing Group, Johns Hopkins University, Applied Physics Laboratory.



1.1 What Are Eddies?

Fig. 1-1 shows a satellite image of sea-surface temperature (SST) in the Gulf Stream

region. Mesoscale eddies are clearly visible in the image as the large as swirls and

rings of various sizes. These swirling patterns are result from the vortical motion of

the underlying currents, which act to stir together warm and cold water, creating

the complex and beautiful filamentary structure evident in the image. This "stirring

together" of water with different physical properties is precisely what we mean by eddy

mixing. This process is fundamentally no different from what happens when you stir

milk into your morning coffee; the eddies are acting to homogenize the properties of

the fluid, flattening out the temperature gradient across the gulf stream.

Some of the main questions addressed by this thesis arise by simply contemplating

this image. There is clearly a region of strongest mixing in the center, with less

vigorous stirring to the north and south. So what is the spatial distribution of eddy

mixing, how does it vary in the horizontal and the vertical'? And how how does one

go about quantifing the mixing rates at all? These questions are addressed in various

ways by Chapters 2 and 3.

Although eddies have long been known to exist in the Gulf Stream region, only

since the development of satellite technology has their ubiquity in the global ocean

beconme clear. Satellite observations of sea-surface height can provide instantaneous

snapshots of the large-scale scale surface currents. One such snapshot is shown in

Fig. 1-2; this figure reveals rings and eddies of many shapes and sizes throughout

the Pacific ocean. Indeed, while a few large scale currents are visible (the Kuroshio,

the equatorial jets), the overall impression is that the surface flow is dominated by

eddies. At the same time, great spatial variability is evident, with some regions of the

ocean clear devoid of eddies. Chapter 3 makes use of this satellite data to examine

the global distribution of mixing at the surface.

Figs. 1-1 and 1-2, taken together, suggest that eddies can play an important

role in the global climate system. Seeing the large swirls of warm and cold water

in Fig. 1-1 suggests that mixing by eddies can help set the large-scale distribution
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Figure 1-2: A snapshot of the speed of ocean currents in the Pacific as observed by
satellite. From the AVISO data archive. The color scale ranges from 0 to 50 cim s-.
Eddies are visible as the numerous rings and curls of the currents.



of important physical quantities: heat, this case, but also salt, density, potential

vorticity, and biological nutrients. Indeed we will see shortly that, even though the

eddies themselves vanish in long-term averages, the fluxes they produce do not, and

these fluxes can have a strong impact on ocean circulation. The ubiquity of eddies

throughout the world oceans revealed by 1-2 shows that this effect is not limited to

isolated regions.

Indeed, from a climate perspective, this is the main reason for studying eddy

mixing. The fluxes of density and potential vorticity have a special relevance for

climate because they contribute to the meridional overturning circulation, particularly

in the Southern Ocean. Examining how eddy mixing rates vary in response to wind

changes, and how this affects the meridional overturning circulation, is a key focus of

Chapter 4.

1.2 Eddy-Mean-Flow Interaction in the Ocean

1.2.1 Reynolds Averages

The very notion of climate implies some sort of averaging, a smoothing out of short-

term and small-scale variations in order to grasp the "big picture." Mathematically,

averaging procedure requires separating the long-term climate variables from the "ed-

dies" through some sort of filter, which we will denote generally by an overbar. This

filtering operator can be viewed as an average over many realizations of the system

(an "ensemble" average) or a long time average over many eddy life-cycles (equiva-

lent to an ensemble average under ergodic conditions). It can also include a spatial

smoothing or even a zonal / streamwise average, as is appropriate to the symmetry

of the pro)lem in question. For the moment, we remain agnostic about the specific

type of averaging and review some general conventions.

A given variable q can then be written as the sum of mean (q) and eddy (q'), i.e.

q (x, y, z, t) = g + q'(x, y, Z, t) . (1. 1)



The most essential properties of the average are that q' = 0 and that = = . The av-

eraging is frequently assuned to be linear, such that #q = #q (where # is a constant),

and p + q = p+q. (The assumption of linearity can be relaxed(Gent and McWillianis,

1996), although we will not consider this case.) Applying this operator to the fluid

governing equations yields a Reynolds average form of the equations. Consider, for

instance, the equation for the transport of a scalar q with source / sink Q:

-q + u - Vq =Q .(1.2)
at

Averaging this equation provides an equation for the evolution of q:

+ ii Vg = -V - i'q + Q.(1.3)
at

This equation is identical to the un-averaged equation for q, except for the addition

of the eddy flux divergence term V - u'q on the right-hand side. In general, closure

theories for turbulence focus on predicting the form of these eddy fluxes in terms of

other mean quantities.

1.2.2 Transformed Eulerian Mean

To illustrate more specifically how eddy fluxes can impact ocean general circulation,

we consider a canonical configuration pertinent to the Southern Ocean: a zonally

re-entrant channel forced by momentuni and buoyancy fluxes at the surface. This

model is similar to that of Marshall and R adko (2003) and is the inspiration for the

numerical experiments described in the last chapter. Here we will keep things simple

by just considering the quasi-geostrophic form of the equations, which contain the

essential elements. They key point of this section is to see how eddies can cause a

transport analogous to advection, rather than just mixing diffusively. The potential

importance of this transport for the large-scale circulation is a key motivation for the

subsequent investigation of mixing rates.



We begin with the inviscid Boussinesq momentum equation:

Bu1 187-
+u- Vu+ fk x u= -- Vp+bk+ --. (1.4)

Pt po po z

The stress -r includes externally applied stresses such as wind and bottom drag, b is

the buoyancy, and po is a constant reference density. Our averaging operator, a so-

called Eulerian mean, will indicate an average in time as well as zonally (x-direction)

at constant depth, such that 8q/8t = 8q/8x = 0. Applying this average to (1.4)

yields the equation for the zonally-averaged steady-state momentum equation:

- fU + U + UT- = -- (U'') - -(uW') + - (1.5)
By Bz By (z po Bz

Applying standard quasi-geostrophic scaling arguments (see Pedlosky, 1987; Vallis,

2006) to this equation yields a simple approximate form:

a f= , + I .F (1.6)
ay pO 8z

The Reynolds stress term u'V', capable of transferring momentum meridionally, is

very important for atmospheric dynamics, but somewhat less so for the ocean.

We can define a streamfunction for the mean meridional overturning in the y-z

plane: U -D/8z, Ti = BI/Dy. Integrating (1.6) from the surface to any interior

point outside of the Eknian layer, and neglecting the '/v' term, gives

= , 
(1.7)

fPo

where TF is the wind stress applied at the surface. This shows that the Eulerian-

mean overturning circulation simply reflects the Ekman transport induced by the

surface wind. Similarly, integrating (1.6) in z from top to bottom yields the simple

stress balance i7(y) = rx(y) where T is the bottom stress (Munk and Palnmn, 1951;

Johnson and Bryden, 1989; Olbers, 1998). In a Southern Ocean context, T might

represent topographic form stress, but the specific form of the bottom stress is not



important for our purposes here.

The baroclinic part of the mean zonal flow T(y, z) is determnined by the therimal

wind equation:

f -- = - (1.8)

To determine the buoyancy distribution, one must consider the zonally-averaged buoy-

ancy budget. With a buoyancy flux B applied at the surface, the full zonally-averaged

buoyancy equation is

_8Ob _8b a a 8 - 8bV_, + w- = -- (vfb')- - -B + K- (1.9)ay z ay Bz az

From here on, we will neglect the vertical diffusion term in the buoyancy budget, re-

stricting ourselves to the nearly adiabatic regime of ocean circulation in the main ther-

inocline. Diabatic mixing certainly play a, crucial role in the ocean, and( an extensive

literature exists on its effects. Increasingly convincing experimental evidence (Ledwell

et al., 1998, 2011) and theoretical arguments (Toggweiler and Samuels, 1998; Wolfe

an( Cessi, 2011), however, have suggested that much of the upper ocean overturn-

ing circulation can be understood without invoking diabatic mixing. Again applying

quasi-geostrophic scaling, the budget then reduces to

w- = --- (vb ) - . (1.10)Bz By a8:

The prinary difficulty in solving (1.10) is the presence of the eddy buoyancy flux term

on the right side. A technique that has proved extremely useful in both atmospheric

and oceanic problems is to transform the equation to represent part of the eddy flux

as advection, a so-called tranisforrmed Eulerian mean or TEM formulation(Andrews

and McIntyre, 1976; Andrews et al., 1987; Marshall and Radko, 2003; Plumb and

Ferrari, 2005). This is possible because the divergence of eddy fluxes directed along

the iean buoyancy gradient, called skew fluzes, have the same mathematical forim as

advection terms. The eddy advection can then be combined with the necan advection



in a residual streamfunction W'res

Tres = T +P (.1

Plunb and Ferrari (2005) emphasize that the TEM eddy streamfunction is not unique

and discuss the various trade-offs for different choices. However, in a quasi-geostrophic

context, there is only one possibility:

v'b'

bz

Since Wres = 8,,,/8y, we see that (1. 10) can be written as

Ob a -
wa- =- B (1.13)

az z

The eddy flux has been subsumed completely into the residual advection, which must

be balanced by the diabatic flux S. 1 The TEM form of the momentum equation,

obtained by adding -fv* to (1.6) is,

__ 1 8F
- fVres = v'q' + . (1.14)

where
--- v ± -'b'

V' = 7'v + f - (1.15)ay Dz ~b,

is the eddy flux of quasi-geostrophic potential vorticity (QGPV), equivalent to the di-

vergence of the Eliassen-Palm flux. The effect of the eddies on the residual circulation

evidently all boils down to this teriml.

One useful simplification that can be made is to neglect the ''v term; as previously

mentioned, this term is negligble on scales larger than the deformation radius (Vallis,

'In general (i.e. in non-quasi-geostrophic cases), a part of the eddy flux may be left over, unable
to be absorbed into Wres. This "diabatic eddy flux" is discussed by Treguier et al. (1997) and
Marshall and Radko (2003), and Plumb and Ferrari (2005).



2006, p. 706). This allows us to define a zonal "eddy stress" as

a v'b'
rex = pof -z(b (1.16)

and rewrite the momentum equation as

-Vres = POz(rsf + rT) (1.17)

The eddy stress here plays a role very similar to the wind stress. One interpretation

of this form of the equation is that the coriolis force on the residual velocity vre, is

balanced by the divergence of both external and eddy stresses.

We have shown how the effect of eddies in this QG channel flow can be repre-

sented as an advection by a residual circulation. We transformed the momentum and

buoyancy equations to use this residual circulation instead of the standard eulerian-

mean circulation, and as a result the eddy terms were completely eliminated from the

buoyancy e(piation. In the transformed momentumn equation, the eddy flux of QGPV

acts as a forcing of the residual flow. We will now show how this forcing is related to

eddy mixing.

1.2.3 Eddy Diffusivity

To fully Iclose" the eddy-mnean-flow interaction problem described above, one must

sommehow relate the unknown eddy fluxes to the background state. The most straight-

forward approach is to use a dowil-gradient diffusive closure for the QGPV flux, such

that.

v -K (1.18)
By

Here K, is a diffusivity and

-- = -f(1.19)
By By 2 -z

31



is the background QGPV gradient. The variable s = b/b is the mean isopycnal

slope. Arguments based on the eddy enstrophy budget (Rhines, 1979; Rhines and

Young, 1982) indicate that in general Kq must be positive, causing QGPV to diffuse

down the mean gradient. If this coefficient is known, then the strength and sense

of the residual flow can be inferred. Because QGPV obeys a conservation equation

equivalent to a passive tracer, the diagnostics of mixing based on passive tracers

described in the subsequent subsequent are closely related to Kq.

An alternative approach that is very common in oceanography is to instead make

a closure based on the horizontal flux of buoyancy:

Kb= -v'b'by . (1.20)

This allows the eddy stress to be written as Tf = pofKbs. This form is convenient

because it leads to a closure for the whole eddy streamfunction, rather than the eddy-

induced velocity v*. This is particularly useful in ocean models. For instance, the

common eddy parameterization of Gent and McWilliams (1990) assumes that Kb has

a constant value, usually 1000 in 2 s1; this parameterization has been demonstrated

to make a substantial improvement to ocean models (Danabasoglu and McWilliams,

1995). However, this closure is not based on a variance budget, and in general there

is no reason to assume that Kb is positive.

We can see that the diffusivities for QGPV and buoyancy are related by (Smith

and Marshall, 2009)

K q + ! =Uy- -- (Ks)) (1.21)
Bzl- f Oz

If KAb is constant in the vertical (as assumed in the Gent-McWillians parameteriza-

tion), and if the ,8 and 7 terms on the left are small compared to the slope term, then

the two diffusivities are equal. But when the diffusivities vary in z, a central focus of

Chapter 2, one must be clear about whether the eddy diffusivity in question applies

to QGPV or buoyancy. We will make use of diffusive closures for both buoyancy and

QGPV at various points in this thesis, as each has its own distinct advantages.

This brief review of eddy-mean-flow interaction shows how mesoscale eddies can



play an important role in both the momentum and buoyancy budgets of the ocean,

primarily through the effect of an eddy-driven circulation *. The strength of this

circulation can be related to eddy fluxes of buoyancy and potential vorticity. These

fluxes, in turn, can be related to the large-scale gradients through diffisive closures.

When expressed in this form, the main challenge in understanding the eddy behavior

lies in determining the eddy diffusivities, i.e. the mixing rates.

1.3 Baroclinic Instability

The eddy-mean-flow interaction framework just described focuses on how eddies can

influence the large scale circulation in an idealized channel flow. Linear baroclinic

instability analysis allows us to comisider the converse problem-how does the large

scale background state lead to the formation of eddies? The concept of baroclinic

instability first arose in atmospheric science to explain the origin of mnid-latitude

weather systems. Charney (1947) and Eady (1949) independently developed analyt-

ical models, based on idealized, zonally-symmetric background states representative

of the atmosphere, which predicted the rapid growth of unstable waves. The most

unstable waves in these models have scales around the first baroclinic deformation

radius, Ld = NH/f, where N is the background stratification, H the depth, and

f the coriolis parameter. Lorenz (1955) gave an elegant interpretation of baroclinic

instability in ternis of the energy cycle: the baroclinic instability process converts

available potential energy (APE) of the background density distribution into eddy

kinetic energy (EKE).

The seminal work of Gill et al. (1974, henceforth GGS) recognized baroclinic insta-

bility to be the source of energy for ocean mnesoscale eddies as well. The basic energy

cycle described by GGS is still accepted today, albeit with more complexities (Wunsch

and Ferrari, 2004; Cessi et al., 2006): winds create potential energy on the large scale

through Ekmnan puimnping, causing the contours of density (isopyncals) to slope in the

bowl-shaped pycnocline of the mid-latitude gyres; this density configuration is gener-

ally unstable to deformation-scale perturbations, which grow in to imesoscale eddies;



the eddies dissipate energy when they come into contact with frictional 1)oundary

layers. Thus the large scale ocean exists in a state of forced-dissipative equilibrium,

with eddies playing an important role in the energy cycle.

GGS restricted their stability analysis to a few characteristic hydrographic pro-

files, but Smith (2007) recently performed a similar analysis globally to construct

a conprehensive atlas of baroclinic instability, revealing strong correlations between

instability and eddy energy. Here will review some of the important, basic results

of baroclinic instability theory in the context of the idealized channel flow described

above.

1.3.1 The Stability Problem

Linear QG theory requires the specification of a background stratification and shear

(Pedlosky, 1987). The stratification is expressed as a BruntVsisdls frequency N2 (z) =

aB/az. The background nean flow is in thermal wind balance with the meridional

gradient in buoyancy: faU(z)/az = -aB/ay. (Any depth-independent mean U can

be removed with a Galliean transform without affecting the results of the stability

analysis.) These background states can be viewed as representative of a particular

latitude y in the zonally-averaged model described in the previous section, with B

analogous to b. Together, the specification of N(z) and U(z), along with 0, the

planetary vorticity gradient, defines a background potential-vorticity gradient

Qa = s - f (1.22)az

where s = -(aB/ay)/(aB/az) is the large-scale isopycnal slope.

The evolution of eddy quasigeostrophic PV (QGPV) governs the whole system.

The eddy QGPV is defined as

q = V29) (1.23)
wz N2 o

where V) is the streamfiunc-tion for the eddy flow, such that u =-8@/Bay, o = 8@/8ax.



The evolution of q for a flat-bottomed ocean of depth H is governed by the linearized

equations

aq aq a@
-+U - + Q =0 -H<z<0 (1.24)at ax ax
ab ab a8@

+- U-+ B -0 -H, z= (1.25)at ax x

where b - fa4@/az is the eddy buoyancy anomaly. Assuming wavelike solutions for

, such that Re = e[@(z) exp[i(kx + Ly - wt)], the governing equations reduce to a

linear eigenvalue problem for @(z), the complex amplitude:

d f 2 dH
(U - c) K -H<z<0 (1.26)

dz N2 dz

(U-c)+ = -B, z = -H, z = 0 (1.27)
Bz f

where c = w/k = c, + ici is the complex phase speed and K 2 = k2 + E2

The problem specified in (1.26) & (1.27) can be solved analytically for simple

profiles of N 2(z) and U(z), or numerically for arbitrary profiles. The solution consists

of a set of vertical normal modes 4', which describe the vertical structure of the

)erturbations, and a complex phase speed c for each k. If c is purely real, the

perturbations are stable waves, equivalent to Rossby waves or Eady edge waves for

boundary-trapped modes. If c contains an imaginary component, the perturbations

grow exponentially at the growth rate o = kci.

1.3.2 Conditions for Instability

From this general instability problem, Charney and Stern (1962) derived a very useful

criteria for when unstable modes can occur. If we multiply (1.26) by * (the complex

conjugate), integrate in z from -H to 0, and use (1.27) for the boundary values, we

find

II2 - K2 212 dz= - " dz - -- * (1.28)
-H N2 az - U - C N2 U- c.-



The left-hand side of the equation is purely real, and consequently the imaginary part

on the right must be zero. This imaginary part can be written as

C' f (U 2+ dz - h =y± 1 }0 0 (1.29)
-H (U - c,3)2 +c N' 2 _(U - c,3)2 +c -H

This equation reveals the famous Charney-Stern criteria for baroclinic instability. For

ci to be non-zero, the expression in brackets must vanish: this can be accomplished

through a reversal of the interior PV gradient, by cancellation between the surface

and bottom buoyancy gradients, or some combination. The relationship between PV

gradients and eddy mixing rates will be taken up in Chapter 2.

1.3.3 Linear QGPV Diffusivity

A bridge between this discussion of linear baroclinic instability and the eddy-mean-

flow interaction problem in the previous section can be built by considering the eddy

flux of QGPV v'q'. Recall that this expression appeared as a force in the TEM

momentum equation. Linear theory offers a prediction for its general form, but not

its magnitude (Green, 1970; Marshall, 1981; Killworth, 1997; Smith and Marshall,

2009). Specifically, we find

V'q' = -e{V q* k =_ I*@12 eY (1.30)
2 Ox 2 c 2 + (U - c,)2

The QGPV flux is everywhere down the mean gradient Qy, a result expected more

generally from quasi-geostrophic turbulence theory (Rhines and Young, 1982; Rhines,

1979). The implied diffusivity is

,Kq v'q' 1 kc|| 2  (1.31)
Qy 2c +(Ucr)2

The magnitude of the diffusivity, proportional to the growth rate, reflects a fun-

damnental limitation of linear theory: the inability to predict the finite-amplitude

equilibrated strength of the eddies. However, its vertical structure provides a useful



reference point for interpreting diffusivities inferred by other means. Notably (1.31)

predicts a diffusivity with a vertical structure which is enhanced at a critical level zc,

where U(zc) = c,. That is, the mixing of PV is enhanced where the real part of the

phase speed, which represents propogation, is equal to the ambient mean flow speed.

The notion of critical layer-enhancement is also quite general and can be derived

from basic kinematics (Plumb, 2007). The concept of critical layers and their effect

on mixing is an important theme in Chapters 2 and 3.

1.4 Research Orientation

When linear quasigeostrophic stability analysis was first applied to geophysical fluid

dynamics, it represented perhaps the only route to understanding eddy behavior in

the ocean and led to great insights. Since then, two developments have open new

mnethods of inquiry: (1) the advent of satellite observations, which permit a syno)tic

scale view of ocean eddies and their statistics, at least at the sea surface, and (2) great

advances in numerical modeling, enabling very detailed simulation of eddy behavior.

We take advantage of both of these developments in this thesis.

The first two chapters are primarily concerned with diagnosing mixing rates using

tracer-b)ased methods. Chapter 2, Enhancement of Mesoscale Eddy Stirring at Steer-

ing Levels in the Southern Ocean, makes use of the Southern Ocean State Estimate

(Mazloff et al., 2009), a sophisticated, high-resolution numerical model that has been

constrained by a wide range of observational data. We use the velocity field from the

state estimate to simulate the evolution of passive tracers, and analyze the resulting

tracer patterns to infer mixing rates. A key advantage gained by using this model is

that it provides velocities at every depth, permitting us to study how mixing varies

with both latitude and depth. The resulting mixing rates are interpreted in terms

of wave propagation and mean flow speed. We also apply the mixing diagnostics to

infer eddy-induced velocities.

Chapter 3, Global Eddy Mixing Rates Inferr'd from Satellite Altimetry, seeks to

quantify the global geography of mesoscale eddy mixing. Because the source for the



velocity fields is from satellite data, the study is linited to the surface flow. Also,

because of the complex geometry of the flow outside of the Southern Ocean, new

diagnostic methods are explored which are better suited to the problem. The results,

derived from over 20 years of global observations, indicate intense mixing in the tropics

and western-)oundary-current regions, with mean flows acting to both enhance and

suppress mixing rates depending on the region. Using this global map of mixing, we

estimate the eddy stress due to the eddy QGPV flux and find magnitudes comparable

to the wind stress in large regions of the ocean.

In Chapter 4, The Dependence of Southern Ocean Meridional Overturning on

Wind Stress, we examine the role of eddies in more idealized context. We construct

a high-resolution, eddy-resolving numerical model of a Southern-Ocean-like domain

with simplified forcing and bathymetry and investigate the response of the residual

overturning circulation to changes in wind forcing. This problem is intimately tied

to eddy mixing because of the central role of the eddy-induced overturning I*. The

mixing rates are themselves related to the wind via the energy budget, enabling a

closed theory for the overturning sensitivity to be constructed. The behavior of the

model illustrates the importance of correctly capturing the physics of eddy mixing

rates for large-scale climate problems.

The chapters of the thesis do not represent the chronological order in which the

research was performed; rather, the topics have been grouped thematically. Chapters

2 and 4 have both already been published in the Journal of Physical Oceanography;

the material in Chapter 2 in Abernathey et al. (2010) and the material in Chapter 4

in Abernathey et al. (2011). Chapter 3 contains the most recent results and has not

been published.



Chapter 2

Enhancement of Mesoscale Eddy

Stirring at Steering Levels in the

Southern Ocean

2.1 Introduction

The Southern Ocean is a place of both strong eddy activity and strong mean flows.

On one hand, we expect vigorous eddies to be very efficient at mixing tracers. On the

other hand, the strong jets conunon in geophysical fluid flows can inhibit transport

across their axes. In fact, spatially inhomogeneous mixing and the jet-formation

nechanismn appear to be fundamentally linked through potential-vorticity dynamnics

(Haynes et al., 2007; Dritschel and McIntyre, 2008). Furthermore, baroclinic currents

can have different transport properties at different vertical levels. These vertical

variations in eddy mixing in the troposphere and stratosphere have been investigated

by Haynes and Shuckburgh (2000a,b), and also recently in more idealized mno(lels of

baroclinic jets by, for instance, Greenslade and Haynes (2008); Esler (2008b,a). In

an ocean context, Bower et al. (1985) suggested the Gulf Stream acts as a transport

barrier near the surface but mixes strongly across the front at depth. This observation

was followed by numerous Lagrangian studies that confirmed the general picture.



(Bower and Rossby, 1989; Bower, 1991; Rogerson et al., 1999; Yuan ( al., 2002).

Here we investigate the neridional and vertical variations of mesoscale eddy mixing

in the Southern Ocean using a tracer-based approach.

Our work builds on the paper of Marshall et al. (2006, henceforth MSJH), who

drove an advection-diffusion model with surface velocities computed from satellite

altimetry. In their study, an initial tracer distribution with a prescribed monotonic

gradient across the Antarctic Circumpolar Current (ACC) was stirred and mixed by

the two-dimensional eddying flow. The theoretical framework set out by Nakamura

(1996) was then applied to the tracer distribution. The resulting "effective diffusivity,"

Kegf, characterizes the rate of mixing by eddies acting laterally at the sea surface.

An interesting meridional structure emerged, with enhanced mixing rates (-2000 m 2

sm ) on the equatorial flank and evidence of suppressed mixing (-500 M2 S-) near

the core of the ACC. This result was consistent with the notion that the mean flow

was acting to suppress mixing.

Smith and Marshall (2009, henceforth SM), echoing earlier work by Treguier

(1999), suggested that although Keff is small in the core of the ACC at the sea

surface, it might be expected to be enhanced near the depth of the steering level of

baroclinic waves growing on the thermal wind shear of the ACC. Employing a lin-

ear quasi-geostrophic stability analysis of a hydrographic climatology of the Southern

Ocean, SM showed that the steering level of the fastest growing unstable modes re-

sides at a depth of order 1.5 kin and is roughly coincident with the level at which

the imeridional quasi-geostrophic potential vorticity (QGPV) gradient changes sign.

Linear theory (Green, 1970; Marshall, 1981; Killworth, 1997) suggests that the eddy

diffusivity of a growing baroclinic wave has a maximum at the steering level. More-

over, in calculations with a non-linear stacked QG model, SM confirmed that this

linear result survives in the nonlinear regime. They also presented observational ev-

idence that the phase speed of surface altimnetric signals, the surface signature of

interior baroclinic instability, propagate downstream at roughly 2 cm s , the speed

of the mean current at a depth of 1.5 kin or so, and much slower than the 10 cmi s

mean surface current.



Here our goal is to map the nimeridional and depth. structure of Keqf in the Southern

Ocean using the effective-diffusivity methodology set out by Nakamura (1996). In

the absence of observed three-dimensional velocity fields, we make use of an eddying

numerical state-estimate of the Southern Ocean tightly constrained by observations,

and we diagnose Keff from the tracer distribution on isopycnal surfaces. The resulting

effective-diffusivity cross sections support the notion of intensified iixing at depth

and also reveal that deep mixing below the ACC connects with the heightened surface

mixing found by MSJH on the equatorward flank. The structure of Keff contains

the signature of a critical layer, wherein the interplay between upstream-propagating

waves and eastward mnean flow determines where mixing is enhanced and suppressed.

Our paper is organized in the following way. Section 2 contains a description

of the state estimate and the machinery used to calculate effective (liffuisivity. The

results of the calculation and a, discussion of the mixing patterns observed, along

with some regional calculations, comprise Section 3. In Section 4, we discuss the

relationship between the effective diffusivity and the mean potential vorticity field.

We also use Kf f in conjunction with the potential vorticity field to infer the eddy-

driven transport in the ACC region. A discussion of our findings and conclusions are

given in Section 5.

2.2 Numerical Simulation of Tracer Transport

2.2.1 Southern Ocean State Estimate

This study takes advantage of a new, high-resolution ECC0 1 product called the

Southern Ocean State Estimate (a.k.a. SOSE, Mazloff, 2008). Oceanic state esti-

mation (described, for example, by Wunsch and Heimbach, 2006) rigorously synthe-

sizes diverse observations in a dynamically consistent manner. This is accomplished

through minimization of the miisfit between the observations and a numerical model,

in this case the MITgcmn (Marshall et al., 1997a,b). The observations used to con-

'Estimating the Circulation and Climate of the Ocean. Information available online at
ltti)://www.ecco-group.org



strain SOSE include Argo subsurface floats, satellite measurements of sea-surface

temperature and sea-surface height, GRACE satellite data, in-situ data from CTD

and XBT casts, and NCEP re-analysis atmospheric data. The model has resolution

of 1/6 degree, permitting mesoscale eddies to form, and spans a two year period from

2005 through 2006. During this time-period, SOSE is found to be more consistent

with the data than optimally interpolated global climalotogical data products such

as NOAA's World Ocean Atlas (Stephens et al., 2001) or Gourestski and Kolterman

(2004). We use the velocity fields from SOSE to model the evolution of a passive

nummerical tracer. We also use the mean hydrographic fields to describe the climato-

logical state of the Southern Ocean and to compute potential vorticity. A snapshot

of the surface velocity field, revealing SOSE's rich mesoscale structure, is shown in

Fig. 2-la.

2.2.2 Tracer Advection

We characterize the eddy mixing by studying the evolution of a tracer governed by

an advection-diffusion equation. The eddies stir the tracer, lengthening its contours

and thereby enhancing the effect of small-scale diffusion. Nakamura (1996) developed

a iethod to quantify this process by formulating the tracer equation in terms of a

quasi-Lagrangian tracer-area coordinate, in which all transport is diffusive, making it

possible to diagnose an effective eddy diffusivity using only a snapshot of the tracer

field. Here we use the form given by MSJH, in which the effective diffusivity is written

as:
L 2

K eq
Kff = L 2 (2.1)

where , represents the small-scale diffusion that halts the cascade of tracer variance,

Lmin represents the length of an unstrained contour, and Leq, the equivalent length,

can be thought of as the length of the stretched contour. This equivalent length can

be computed from an instantaneous snapshot of the tracer field as

_a_ j 2dA
L f2 Vqa (2.2)eq (1q.)2

\ 94A



We have included this expression for completeness, but we refer the reader to the

Appendix of MSJH for its derivation.

The effective diffusivity formalism is rigorously defined for advection-diffusion of a

tracer in two dimensions. However, we wish to obtain information about the vertical

and meridional distribution of Keff. We therefore first employ the SOSE eddying

velocity fields v = (u, v, w) to aIdvect a passive tracer q according to the 3D advection-

diffusion equation
aq+v - Vq = 8V + kz2q (2.3)

where 1 h and k, are the horizontal and vertical diffusion coefficients and V2 is the

horizontal Laplacian. In a second step, the tracer field is then mapped onto two-

dimensional neutral surfaces in the interior and Kegg evaluated from (2.1) using an

appropriate choice of 'h, as described below.

Following MSJH, we chose an initial tracer distribution approximately aligned

with the streamlines of the ACC. As in Karsten and Marshall (2002a), a single streani-

line of the time-mean vertically-integrated-transport streamfunction was chosen from

the core of the ACC. This was used as a reference to initialize tracer concentrations

ranging from 0 to 1 along lines running parallel to this reference contour, as shown in

Fig. 2-1b. The same initial concentration was used on each vertical level. This choice

leads to a rapid equilibration of the Leq tracer contours, but any initial tracer gradient

roughly perpendicular to the ACC would result in a reliable calculation. (This was

confirmed by repeating our calculations with the initial tracer contours simply aligned

with latitude circles; the resulting Leq was not significantly different from the results

presented here.) We also employ the contours of this initial tracer field to define an

approximate "streanmwise average."

We performed the tracer advection on the same numerical grid as the original

SOSE model, using the offline capability of the MITgcm. With grid points every

1/6th of a degree, the maximum grid spacing was approximately 18 kin. Several

experiments were carried out in which 1 h was set to, respectively, 50, 100, 200, and

400 in 2 s_'. In all cases the vertical diffusion is set to K= 1 x 10-i m 2 s-1, roughly
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Figure 2-1: (a) Snapshot of surface current speed from SOSE. The color scale ranges
from 0 to 0.5 m s-. (b) Tracer concentration after one year of advection-diffusion
using Kh = 50 in 2 s-'. The black contours show the initial tracer distribution, which
was also used to define a meridional coordinate for pseudo-streamwise averaging.
The six sectors highlighted indicate the different regions for the regional effective
diffusivity calculations.



consistent with observed diapycnal mixing rates inl the thermocline.

The role of diffusive processes inherent in the numerical implementation, together

with the overall impact of horizontal versus vertical diffusion, can be assessed by

considering the globally-averaged tracer variance equation:

1 D(q 2 ) (nurn) 12_ nm 2
2 a9t h (JVhq 2) - , n)q 2 ) (2.4)

where ( ) indicates a volume-weighted average over the whole donain. Here K, """

and K$""") represent the diffusivities required to bring the observed decay in q2 in to

consistency with the above variance equation. For all values of th inl our experilents,

the vertical term was at least an order of magnitude smaller than the horizontal, in-

dicating that horizontal diffusion, rather than vertical, is responsible for dissipating

tracer variance at small scales. More detailed analysis of the variance equation indi-

cates that, for values of rsh below 200 m 2 s1 iIimplicit numerical diffusion augments

the explicit value of sh by up to 60%, a finding consistent with incomplete resolution

of the Batchelor scale. In particular, using Kh = 50 m 2 s1 gave (num) = 83 in2 s

while h = 100 n12 s-1 gave (num) = 128 in 2 S 1 . In these cases, we use the esti-

mnated numerical value of Kh in calculating Keff. Higher values of th did not generate

significant spurious diffusion.

Before calculating KeffI we allowed the tracer to evolve for one year. A sample

tracer field after one year of stirring using h- = 50 im2 s iI
K 2 -'is shown in Fig. 2-11). Visual

inspection reveals plausible tracer patterns and no evidence of grid-scale aliasing,

despite the rather low value of diffusivity employed. Such levels of explicit diffusivity

were also found to be appropriate in the study of MSJH, where altinmetric fields were

used to drive the tracer evolution rather than, as here, model fields constrained by

observations.

2.2.3 Isopycnal Projection

The effect of mesoscale eddies acting in the "surface diabatic layer", where isopycnals

outcrop, differs fundamentally from their role in the adiabatic interior of the ocean



(Held and Schneider, 1999; Kuo et al., 2005). In the surface layer, eddies transport

buoyancy horizontally across isopycnals. In the interior, eddies stir primarily along

tilted neutral surfaces, mixing potential vorticity and other tracers isopycnally. Here

we attempt to characterize these two regions separately, diagnosing a horizontal Keff

near the sea surface and an isopycnal K(i) in the interior.eff

An individual effective diffusivity calculation requires a two-dimensional tracer

field: a slice taken at constant depth for Keff, or a slice at constant neutral den-

sity for K . Cross-sections can be built by stacking the results from many sucheff

slices, as described, for example, in Nakamura and Ma (1997) and Haynes and Shuck-

burgh (2000a), who used isentropic surfaces in the atmosphere, or Cerovecki et al.

(2009), who employed the same neutral-surface-projection technique described here.

Constant-depth tracer fields, for computing Keff are trivial to extract from the model

output, since it uses depth coordinates intrinsically. The neutral-surface projection

for K(') requires more care. We first calculated neutral density f from the instan-eff euie

taneous SOSE temperature and salinity fields using the algorithm of Jackett and

McDougall (1997). We chose 35 discrete values of f to define a new density-based

vertical coordinate. The tracer profile at each point was then interpolated onto these

values of f and the resulting two-dimensional tracer surfaces analyzed to determine

K'ff , as described in the next section.

2.3 Cross-Sections of Effective Diffusivity in the

Meridional Plane

Both the theoretical framework for deriving Kqf in terms of the modified-Lagrangian-

mean tracer equation and the numerical technique for its computation are well doc-

umiented (Nakamura, 1996; Nakamura and Ma, 1997; Shuckburgh and Haynes, 2003,

MS.JH) and so are not repeated here. We calculated L 2 as defined in (2.2) using a

MATLAB code. L'q was calculated on both horizontal and isopycnal tracer surfaces

from siniulations using sh values of 50, 100, 200, and 400 mn2 s1, yielding a total of



eight cross-sections. To calculate L',, the iiiiiiiiuim possible length of a tracer con-

tour was inferred by performing an experiment using sh = 4 x 104 n12 s-1. This very

large value of diffusivity decreases the P6eclet number to the extent that explicit diffu-

sion rather than advection dominates the tracer evolution. MSJH showed that in this

regime, the resulting contour lengths, again calculated from (2.2), tend to Lmn.. Keff

was then computed from (2.1). As described earlier, the level of mixing experienced

by the numerical tracer, K "UM), was diagnosed from the tracer variance equation. A

cutoff minimum was imposed on Lmi, of 10,000 ki, chosen to prevent small values

of Lmi, (caused by the surface outcropping of isopycnas or by the intersection of

topography) from unrealistically inflating Kegg.

Both Leq and Lm,n are defined as functions of the area A enclosed by a tracer

contour. A mapping exists between A and an equivalent latitude 0e. In the atino-

sphere, in the absence of topography, this mapping simply identifles the latitude circle

which encloses the given area. But here we must account for basin geometry as well

as isopycnal outcrops. We can deflie the area enclosed by a latitude circle #e on a

neutral surface "' as

A]Y 9  = g(A,#)dA (2.5)

where g(A,#) - 0 for all locations not in the water, i.e. iinsidc topography or beyond

isopycnal outcrops,. and g = 1 otherwise. We evaluated this expression numerically

in the SOSE domain and used it to map Leq and Lmi, to positions in latitude.

2.3.1 Global Cross-Section

The results of our calculations for different values of 1h are shown as meridional

cross-sections in Fig. 2-2. (The isopycinal calculations were mapped back to depth

coordinates using the average depth of the neutral surfaces at each latitude.) The hor-

izontal and isopycial diffusivities share certain characteristics. Each panel in Fig. 2-2

indicates a region of intense mixing deep beneath the ACC (centered around 540 S)

which becomes shallower moving equatorward. The greatest differences between them

occur, unsurprisingly, near the surface. The horizontal diffusivities tend to intensify



near the surface, at least equatorward of the ACC region, while the isopycnal diffusiv-

ities uniforrnly decrease at depths shallower than 200 in because the sea surface acts

to suppress isopycnal stirring on tilted neutral surfaces. The high horizontal effective

diffusivities close to the bottom are not the result of enhanced stirring increasing Le,

but rather result from the intrusion of topography, which causes small values of Lnin

to inflate Keff. The isopycnal projections do not suffer from this problem, and these

will be our primiary focus.

From Fig. 2-2, we see that increasing the value of Kh blurs the structure of Keff

somewhat. Indeed, visual inspection of the tracer fields reveals that (not surprisingly)

they become increasingly smooth and less complex as Kh is increased. Fig. 2-3 plots

horizontal Keff at the base of the mixed layer for various choices of Kh, along with

the Keff profile obtained by MSJH directly using altimetry. We clearly see that the

(istributions of Keff obtained here using Kh = 50 and 100 in 2 s~-I are very close to

those of MSJH, while those obtained using larger values if Kh are considerably greater

in magnitude. Since either of the lower values produces a result consistent with the

earlier study, we choose to analyze the Ks = 100 m2 s--I case, because the numerical

diffusion (1 (wn ), diagnosed in the previous section) is smaller in proportion to the

explicit diffusion. This choice is also supported on consideration of the (Pe, Nu) plot

presented in MSJH, where Pe is the Peclet number and Nu = Keff/h is the Nusselt

number. For sufficiently large Pe, (i.e. sufficiently small tsh) the slope of the line in

(Pe, Nu) space is order unity, in which case Keff becomes independent of the small

scale value of Kh (MSJH, Shuckburgh and Haynes, 2003). This decreasing sensitivity

can be clearly seen in Fig. 2-2 as K, is reduced.

Since Keff, the horizontal diffusivity, applies more readily to eddy buoyancy flLxes

in the surface dia)atic layer, while K( is more appropriate for isopycnal mixing ineff

the interior, in Fig. 2-4 we present a composite of these two quantities. We have

chosen to separate the regions at 100mi depth, a typical mixed-layer depth for this

region.2 Contours of the streamwise-averaged zonal velocity are also shown in Fig. 2-4,

2The rnixed-layer depth (MLD) provides a reasonable estimate of the actual depth of the surface
diabatic laer, since rnixed-layer waters are subject to convection and thereby exposed to diabatic
forcing near the surface. Dong et al. (2008) recently performed a detailed diagnosis of the MLD in
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Figure 2-3: Comparison of effective diffusivity values with those found by MSJH.
The markers show horizontal Kef at 100 m depth, roughly at the base of the mixed
layer, from our experiments with 1 h = 400, 200, 100, and 50 in 2 s' . The solid line
is Kff from MSJH.

indicating the mean position of the ACC. Although the time- and spatial average blurs

the fine structure and multiple jets of the current, a strong mean flow is still apparent.

A striking feature is that, in both the surface layer and the interior, effective diffusivity

is significantly reduced where the mean flow is strongest. Mixing is enhanced between

the 2 and 4 cum s- contours, particularly on the equatorward side of the jet: the

surface of maximum Keff is at a depth of order 1500 in beneath the core of the ACC

and shoals on the equatorial flank.

SM anticipated this general form for Keff, drawing on insights from linear baro-

clinic instability theory. In the analysis of a growing baroclinic disturbance (see,

for example Green, 1970; Marshall, 1981; Killworth, 1997), the diffusivity of quasi-

geostrophic potential vorticity takes the form

1 /2

Kq = _ 2) 2  (2.6)
k (U - cr)

where U is the mean zonal current, c, is the real part of the phase speed, ci is the

imaginary part (the growth rate), k is the zonal wavenumber, and 1 '2 is the eddy

the Southern Ocean from ARGO data. They found substantial spatial and seasonal MLD variability,
with MLDs reaching over 400 in in the winter just north of the Subantarctic Front.
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Figure 2-4: Effective diffusivity Keff in m2 s-1 . The upper panel shows horizontal
effective diffusivity in the upper 100 m. In this region the diffusivity can be interpreted
as a horizontal eddy mixing in the mixed layer. The lower panel shows isopycnal
effective diffusivity, which characterizes the mixing of passive tracers such as potential
vorticity in the ocean interior. The magenta contour lines show the streamwise-
averaged zonal velocity, indicating the position of the mean jet of the ACC, and
mean isopycnals appear in white. The velocity contour interval is 2 cm s.- 1.



kinetic energy. At finite amplitude, the general dependence of the diffusivity on the

eddy kinetic energy, the phase speed, and the mean flow can be expected to hold,

since the form of the diffusivity is related to the kinematics of particle displacement.

SM noted that the observed zonal propagation speed of altimetric signals in the ACC

was roughly 2 cm s-, significantly smaller than mean surface zonal currents, typically

10 cm s-1 (shown, for example, in Fig. 2-4). At depth, however, where mean flow

advection and wave propagation speeds are much more closely in sync, the wave can

"keep up" with the mean flow and achieve large meridional excursions of fluid parcels,

pronmoting mixing. SM followed up these linear arguments with detailed, fully turbu-

lent calculations with a stacked quasi-geogstrophic model, which was relaxed back to

observed hydrography on the large scale. They confirmed that intensified mixing of

potential vorticity occurred at depth, near the steering level predicted by linear the-

ory where U = c. The depth where U = c is also frequently referred to as a "critical

level" or "critical layer" (Bretherton, 1966; Boss and Thompson, 1999). The find-

ings reported here, which make use a much more realistic eddying model constrained

to be close to observations, support the idea that critical-layer enhancement occurs

in the region of the ACC. The numerical studies of Treguier (1999) and Cerovecki

et al. (2009) also provide clear evidence of intensified mixing in the critical layer of

a baroclinically unstable jet. Treguier (1999) in particular diagnoses mixing coeffi-

cients based on flux-gradient inversions of both quasi-geostrophic potential vorticity

in the horizontal and Ertel potential vorticity along isopycnals. The resulting vertical

diffusivity profile (her Fig. 9) is remarkably similar to our vertical profile of K in

the jet axis, reaching a peak of 1600 m2 s 1 at 1500 in depth.

If steering-level effects are responsible for the enhanced diffusivity at depth, we

might expect to observe eddies propagating eastward at a speed slower than the sur-

face mean flow in SOSE. The phase speeds can be calculated using Radon transforms,

as done in SM, but here we opt for the simpler approach of constructing Hovmu6ller di-

agrams. We examined the SOSE sea-surface height anomaly in a sector in the Pacific

between 165' W and 1350 W. Fig. 2-5 shows two Hovmbller diagrams, one at 530 S,

near the mean zonal flow maximum in this region, and one at 47' S. It is encouraging



to see that c ~ 2 cm s1 in the ACC, since this places the steering level around 2000

in deep, in agreement with the structure of Keff in Fig. 2-4. North of the jet at 470

S, the anomalies propagate westward at approximately 1 cm s- These numbers are

in agreement with those of SM.
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Figure 2-5: Hovm6ller diagrams of SOSE sea surface height anomaly (in cm) in the
Pacific. (a) At 530 S, a latitude where the ACC is strong in this sector, the anomalies
appear to propagate east, downstream. The dotted black line in this figure denotes an
eastward phase speed of 2 cm s1. (b) At 47' S, north of the the ACC, the anomalies
propagate west, as expected of Rossby waves in the absence of a strong mean zonal
flow. The dotted line here indicates a westward phase speed of 1 cm s-1. Note that
the anomalies in the northern region are much weaker than those in the ACC, and
consequently, variability on short time scales is visible in (b) that is not noticeable in
(a) due to the difference in color scales.

2.3.2 Regional Cross-Sections

While the global cross-section of effective diffusivity seems to offer a picture consistent

with the global streamwise-average mean fields, the Southern Ocean contains large

zonal asymmetries in bathymetry, circulation, and eddy activity. To address the zonal

variations in mixing, we split the domain into six sectors and repeated the calculation

on each sector. Shuckburgh et al. (2009b) have shown how this procedure, while not

formally permitted in Nakamura's construction, still gives meaningful values of Keff

in the truncated domain. The cross sections of the isopycnal diffusivity (KN)f) are

shown in Fig. 2-6, along with zonally-averaged zonal velocity and isopycnals. Again

we imposed a minimum on Lmin, requiring Lmin > 2200 kn in each sector. Where



Lmin does not meet this criteria, no value is plotted in Fig. 2-6, leading to the irregular

white patches near the surface and bottom. Outcropping isopycnals or the intersection

of neutral surfaces with bottom topography can lead to very small values of Lmin, bit

this effect does not truly reflect an enhanced effective diffusivity. The cutoff procedure

focuses attention on variations in Keff due to variation in Leq.

Intensified mixing at depth is clearly present on the flanks of the jet maxima in

most sectors, the location in latitude varying with the local flow. Other regions of

enhanced mixing in each sector can also be related to the local current system. In

particular, as noted by Shuckburgh et al. (2009b), strong mixing is found in regions

where eddies are generated in association with topographic features in regions of

weak zonal mean flow. In Fig. 2-6a, the region south of Africa between the Atlantic

and Pacific, the mixing in the ACC is concentrated in a narrow region below and

equatorward of the jet. Another surface-intensified mixing region appears north of

400 S. Movies of the tracer evolution suggest that this mixing is associated with the

intense eddies of the Agulhas rings. The Indian Ocean sector, Fig. 2-6b, shows very

strong mixing on both sides of the jet as well as below. This sector contains the

Kerguelen Plateau, a large topographic feature that generates strong eddy activity

as the flow passes over and around it. South of Australia, Fig. 2-6c, the only strong

mixing occurs in a deep, narrow band between 1000 and 2000 m depth. Fig. 2-6d is

the south-west Pacific, the region in which the Hovm6ller diagrams of Fig. 2-5 were

constructed. In agreement with our steering-level hypothesis, enhanced mixing at

depth is observed at around 53' S below the jet where the zonal velocity is 2 ci

s1. This sector also shows the clearest multiple-jet structure, both in the mean-flow

field and in the bands of high and low Kerf. In Fig. 2-6e, the southeast Pacific, Ke f

seems quite weak, consistent with the low eddy kinetic energy in this region and with

the results of Shuckburgh et al. (2009b). However, it still shows intensification with

dlepth. Fimally, downstream of Drake Passage (Fig. 2-6f), intense mixing appears very

widespread. It is likely that much of the mixing north of 45' S is the result of eddies

spawned by the Falkland current. In general, the regional plots suggest that much

of the strong mixing visible in Fig. 2-4 north of 45' S, where the mean flow is very
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weak, is the result of interaction with the continents rather than frontal dynamics.

The Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean (DIMES,

Gille et al., 2007) is ongoing (2009 to 2012). The goal of the experiment is to measure

mixing rates in the region upstream of the Drake Passage using RAFOS floats and

a patch of chemical tracer. Our results predict that isopycnal mixing rates vary

considerably with latitude and depth. In order to gain some insight into the locations

of intensified mixing in the DIMES region, we can map the effective diffusivity back

onto tracer contours from the tracer snapshot used in the Keff calcuation, since

Keff = Keff(A) Keff(q). We have constructed such maps on the two DIMES

target isopycnals, " = 27.2 and 7" 27.9, and near the surface, in Fig. 2-7. (These

isopycnals are also highlighted in Fig. 2-6e, the sector containing the DIMES region.)

Satellite altimetric data is available to the DIMES investigators in real time during the

deployment of floats and tracer. With this in mind, we have included contours of the

instantaneous sea-surface height from SOSE in Fig. 2-7, which suggest the position

of the ACC fronts. This presentation highlights the fact that isopycnal mixing on the

deeper surface is strongest directly at the front, while on the shallower surface the

mixing is weak right at the front, but stronger to the north.

2.4 Potential Vorticity Mixing

The meridional overturning circulation cannot be measured directly and must be in-

ferred. One approach in the Southern Ocean, where eddies are suspected to contribute

significantly to the meridional transport, has been to deduce the eddy mass transport

by assuming the downgradient transfer of potential vorticity (PV) by eddies. For in-

stance, Marshall et al. (1993), Speer et al. (2000), and Karsten and Marshall (2002a)

have all employed some version of this technique. To use this approach, a diffusion

coefficient of PV must be specified; in many cases, this coefficient is assumed to be

constant. We have found, however, that isopycnal mixing is highly nonuniform in

space. In this section we explore some of the consequences of spatial variations in

effective diffusivity. Note that we do not attempt to directly diagnose the eddy PV
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Figure 2-7: Maps of effective diffusivity in the region of the DIMES experiment.
(a) Horizontal effective diffusivity at 100 m depth; isopycnal effective diffusivity on
neutral surfaces (b) f" = 27.2 and (c) j" = 27.9. A snapshot of sea-surface height
from SOSE from the same time is overlaid, with contour levels of 10 cm.



flux or flux-gradient relationships from SOSE because the computation of stable eddy

statistics demands long timeseries (only 2 years are available from SOSE) and because

the local fluxes are dominated by rotational components (Marshall and Shutts, 1981).

2.4.1 The Potential Vorticity Field

We diagnosed the potential vorticity distribution using the time-mean SOSE fields.

The following form is computed appropriate to the large-scale:

P f (2.7)

where b is the buoyancy and f the Coriolis parameter. The relative vorticity has

been neglected because the Rossby number is small on the large scales. Using the

same isopycnal transformation described in Section 2, we computed P and took its

streamnwise average in buoyancy space, i.e. following streamlines and isopycnals. The

result is plotted, transformed back to depth coordinates, in Fig. 2-8a. We see that

surfaces of constant b and surfaces of constant P align with one another over much of

the domain, especially for isopycnals that do not outcrop. This is confirmed by the

plot of the isopycnal gradient of P shown in Fig. 2-8b, which is small in much of the

interior. Notably, PV gradients become very large near the surface in the southern

ACC region, just where we observe reduced effective diffusivites. To examine this

more closely, in Fig. 2-9 we plot the PV gradient along with K~i) on several differenteff

isopycnals. We do indeed find consistently low values of K where PV gradients are

low. The PV gradients are high in the core of the jet, consistent with the invertibility

principle, and in this region the effective diffusivity is smaller. Where the PV gradient

is very weak, no amIimount of mixing can lead to a PV flux. But there does appear to

be a transition zone, where both (BP/ay)b and Keff are nonzero. This suggests a

nonzero eddy flux of PV.
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2.4.2 Parameterized Eddy Forcing

We consider the streamwise- and time-average momentum balance of the large-scale

flow through the Transformed Eulerian Mean (TEM) zonal momentum equation (see,

e.g. Andrews et al. (1987); Ferreira et al. (2005))

1 By 1 87"
-fore,= +v'q' + - X ,(2.8)po 8x po 8x

where v., is the residual meridional velocity, a sumn of e(idv and mean contributions,

v'q' is the zonal- or streamwise-average ieridional eddy quasi-geostrophic potential

vorticity (QGPV) flux, and T is the wind stress. It is comnnon to define an "eddy

velocity" v* as the ageostrophic part explicitly balanced lby the PV flux:

- ft*= v'q' . (2.9)

The quantity v* is often referred to as the bolus velocity, and is also related to the

"gyroscopic pump" described by Dritschel and McIntyre (2008).

Following, for example, Green (1970); Rhines and Young (1982); Killworth (1997);

Visbeck et al. (1997); Treguier et al. (1997), etc., we assume vq is transferred down

the mean gradient q, with our isopycrial effective diffusivity thus:

v'q' e-Kf) (2.10)

Note that the isopycnal effective diffusivity is used in Eq.(2.10) and is worthy of con-

ment. As shown by Plumb and Ferrari (2005), in the limit that relative vorticity can

be neglected, the rcsidual rmeridional isentropic eddy flux of Ertel PV is proportional

to the horizontal meridional eddy flux of QGPV. Indeed we note in passing that,

under quasigeostrophic scaling, the mreridional gradient of QGPV at constant z is

equal to the meridional gradient of Ertel potential vorticity P along isopycnals: i.e.

- ~ -- - - .y (2.11)



We checked this relation in SOSE and found it to hold well everywhere outside of

the mixed layer. Thus (2.8) and (2.10), written in height coordinates, are not as

restrictive as they may seem: they are isomorphic, both mathematically and physi-

cally, to analogous expressions in isopycnal coordinates. Since our isopycnal effective

diffusivities most closely describe the transport of a conserved tracer (like Ertel PV)

along isopycnals, K is the more appropriate choice to capture the horizontal eddyeff

mixing of QGPV.

The mean QGPV gradient was computed at each latitude. Neglecting the relative

vorticity gradient, which is very small compared to the other terms, the gradient takes

the form

-- - fo+y+ a = - fo ,s (2.12)
By ay Bz J N2 BzJ

where s - -by/N 2 is the mean isopycnal slope. We allow #3 and fo to take on lo-

cal values at each latitude, assuming the scaling assumptions of QG theory to be

locally valid, as in, for example, Smith (2007). Numerical implementation requires

much differentiation and can lead to noise onl the grid-scale which was removed us-

ing a Shapiro filter. The streamwise-averaged q, is shown in Fig. 2-8c. Its general

structure -the large positive gradient south of the ACC near the surface, and the

locations of negative gradients-is similar to the IPV gradient, as expected.

We canl use the paramleterization of (2.10), along with (2.9) to estimate the eddy

velocity v*. We can then compare this estimate with one based on a constant diffusiv-

ity K = 1000 m 2 s-1 , similar to the conventional Gent-McWilliams parameterization.

The results of such al estimate are shown in Fig. 2-10 at two different latitudes in

the ACC. In general, the profiles show southward eddy transport above 1000 in and,

in some cases, weaker northward transport at depths. This circulation is consistent

with the effort by the eddies to flatten the sloping isopycnals, releasing potential en-

ergy. Below 1000 m depth, where the PV gradients are weaker and Keff is relatively

high, the two methods of estimating v* yield very similar estimates. But at shallower

depths, the constait-K parameterizatiol produces a miuch greater estimate of the

southward eddy transport in the density classes corresponding to upper-circuipolar



deep water (27.5 < f < 28.0). From this we conclude that one potential consequence

of the diminished mixing in the jet core is the suppression of the eddy component of

the meridional overturning circulation.
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Figure 2-10: Estimated eddy-induced velocities, v*, based on (2.9) and (2.10) at
two different latitudes in the ACC derived from the SOSE mean fields. The solid
lines indicate K(i) was used as the QGPV diffusivity, while the dashed lines are for aeff2
constant diffusivity K = 1000 in 2 s-'. Isopycnals depths for each profile are indicated
oi the right of each graph.

2.5 Discussion and Conclusions

This study has used a tracer-based approach, together with a model of tie Southern

Ocean constrained by observations, to quantify mnesoscale eddy stirring in the South-

ern Ocean. The foremost result we wish to highlight is the presence of enhanced eddy

effective diffusivity well below 1000 m depth in the Southern Ocean. Overall, a struc-

ture is observed of reduced eddy diffusivity at the core of the ACC, with enhanced

values on its flanks and at depth where the zonal velocity is in the range of 2-4 cm

s1. We suggest that this is strongly indicative of mnixing at a critical layer. These

findings are consistent with the quasi-geostrophic analysis of SM and the idealized

models of Cerovecki et al. (2009) and Treguier (1999), with theoretical considerations

based on the observed reversal of potential vorticity gradients and the steering level

of linear baroclinic modes, and with basic kinematics. While we have focused on the



mixing of PV, it is important to keep in mind that the effective diffusivities diagnosed

here apply to the mixing of any tracer, be it chemical or biological.

Shuckburgh et al. (2009a) and Sallee et al. (2008) noted that at the surface, as-

sessments of eddy mixing based on particle dispersion do not indicate a minimum at

the core of the ACC. Finite-time Lyapunov exponents, another possible measurement

of eddy stirring, correlate closely with eddy kinetic energy but do not seem to be di-

minished by strong mean flow, reaching their highest values in the western boundary

currents and ACC (Waugh and Abraham, 2008; Shuckburgh et al., 2009a,b). Simi-

larly, particle-based results do not seem to indicate enhanced mixing below the ACC

at depth (Griesel et al. 2009, manuscript in preparation). In light of the upcoming

DIMES experiments, it is important to reconcile these view of eddy mixing. Some

progress has been made on this front by d'Ovidio et al. (2009).

We argue that effective diffusivity is a useful metric because of the dynamically

consistent relationship it holds with the IPV gradient. The strong IPV gradient in the

core of the ACC acts as a barrier to wave )ropagation-baroclinically unstable waves

propagating in the steering level on the edge of this gradient break, form closed eddies,

and homogenize the low-PV region equatorward of the jet. This conceptual picture

bears a close resemblance to the winter stratosphere, where high effective diffusivities

in the "surf zone" outside the polar vortex are indicative of breaking planetary waves

(Haynes and Shuckburgh, 2000a). However, several important distinctions compli-

cate this interpretation. The size of mesoscale eddies in the Southern Ocean is far

below the planetary scale. Indeed, the streamnwise-averaged view necessarily obscures

localized eddy processes such as interactions with particular topographical features

(e.g. the Kerguelen plateau). This point is underscored by the wide variations seen

in the effective-diffusivity patterns between sectors. Secondly, planetary waves in the

stratosphere are generally thought to propagate up from the troposphere (McIntyre

and Palmer, 1983), far below the critical layer they encounter in the stratosphere.

There is no such spatial separation in the ACC. The eddies arise as a result of baro-

clinic instability and interact with the critical layer in the same region. Perhaps a

better atmospheric analogy is the midlatitude troposphere, where intense mixing at



the steering level homogenizes PV and brings the mean state closer to neutrality.

This processes has been studied in the context of baroclinic adjustment (Stone, 1978;

Zurita-Gotor and Lindzen, 2004a,b). Another open question is the relationship be-

tween this large-scale mixing structure and the smaller-scale multiple jets of the ACC.

Thompson (2009, manuscript submitted to J. Phys. Occangr.) recently conducted an

analysis of mixing and multiple-jet formation over topography with anl eve to the

ACC; lie found regions of enhanced mixing between each of the small-scale jets. How

these small-scale mixing patterns influence the large-scale is an important question

for future investigation.

We have used effective diffusivity profiles to estimate eddy-induced mneridional ve-

locities by parameterizing the eddy QGPV flux. This produced a reasonable picture;

the sense and magnitude of the circulation were consistent with other inferences and

mnodels. The parameterization using effective diffusivity was compared to a constant

diffusivity assumption, as in the Gent-McWillams parameterization. W/'e found the

greatest differences to arise from the low values of Kef in the ACC core and on

its poleward flank, rather than from the high values of Keff found near the steering

level, where weak PV gradients dominate. While not quantitatively rigorous, these

estimates show how the transport barrier in the core of the jet could potentially affect

the strength of the meridional overturning circulation. We conclude that the conse-

quences of the variations of the effective diffusivity for the large-scale overturning

circulation merit further study.
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Chapter 3

Global Eddy Mixing Rates

Inferred from Satellite Altimetry

3.1 Introduction

A large amount of the ocean's kinetic energy resides at the nesoscale, a conseiience

of ubiquitous baroclinic instability in the large-scale density distribution (Gill et al.,

1974; Ferrari and Wunsch, 2009). The advent of satellite altinetry permitted global

mapping of surface eddy kinetic energy (EKE), whose spatial distribution is well

correlated with local baroclinic instability (Stanner, 1998; Tulloch et al., 2009). The

question of how to best use such observations to infer eddy mixing rates is a long-

standing problem in physical oceanography.

A common approach has been to frame the problem in terms of "mixing length"

from turbulence theory, which assumes the eddy diffusivity is given by K =- aVLm,

where V is a characteristic eddy velocity, Lmj the mixing length and a a constait of

proportionality (Prandtl, 1925). Determining these factors in geostrophic turbulence

from purely theoretical arguments is a problem with a long history (Green, 1970;

Stone, 1972; Larichev and Held, 1995; Held and Larichev, 1996; Visbeck et al., 1997;

Thompson and Young, 2006, 2007). Estimating them from satellite (lata is a some-

what easier problen, but still challenging. Satellite observations directly yield the

eddy velocity V in straightforward way; however, theoretical closures must be still



be employed to determine Lmix froim observable properties.

The first such closure theory was by Holloway (1986), who assumed that VeLmix ~

gh,2 /2/f, where h'/2 is the rms sea surface height (SSH) anomaly (see also Keffer

anld Holloway, 1988). The rationale for this closure is that gh'/f provides a stream-

function for eddy the surface flow; its spatial derivatives give the eddy velocities, so

the streamfunction can be considered the product of the eddy velocity and a length

scale, which Holloway (1986) associated with Lmix. This idea was tested by Kushner

and Held (1998) in an atmospheric context, who concluded it was adequate. Stammer

(1998) proposed a variant of the idea in which the mixing length was related to the

local Eady tiiescale. These works provided great insight into the spatial patterns

of mixing. However, the presence of the unknown constant a complicates the inter-

pretation of such results, allowing them to be tuned to give plausible diffusivities.

Thompson and Young (2007) recently showed, through an exhaustive suite of numer-

ical simulations of geostrophic turbulence, that a itself is not a universal constant but

rather varies with parameters of the turbulence, in particular, with frictional damping.

Since occan mnesoscale turbulence itself spans a wide range of parameter regimes and

dissipation mechanisms, there is no guarantee that a constant a is appropriate. More-

over, the formula of Holloway (1986) has recently been demonstrated to over-estimate

the diffusivity in the Southern Ocean, where strong mean flows suppress mixing by

decreasing the mixing length (Marshall et al., 2006; Ferrari and Nikurashin, 2010).

A more sophisticated variant of the mixing-length theory, developed by Ferrari and

Nikurashin (2010) and further explored by Klocker et al. (2011a), shows improved

skill by accounting for the mean flow; however, this modified formula contains not

one but two tuniming parameters that are not trivial to infer from the observations.

An alternative approach is to directly model the evolution of a tracer using the

satellite-derived velocity fields, bypassing the need for a theoretical closure for the

mixing length. Inspired by the use of this technique in the atmospheric literature

(Haynes and Shuckburgh, 2000a,b), Marshall et al. (2006) simulated the passive ad-

vection of a tracer in the Southern Ocean and used the resulting tracer distributions

to calculate "effective diffusivity" (Nakamura, 1996; Winters and D'Asaro, 1996). The



effective diffusivity directly measures the enhancement of mixing due to the stretch-

ing of tracer contours by eddies. A great advantage of this method is that, in the

limit of large Peclet number, and if the Bachelor scale is resolved by the nuinerics,

the resulting diffisivities are independent of any unknown tuning parameters, in-

cluding the small-scale diffusivitiy (Shuckburgh and Haynes, 2003; Marshall et al.,

2006). A disadvantage of the effective-diffusivity methods is that it produces only

contour-averaged diffusivities, rather than two-dimensional maps.

The effective-diffusivity method has thus far only been applied to the Southern

Ocean, for two reasons: (1) eddy fluxes are known to be important there (de Szoeke

and Levine, 1981), and (2), the geonietry of the flow is well suited to the method.

Effective diffusivity requires a monotonic tracer gradient in order to work -in flows

with no coherent tracer gradient, it is impossible to map the diffusivities to a partic-

ular location in space. The strong fronts of the ACC have clearly defined, consistent

gradients in density, temperature, and salinity. Thus the mixing inferred from the

effective diffusivity technique is readily interpreted as applicable to meridional eddy

fluxes. Furthermore, the mean flow of the ACC is aligned with these tracer contours,

making the monotonic gradient easy to maintain.

The goal of this study is to use satellite-derivated velocities and tracer-based

methods to estimate mixing rates globally, not just in the Southern Ocean. Towards

this end, in Section 3 we first study a "chainnelized" version of the East Pacific, in

which the mean flow is forced to be completely zonal and the donain is made re-

entrant. This allows us to compute effective diffusivity at all latitudes using the same

methods as Marshall et al. (2006), providing a useful starting point and connection

to previous studies. We show that the mean flow has a strong role in shaping the

mixing rates at all latitudes, not just in the Southern Ocean.

Adapting effective diffusivity to work outside of this simplified geometry, in real-

istic ocean basins, presents more of a challenge: there is no obvious monotonic tracer

gradient to use. Sea-surface temperature (SST), for example, peaks near the equator

and has very weak gradients in nmch of the tropical ocean. Furthermore, it contains

local extrema in various location. A global effective diffusivity calculation could de-



liver, for instance, an average diffusivity associated with the 18' surface isotherm,

but this isotherm outcrops m1 so many different regions of the ocean that such an

average value would be almost meaningless. To overcome these difficulties, we turn

to a different diagnostic in Section 3: the Osborn and Cox (1972) diffusivity, also

developed by Nakamura (2001), which provides information about the local rate of

irreversil)le mixing based on the tracer variance budget in; unlike effective diffusiv-

ity, this diagnostic can be applied in two dimensions. We introduce this diagnostic in

steps, first in the context of the the Pacific channel, and then globally. We should how

the Osborn-Cox diffusivity provides a complete picture of cross-gradient mixing if the

variance budget is local and steady, )ut that in general other fluxes can be present

that are not represented by the Osborn-Cox diffusivity. By diagnosing the variance

budget from global simulations, we should that the variance budget is approximately

local on large scales.

We then calculate Osborn-Cox diffusivities from the global tracer advection exper-

iment, producing a map of irreversible mixing rates for the whole ocean. We perform

these experiments with and without mean flows, finding not only suppression of mix-

ing by the mean flow (as in the Southern Ocean studies previously mentioned) but

also enhancenment at lower latitudes. Finally, in Section 4 we apply the mixing rates to

estimate the eddy stress in the surface layer due to the eddy flux of quasi-geostrophic

potential vorticity.

3.2 Data and Numerical Advection Model

3.2.1 AVISO Geostrophic Velocity Data

The satellite data used in this study are from the AVISO archive.' Specifically we use

the geostrophic velocities derived from the gridded, delayed-time, reference, merged

sea-level anomaly fields (known as dt-refglobaLmergednsla-uoi in AVISO parlance.)

We choose to use the pre-computed geostrophic velocities, rather than computing

lAVISO stands for Archiving, Validation and Interpretation of Satellite Oceanographic data.
http://www.aviso.oceanobs.com/



our own from the sea-level anomaly for two reasons: (1) to facilitate easy replication

of our results, and (2) to take advantage of the sophisticated treatment employed

by AVISO computing velocities near the equator. The velocity fields are available

on a 1/3' Mercator grid every seven days. We use 17 years worth of observations,

beginning with Jan. 6, 1993.

The altimeter measures the anomaly of sea-surface height (SSH), which we will

call h', from its mean height, and thus captures mesoscale variability. The geostrophic

velocities associated with the SSH anomalies are

, , g 8hah'
?kAV, VAV (31uIy vay = , (3.1)f By 8 x)

where g - 9.8 m 2 s-1 and f is the local Coriolis paraneter. (We use Cartesian

coordinates here for notational simplicity, but in practice all derivatives are computed

appropriately for spherical geometry.) At the scales under consideration here, the

Rossby number is very low and consequently the geostrophic flow can be expected

to dominate the overall flow field, with Ekinan transports and other ageostrophic

motions making only a second-order contribution.

Geostrophic balance does not hold at the equator, but the altimetry data can

still be used to infer velocities there, albeit with less confidence. The AVISO dataset

implements the method of Lagerloef et al. (1999) between i5'. The basic balance

underlying this method is the y-derivative of the meridional geostrophic balance at

the equator: 3u' = -gh,, (Picaut et al., 1989). The Lagerloef et al. (1999) method is

essentially a way of matching this regime with the geostrophic regime away from the

equator. The method has been validated with drifter data and has been demonstrated

to capture the major features and variability of the equatorial circulation. Regardless,

we must maintain some skepticism of our results right at the equator.

3.2.2 Interpolation and Divergence Correction

In order to resolve fine-scale filaments in the tracer field, we model the tracer advection

at finer resolution than the original AVISO grid. The raw AVISO velocity fields are



linearly interpolated to a 1/10' lat-lon grid. The bathymetry for the fine resolution

grid is derived from the General Bathymetric Chart of the Oceans (GEBCO) 1-arc-

minute gridded data, distributed by the British Oceanographic Data Service. 2

To conserve tracer under two-dimensional advection, the advecting velocity fields

must be non-divergent and must have no flow normal to the boundary. However,

divergence is present in the AVISO-derived velocities for several reasons: (1) the

variation of f with latitude, (2) the algorithm used at the equator, and (3) the

interpolation to a finer grid. Furthermore, the normal flows are also not guaranteed

to vanish at the boundaries. We therefore derive non-divergent velocities from the

AVISO fields following the procedure of Marshall et al. (2006). Via a Helmholtz

decomposition, the full AVISO field can be written as the sunn of a non-divergent

streamfunction component and a velocity potential comlponent:

v = V x + Vx. (3.2)

The "corrected" , divergence-free field is

V = ' - VX. (3.3)

To determine x we solve the elliptic problem

v - V2x (3.4)

subject to the boundary condition VX = v'V - f to eliminate flow normal to the

boundary.

The RMS eddy velocity |v'j, the RMS correction velocity IVX<, and the ratio of

these two terms are all plotted in Fig. 3-1. Over most of the ocean, the correction

term is 0(0.1) or less when compared to the eddy velocities. The magnitude of

the correction term appears substantially larger near the equator; however, since the

eddy velocities are also large in this region, the ratio of the terms remains small,

2http://www.gebco.net/



generally < 0.3 even at the equator. The ratio only exceeds 0.5 near boundaries in

the equatorial region.

3.2.3 Mean Flow

The presence of mean flows can fundamentally alter mixing rates, and quantifying

this effect on a global scale is a central goal of our study. Satellite altimetry measures

only sea-level anomaly, not absolute sea-level, and therefore does not provide infor-

ination about the mean flow. The best possible estimates of long-term mean flows

are produced by ocean state estimation, in which all available observations, includ-

ing those from the satellites in the AVISO archive, are assimilated in a physically

consistent manner via an ocean model ('Wunsch and Heimnbach, 2009). We use the

tile-averaged flow at 10m1 depth from the ECCO-GODAE v3.73 state estimate, on a

10 grid, to define our mean flow. To make this flow non-divegent, it was also interpo-

lated and corrected in the manner described above. Experiments are performed b 1oth

with and without the mean flow.

The AVISO archive also provides an "absolute dynamic topography" product

that includes a mean flow at the surface. This mnean flow product is referred to as

CNES-CLS09-v1. We performed experiments using this mean flow and found minimal

differences in results. The AVISO mean flow, on a 1/3' grid, contains narrower jets

and other finer-scale features, but does not differ greatly from the ECCO mean flow.

Since the AVISO mean flow is also derived using data assimilation teclniques, rather

than "directly" observed, we prefer to use the ECCO product, which is proven to be

an optimal fit to the observations.

3.2.4 Advection / Diffusion Model

To perform the tracer advection, we make use of the MITgcmn framework (Marshall

et al., 1997a,b). We employ the model in "offline" mode, where the dynamical core

is disabled and the velocity fields are loaded from the AVISO data. The code simply
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solves the two-dimensional advection diffusion equation

aq-- +v -Vq = KV2q (3.5)at

where K is a horizontal diffusivity. Many different unerical schemes exists for solving

this equation; we experimented with the standard second-order centered difference

scheme and also a second-order scheme with a flux limiter. Both schemes performed

reasonably. However, the second-order scheme without limiter sometimes introduced

spurious extreme values of q, far outside its expected range, in regions of high mixing.

These extreme values result in inflated Vq, which corrupts the mixing diagnostics.

For this reason, we opted to use the the flux-limiting scheme.

The sniall-scale diffusivity K plays in a important role in several mixing diag-

nostics. It is well known that numerical advection / diffusion can introduce extra

diffusion beyond what is specified explicitly by K. We quantify this effect, as done

in Marshall et al. (2006) and Abernathey et al. (2010), through the domain-averaged

tracer variance budget. Multiplying (3.5) by q and taking an integral over the entire

domain gives

VdqA = - Vqg2 dA . (3.6)

where the quantity m is a measure of the total amount of diffusion, explicit and

implicit, in the model. (By taking Knum outside the integral, we have assumed that it,

like the explicitly specified K, is constant in space; this assumption may not be valid,

but computing the numerical diffusivity locally is not possible with this miethod.) We

can evaluate these integrals from the model outiput and solve for rn* We tested

values of K ranging from 25 to 150 in 2 s-1. Tracers were initialized with a gradient

in latitude and evolved for one year, with q output every month. This was repeated

for four separate years of altimetric data. The results, shown in Fig. 3-2-a, indicate

that I ,.ur, is maxnium at the beginlning of the advection but within a few months

settles into a reasonably steady state. The details of the flow clearly affect snum since

it varies differently in each separate year. However, these variations are relatively

small. The mean values of Knm are given in Tab. 3.1. In what follows, rann will



Table 3.1: Average numerical diffusivity Kn'num diagnosed from (3.6).

always be used in place of K when analyzing our simulations.
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Figure 3-2: Numerical diffusivity
tracers with different values of /i

Knum over time diagnosed from (3.6) for six different
(whose values are in the legend). The tracers are

reset every year.

3.3 Effective Diffusivity in a Pacific Sector

Effective diffusivity developed as a diagnostic in the mid-latitude troposphere and

stratosphere (Nakamura, 1996; Nakamura and Ma, 1997; Haynes and Shuckburgh,

2000a,b) and was later applied to the Southern Ocean / ACC system (Marshall et al.,

S( m 2 s- 1) Ksum ( m2 s-1)
25 63 i12
50 83 15
75 104 17
100 126 i 20
125 148 i 23
150 171 + 25



2006; Shuckburgh et al., 2009a,b; Abernathey et al., 2010). Both these environments

share an important feature: tracers have a strong, monotonic gradient in latitude,

with the mean flow oriented perpendicular to the tracer gradients. The geometry

of the mean flow in other ocean basins, however, is much more complex, with gyres,

western boundary currents, and equatorial jets all playing a role. Futhermore, surface

tracers (temperature and salinity) are not simply aligned with streamlines globally,

as they are in the ACC, because strong air-sea forcing and vertical advection often

dominate over advection by the mean flow. These issues make it very challenging

to select an initial tracer distribution with which to perforn a truly global effective

diffusivity calculation: without forcing, the tracer contours will be strongly deformued

by the mean flow, but with forcing, the effective diffusivity diagnostic can give very

different results (Shuckburgh et al., 2011).

As a bridge to understanding mixing rates globally, we performed the following

experiment: we took a sector in the east Pacific (180' to 130' W longitude, full range

in latitude) and turned it into a re-entrant channel. This sector is inique in that

it contains very little land and that the EKE is relatively homogenous in longitude.

The mean flow (from ECCO) was zonally averaged and made costait in longitude

( = U(y)), with T = 0. (The meridional mean flow was already weak in this sector.)

The eddy velocities were derived from AVISO as described in the previous section, and

were made consistent at the overlap longitude during the correction step. Shuckburgh

et al. (2009b) and Ferrari and Nikurashin (2010) also performed experiments of this

type in limited Southern Ocean sectors.

Although this synthetic flow seeis far removed fron the real oceai, it contains

the essential elements necessary to correctly assess meridiortal mesoscale mixing rates.

Obviously there is more to tracer transport than just eddy mixing, but it is the

mixing we are interested in here. With the umean flow purely zonal, and with the

eddy properties (EKE, eddy size, phase speed, etc.) varying strongly in latitude, we

can initialize a. tracer with a constant mneridional gradient and study its evolution.

This is now an ideal flow for diagnosing effective diffusivity



3.3.1 Effective Diffusivity Calculation

The effective diffusivity is defined as

KL (3.7)

L, is the "equivalent length" of a tracer contour deformed by eddies, Lmin is the

miniun possible contour length, and v is the small-scale background diffusivity.

Nakamura (1996) showed that the equivalent length of a tracer contour q, enclosing

an area of A(q), can be expressed as

2- |V q|dAL( -A fA q A2 (3.8)

where the integral is taken over the area A. This expression is easy to evaluate

numerically for a tracer concentration q(x, y), and its value is readily mapped to an

"equivalent latitude," i.e. the latitude of the mean tracer contour q(y). (The mapping

is nmch harder if the geometry of the mean contours is more complex; this was part of

the motivation to perform the simple periodic-domain experiment in the first place.)

Likewise, L.min (y) is trivially defined as the width of the 500 domain at each point in

latitude. Our initial tracer is proportional to latitude: q(x, y, t = 0) = y.

Since the true background value of K in the ocean is unknown, the Keff estimate

is more reliable if it is independent of K. As discussed in Marshall et al. (2006), Keff

lbecomes independent of K the time scale associated with the eddy strain rates greatly

exceeds the diffusive time scale associated with K. Physically, this independence is

due the fact that a smaller K permits finer tracer filaments, allowing L, to increase.

To test whether this is the case in our experiments, we performed tracer a advection

experiment in the Pacific channel using the six values of Knum specified in Tab. 3.1.

The tracers were allowed to evolve for one year, at which point Keff was calculated

using the appropriate values of ven for each tracer. The results, in Fig. 3-3, con-

vincingly show that the Keff is quite independent of Krnm over most of the domain.

Some slight differences occur, for instance, in the peak near the equator. Inside this
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Figure 3-3: Comparison of Keff values for six different snum, whose values are given
in the legend.

peak, the Keff values stratify by Knum. One possible explanation could be that the

global values of Knum in these peaks are not appropriate, and that small-scale numer-

ical dissipation where there is very intense mixing is enhanced locally beyond Knum

for small values of K. Two important conclusions can be drawn from this experiment.

First, the correct value of rn.um is clearly essential to obtain the correct Keff; using

the original values of K would lead to much greater discrepancies. Second, the over-

all patterns and magnitude of Keff does not depend strongly on r,, except perhaps

in the peaks. All the subsequent analysis will be performed with K = 25 m2 s /

'num - 63 m 2 S 1.

Next, we examine the temporal variations in Keff. We allow this tracer to evolve

for a year and compute Le every month. At the end of the year, the tracer is re-

initialized, and the process is repeated every year from 1993 through the end of 2009.

A second tracer is also modeled, six months out of phase with the first, in order to

better resolve the temporal variability. The results from each computation are shown

in Fig. 3-4. As the figure shows, Keff generally equilibrates quite rapidly (within 2 or



3 months) and then plateaus for the remainder of the year. (If the simulations were

allowed to run on indefinitely, Keff would eventually fall again as the tracer became

homogenized in regions of intense mixing.)

Effective Diffusivity (M2 8')
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1000
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Figure 3-4: Monthly Keff values as a function of equivalent latitude and time in the
Pacific zonal sector experiment. The two tracers (top and bottom panels) are reset
to their original concentration once a year, but six-months out of phase.

Some significant temporal variability is evident, with particularly intense mixing

taking place in 1997-1998. The fact that this period coincides with a very strong El

Nifno event is quite intriguing, especially given the fact that the mean flow does not

vary in time in these experiments. This suggests that ENSO-related processes can

directly affect mixing rates by eddies. The temporal variability is not the subject of

this study and will not be considered further, but it is an exciting topic for future

study.

We compute a mean Keff by averaging over the last 6 months of each year. This

mean value and its standard deviation are plotted in Fig. 3-5 (black line).
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Figure 3-5: (a) Zonal mean flow U, dominant phase speed c, and RMS eddy speed
from the Pacific zonal sector experiment. The phase speed was diagnosed froni the
altimetric sea-surface height using Radon transforms by Chris Hughes (personal com-
munication). (b) Diffusivity diagnostics. The mean Keff is in black, with ± one
standard deviation in gray. The dashed line shows the mean Keff produced when the
mean flow is set to zero.



3.3.2 Discussion of Mixing Rates and Mean Flow Effects

Building on work by Taylor (1921), Prandtl (1925), and Keffer and Holloway (1988),

Ferrari and Nikurashin (2010) developed a simple analytical model for mixing across

a jet, representing eddy effects with a stochastic advection term. They cross-jet

diffusivity was found to be

K '= + EKE (3.9)
72+ V2(U, -C c2

where - is the eddy decorrelation tinescale, k the eddy wavenumber, EKE

U'2 + v'2/2 the eddy kinetic energy, U the zonal nean flow, and c the eddy phase

speed. (A similar expression can be derived for the QGPV diffusivity in a baroclin-

ically unstable flow (Green, 1970).) Here we do not attempt to fit this formula to

our results exactly; the constants k and -j can be difficult to asses. Nevertheless, the

formula provides a very useful framework for interpreting our diagnosed diffusivities.

In particular, we see that K 1 depends on the eddy kinetic energy, but also on a factor

(-- c) 2: given a particular EKE, the diffusivity is maximized when this tern is zero.

The diffusivity can be suppressed by presence of propagating eddies and / or by a

mnean flow. We plot EKE and U for our domain in Fig. 3-5-a. We also plot phase

speeds c from the region inferred by Radon transforms of sea-surface height data,

courtesy of Chris Hughes (personal communication).

We also performed the same experiment with the mean flow removed, i.e. U - 0.

The Keff for the zero-mean-flow case is shown as the dashed line in Fig. 3-5-b. This

experiment helps to highlight the role of the mean flow in setting mixing rates.

Beginning in the Southern Ocean, we see a picture already familiar from the

work of Marshall et al. (2006), Ferrari and Nikurashin (2010), and Klocker et al.

(2011b,a): relatively weak mixing in the core of the ACC where the mean flow is

strongest, and slightly elevated values on the equatorward flank where eddy energy

is still high but the mean flow is weaker. Comparing with the zero-mean-flow values,

we see that the mean flow is strongly suppressing mixing rates; without it, they reach

values > 4000 m 2 s1 in the ACC. Moving north to the midlatitudes, we see relatively



uniform mixing between 40'S and 201S of approximately 1000 mn2 s 1encouragingly

close to the canonical Gent-McWilliams coefficient. It is intriguing to note, however,

that the relatively weak eastward mean flow in this region still exerts a suppressing

effect; without it, the mixing rates double.

Closer to the equator, the picture becomes more complex and interesting. North

of 20'S, the mixing rates increase up to a peak of ~ 4000 m 2 s 1 around 5S. Further-

more, these values are evidently cThanced by the mean flow rather than suppressed.

This behavior can be easily explained in terms of (3.9): as shown in Fig. 3-5-a, the

phase speed c is negative throughout most of the domain, consistent with westward

propagating Rossby waves (Chelton and Schlax, 1996; Tulloch et al., 2009). South of

20'S, U is westward: setting U = 0 in this region reduces (U - c) 2 and amplifies the

diffusivity. In contrast north of 20'S, the mean flow is westward too, and (U- c)2 < C2.

Close to the equator there is a point where E ~ c, coincident with a naxnnunm in

K. Of course, the mixing rates are also modulated by the variations in EKE, but

this experiment suggests a very strong role for the (U - c) 2 tern in the sul)-equatorial

region. Right at the equator, c -+ 0 while U remains strongly westward and mixing

rates drop.

In some ways, the northern hemisphere mirrors the southern, but there are im-

portant differences. While EKE peaks around 5YN, this is also the latitude of the

equatorial counter-current, whose strong eastward flow evidently suppresses mixing

considerably. Near 15'N north, however, we encounter another region where - ~ c

and another imaximui in K. North of 20'N, the picture is the same as in the south-

ern mid-latitudes: mixing rates of O(1000 m 2 s-1). The peak in K near 55'N is

associated with high EKE near the Aleutian islands and Alaskan coast.

Overall, this sector displays a wide range of mixing rates, spanning an order of

magnitude from 500 to 5000 m2 s-1. These mixing rates are shaped by neridional

variations in EKE, U and c. Especially high mixing rates in the sub-equatorial regions

arise due to relatively high EKE combined with an alignment between the westward

mean flow and westward propagating eddies. It seems likely that coarse ocean models,

using a constant eddy diffusivity of 1000 2 s- 1, are strongly underestimating eddy



fluxes in these regions.

3.4 Global Mixing Rates

The East Pacific is ideal for investigating mixing rates using Keff because of its

lack of land and relative zonal symmetry. But focusing only on this sector neglects

the regions of highest EKE in the glol)al ocean: the western boundary currents.

Unfortunately the complicated geometry of the mean flows near western boundaries

makes it very difficult to calculate Keff there in a robust way. In this section, we

make use of a different diagnostic, the Osborn-Cox diffusivity (Koc), for assessing

mixing globally. The origin of this diagnostic lies in the tracer variance budget; it

represents the part of the down-gradient eddy flux associated with irreversible mixing.

We examine the variance budget first in the zonal channel described in the previous

section, and we show that Koc agrees with Keff. We then move to the global view.

3.4.1 Eddy Diffusivity and the Variance Budget

By taking a time mean of (3.5), we obtain the Reynolds-averaged tracer equation: 3

-- + v - V q = -V -v'q' + V2q .(3.10)
at

The overbar indicates a time / ensemble mean, and a prime a departure from that

mean, such that q = -+ q'. This equation describes the evolution of the mean tracer

q and looks identical to (3.5) except for the eddy flux term on the right.

The eddy flux can be decomposed into components perpendicular (v'q'1 ) and

3 This derivation is based on the paper by Nakamura (2001).



parallel (v'q', a.k.a. the "skew" flux) to the tracer gradient:

v'q' v'q'1 +V'

= v''-) n - (v'q' x ft) x n

= Vq
|Vg|2

(3.11)

(3.12)

(3.13)
v'q' x V-

- xV .

(The unit normal vector n = V4/IVql points up the mean gradient.) These two

components behave differently. Our focus will be on the cross-gradient flux, but first

we discuss the skew flux. (Eden et al. (2007) discuss these decompositions in detail.)

By manipulating second term, it can be seen that the divergence of the skew flux

can be represented as advection by a non-divergent eddy velocity v= k x V<e, such

that

V v'q' 11 -ve - Vq (3.14)

The streamfunction 4@e can be written as

8F 4 By O)V4-
e=(u'q' 5 - v'') 2g4.

y aX

Integrated around a closed contour of -q, the skew flux divergence is zero.

(3.15)

Further-

more, the eddy velocity can be combined with the mean velocity to define a residual

advection velocity, as in transformed Eulerian mean theory (Andrews and McIntyre,

1976; Andrews et al., 1987: Plumb and Ferrari, 2005). This residual tracer equation

is

(3.16)

Seen in this form, the skew flux is clearly not representative of the sort of non-

conservative process that we associate with mixing. The non-conservative part of the

flux lies entirely in the cross-gradient flux v'q'I.

The nature of the cross-gradient flux can be illuminated by considering the tracer

variance bNdget. This budget is obtained by subtracting (3.10) from (3.5), multiplying

+ (-f + ve) - V =-V-v'q'_L + KV2q .8t



by q' and taking the average. The resulting equation is

q/2 /t22/q2
q + V + - v- 2  

-l_ 12 (3.17)
8t 2 2 2 )

an(d the quantity q' 2/2 is the tracer variance. The first term is the variance tendency,

and the second represents advection of variance. The third terni, v'q' - V-, involves

the cross-gradient eddy flux. (Because the skew flux is parallel to V4, it does not

enter the variance budget.) Locally, the cross-gradient flux can be a source or sink of

variance, depending on its direction relative to Vq.

We now integrate this variance equation (3.17) in space over the whole domain,

assuming a steady state, and using the divergence theorem to eliminate all fluxes at

the boundary. This global budget for tracer variance is

J v'q' -V-qdxdy = - J I |Vq'|2dxdy , (3.18)

which states that the production of variance from the mean flow (the term on the

left) is balanced by dissipation of variance by small-scale mixing (the term on the

right). Since the right side is negative definite, so must be the left side; this is implies

that the cross-gradient fluLx must be, on average, down gradient. We now define an

eddy transfer coefficient (i.e. eddy diffusivity) for the cross-gradient flux, such that

q = -- Vq . (3.19)

The global budget then becomes

- JJ K1|V q|2dxdy - JJ I Vq'|12dxdy. (3.20)

WVe canl see fron this expression that K 1 must be, on average, positive. Indeed,

(3.20) is the underlying justification for any attempt to represent eddy fluxes as

down-gradient diffusion. The dissipation term on the right side is unambiguously

identified with irreversible mixing.



Osborn and Cox (1972) wanted to estimate the eddy vertical flux of heat, and the

associated vertical (liffusivity, based on microstructure measurements of the vertical

temperature gradient. To do so, they essentially assuied that the global variance

balance of (3.18) held locally, neglecting the other terms in (3.17). Regardless of

whether this is the case, we can always identify the portion of the production term

that is locally balanced by the dissipation term. We label this flux as v'q'oc, the

Osborn-Cox flux, and define it as

vO'q'c q = -I Vq' 2  (3.21)

This allows us to define the Osborn-Cox diffusivity Koc by

VVoc - -KocVq (3.22)

where

Vq'|2
Koo =- q2 . (3.23)

This is the diffusivity for the flux associated with local irreversible mixing; it will

play a central role in our subsequent diagnostics. Physically, Koc is quite similar

to Keff: it represents the enhancement of small scale mixing due to sharp tracer

gradients created by eddy umixing. The factor |Vq' 2 Vq 2 can be interpreted as

ratio of length scales that quantifies the efficiency of this process, just like the factor

L in Keff. In fact, it can be shown that Koc integrated along a tracer contour

is equivalent to KeU (see Nakamura, 1996, eq. 2.2 - 2.5).

In general, the other terms in (3.17) will contribute to the variance budget as well,

mneaning v'q'oc f 'q'j. However, the leftover flux is qualitatively different fromi the

Osborn-Cox flux, as we shall now see. We we refer to this leftover flux as the non-local

flux because it arises mainly due to the transport of variance. We define it as

VqNL - ~ / q Oc - (3.24)



By subtracting v'q'oc - V4 from (3.17) we can write

8q/2 q12 q/2
VVq'NL -q = -t 2 - + r2- (3.25)

This equation shows that the non-local flux arises due to the variance tendency (small

for quasi-steady states) and to the advection and diffusion of variance. It can be up

or down gradient, and we know from (3.18) that the variance fluxes on the right-hand

side must vanish in a global integral, implying that they cancel each other out over

large spatial scales.

In analyzing the eddy potential energy and enstrophy equations, which both re-

semble (3.17), (Marshall and Shutts, 1981) considered a similar decomposition of the

cross-gradient flux into what they called rotational and divergent components. Their

divergent flux is equivalent to v'q'oc. Likewise, their rotational flux is related to

v'q' NL specificially they define

VVRtv V . (3.26)
2

Comparing with (3.24), we see the v'q' -- vq'NL if the tendency, diffusion, and

triple correlation (i.e. v'q'2 ) terms are all neglected, leaving only advection of variance

by the mean flow v.

(Marshall and Shutts, 1981) argued that the divergent flux was more important

because it alone contributes to the budget of 4 within mean streamlines. They claimed

that q, in their case representing temperature or potential voriticity, will be generally

aligned the streamlines V/ of the mean flow, such that then that q = q(4'). (Indeed

this is expected for any tracer with weak sources / sinks (Rhines and Young, 1982).)

Under this assumption, it can then be shown that

I V v'q' 'dxdy =0 ,( 3..)

i.e. that the rotational flux divergence inside a mean streamline V) is zero, and that



only the divergent fluxes contribute to the budget of q (3.10). In retrospect, the

neglect of the triple correlation term by Marshall and Shutts (1981) was unjustified.

Nevertheless, variance budgets from our simulations (discussed in the subsequent

sections) support the conclusions that, in general, the nonlocal fluxes only act to

move variance around on small scales, and that the eddy contribution to the budget

of q on large scales is primarily dominated by V'q'oc-

3.4.2 Variance Budget and Koc in Pacific Channel Experi-

ments

NWe first examine the budget for variance and Osborn-Cox diffusivity in the Pacific

channel experiments described in the previous sections. The zonal symmetry simpli-

fies the budget and also facilitates easy comparison with Keff. In a, zonal average,

the variance budget (3.17) simplifies to

8 q 8 vqi ~ agx g2
a a (T172'~ q a2(r~N

+ +v'q' - . - r| Vq'|2 (3.28)
&t 2 By 2 ay By 2

Because there is no mean meridional flow, the variance advection term only includes

the triple correlation. The budget was computed using the Pacific channel simulations

described in the previous section. The terms are shown as functions of y in Fig. 3-6.

The variance diffusion term (the first term on the right side of (3.28) was two orders

of magnitude smaller than the others and so was not plotted. We did not diagnose

the tendency term, but instead assume it to be given by the residual. The dominant

balance is clearly between variance production (q ) which is everywhere positive

and variance destruction (i|Vq'12x), which is negative. The triple correlation term

is generally much smaller. In some narrow peaks, its magnitude approaches 1/2

of the other two terms; however, positive peaks are neighbored by negative peaks,

indicating that the term acts only on small scales. The residual term is small, at

maximumn accounting for 20% of the balance. This indicates that the variance is not

in a steady state, but rather is evolving slowly over the course of the year.
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Figure 3-6: Terms in the zonal-mean variance budget (3.28). The tendency term was
not diagnosed explicitly but is assumed to be equal to the residual.



Next we consider the mixing diagnostic Koc and compare it to Kef . In a zonally-

averaged context, Koc ,|Vq'<//V7. - A third quantity worth comparing is

(3.29)Kflux 
aBy

a more traditional diagnostic of mixing in channel flows. Based on our preceding

discussion of the variance budget, we can see that Kflux is a diffusivity for the full

cross-gradient flux, including the non-local part v'q'NL. Thus we expect it to depart

from Koc wherever the tendency term or the triple correlation term are significant.

Diffusivity

0 1 2 3 4 5 6
1000 m2 S-1

Figure 3-7: Comparison of three different diffusivity diagnostics (Keff, Kf, and
Koc) in the Pacific channel experiment.

We plot Keff, Kflux, and Koc, in Fig. 3-7; the agreement is qjuite good in



most places. The slight disagreement between Kf1ra and Koc near 55 N is easily

attributed to the presence of a variance tendency at this latitude, apparent in Fig. 3-

6. (The same connent applies to the area around 40S.) Some disagreement between

diagnostics is also evident in the peaks near the equator. The relatively strong triple

correlation terni is likely responsible for this. Also, we note that in these regions, we

also found disagreement between Keff obtained with different values of K (see Fig.

3-3); we speculated that this could be due to spatially varying rm in regions of

intense mixing. This could be a possible explanation for the disagreements between

Keff and Koc. Overall though, these issues are small, and the three diagnostics give

the same broad picture.

The ad-vantage of Koo is that, unlike the other diagnostics, it can give a two-

dimensional picture of mixing, revealing variation in x as well as y. To illustrate this,

we simply compute the local value of Koc, as defined in (3.23). (The zonal average

of this quantity is identical to what is plotted in Fig. 3-7.) The full Koc(x, y) is

plotted in Fig. 3-8. A high degree of zonal synnetry is indeed evident, but some

zonal variations also emerge, for instance, between 20 S and the equator, or near 50

S. We will now proceed to construct global maps of Koc.

3.4.3 Global Osborn-Cox Diffusivity

The methodology we use for the global experiments follows in a straightforward way

from the previous section. We initialize a tracer globally, stir it with the adjusted

AVISO velocity field v' in combination with the ECCO mean flow W, and reset the

tracer after one year. The process is repeated for 17 years of AVISO data; the statistics

necessary to compute Koc and the terms of the variance budget are generated by

tine-averaging over the whole 17-year period. This procedure can be viewed as an

ensemble of 17 individual yearly experiments. The results are not very sensitive to the

averaging period, provided the period is short enough to prevent the tracer gradients

from being completely mixed away, in which case Koc becomes undefined.

The main challenge in the global experiment is the choice of an initial tracer. One

obvious choice is the same latitude tracer used in the previous section; we will refer
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to this tracer as trLAT. This tracer facilitates easy comparison with the preceding

results. However, a great disadvantage of trLAT is that it is no longer necessarily

aligned with the mean flow; this misalignment means that the mean flow itself can

greatly deforn the mean q contours and cause irreversible mixing (Young et al., 1982).

It would be misleading to identify this mixing with eddies, since it is produced by the

mean flow.

An alternative is to use an initial tracer that is perfectly aligned with mean flow

everywhere. Since the inean flow is non-divergent, its streamfunction defines such a

tracer. We will call this tracer trPSI. With the eddies removed, trPSI will evolve

only very slowly, diffusing weakly across streamlines due to r, but otherwise remaining

unchianged. A major disadvantage of trPSI is that it contains local maxima and min-

ima, for instance, in the middle of gyres. As previously mentioned, Koo is undefined

wherever the background gradient |Vq| vanishes, and very weak gradients can inflate

the value of Koc in an unrealistic way. We also explore a third tracer, the mean

sea surface temperature, which is somewhat aligned with the mean flow but contains

different local extrema from trPSI. We call this tracer trSST.

Before examining the KOC results, we first turn to the variance budgets them-

selves. Figs. 3-9 and 3-10 show the relevant terms in the two-dimensional variance

budget (3.17) for trLAT and trPSI. (The variance budget for trSST is very similar

to trLAT and is not plotted.) Also plotted are the mean tracer concentration q and

variance q'2/2. It is striking how different the variance field is for the different tracers.

For trPSI, the region of highest variance is along the equator. We presume this is due

to the very strong gradients of q which are present near the equator; these gradients

in streamfunction coincide with the strong quasi-zonal equatorial jets. In contrast,

the variance produced by trLAT is highest in boundary current regions.

The variance budgets themselves reflect these differences. The variance production

and dissipation for trLAT are both strongest at the equator, where the variance itself

is highest. Likewise, these terms are most intense in the boundary currents for trPSI.

As we saw in the zonally-averaged budget (Fig. 3-6), production is largely balanced

locally by dissipation for both cases. The variance advection (which includes both



triple correlation and mean advection) mostly displays small scale variations on scales

below 500 kin, with closely neighboring sites of positive and negative contribution.

The areas where the advection terms is significant are mostly in boundary currents,

the ACC, or near the equator. This inmeans that variance is generally dissipated within

500km, or less, of where it is produced, implying that on large scales, the variance

budget is approximately local.

The only glaring exception to this local balance is in near the equator for trPSI,

where coherent zonal bands of positive and negative values are present. These bands

indicate a systematic transfer of variance from a production region to a dissipation

region. We note that this transfer is truly a combination of triple correlation and

mean variance advection, rather than being due just to one term, although only the

net effect is plotted.

There are several reasons to expect somewhat different values of Koc to energe

from calculations using different initial tracers. As ientioned above, the misalign-

ment between trLAT and the mean flow can create additional mixing by the iean

flow itself. We expect this effect to be especially strong in western boundary current

regions, where the mean flow is nearly perpendicular to trLAT. On the other hand,

trPSI contains vanishing gradients that can cause Koo to blow up. This is especially

problenatic near the equator, where trPSI has several local extrenna in close prox-

iniity to strong variance dissipation regions. We expect this effect to produce strong

maxina, in Koc near the equator for trPSI.

We now turn to the maps of Koc themselves. The results for the three tracers

are shown in Fig. 3-11 on a logarithmic scale. Despite significant difference in the

variance budgets themselves, all three calculations share the following key attributes

in Koc:

" Large values (Koc > 104 mn2 s-1) on the flanks of western boundary currents

such as the Gulf Stream and Kuroshio

" Local minimna(Koc < 103 i 2 s-1) in the mid-latitude gyres around 45 N / S

* Patterns in the Southern Ocean consistent with Marshall et al. (2006), with
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high values on the northern flank of the ACC and lower values farther south

9 Very high values in the tropics, but differing spatial patterns

Many of the apparent differences can be understood in terms of the issues sug-

gested above. Both trLAT and trSST exhibit high Koc in the western-boundary-

current extension regions. trPSI, on the other hand, does not have such a pronounced

maximum in these regions. We attribute this to the fact that trPSI is totally aligned

with the currents in these regions, while the others are not. The misalignment leads

to strong mixing by the mean flow alone. This conclusion is supported by the exper-

inients with no mean flow, presented in the next subsection.

As also mentioned above, Koc becomes undefined where |Vql = 0. The latitude

tracer avoids this situation better than the other tracers because it contains no pre-

existing local extrema. Both the SST and streamfunction tracers, however, contain

local maxima to begin with, and these points inevitably are associated with very

large values of Koc. To illustrate this effect, Fig. 3-11 includes a contour showing

where |Vql is equal to 20% of its global mean value, indicating where the background

gradients are very weak. There are almost no such areas for the latitude tracer, but

there are several large regions for the other tracers. If the variance budget is local

in these regions, the large values of Koc truly represent strong mixing. But if the

budget is not local, they are misleading. A particularly severe example of the later

case occurs in the banded structures near the equator for trPSI. We saw in Fig. 3-10

that variance is exported by the advection term from a, production region near the

equator to a dissipation region just slightly north. Because trPSI has strong strong

and weak gradients in close proximity in this region, Koc, which is based on a local

variance budget, becomes artificially large where the gradient is small. Indeed, from

examining maps of v -~ (not plotted), it becomes clear that this term plays a major

role in determining the spatial patterns of Koc.

The upper bound of our diagnosed diffusivities, 0(20, 000 m 2 s-1), is very large

compared to the values used in conventional ocean models. But it is not without

precedent. Zhurbas and Oh (2003, 2004) analyzed surface drifter trajectories to asses
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Lagrangian (liffusivities in the Atlantic and Pacific. They found diffusivities of similar

magnitude in the boundary currents and equatorial regions. Overall, their spatial

patterns of diffiisivity are quite similar to ours as well.

3.4.4 Impact of Mean Flows

The role of the mean flow in determining the spatial pattern of Ko can be assessed

by conducting the global experiment with the mean flow set to zero. We show re-

sults of these experimnents for trLAT and trPSI in Figs. 3-12 and 3-13. As discussed

above, these two tracers have very different orientations relative to the mean flow, in

particular in the western-boundary-current regions, where trLAT is nearly perpendic-

ular to to the mean flow. trPSI, on the other hand, is always perfectly aligned with

the mean flow. The effect of removing the mean flow will be different in each case.

By removing the mean flow from the trLAT experiment, we also remove the mixing

due to the mean flow itself. Because trPSI is not mixed by the mean flow at all, its'

zero-nean-flow experiment is more pure, revealing only the interaction between mean

flow and wave propagation envisioned described in Sec. 3.3.2.

Focusing first on trPSI (Fig. 3-12), we note similar patterns of suppression and

enhancement to those found in the Pacific channel experiment. (Compare with Fig.

3-5.) We observe strong suppression by the mean flow throughout the ACC. In the

tropics where the mean flows becomes westward (same sign as Rossby wave prop-

agation), the presence of the mean flow leads to enhancement which is correlated

with the structure of the equatorial jets. Where the equatorial counter-current flows

eastward, we observe suppression. In the western boundary currents and their exten-

sion jets that flow eastward between the subtropical and subpolar gyres, we observe

significant suppression. Just as in the ACC, the combination of eastward flow and

westward propagating waves / eddies leads to suppression of mixing. It has been

suggested (Bower et al., 1985) that the Gulf Stream creates a mixing barrier near the

surface, and our results are consistent with this interpretation.

For the most part, the effects of the mean flow on trLAT are similar, with the sarne

broad patterns of enhancement and suppression. There is a big difference, however,
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in the western-boundary-current regions. In the core of the Gulf stream, and on the

northern flank of the Kuroshio extension, the mean flows clearly suppress mixing, as

observed across the region for trPSI. However, for trLAT the addition of the mean

flow causes extremely cnhanced mixing on the southern flanks. We interpret this

as mixing caused directly by the mean flow itself, due to the initial misalignment

between trLAT and the current.

3.4.5 Composite Map of Koc

In general, it is not obvious whether one of these tracers is the "best" measure of the

true mixing rates. Each has advantages and disadvantages. trLAT maintains a stable

gradient everywhere, making the diagnostics more robust. The spatial structure of

trPSI, on the other hand, is clearly strongly affected by the initial tracer distribution.

But trPSI represents only mixing by the eddies, not the mean flow itself. As we have

just seen, part of the mixing of trLAT is due to the misalignment of the initial tracer

gradient with the mean flow. (trSST is in a way the worst of both worlds, exhibiting

both issues.) In short, we feel that the different calculations are robust in different

parts of the ocean. Therefore we propose a, composite quantity, which we simply call

K, as the minimuni of the Koc obtained with trLAT and trPSI at each point. By

choosing the mininum of the two values, we automatically avoid the points where

trPSI is large due to weak initial gradients and where trLAT is strong due to mean-

flow induced mixing. K is plotted in Fig. 3-14. We believe that this quantity most

accurately represents the true eddy mixing rates in the surface ocean.

3.4.6 Sensitivity to r

Here we address whether Koc is independent of K in the same way as Ker was shown

to be in Marshall et al. (2006) and the previous section. The factor |V |2, the mean

background gradient, is certainly independent of iz, so Koc will be independent of

r if IVq'12 ~ K -. Employing the same set of experiments used to calculate hnum,

we calculated the domain-averaged value of |Vq' 2 for a range of K. The results,
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Figure 3-12: (a) Osborn-Cox diffusivity on a logarithmic scale for the latitude-tracer
experiment with the mean flow set to zero for trLAT. (b) The ratio between Koc with
and without the mean flow. The black contours are the streamfunction of the mean
flow, indicating the position of mean currents. The solid contours surround regions
of large-scale clockwise flow while the dashed contours show counterclockwise flow.
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Figure 3-13: Same as Fig. 3-13 but for trLAT.
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Figure 3-14: Composite value of K produced by taking the minimum Koc produced
by trLAT and trPSI. See text for discussion.

shown in Fig. 3-15 on a logarithmic scale, do indeed show that this factor is inversely

proportional to n, with power-law relationship close to -1. A linear fit of the points

in Fig. 3-15 reveals that, actually, |Vq'12 OC K-.8. The departure of the exponent

from -1 means that Koc does depend weakly on n: specifically, that Koc c 0

Measurements of the true background diffusivity in the ocean on scales of 1-

10 km have been estimated by Ledwell et al. (1998) from deliberate tracer release

experiments. Based on observations of tracer filament width, they concluded that

K ~ 2 in 2 s1 at 300 m depth in the North Atlantic. This is significantly less than the

um = 66 m 2 s- 1 value we used. Assuming the K-,- dependence holds down to such

low values of K, we can extrapolate what value of Koc would result from to employing

n _ 2 in2 s1. Since (2/66)0.2 0.50, we conclude that our estimates could be off (too

large) by a factor of 2. It seems likely that small scale mixing processes contributing

to & are stronger at the surface, where mechanical forcing and turbulence are much

stronger than at 300 m depth. Therefore we consider the factor of 2 an upper bound.
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3.5 The Eddy Stress

The mixing rates diagnosed in this work have various implications for transport in

the ocean. Most directly, we can expect that they describe the rates of mixing of

heat, salt, and other tracers in the ocean surface layer. (This was the application

envisioned by Holloway (1986).) Here we focus on a slightly more subtle application:

estimating the near-surface eddy forcing of the mean flow due to the eddy potential-

vorticity (PV) flux. This forcing can be expressed as an eddy stress. Although several

assumptions must be made to connect our Koc diagnostics with the eddy stress, we

see it as a worthwhile step. Eddy PV fluxes can theoretically exert a strong forcing on

the ocean circulation, but they are nearly impossible to measure directly on a large

scale. Our estimates of Koc based on satellite observations offer an opportunity to

infer this forcing in a new way.

Our starting point for understanding how eddies influence the mean flow is the

transformed-Eulerian-mean (TEM) form of the planetary-geostrophic momentum equa-

tions (Andrews and McIntyre, 1976; Andrews et al., 1987; Treguier et al., 1997; Plumb

and Ferrari, 2005; Ferreira et al., 2005; Zhao and Vallis, 2008; Marshall et al., 2012)

1 1B
f X Vres" VP + - x v'q' (3.30)

Po Po az

where -r is the mean wind stress, vres is the so-called residual velocity (which in-

cludes the steady flow and also the "eddy-induced" circulation), and v'q' is the eddy

flux of quasi-geostrophic potential vorticity (QGPV). (See references above for full

discussion of TEM theory, and especially Treguier et al. (1997) and Plumb and Ferrari

(2005) for discussion of the applicability of quasi-geostrophic formulas on a planetary

scale. Also see Greatbatch (1998) for a discussion of the connection to isopycnal

coordinates.) This framework is appropriate for the large-scale flow in circumstances

where standard quasi-geostrophic scaling assumptions apply: low Rossby number (i.e.

strong rotation) and high Richardson number (i.e. strong stratification). A similar

expression can be derived when the stratification is weak (e.g. in the mixed layer),

but the formula is much more complicated (Plunb and Ferrari, 2005).
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In this framework, the eddy forcing of the mean flow is subsumed into the cddy

flux tern v'q'. One interpretation of (3.30) is that the QGPV flux essentially exerts a

force on the fluid, which is balanced by a Coriolis force on the eddy-induced velocity

v* (which is a part of vrs), such that

- fv* = v'q' . (3.31)

The eddy QGPV flux in two dimensions can also be interpreted as the divergence of

an eddy stress tensor (Plumb, 1986). The contribution of the eddy QPGV flux oi

ocean circulation was first envisioned by Welander (1973), who concluded that eddies

would induce a frictional force that would act to increase the gulf stream transport.

Many subsequent eddy-closure theories have evolved based on the QGPV flux (Green,

1970; Stone, 1972; Marshall, 1981; Killworth, 1997; Treguier et al., 1997, to name a

few). Here we are interested not so much on parmeterizing the effect of eddies in

an ocean Model but infcrring their effect from observations, in particular, fron our

estimates of KoC in conjunction with mean hydrography.

The fundamental ansatz of this section is that the near-surface QGPV flux can be

estimated using K, the composite of Koc obtain using multiple tracers, in conjunction

with with background gradient, such that

V'q-' = -KV| . (3.32)

In light of how Koc was calculated, this closure seeis much niore justified than a

closure based on the buoyancy flux, as in the Gent and McWilliams (1990) paramneter-

ization; QGPV is a quasi-conserved tracer that is advected by the geostrophic flow in

the 2D horizontal plane, just like the passive tracers we used to diagniose Koc. Also,

the vertical flux of QGPV is not important., while the vertical flux of buoyancy is.

Furthermore, since Koc captures only irreversible mixing, it automatically eliminates

the divergent QGPV fluxes that do not contribute to the mean circulation (Marshall

and Shutts, 1981).
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The QGPV gradient is given by

Vg-=!9+V(- f (3.33)
vorticity %

stretching

where = aU/8x - alay is the background relative vorticity and s = -Vb(8b/83)1

is the vector isopycnal slope. As indicated, part of the QGPV gradient is due to

the vorticity gradient (including the planetary 3), while part is due to the mean

hydrographic gradients, i.e. the "vortex stretching" term. We can formalize this

distinction by writing

v-q, = #* + v4, (3.34)

where /* = ,39 + V( is the vorticity gradient and V-,= -f s/Dz is the stretching

gradient. Carrying this separation over to the flux and using the down-gradient

closure (3.32), we can write

v'q' (v'q' ) + (v'q'), (3.35)

where

(v'q')= -K* (3.36)

(v'q'),= -KV4, . (3.37)

We shall treat these two components separately.

Focusing first on the vorticity term, using (3.36) in (3.31), we can estimate the

eddy-induced velocity due to vorticity mixing as

og =fK(By + VO). (3.38)

(This is equivalent to estimating the eddy-induced force, since this force is balanced

by a Coriolis force on v*.) We used the ECCO atlas to estimate V( and evaluated

(3.38) at 200 m depth. This depth was chosen because it is below the mixed layer
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in most places and consequently the dynamics can reasonal)ly be described by quasi-

geostophy, but it is close enough to the surface that K can still be expected to describe

mixing rates at this depth. In Fig. 3-16 we plot three quantities 13 + 0(/Oy (the

relative vorticity gradient), v* as inferred by (3.38), and the mean U for comparison.

(We did not plot the zonal vorticity gradient or u*r because these quantities are

smaller by an order of magnitude compared to their meridional counterparts.) This

figure shows that the vorticity gradient is dominated by 1, with the relative vorticity

gradient only acting to slightly modify the contours of the planetary vorticity. (This

holds even for the surface flow, except at the equator.) Therefore v,* reflects the

sign of 3, but its magnitude is modulated strongly by K. This leads to significant

eddy-driven velocities mainly in the tropics, where og points away from the equator

in both hemispheres. One possible interpretation of (v'qp ), near the equator is that

it represents the forcing due to the Reynolds-stress divergence generated by tropical

instability waves stirring the planetary vorticity gradient.

We now turn to (v'q)5 . It can be shown that this term represents the vertical

divergence of an eddy stress, related to the interfacial form stress exerted by one

isopycnal layer on another (see Plumb, 1986; Marshall ct al., 2012, for derivations

and expressions for the full eddy stress) Because it is related to the vortex-stretching

term in the PV equation, this term cannot exert a net force on the water colunm,

but rather must vanish in a vertical integral (Marshall, 1981). This constraint can

be achievcd by imposing that s -+ 0 at z = 0. (A similar requirement exists for the

bottom, but we are concerned just with the surface here.) We can then define a 1bulk

gradient due to the vortex stretching term (which we shall call VQS) for the surface

layer, giving
1 [08

VQ 8  - -fa dz fh- s|_K (3.39)
h fO 89z

where h is the depth of the surface layer and s|_h indicates the slope at the base of

the layer. In the limit of h -+ 0, this surface layer becomes identical to the 6-function

"PV sheet" defined by Bretherton (1966), and the s-term is identical to the surface

buoyancy gradient.
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Figure 3-16: Top: 0 + -(/8y at 200 m depth. Middle: v* as inferred from the gradient
by (3.38) (the region near the equator is masked because f- -> oo there). Bottom:
mean Yi for comparison.
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The eddy-induced transport in the surface layer due to the vortex stretching terim

can now be written as

V* = v*dz = f J (v'q'),dz = f 1KVs|-h (3.40)

Here we have assumed that K, which we derived from the surface flow, is an appro-

priate bulk diffusivity for a the entire surface laver. If the eddy kinetic energy and

the mean flow do not vary strongly over h, then we expect this assumption to be

valid. Just as the Ekman transport is driven by a wind stress at the surface, the eddy

transport in the surface layer can now be viewed as driven by an eddy stress at the

bottom of the layer (Rhinos, 1979; Johnson and Bryden, 1989; Ferreira (t al., 2005).

The relation between the eddy stress -e and the transport is

- = pofz x V* (3.41)

Using (3.40) in conjunction with (3.32), we can write the zonal and meridional con-

polents as

7- = poKfs" -h

r-Y = -poKfs'|-h (3.42)

where so and sy are the zonal and meridional isopycial slopes. If K is constant, the

transport induced by this stress is equivalent to the transport produced by the Gent

and McWilliams (1990) eddy parameterization.

We used the ECCO atlas (Wunsch and Heimbach, 2009) to compute VQ, and

estimate -re at 200 in depth. We computed the potential density referenced to the

surface and used this density field to calculate isopycnal slopes s' and sv. We then

evaluated(3.39) to find VQ,. The resulting gradients are plotted in Fig. 3-17. From

this figure it is evident that the /3-effect is relatively weak in mid-latitudes, since

3 O(10" mn-1 s-1), compared to the full gradient, which frequently exceeds 10-10

inl S-
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Figure 3-17: Surface layer bulk QGPV gradient VQ, computed from the ECCO atlas
according to (3.39).

Next we calculate the eddy stress using (3.42). The result is plotted in Fig. 3-18.

For comparison, the figure also shows the mean observed surface wind stress from the

Surface Climatology of Ocean Winds (Risien and Chelton, 2008). We concentrate our

discussion on the zonal component of the stress, which is the dominant one for both

the winds and eddies. The most striking feature of these maps is how the zonal wind

and eddy stress have the same broad pattens, with westward wind / eddy stress in

the tropics and eastward wind / eddy stress at higher latitudes. However, in general

the eddy stress is lesser in magnitude than the wind stress.

In the Southern Ocean, the eddy stress plays an important role in the momentum

balance by moving momentum down the water column, where the wind stress input

can eventually be balanced by bottom topographic form stress (Johnson and Bryden,

1989; Marshall et al., 1993; Ferreira et al., 2005). Indeed we observe a band of positive

rf across the Southern Ocean, validating this idea. However we do not see a complete

balance between eddy stress and wind stress in the Southern Ocean-instead, the wind

stress is greater. This could be related to the fact that eddy mixing is known to

intensify with depth in the Southern Ocean (Smith and Marshall, 2009; Abernathey

et al., 2010). The assumption that K does not vary greatly over the top 200 mn in the

Southern Ocean may not be valid; the results of Chapter 1 indicate that this may in

fact be the case (see Fig. 2-4).

Our results indicate that the eddy stress plays a significant role in the momentum
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Figure 3-18: Top: zonal and meridional eddy stress -re at 200 m dpeth, as calculated
from (3.42). Bottom: Surface wind stress from the Surface Climatology of Ocean
Winds (Risien and Chelton, 2008).
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balance also outside the Southern Ocean. The main difference between the other

ocean basins and the Southern Ocean is that eddy stresses are not necessarily required

for the momentum balance, because means zonal pressure gradients can exists at all

depths Hughes and de Cuevas (2001). However, large areas of positive eddy stresses

are clearly visible in western boundary currents region, with magnitudes comparable

to the local wind stress. Negative bands of eddy stress in the tropics, while quite a

bit weaker the than the westward wind stress, suggest a partial balance between in

wind and eddy stress also in the tropics.

There will be an eddy-induced upwelling due to the divergence of the eddy-induced

transport in the surface layer, equal to w* = -V - V*. We have not calculated w*

explicitly, because it involves yet another derivative of an already noisy field. But we

can deduce from the general structure of -r, that the overall effect of this upwelling will

be a partial cancellation of the Ekuman pumping in the upper ocean by eddy-induced

upwelling.

3.6 Summary and Conclusions

We have constructed a global map of eddy mixing rates based by using satellite

observations to simulate the evolutions of passive tracers. We began in a "zonalize('

version of the east Pacific, where we computed effective diffusivity as functions of

latitude. We found surprisingly high mixing rates (> 5000 m 2 s-1) in the tropics. We

saw that the zonal mean flow acts to suppress mixing at high latitudes, where the

flow is eastward, as previous studies in the ACC have already confirmed. However,

between 30" N and S, where the mean flow is westward, the presence of a mean flow

actually erharces mixing rates. We suggested that this behavior arises due to the

westward phase speed of eddies and waves. When the mean flow and the phase speed

have the same sign, as in low latitudes, the mean flow enhances mixing. When they

have the opposite sign, the mean flow suppresses mixing. Near the equator, where

the mean flow consists of zonal jets of alternating sign, we saw complex patterns of

imixing and suppression.
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We then introduced the Osborn-Cox diffusivity Koc, which arises from consid-

ering the the tracer variance budget. We showed how Koc captures the part of the

cross-gradient eddy flux that is locally balanced by dissipation. When the variance

budget is non-local and non-steady, there are additional fluxes not captured by Koc.

However, we showed, both in the Pacific channel model and later in global simula-

tions, that these effects are generally small; the variance budget contains non-local

fluxes on scales of 0(500 kim), but the overall balance between variance production

and dissipation is well captured by Koc

We calculated Koc from global simulations using three different initial tracers:

one aligned with latitude, one proportional to the streanfiinction of the mean flow,

and one proportional to SST. Despite significant differences in the variance b1u(lget

for these tracers, the resulting Koc values showed similar large-scale structure and

magnitudes. Differences arose in regions with weak initial background tracer gradient

and in regions where the initial tracer aligned strongly perpendicular to the nean

flow. WXe defined a composite K as the minimuni value of these three calculations

that avoids the problem areas of the particular tracers. We also performed global

experiments with the mean flow set to zero-these confirmed the general picture of

mean-flow suppression at high latitudes and mean-flow enhancement at low latitudes.

As a final step, we applied these mixing rates to infer the eddy stress by estimating

the QGPV flux in the surface layer. We showed that the dominant part of this QGPV

can be described as an eddy stress. The eddy stress was shown to generally have the

same sign as the wind stress, but a lesser magnitude. This indicates a partial balance

between the eddy stress and wind stress. We speculated that this leads to a .partial

cancellation between the Ekman pumping and the eddy-induced vertical velocity w*

near the surface.

The vertical velocity near the surface is particularly important to model correctly

when attempting to assess the role of the ocean in climate change, because the vertical

velocities help propagate surface anomalies into the interior. Anthropogenic CO 2 in

the atmosphere is a very long-lived chemical species; its only significant sink is uptake

by the land and ocean (an D. Qin et al., 2007; Archer et al., 1997). Therefore, the
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amount of greenhouse-induced warming we experience in the future depends directly

on the rate of uptake by the ocean. Le Qu6r6 et al. (2009) recently suggested that

the oceanic carbon sink may be slowing. But none of the models used to address

these questions resolve mesoscale eddies, and instead commonly employ the Gent

and McWilliams (1990) framework with spatially constant eddy mixing rates. As a

result, it is possible that these models underestimate the near-surface eddy stress and

consequently display unrealistically weak values of w*.

As a consequence of increased radiative forcing from anthropogenic emissions, the

near-surface atmosphere has warmed considerably (an D. Qin et al., 2007), which is

causing the ocean to warm as well. Levitus et al. (2998) estimate that the ocean has

gained about 1.5 x 10" J of heat since 1950. Climate models display a wide spread

in rates of oceanic heat uptake; which is often attributed to different amounts of

"vertical mixing" among models (Sokolov et al., 2003). Different rates of heat uptake

consequently imply very different climate sensitivities (Forest et al., 2002), making the

issue a central one in the problem of anthropogenic climate change. But the paradigm

of "vertical mixing" as the cause of ocean heat uptake has severe limitations; it implies

that heat is literally diffused into the ocean, rather than advected. Our results suggest

that a proper representation of the eddy stress, by using realistic eddy mixing rates,

could potentially affect the rate of ocean heat uptake in climate models.

The Koc diagnostic has proven to be a very useful tool for assessing mesoscale

mixing by ocean eddies. Several questions remain, however, regarding its implemen-

tation and interpretation. For eddy diffusivity to be a useful concept, it should be

independent of the tracer distribution in question, expressing a fundamental property

of the velocity field itself. While the broad patterns of Koc were the same for three

different tracers, there were nevertheless regions with significant differences due to

vanishing of the background gradients. One possible way to resolve this issue would

be to compare Koc with Lagrangian diagnostics of mixing such as two-particle dif-

fusivity (LaCasce, 2008; Klocker et al., 2011b); this is an obvious course for future

research. A complimentary approach would be to attempt to diagnose K in its full

tensor form using multiple tracers, as done by (Phunb and Mahlmnan, 1987). Finally,
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an understanding of the vertical dependence of mixing is a crucial ingredient for infer-

ring v* away from the surface. Indeed, the validity of applying Koc to infer v'q' begs

to be tested in an eddy-resolving model. Despite these challenges, we hope our study

has helped advance understanding of the global geography of eddy mixing rates.
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Chapter 4

The Dependence of Southern

Ocean Meridional Overturning on

Wind Stress

4.1 Introduction

Changes in wind stress over the Southern Ocean may be responsible for modulat-

ing the strength of the global meridional overturning circulation (MOC) (Toggweiler,

2009). Such wind-induced changes in the MOC could he1) regulate glacial-interglacial

cycles by venting CO 2 from the deep ocean to the atmosphere (Toggweiler and Rus-

sell, 2008; Anderson et al., 2009; Marshall and Speer, 2011). The mechanisim could

also play an important role in future climate change; the westerlies appear to be

shifting south due to greenhouse gas emissions and ozone depletion', (Thompson and

Wallace, 2000; Marshall, 2003; Polvani et al., 2011) and Toggweiler and Russell (2008)

hypothesize that in response the MOC will strengthen. Bnt by how much? To what

extent is the Southern Ocean MOC controlled by the winds?

Since Johnson and Bryden (1989) we have recognized the existence of an eddy-

driven overturning circulation in the Southern Ocean potentially large enough to

completely cancel the wind-driven Ekman overturning. The actual MOC is the small

119



residual between these two opposing circulations. Work by Toggweiler and Samuels

(1998), Speer et al. (2000) and Marshall and Radko (2003, hereafter MR) showed

that, for realistically weak values of interior diapycnal mixing, the residual overturn-

ing transport in the subsurface Southern Ocean must proceed along mean isopycnal

surfaces. The residual circulation can cross isopycnals in the surface diabatic layer,

where cross-isopycnal advection can be balanced by direct diabatic forcing from the

atmosphere (Marshall, 1997). Therefore, from a diagnostic point of view, the strength

and sense of the MOC can be inferred from surface buoyancy flux data, as done by

Speer et al. (2000) and Karsten and Marshall (2002a), independently of the wind

stress. This thermodynamic perspective also implies that the MOC is sensitive to

surface buoyancy fluxes, as hypothesized by Watson and Naveira Garabato (2006) or

Badin and Williams (2010). Our goal here is to study the relationship between wind

stress, overturning circulation, and surface buoyancy flux in a model that explicitly

resolves mesoscale eddies, bypassing the need for any a priori assumptions about the

eddy response.

On a related note, it is well established that coarse-resolution ocean models do

not accurately simulate the response of the Southern Ocean overturning to changes

in wind stress forcing when compared with eddy-resolving models. This is true of

both realistic models (Hallberg and Gnanadesikan, 2006; Farneti et al., 2011) and

models with simplified geometry and forcing (Henning and Vallis, 2005). In general,

models that permit eddies seem less sensitive to changes in wind, whether the focus is

the overturning circulation (as in the above works), the zonal transport (Hutchinson

et al., 2010), or the transport of tracers such as anthropogenic carl)on (Marshall et al.,

manuscript in preparation). Most of these results are ultimately due to compensation

b)etween the wind- and eddy-driven overturning circulations, which is more complete

when mnesoscale eddies are explicitly resolved rather than parameterized. The lack

of a robust parameterization for inesoscale eddies is indicative of our incomplete

understanding of the nature of eddy-driven circulations. Most recently, Viebahn and

Eden (2010) studied the sensitivity of the residual MOC to the wind in an idealized

model and found that changes in eddy kinetic energy and eddy diffusivity play a
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central role in determining how the compensation occurs.

Our goal in this study is to further explore the physical mechanisms that determine

the sensitivity of the residual MOC to changes in wind forcing. In particular, there

are two questions not previously addressed that we wish to pursue here. First is the

influence of the boundary condition for buoyancy. Second, we wish to develop a simple

theory based on physical principles capable of explaining the MOC sensitivity. To

study these issues, we reduce the system to its essential elements: an Ekman-driven

and an eddy-driven circulation in a zonally-symmnetric channel with buoyancy forcing

at the surface. This system was studied analytically by MR who invoked a closure for

the eddies, but here we realize it as a high-resolution numerical model. The strength

of the Ekman circulation obviously depends linearly on the winds; the strength of

the eddy-driven circulation is determined by the geostrophic-turbulent dynanics of

the model. We vary the strength of the wind stress and diagnose the steady-state

residual overturning circulation.

We find that increased eddy circulation does generally compensate for increased

Ekman circulation under stronger winds. However, tIe (degree of compensation de-

pends oi the surface boundary conditions. When the surface heat fluxes are held

fixed, the residual MOC strength is relatively insensitive to the winds. With an in-

teractive heat flux, we recover the results of Viebahn and Eden (2010): a residual

MOC which increases weakly with the winds and whose sensitivity is set primarily

by changes in eddy diffusivity. We develop a scaling theory for the eddy diffusivity

dependence on the wind and apply this scaling to reconstruct the eddy response.

This method yields a closed theory for the sensitivity of the residual MOC which,

despite many approximations, shows encouraging agreement with the results fromi

the numerical model.

Section 2 describes the model setup, a reference solution, and the basic exper-

imental results under differing values of wind stress. In section 3, we analyze the

results in terms of the buoyancy budget and discuss the constraints imposed by the

surface boundary condition for buoyancy. Section 4 describes a framiework for un-

derstanding the MOC changes in terms of changes in Ekman circulation, isopycnal
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slope, and eddy diffusivity. Our scaling for the eddy diffusivity and the resulting

MOC sensitivity estimates are then presented. We summarize the results and discuss

their connection with the real ocean in section 5.

4.2 Experiments with Numerical Model

4.2.1 Modeling Philosophy

The Southern Ocean is dominated by the Antarctic Circumpolar Current (ACC), a

strong eastward flow in thermal-wind balance with the strong density front separating

polar from tropical waters (Rintoul et al., 2001). This flow circumnavigates the globe

and connects back on itself, inspiring a comparison with the large-scale atmospheric

jets (Thompson, 2008). Strong atmospheric westerly winds blow over the surface,

driving an equatorward Ekmnan flow. The surface buoyancy flux, a combination of

radiative, latent, and sensible heat fluxes as well as freshwater fluxes fron evaporation,

precipitation and ice-related processes, is notoriously uncertain due to poor data

sampling (Cerovecki et al., 2011). Nevertheless, the general pattern (shown in Fig.

4-1) indicates buoyancy loss in the extreme south polar regions, buoyancy gain on the

poleward flank of the ACC, and buoyancy loss in some regions on the equatorward

flank associated with mode water formation. Although the current meanders and

splits as it makes its way around topographic features, authors such as de Szoeke and

Levine (1981) and Ivchenko et al. (1996) have argued that, when the real ACC is

described using a "streamwise-average" view, the large-scale dynamics bear a close

resemblance to zonally symmetric models.

Indeed, zonal channel models with highly idealized geometry form the foundation

of contemporary theories of the Southern Ocean circulation, capturing the essential

physics of the system and providing insight into important mechanisms (Munk and

Palhnn, 1951; McWilliams et al., 1978; Marshall, 1981; Johnson and Bryden, 1989;

Marshall, 1997; Olbers et al., 2004; Marshall and Radko, 2006, among many). The

Southern Ocean MOC, however, exports and imports water from other ocean basins
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Figure 4-1: Maps of the observed surface forcing in the Southern Ocean, averaged
from the CORE2 dataset over the period 1949-2006 (Large and Yeager, 2009). The
left panel shows the wind stress in N m 2 , with the magnitude indicated by the
colored shading and the direction by the arrows. The right panel shows the buoyancy-
equivalent heat flux in W m-2 equivalent, and includes contributions from longwave
and shortwave radiative fluxes, latent and sensible heat fluxes, as well as the buoyancy
fluxes due to evaporation, precipitation, and runoff.

123

Wind Stressz (N m-2)1 Buo anc- Flux (WA m"-21



(e.g. Ganachaud and Wunsch, 2000; Talley, 2008). Antarctic Bottom Water (AABW)

flows out of the Southern Ocean in the deepest layers. North-Atlantic Deep Water

(NADW) and Circumpolar Deep Water (CDW) flow in (poleward) at intermediate

depths, and Antarctic Intermediate Water (AAIW) and Sub-Antarctic Mode Water

(SAMW) flow equatorward in the the upper thermocline. As a result, channel-only

models that attempt to investigate the Southern Ocean MOC without representing

other basins find vanishingly weak deep residual circulations (Karsten et al., 2002;

Kuo et al., 2005; Cessi et al., 2006; Cerovecki et al., 2009). Some authors have tackled

this problem by attaching closed basins to their channels. This approach can certainly

yield insights, but it also adds to the complexity of the problem by introducing gyre

dynamics. When such basins are global scale, as in Wolfe and Cessi (2009), the

computational cost of an eddy resolving model becomes immense. When they are

small (on the same order of the channel itself), as in Henning and Vallis (2005) and

Viebain and Eden (2010), the link with the real ocean is less clear.

We choose to address this problem in a novel way: by including a narrow "sponge

layer" along the channel's northern boundary, in which the temperature is relaxed

to a prescribed exponential stratification profile. This diabatic forcing provides a

return pathway for deep residual overturning, which otherwise would not be able to

cross isopycnals. Physically, the sponge layer encapsulates all the diabatic processes

occurring outside of the Southern Ocean, such as deep water formation by air-sea

heat fluxes in the North Atlantic or diapycnal mixing in the abyss. The disadvantage

of this method is that the stratification at the northern boundary cannot change

significantly. The advantage is that it provides a clean, simple framework in which

to investigate non-zero residual circulations, focusing on the dynamics of the channel

alone rather than the complex teleconnections of the global problem (Wolfe and Cessi,

2011). In combination with appropriate surface wind and buoyancy forcing, we will

see that this configuration can produce realistic overturning cells.

Given the many idealizations made in constructing our model, we must interpret

our results with care. We emphasize that our goal is not to make quantitative predi-

cations for the real global ocean-atmosphere system-rather, we hope to gain insight
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into the underlying physical mechanisms that govern this system in order to inform

the interpretation of more realistic models and observations.

4.2.2 Model Physics and Numerics

The basic physical system simulated by our model is a Boussinesq fluid on a beta-

plane with a linear equation of state and no salinity. The model is forced mechanically

by a surface stress and thermodynamically by a surface heat flux as well as by the

aforementioned s)onge-layer restoring. Mechanical damping is provided by linear

bottom drag-there is no topography. Key physical and numerical parameters are

given in Tab. 4.1.

Table 4.1: Parameters used in the numerical mnodel reference experiment.

Symbol Value
L2 L, 1000 km, 2000 km

1900 kum
2985 m
999.8 kg in
2 x 104 K-
-1 x 10-4 S-1
1 x 10~" s-1 mmina

10 W m11-2
0.2 N mn-2
1.1 x 10-3 m S-1
7 days
5 km

Description
Domain size
Latitude where the sponge layer begins
Domain delpth
Reference density
Linear thermal expansion coefficient
Reference Coriolis parameter
Meridional gradient of Coriolis paramneter
Surface heat flux magnitude
Wind stress magnitude
Linear bottom drag parameter
Sponge layer relaxation timescale
Horizontal grid spacing

10 - 280 m Vertical grid spacing
0.5 x10- 5 m s-2 Vertical diffusivity

3.0 x 104 m Si
12.0 in s
9.0 x108 m 4 S-1

Horizontal diffusivity
Vertical viscosity
Horizontal viscosity
Horizontal hyper-viscosity

The surface thermial forcing in our model is intended to mimic, in a sinmplified

way, the observed buoyancy flux over the Southern Ocean (see Fig. 4-1). In the first

set of experiments, a. heat flux is simply prescribed to include a region of cooling in

the far south of the domain, heating in the middle, and cooling again farther north.
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These regions are intended to represent, respectively, the buoyancy loss associated

with AABW formation, the buoyancy gain over the ACC, and the buoyancy loss

associated with AAIW / SAMW formation north of the front. More precisely, the

heat flux has the form

Q(y) -Qo cos(37ry/L.) for y < 5Ly/6 (4.1)

and Q 0 north of this point, with Qo = 10 W m 2 L is the length of the channel

in y. (Q is positive downward, i.e. heat flux into the ocean.) This simple pattern of

buoyancy flux is consistent with a recent review of all the available air-sea buoyancy

flux data products by Cerovecki et al. (2011).

Inside the sponge layer, the temperature T is relaxed to the prescribed tempera-

ture profile

T*(z) = AT(ez/h - eH/h -H/h (4.2)

which describes an exponential decay from AT at the surface to 0 at depth -H with a

scale height of h. The relaxation coefficient increases from 0 (meaning no relaxation)

at the southern edge of the sponge layer (y = Lsponge) to 7 days-1 at the northern

boundary (y = Lq). The choice of an exponential temperature profile was motivated

by observations (Karsten and Marshall, 2002b), laboratory studies (Cenedese et al.,

2004) and modeling results (Karsten et al., 2002; Henning and Vallis, 2005; Wolfe

and Cessi, 2009). The results described in the rest of the paper all use h = 1000 in, a

value close to the "natural" stratification that arises when the sponge layer is turned

off, and to the observed stratification on the equatorward flank of the real ACC. We

experimented with several values of the stratification depth h, and found that the

MOC transport was rather insensitive to this choice.

The final key element of the forcing is the wind stress. A zonal stress is applied

at the surface of the form

rF (y) = To sin(7ry/Ly) . (4.3)

For the base-case simulation, To = 0.2 N n 2 , but a central point of our study is to
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explore the strength of the MOC given different values of ro.

Dissipation is mainly accomplished through linear bottom drag. A stress is applied

at the bottom of the form

Tb = POrbUb (4.4)

where rb is a, bottom drag coefficient and ub the horizontal coiponent of the bottom

velocity.

The model code is the MITgcm, a general-purpose primitive-equation solver (Mar-

shall et al., 1997a,b). The donain is a Cartesian grid 1000 km long (i.e. zonal di-

rection), 2000 km wide (i.e. meridional direction), and 2985 m deep. Although this

domain is relatively narrow, the zonal symmetry means that a, larger domain would

not alter the results and would only add computational cost. The donlain size does

not appear to constrain the eddy size, since a typical eddy size is ~ 200 kn. We

resolve the first baroclinic deformation radius (approx. 15 km in the center of the do-

main), employing 5-km horizontal resolution and with 30 vertical levels, with spacing

increasing from 10 in at the surface to 280 in at the bottom. A realistically effective

diapycnal diffusivity (V = 0.5x 10-5 M S2) is maintained thanks to the second-

order-momnent advection scheme of Prather (1986) (see also Hill et al., 2011). In

order to maintain a surface mixed layer, we employed the KPP mixing scheme (Large

et al., 1994). In our case, this scheme simply acts to mix tracers and momentuim over

a layer of roughly 50 in depth.

The model was spun up from rest for approximately 200 years until it reached a

statistically steady state, as indicated by the mean kinetic energy. A typical eddy

temperature field fromi the equilibrated state is shown in Fig. 4-2. Averages were

performied over 20-year intervals. In cases where p-araneters were changed, the model

was allowed to reach a new equilibrium before taking an average.

4.2.3 The Zonal Momentum Balance

Since the neridional flux of momentum by Reynolds stresses is relatively small, the

depth-integrated zonal-average monmentum balance dictates (c.f. Cessi et al., 2006)
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Figure 4-2: A 3D snapshot of the model's temperature field, revealing the mesoscale
eddy field. The temperatures range from 0 - 8* C. Overlaid on top are depictions of
the wind stress and heat flux surface forcing. To the right is the zonal- and time-mean
zonal velocity 7, which ranges from 0 - 25 cm s-'. The contour interval for U is 2.5
cm s-1. Overlaid in white are the 1, 3, and 5' C isotherms.
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that

Ts = b- o = POrb b (4.5)

where the overbar indicates a zonal and time average. This balance states that the

momentum input by the wind (constant in x and time) is balanced by bottom drag

on a mean zonal flow at the bottom. In the real ocean, in contrast, topographic form

drag is believed to balance the wind stress (Miink and Palnrn, 1951; Johnson and

Bryden, 1989; Hughes, 1997; Olbers, 1998; Ferreira et al., 2005). This means that

our model requires a significant steady bottom flow (~ 17 cin s-1) and thus has an

unrealistically large zonal transport: 788 Sv for the reference case. But most of this

tranlsport is barotropic and simply translates the entire system westward without any

consequences for the overturning circulation. The zonal traniisport by the )aroclinic

flow is only 99 Sv.

A steady meridional circulation exists in Coril)is balance with these steady zonal

stresses. Outside of the Ekmnan layers, this circulation is described by the stream-

function

S =,(4.6)

Pof

where T - --89/az and T7 = 8'/8y. The absence of topography means that the

surface Ekman flow is returned in a bottom Ekmnmi layer, rather than by a geostrophic

flow below topography. But the strength of 4 is independent of the nature of the

bottom drag and is driven solely by the wind.

Likewise, as discussed in detail in Sec. 4, the barotropic component of the flow

does not participate in the eddy energy cycle, and thus we expect the edly-driven

circulation to be similar with or without topography. Experiments performed with

a topographic ridge (but not described further here) support the conclusion that the

presence of topography strongly damps the barotropic zonal flow but does not affect

the MOC. We therefore expect that conclusions drawn from our model about the

MOC can still apply to the real Southern Ocean, especially to the portion of the flow

that occurs above major topographic features.
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4.2.4 Residual Overturning Circulation

To diagnose the residual MOC, we com)uted a streamfunction from the time- and

zonal-inean transport in isopycnal layers, defined as

' iso (y, b) = 1 J J j(vh)db'dxdt , (4. 7)
Ato f 0

where h - -8z/8b is the layer thickness and b' is a dumny variable of integration.

(In practice, the average was performed in 22 discrete, uniformly spaced tempera-

ture lavers.) This technique has become widely-used for diagnosing transport in the

presence of eddies (D66s and Webb, 1994; Henning and Vallis, 2005; Hallberg and

Gnanadesikan, 2006; VVolfe and Cessi, 2009, 2010). The transport thus computed in-

cludes both the Eulerian-nean (Ekman) transport and the eddy-driven component.

We can map this streamnfunction into z-coordinates by using the mean depth of buoy-

ancy surfaces, TIso(y, b) = Wiso[y, b(y, z)]. The leading-order equivalence between Wise

in z-coordinates and the Transformed-Eulerian-Mean (TEM) residual circulation is

well documneted (Andrews et al., 1987; McIntosh and McDougall, 1996). (See Sec.

4 for more on TEM theory.) Wij, is the most climate-relevant quantity because it

describes the circulation that advects tracers such as heat an carbon. Henceforth

when we refer to "the MOC," we will generally be talking about 'iJ, as defined in

(4.7).

The MOC is characterized by three distinct cells, as shown in Fig. 4-3. In the

interior of the domain, away from the surface and the sponge layer, the MOC is

directed along mean isopycnals, i.e. 4I!o = TIj,(b). Although the circulation is

highly idealized, it shares several important features with the real Southern Ocean

MOC, as described for example, by Rintoul et al. (2001), Lumpkin and Speer (2007),

Talley (2008), or Marshall and Speer (2011). The magnitude of xIis, (~ 0.5 Sv)

is realistic: if our channel were as long as the real Southern Ocean (a factor of

about 25), the transport would be roughly 12 Sv. The broad upwelling band at

mid depth can be thought of as NADW / CDW. This upwelling water splits into

two separate cells. The upper branch travels north, eventually encountering a region
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Figure 4-3: The residual MOC streamfunction Ilf,, as originally diagnosed in isopy-
cnal coordinates (left panel), and mapped back to depth coordinates (right panel).
The units are Sverdrups (106 m3 s-1), and the contour interval is 0.1 Sv. The solid
black line in the left panel indicates the mean SST, and the grey lines are the 5%
(left panel only) and 95% levels of the SST CDF. The dotted black is the southern
boundary of the sponge layer. The mean T contours are also shown in the right panel
in black, contour interval 0.5 C.

of cooling and subduction. The subduction in this northern region along the 40

C isotherm, driven by surface heat loss and accompanied by low values of Ertel

potential vorticity, is reminiscent of SAMW / AAIW formation (McCartney, 1977;

McCarthy and Talley, 1999). The water associated with downwelling in the far south

of the domain resembles AABW in some respects-it is formed by buoyancy loss and

is the coldest, densest water in the model. Given the complex physics of AABW

formation on the continental shelf, the fact that much of the AABW circulates at

depths blocked by topography, and the importance of diapycnal mixing for the lower

limb overturning (Ito and Marshall, 2008), this lower cell is not meant to be a truly

realistic representation of AABW. All the overturning cells have an adiabatic pathway

in the ocean interior and close diabatically in the sponge layer.

The surface heat flux is specified as a fixed function of latitude; consequently, the

heat flux is felt by all isopycnals that graze the surface at that particular latitude.

The cumulative distribution function (CDF) of surface temperature tells how likely a

particular temperature is to be found at the surface and thus be exposed to diabatic
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transformation. Superimposed on Fig. 4-3 are the 5% and 95% values of T from

the surface temperature CDF. (The mean SST is very close to the median value.)

Nearly all of the diabatic MOC transport (i.e. advection across mean isopycnals)

takes places in between these values. When plotted in z-coordinates, the 95% CDF

value is an effective measurement of the depth of the surface diabatic layer-below

it, the contours of Tj, and b coincide. This view also reveals that the northernmost,

shallow, counter-clockwise MOC cell is contained almost entirely by the diabatic layer.

Wve 0do not focus further on this shallow cell, concentrating from now on only on the

two cells (lower and upper) that enter the adiabatic interior.

This definition of the MOC streamfunction (4.7) should be distinguished from the

steady, Eulerian-mean overturning streamfunction kI (4.6). The difference between

the two circulations we define as the eddy circulation:

{eddy - iso (Y, Z(b)) - qf(y, z) - (4.8)

Both T and WeMy are shown in Fig. 4-4. Their magnitudes are large, but they oppose

each other, leaving xij' as a small residual. Since the dependence of T on the wind is

clear from (4.6), the difficulty in understanding the residual MOC sensitivity to the

winds lies in kePddy.

4.2.5 Sensitivity to Sponge Layer Restoring Timescale

Here we briefly address the sensitivity of the model to strength of the restoring

tinescale in the sponge layer, which we will call Aspo.ge. Our intention was that

the sponge layer would respond passively to the surface heat flux, simply returning

the heat lost or gained at the surface rather than driving the circulation actively. For

this to be the case, the overturning should not be overly sensitive to the value of

As onge. We experimented with four different values of Asponge, ranging from 7 days-'

up to 120 days-. The strength of the upper and lower overturning cells for these

different values are plotted in Fig. 4-5. For the lower cell, there is no clear depen-

dence on Asponge at all. For the upper cell, over the first three values of Asponge, there
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Figure 4-4: The Eulerian-mean strearnfunction T (left panel) and the eddy stream-
function We&iy (left panel), as defined by (4.8). The units are Sverdrups (10 s 3 s1)
and the contour interval is 0.5 Sv. Otherwise the same as Fig. 4-3, right pallel.

is no significant change. For the weakest relaxation, the upper cell strength actually

increases by about 20 %. This is a slightly counterintuitive result, since in the limit

of no relaxation, the overturning shuts down completely. The qualitative structure

of the overturning, with three distinct cells, does not change at all. In general, the

weak dependence on Aspoge indicates that the surface forcing, rather than the sponge

layer, governs the overturning.

Sensitivity to Sponge Layer Restoring Timescale
1.0
0 .8 - ------ --------------- ---------- ----------- - --

0 .6 - - -- - - ---- -----

0.4 - ----- ----- ---
0.2 . 9 * upper
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Figure 4-5: Sensitivity of overturning strength to Asponge the sponge layer restoring
timescale.
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4.2.6 Model Response to Wind Changes

We now examine the MOC sensitivity to altered wind stress. We consider two prin-

cipal cases. First, the surface buoyancy flux is held fixed as the winds are varied.

In the second set of experiments, we employ an interactive, relaxation-type bound-

ary condition. The fixed-flux boundary condition is a justifiable one for freshwater

and incoming shortwave radiation, but an interactive boundary condition is more

appropriate for sensible and latent heat (Haney, 1971). The results are sumnarized

in Fig. 4-6, where the strengths of the upper and lower cells in each experiment

are plotted on a single graph. Since 'T'j is roughly constant along isopycnals be-

low the dial)atic layer, we diagnosed the transports by simply finding the inaxinuin

and mininun values of 4jie below 500 in at y = 1800 kill, 100 km south of the

edge of the sponge layer. We will henceforth refer to these maximum and mininlum

values of 'i,, as MOC,,,p. and MOCzOmer. Besides the individual upper and lower

cells, there is a third relevant quantity: the total volume flux of upwelled deep water:

MO 0 ,upwel = MOCuppe - MOC ,,e. This value is also shown in Fig. 4-6, along

with the strength of 'F, the Eknan circulation. MOC,,er, AIOCoer, IOCuwel are

weaker than I in almost all cases.

In general, the various AOC values appear to have linear dependence on the

wind. This is not a universal rule for all possible models and ranges of parameters

(e.g. Viebahn and Eden, 2010), bti it is an accurate and useful approximation for

our particular experiments. This sinplification allows us to characterize the MOC

sensitivities in a single munber by a simple least-squares linear fit applied to Fig. 4-6.

The slope BMOC /ro gives a sense of how strongly each cell depends on the wind.

These values are given in the first column of Tab. 4.2, along with the value of R 2 for

the regression. The R 2 values reveal that the linear fit is very good in most cases.

Fixed Flux Boundary Condition

The MOC transports are rather insensitive to the wind in the fixed flux experiments.

MOCloue, shows no correlation with ro, varying in a narrow range about 0.4 Sv.
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Figure 4-6: A summary of the MOC cell strength in all of the different experiments.
The Ekman circulation T is shown in black, and the residual circulations of the various
MOC cells (upper, lower, and net upwelling) are plotted in color. Fixed-surface-
flux experiments are represented in blue; surface-relaxation experiments in orange.
The shapes correspond to the values of MOCo,, MOC,,er, and MOCpeu. The
reference case, -To = 0.2 N m- 2 is indicated by the dotted line.
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AOC,,e, is quite weak for the weakest winds (ro = 0.05 and 0.1 N m2), but for the

rest of the experiments ( 0.125 N m12 '> To > 0.3 N m 2 ), the changes in AJOCPer

are slight: it increases only from 0.5 Sv to 0.6 Sv over this range. The linear fit

for BMfOC,,per/aro (Tab. 4.2) shows a sensitivity 1/4 that of the Ekman circulation.

Examination of the structure of 'i', show that, for weak winds, the upper cell becomes

confined more and more to the surface diabatic layer and does not reach the interior.

Since MOC r,,e doesn't change, MOC,weu follows the changes in MOC,,per. The

small changes in residual MOC reflect the fact that, as the magnitude of T increases

with the wind, Wedd, also strengthens (becoming increasingly negative), leading to a

high degree of compensation between mean and eddy circulations.

Relaxation Boundary Condition

We implement the interactive boundary condition in the MITgcm by relaxing the

temperature in the top model level, referred to as Ts, to a prescribed function of

latitude T*(y). For the base-case winds (ro - 0.2 N m- 2), we wish to have the same

effective heat flux as the fixed-flux reference case described above. For a layer of

depth Az subject to relaxation at a rate A, the effective heat flux is

Qeff = -AzpocA(T, - T*) (4.9)

We chose a relaxation timescale of A = 30 days-'.' Given T, from the base-case

fixed-flux experiment, the desired heat flux Q (4.1), and Az = 10 m, this expression

can be rearranged to find T*. As expected, when the ro = 0.2 N m sinmlation is

run with this forcing, it reaches the same equilibrium as the base-case fixed-flux state

described in the previous section, with the same MOC transport, since the heat flux

felt by the ocean is nearly unchanged. However, when To is changed, T, can and does

change, resulting in an altered air-sea heat flux and, evidently, greater sensitivity of

q"io to the winds.

The results of these experiments are also shown in Fig. 4-6. The changes are

'This choice of paramneters corresponds to a sensitivity of 8Qf f/8Ts ~ 15 W mn-2 K-1.
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significantly larger than the fixed-flux case. Both MOC,,ppe, and MOCowe, increase

with stronger winds; this means a strengthcning of the upper cell (since it is positive,

i.e. clockwise) and a weakening of the lower (negative, counterclockwise) cell. The

linear fit (Tab. 4.2) shows that MOC,,,,pp is nearly twice as sensitive as the fixed-flux

case. Since the changes in T are the same under both boundary conditions, the higher

sensitivity implies that the magnitude 4 eddV is not as sensitive to To, leading to less

compensation.

Viebalmn and Eden (2010) performed a very similar experiment, simulating only an

upper cell and using a relaxation boundary condition for buoyancy. Their results are

broadly consistent with ours: a sensitivity of the residual circulation much weaker

than the sensitivity of the Ekman circulation. However, they observed decreasing

sensitivity with increasing winds, while the trend in our MOC,,,,ppe appears quite

linear. This qualitative difference is most likely attributable to the different northern

boundary-they had a small, unforced basin attached to the northern edge of their

channel, rather than a sponge layer.

4.3 The Surface Buoyancy Boundary Condition

Our experiments make it clear that a residual overturning driven by a fixed buoyancy

flux is less sensitive to the winds than one with an interactive buoyancy flux. In

this section we seek to understand this behavior diagnostically through the residual

buoyancy budget, using the framework of MR.

4.3.1 Transformed-Eulerian-Mean Buoyancy Budget

We begin by reviewimg some essential elemenits of TEM theory (Andrews and McIn-

tyre, 1976; Andrews et al., 1987; Treguier et al., 1997; Plumb and Ferrari, 2005). The

reader is referred to MR for a complete discussion of the theory in the context of

ACC dynamics.

The time and zonally-averaged buoyancy equation for our domain (outside of the
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sponge layer) is
_b ab a(v'b') a(w'b') _8B

-V + U5--+ 0vb + =~ll) a (4.10)ayy Dz z

where B - (ga/poc,)Q is the downward buoyancy flux from the surface forcing. (We

have neglected the relatively small fluxes due to diffusion.) The goal of TEM theory

is to simplify the eddy-flux terms by separating them into advective and diabatic

components. The eddy advection can then be combined with the mean advection in

a resi(ual streamfimnction res:

res + * . (4.11)

MR. choose to define the TEM eddy streamfunction as

m'b'
* = - (4.12)

by

The TEM residual streamfunction .res, defined using (4. 11) and (4.12), is nearly

identical to TIse. Now (4.10) can be manipulated into the form

) B -

J e) [(1 - p)v'b'] , (4.13)

where the Jacobian term J represents advection by the residual circulation and the

factor , measures the diabatic eddy flux contribution:

y~ b = (4.14)
v'b' (b

When the eddy flux is directed along mean isopycnals, y = 1 and the second term on

the RHS of (4.13) vanishes. If both terms on the RHS are zero, as expected in the

ocean interior, then J( 4 'res, b) - 0 means that Wres is constant along isopycnals.

At this point, MR. make several assumptions to arrive at an analytic solution.

First, they assume the existence of a mixed layer of fixed depth hm in which bz = 0.

Following Treguier et al. (1997), they assume that y = 1 in the ocean interior and

varies from 1 at the base of the mixed layer to 0 at the surface. The buoyancy flux B
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is also assumed to reach zero by the base of the mixed layer. Integrating (4.13) over

this mixed layer, one obtains

Wres(y, z -hm) = B + D.
B9y (4.15)

where b,(y) is the surface mixed-layer buoyancy. We have also defined

(1 - p)+v'b' dz (4.16)

as the mixed-layer-integrated diabatic eddy flux divergence. Equation (4.15) states

that advection by the residual flow across the mixed-layer buoyancy gradient is bal-

anced by diabatic forcing and diabatic eddy fluxes.

x 10 250
Y (km, at surface)

500 7501000 1250 1500 1750
I I I
SI I

-T

0 ---- -

-2 - ---

T (deg. c)

Figure 4-7: The terms in the approximate form of the Marshall-Radko balance (4.17).
The plot is shown as a function of T on the bottom of the x-axis, but can also be
considered a function of y, whose corresponding values are shown at the top of the
X-axis.

In the MR model (of which (4.15) is a central component), qres reaches its full

vale at the base of the mixed layer. However, in our model, the surface diabatic

layer (200 - 300 m) extends much deeper than the shallow mixed layer (~ 50 in).

Fig. 4-3 makes it clear that Jio (approximately equivalent to TW.e.) does not reach
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its full interior value until below the diabatic layer. To overcome this complication,

we express B, D, and ab/ay as functions of the vertically-averaged buoyancy within

the diabatic layer (bdl). We can then write (4.15) approximately as

Wiso (b) a(bd) ~ B(bdl) + D(bdl) . (4.17)
By

We can see by plotting the three terms of this equation (Fig. 4-7) that the agreement is

good throughout most of the domain. This diagnosis shows that the diabatic forcing

B determines the strength and sense of the interior MOC. The diabatic-eddy-flux

term D is small but not negligible it generally opposes B, resulting in a weaker I, s.

The largest imbalance in this approximate form arises in the region associated with

uppermost counter-clockwise cell (between T = 5C and T = 6C), which contains a

recirculation cell entirely within the diabatic layer, a complication not considered in

the MR theory. This surface cell is not the focus of our analysis.

4.3.2 Buoyancy Flux Sensitivity to Winds

The residual buoyancy budget as expressed by (4.15) or (4.17) already reveals the

strong constraint imposed on the MOC by a fixed surface buoyancy flux: since the

tern B cannot change, changes in the MOC must be accompanied by changes in

8b,/8y or D. In the relaxation case, in contrast, B can also change, implying a

higher degree of freedom for the MOC. This freedom is reflected in the higher MOC

sensitivity in the relaxation experiments.

As described above for the reference case, we can diagnose the forcing terms B

and D from each of our experiments to understand how these terms change with the

wind -this is shown in Fig. 4-8, which contains contour plots of B and D as functions

of y and ro. Also plotted are contours of the zonal-mean SST, from which it is easy

to see the changes in b,/ay. Fron this figure, we can see that two factors contribute

to the strengthening of the upper cell in the fixed-flux case. First, the diabatic eddy

flux D (Fig. 4-8c), which generally opposes the heating from B centered on y = 666

kin, decreases with increasing winds, leading to greater total buoyancy gain in this
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region. Second, the SST contours in this region spread apart as the winds increase,

decreasing Db8/ay, which further contributes in the increase in WSre, On the other

hand, in the lower cell formation region (the most southern part of the domin ),

trends in D and ab/ay evidently cancel, leading to no trend in the T.r associated

with the lower cell.

The changing air-sea buoyancy flux B in the relaxation case is evident in Fig. 4-8b.

The flux is everywhere increasing as the winds increase, in accord with the fact that

SSTs are decreasing (see (4.9)). (SSTs also change in the fixed-flux case, but since

the flux is not interactive, this has no effect on B.) This is completely consistent with

the increased upper cell transport and decreased lower cell transport. In comparison

with the fixed-flux case, the changes in ab,/ay are less significant, resulting from the

fact that SST is being relaxed to the same function of y in all experiments. Changes

in D seem insignificant for the upper cell region but still potentially important for

the lower cell.

Dependence of the air-sea buoyancy flux B on wind stress was observed by Badin

and Williams (2010) in a similar yet coarse-resolution model. Their study also noted

the sensitivity of B to the choice of Gent-McWilliams eddy-transfer coefficient. In our

interactive-buoyancy-flux experiments, both the eddy transfer and the buoyancy flux

are free to respond to changing winds, resulting in a tangled equilibration problem.

The diagnostics presented in this section merely show how the buoyancy budget is

consistent with the residual circulation- they do not explain the magnitude of the

sensitivity. For that, we need to look closer at the eddy circulation itself.

4.4 Constraints on the Eddy Circulation

In this section we seek to understand what sets the strength of the eddy circulation.

This discussion is most relevant to the interactive-buoyancy-flux experimnemlts, whose

residual circulation cannot be assumed a priori based on knowledge of the buoyancy

flux. The essential question is: how well can we estimate the sensitivities of 1isj

reported in Tab. 4.2 based on first principles?
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Figure 4-8: The forcing terms of the surface residual buoyancy budget (4.22) for
changing values of wind ro, expressed in units of W m- 2 equivalent by multiplying
by poc(ga)-'. The air-sea buoyancy flux B for the fixed-flux case is shown in (a),
and the diabatic eddy flux D is shown in (c). (b) and (d) are the same terms, but
for the relaxation surface boundary condition. The thin black lines are contours of
the zonal-average SST, contour interval 0.5' C, from which changes in the surface
buoyancy gradient ab/8y can be inferred. The thick dashed black lines indicate the
boundaries of the regions of applied surface heating and cooling from the reference
experiment o = 0.2 N m-2

142

(a)
2000

1500

500

0
(C)

2000

1500

1000

500

-5

-10

-15

15

10

0
0.05

15
10

-5
10

-15
0.25 0.3

-E-1000 Pi -\ - /'.



4.4.1 Decomposing the Eddy Circulation: Slope and Diffu-

sivity

In the adiabatic interior, the TEM eddy circulation can be written as

* = - (4.18)
bz

This form is identical to the earlier definition (4.12) when p = 1, which is a good

approxiimation away from the surface diabatic layer and sponge layer and very close

to Teddy as defined in (4.8).

Assuming a flux gradient relationship v'b' = -K(y, z)b., where K is the eddy

diffusivity, we can write (4.18) as

{* = Ks (4.19)

where s = -by/bz is the mean isopycnal slope. (4.1-9) is the basis of the famous Gent-

McWilliams parameterization for mesoscale eddies (Gent and McWilliams, 1990; Gent

et al., 1995). Here it is simply a rearrangement of the defilitioll of V* given the

definition of K. Using the definition of T (4.6), the residual circulation then becomes

4i7es - + Ks . (4.20)
Pof

This expression is a centerpiece of the MR model.

Viebahn and Eden (2010) applied (4.20) to their eddy-resolving model in order to

ascertain the relative importance of changes in K and s. We follow a very similar path.

Consider a reference state in which To = roref = 0.2 N -112: the variables for this

state will be denoted Kref, 8 ref, etc. For different values of ro, the departures of these

variables from the reference state will be expressed as AK, where AK = K - K ref

and similarly for the other variables. Using this notation, we can express Tres for any
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ro state as

xplres "iref I+ ) ±'ref I+ (4.21)

AroAK As
Tref 1 + + -) + r ( + + , (4.22)

_o-ef Kre5 sre5

where a quadratic A-term has been dropped. (Note that iref Tsref/pof and

Tref = KrefSref.) The first term in (4.22) expresses the linear scaling of the Ekman-

driven circulation with the wind. Tlie second term expresses the eddy response. If we

can develop a theory for the fractional changes in K and s with changing To, we can

effectively predict the MOC departure from a reference state for a change in winds.

Viebahn and Eden (2010) found that changes in s were very small compared to

changes in K, and that the changes in kJ* could therefore be attributed primarily

to changes in K. To test this idea in our nodel, we calculate A{*/kP*ef, AK/Kref,

and As/sref from the model output. The calculation is performed at a depth of

477 in, below the surface diabatic laver, but shallow enough to see all the MOC cells.

(Above this depth, we find that (4.18) is not a very good approximation of W'j,.) The

terms are plotted in Fig. 4-9 as a function of y and ro. We see that V* changes by

about 50% from the reference case in either direction (weaker or stronger winds). K

undergoes changes in magnitude almost as large. However, s is notably less sensitive,

weakening by 20% for weak winds and barely changing at all for stronger winds.

Changes in s are most significant in the southernmost part of the domain, where new

isopyenals outcrop with increasing winds. For the fixed-flux experiments, in contrast,

s undergoes large changes in a wider part of the domain (not shown).

The relative insensitivity of s seems somewhat inevitable given the boundary

conditions. Since the buoyancy is relaxed to prescribed values at both the surface

and the northern boundary, the large-scale isopycnal slope is effectively prescribed

as well. (Of course, small changes in surface buoyancy are necessary to bring about

changes in heat flux, as seen in Fig. 4-8.) Only isopycnals that don't outcrop are

unconstrained on the southern edge, resulting in higher values of As/sref in the far
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southern part of the domain. Viebahin and Eden (2010) found As to be small in an

experiment with no sponge layer.

Focusing on the same surface (z = -477 in), we can use (4.22) to directly estimate

MOC,,Pe, and AOCioe, by picking points in y that correspond with the maximiun

and minimum values of WIsj. (These points do not move significantly in space with

changes in ro.) By calculating As and AK at these points, we can evaluate (4.22).

The linear MOC sensitivities produced in this way are given in the third column of

Tab. 4.2. These sensitivities agree very well with the values given by WI'o, indicating

that (4.22) is a good approximation.

Given the observed smallness of As, we can ask, to what extent is the sensitivity

of the MOC due to AK? To answer this question, we evaluate (4.22) with As - 0,

and compute the linear sensitivity. For comparison, we also do the opposite, setting

AK = 0 and using only As. The results, given in the fourth column of Tab. 4.2,

indicate that AK is the dominant factor in the upper cell sensitivity in both the

fixed-flux and relaxation experiments. Especially in the relaxation experiment, the

sensitivity due to As alone is close to the T sensitivity, suggesting a negligible role

for As. In contrast, AK and As seem to play equal roles in the lower cell sensitivity.

4.4.2 Eddy Diffusivity Dependence on Wind Stress

Given the prominent role of AK in determining the MOC sensitivity, we focus now

on understanding its scaling behavior with the winds. As a starting point, we plot

the full K(y, z) for three different values of To in Fig. 4-10. In general, K is positive

nearly everywhere and appears intensified very near the surface and towards the

bottom, with a ini um at mnid depth. The details of the vertical structure of K

are interesting, but are not our focus here. (A paper on this topic is in preparation.)

For now, we simply note that the spatial structure does not change qualitatively

with ro, allowing us to imagine a fixed spatial structure that simply scales with To.

(Viebahn and Eden (2010) found a strikingly similar spatial pattern.) Many studies,

including MR and Visbeck et al. (1997), have assumed that K itself is proportional

to s. Instead, we employ a mixing length theory, which relates K to the eddy kinetic
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energy, and thus to the mechanical energy balance.

Kb (m2 s-) forO= 0.1 K b(m 2 s) for -u= 0.2 Kb (m2 s-) for -o =0.3
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-2000.

-2500

0 1000 2000 3000 4000 0 1000 2000 3000 4000 0 1000 2000 3000
Y (km) Y (km) Y (km)

0 500 1000 1500 2000 2500 3000 3500 4000

Figure 4-10: Flux-gradient buoyancy diffusivity K(y, z) for three different wind
strengths and fixed-flux boundary condition, shown with contour interval 500 n 2

s-'. The black contours are the mean isotherms, contour interval 0.5' C.

Mixing-length theory (Taylor, 1921; Prandtl, 1925) claims that the eddy diffusiv-

ity can be expressed as a characteristic eddy velocity V times an eddy length scale Le,

such that K ~- VLe. Many authors have applied this idea to estimate eddy diffusivi-

ties in the ocean (Holloway, 1986; Keffer and Holloway, 1988; Davis, 1991; Stammer,

1998; Eden and Greatbatch, 2008; Ferrari and Nikurashin, 2010).2 A general theory

predicting Ve and Le for geostrophic turbulence does not yet exist, but the topic is

a very active area of research (Held and Larichev, 1996; Lapeyre and Held, 2003;

Thompson and Young, 2007).

Cessi (2008) suggested that the appropriate V' to use for the buoyancy diffusiv-

ity is the barotropic eddy velocity, i.e. the RMS anomaly of the vertically-averaged

velocity, because barotropic stirring can most efficiently mix buoyancy across sloping

isopycnals. We make the key assumption that this value, and thus K itself, is pro-

portional (but not necessarily equal) to the bottom eddy velocity. In terms of eddy

2Ferrari and Nikurashin (2010) recently refined the idea to include the modulation of L, by the
presence of mean flows, and there is indeed mounting evidence that the spatial variations in K in
the Southern Ocean are modulated by the strong jets found there (Marshall et al., 2006; Smith and
Marshall, 2009; Abernathey et al., 2010; Naveira Garabato et al., 2010).
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kinetic energy (the square of V), this statement becomes

EKEt o EKEb = ( I I2) (4.23)

where u' is the velocity anomaly at the bottom. The angle brackets indicate an

average in x, y and time. (The ideas could be easily extended to include dependence

on y, but here we find it simpler to concentrate on the domain average.)

Following Cessi et al. (2006) and Cessi (2008), we consider the mechanical energy

budget. Since our model employs linear botton drag, the leading-order balance of

the system is

(TV) ~ po'rbub|2 (4.24)

with additional small contributions from viscous dissipation, side drag, and conversion

to potential energy. (The zonal-meani surface velocity EU has been used because T, is

constant in x and time.) Physically, (4.24) expresses the fact that the wind power

input to the system is dissipated by bottom drag. Cessi et al. (2006) found this

balance to hold well in a similar nimerical model. We checked (4.24) in our model

and found it to hold not only globally but also in a zonal-average budget to within

10% error (not shown).

The bottom velocity Ub includes both the mean and eddy velocity: (|u |2) _

(j) + (Uj) + (u'b 2). The Ub term is negligible in comparison to Eb. Furthemore, we

already know from (4.5) that IUb r(porb). This allows (4.24) to be rearranged to

the form

porbK(u'b|2) =(S - l)) . (4.25)

It is importalt to note that the eddy energy in this expression depends only on

the baroclinic shear U. - Tub. The large barotropic velocity due to the absence of

topography doesn't affect the eddy energy balance. Furthermore, since topographic

form drag does not participate in the energy cycle (Ferrari and Wunsch, 2009), we

can expect (4.25) to hold in more realistic models with topography. (Note that in

the presence of topopgraphy, EW ~ 0.) The baroclinic shear can be obtained from the
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thermal wind equation:

_ 1 ,0
s-~ Ub y(_bQ z)dz - (4-26)U,~ ~ -U f - H

Since the large-scale imeridional buoyancy gradient b is deternined by the large

scale forcing, we can expect this thermal-wind contribution to remain approximately

constant .This suggests the scaling relationship

EKEb = (|u' |2) goATH (4.27)

where AT is the large-scale temperature difference across the channel, set by the

relaxation SST. We have also used the fact that (T,) = 2To/7. Our mixing length

hypothesis claims that K is related to this quantity as EKEb = (K)/Le) 2, where

the mixing length constant Le has absorbed the unknown constant of proportionality

between EKEbt and EKEb.

We can diagnose all these quantities from the model to test our ideas. We assume

that the L, = constant = 30 km. In reality, the mixing length also varies by ~ 10%

(as diagnosed from the simulations), but we can achieve decent agreement without

considering these effects, and a theory for Le is beyond the scope of this paper. EKEb,

EKEt, ((K)/Le) 2 , and the scaling prediction from (4.27) are all plotted in Fig. 4-11

on a logarithmic scale as a function of To. Both the fixed-flux and relaxation cases are

plotted. The three diagnosed quantities, and the theoretical prediction, show similar

slopes, especially for high value of To. The small departures of (K) from the EKE

values can be explained by our neglect of changes in L. The small departures of

EKEb from the scaling theory likewise can be explained by our neglect of second-

order energy sources and sinks in (4.24). But, based on the general agreement, we

conclude that a useful approximation for the eddy buoyancy diffusivity in our model

18

K ~ Ke5 ( " .o) / (4.28)
o-re 1/2

3This is equivalent to assuming that the baroclinic transport in the imodel is "saturated" (Straub,
1993), which is indeed the case for our experiments.
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Figure 4-11: Globally-averaged eddy kinetic energies diagnosed from the model. The
quantities plotted are the barotropic EKE (square), the bottom EKE (circle), and
the EKE implied by the diffusivity K (triangle), assuming a constant mixing length
of 30 km. The black line is the EKE predicted by the scaling relation (4.27). The
fixed-heat-flux experiments are white, while the relaxation experiments are gray.

When applying this formula locally in space, we must, however, expect errors due to

the changing spatial structure of K shown in Fig. 4-10.

4.4.3 Predicting the MOC Sensitivity

Using the scaling from (4.28) in (4.22), along with the assumption that changes in s

can be neglected to first order, we arrive at

Wres ~ ref + A 7-f
T0_ref

+ 1 ref + ( o2)1/2
70_ref

(4.29)

From this equation, the linear sensitivities of MOCPer. and MOCOer, can be cal-

culated analytically given Wref and T*ef; they are given in the final column of Tab.

4.2. Two important points must be kept in mind in interpreting these values. First,

such estimates can only be as good as the AK-only sensitivity already presented,

which we noted was most accurate for the relaxation-case upper cell. Second, since
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Wref and xI*,f are nearly the same for both fixed-flux and relaxation experiments, the

scaling for AK produces nearly idenftical predictions for the different cases. The final

prediction from the scaling theory of the sensitivity of the upper cell in the relaxation

case, 6.9 Sv ( N in 2)-1, is higher than the AK-only sensitivity, 5.9 Sv ( N m- 2 )-,

which itself is higher than the true sensitivity, 4.5 Sv ( N n 2 ) . Yet all these valies

are significantly weaker than the sensitivity of 4'. 11.1 Sv ( N m- 2 )-. The agree-

ument between the relaxation-case lower-cell sensitivity from the scaling and the true

sensitivity is spurious, a case of two wrongs (the neglect of As and the failiure of

(4.28) locally for the lower cell region) making a right. Although our scaling theory

is far from comprehensive, we are encouraged by the agreement for the upper-cell

relaxation case and consider it a useful stepping stone in a, difficult problem.

Table 4.2: Linear MOC dependence on wind, i.e. DMOC/BTo, as determined by
least-squares fit. The value of R 2 for the linear regression is given in parenthesis, a
umeasure of the goodness of fit. The values are comrputed at fixed points in space near
where muaxinma and minima of 4'is occur: z = -477 m1, y = 1150 km (upper cell)
and y = 300 kin (lower cell). The first column shows qjj, and the second colunim
4. The rightmost four colunns represent the approximations produced by (4.22),
(4.22) with As set to zero, (4.22), (4.22) with AK set to zero, and finally (4.29), the

prediction for the MOC sensitivity given by neglecting As and and assuming that K
scales locally with (4.28). All units are Sv / ( N n).

4iSO 4 AK and AS AK only AS only AK (scali
fixed-flux, upper cell 2.6 (0.98) 11.2 (1.00) 2.2 (0.96) 5.2 (0.99) 8.1 (1.00) 6.8
fixed-flux, lower cell -0.1 (0.01) 4.5 (1.00) 0.2 (0.16) 2.1 (0.96) 2.6 (0.97) 1.4
relax, upper cell 4.5 (1.00) 11.1 (1.00) 4.2 (0.99) 5.9 (1.00) 9.3 (1.00) 6.9
relax, lower cell 1.9 (0.99) 4.6 (1.00) 1.9 (0.98) 3.1 (1.00) 3.3 (0.99) 1.6

4.4.4 Quadratic Bottom Drag

Many models choose to represent bottom drag with a quadratic term, proportional

to the square of the bottom flow, rather than with the linear form we have used.

Geostrophic turbulence in the presence of quadratic bottom drag is less sensitive

to the value of the botton-drag coefficient, although both types of drag can pro-
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duce eddy behavior consistent with ocean observations (Arbic and Scott, 2008). The

scaling theory for EKE described above relies on a balance between surface winds

and bottom drag, and although we only performed experiments with linear drag, it

is worth considering how this theory would be altered if quadratic drag were used

instead.

A quadratic drag parameterization leads to a bottom stress of the form

7b - Pocd Ub Ub (4-30)

where Cd is a non-dimensional parameter for the bottom drag strength, with a typical

value of 0.0025 (Armi, 1978). The mechanical energy balance becomes, instead of

(4.24)

(rsUs) ' Pocd(|ub 3), (4.31)

Two main issues arise that cause the quadratic-drag case to differ from the linear

case. The first is the coupling of the mean and eddy flow at the bottom. Due

to the nonlinearity, it is inpossible to split the bottom drag into a contribution

exclusively from the eddies. In the presence of a strong bottom flow, this would

seriously undermine a scaling theory for the eddy energy like the one described above.

We consider this issue to be of minor importance, however, because the mean bottom

flow in the Southern Ocean is very weak due to the presence of topography. If both

topography and quadratic drag were present (arguably the most realistic possible

configuration), there would be no contribution to (4.31) from the mean flow, and the

energy balance would again be between wind work on the baroclinic flow and bottom

dissipation by the eddies. The only difference would be the power-law dependence.

Instead of EKE oc r, as we found with linear bottom drag, we would obtain EKE 0c
2/3. 

-,w a (.T/. This indicates that K would still depend on the winds, but with a weaker

sensitivity. Ultimately we speculate that this would lead to stronger dependence of

the MOC on the winds, but without a qualitative change in the picture we obtained

with linear drag.
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4.5 Discussion and Conclusion

One important conclusion of this study is that the sensitivity of the Southern Ocean

MOC to the winds depends on the surface boundary condition for buoyancy. This is

not an immu1le(diately intuitive result, since the winds are a purely mechanical forcing.

However, it becomes clear once one considers the TEM (or equivalently, isopycnal-

average) point of view expressed by (4.15): in a quasi-adiabatic ocean interior, the

residual MOC is primarily set by diabatic water-mass transformation at the surface,

and if the winds are unable to alter the transformation rates (as in the fixed-buoyancy-

flux case), the sensitivity of the MOC is weak. In fact, evidence of this point emerges

from the existing literature when comparing different models. For instance, Hallberg

and Gnanadesikan (2006) used a predominantly fixed-flux surface boundary condition

and found a relatively weak sensitivity of the residual MOC to increased winds. In

contrast, Wolfe and Cessi (2010) used a relaxation boundary condition and found

munch greater sensitivity; in certain locations, they found an increase in residual MOC

transport ahnost equal to the increase in Ekuman transport, the upper limit of the

sensitivity. The increased transport was accompanied by increased transformation

in both southern and northern high latitudes. Although our model contains only an

ACC channel, it manages to qualitatively reprocice the behavior of both these two

different models just by changing the surface boundary condition. Similar conchisions

were reached by Bugnion et al. (2006), using an adjoint method in a coarse-resolution

model, and by Badin and Williams (2010).

The surface boundary condition of the real ocean is mixed. Certain contributions

to the air-sea buoyancy flux, such as net shortwave radiation and precipitation, are

largely independent of the SST and surface winds. Latent and sensible heat fluxes,

on the other hand, are interactive (Haney, 1971). For the winds to play a strong role

in modulating the residual MOC, as envisioned by Toggweiler and Russell (2008), our

study suggests that the interactive fluxes must domiinate. It should therefore be a top

priority to continue to improve our understanding of the processes that determine the

air-sea buoyancy flux in the Southern ocean-including sea-ice processes, which we
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have completely neglected- and whether these components are sensitive to changes

in wind or other climate changes.

Of the various simplifications we have made, perhaps the most restrictive and

unrealistic is the fixed stratification imposed by the northern boundary sponge layer.

In fact, many of the related studies we have cited have focused explicitly on the

question of what sets the stratification (Marshall and Radko, 2003; Henning and

Vallis, 2005; Wolfe and Cessi, 2010). In the analytical model of MR, the therinocline

depth was found to be proportional to To 2 , but their eddy closure (K oc Is ) does

not hold in our eddy resolving model. Henning and Vallis (2005) found a weaker

scaling of the stratification with the wind (- r-T) in an eddy-resolving model of a

channel coupled to a basin. Such results are encouraging because, if the stratification

dependence on ro is weak, it is more reasonable to approximate it as fixed, as we

have done. Nevertheless, tests of our results in more realistic, global, eddy-resolving

models are required.

Finally, we developed a scaling theory for the eddy-diffusivity and used it estimate

the MOC sensitivity. Traditionally, scaling theories for eddies have been based on

ideas from linear baroclinic instability, and the eddy diffusivity is assumed to be

somehow proportional to the isopycnal slope (Green, 1970; Stone, 1972; Killworth,

1997; Visbeck et al., 1997). Although baroclinic instability plays a crucial role in the

energy cycle of our model, linear theory cannot predict the fully equilibrated eddy

energy. Instead we have followed some of the ideas developed by Cessi (2008), invoking

the mechanical energy balance to gain insight into the eddy energy and diffusivity.

Consequently our scaling theory for the eddy diffusivity (4.27) includes a dependence

on both the wind stress parameter ro and the bottom drag rb, but not the isopycnal

slope s. The scaling shows good agreement with the GCM results. Furthermore, we

think it represents a promising way forward in understanding the role of eddies in the

equilibration of the Southern Ocean.

We have examined only steady states, but the tine-dependent response to wind

changes is important and interesting. Meredith and Hogg (2006) have suggested

Southern Ocean eddies can respond very fast (~ 1 year) to changes in wind, while
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Treguier et al. (2010) found that the interannual MOC variability in a realistic model

was doi-inated by Ekmuan transport, with little eddy compensation. This issue de-

serves further study as well.
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Chapter 5

Conclusion

5.1 Summary

This thesis has presented three studies aimed at deepening our understanding of

mesoscale ocean eddies and their role in the clinate system. The first two chapters

were primarily diagnostic, concerned with the spa tial geography of eddy mixing rates

and the implications of this geography. Chapter 2 explored the depth-latitude struc-

ture of mixing in the Southern Ocean, while Chapter 3 used satellite data to examine

the global patterns of mixing at the surface. The final chapter presented an idealized,

eddy resolving model of the Southern Ocean and analyzed its response to changes

in wind stress. Although on the surface the final chapter sounds unconnected to the

first two, eddy mmixing rates were revealed to be the crucial quantity determining the

the sensitivity of the overturning circulation to the wind changes. A common thread

to all of these studies is that the behavior of mesoscale eddies is significantly miore

varied and complex than assuImed by climate models, and that this complexity can

potentially have significant consequences for large-scale climate.

In Chmapter 2, we saw how mnixing rates vary with depth and latitude across the

ACC. At the surface inl the core of the ACC, miixing is suppressed by the strong

mean flow, while on the flanks of the jet (especially northward), mixing rates are

higher. However, a subsurface mmaxinmum arises below the jet where EKE is still

strong but the mnean flow is weaker. The band of strong mixing shoals to the north
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and connects smoothly with the surface maximum. We diagnosed horizontal mixing

rates at the surface, which presumably apply to the mixing of buoyancy and other

tracers at the surface, and isopycnal mixing rates in the interior, which we interpreted

as diffusivities for potential vorticity. We used the interior diffusivities to estimate the

eddy flux of potential vorticity and thus infer the residual overturning circulation. We

did not take the step of attempting to compare this estimate with the "true" residual

circulation; the complexity of the SOSE model made the task of actually calculating

the residual circulation daunting. In fact, the desire for a simpler model inspired the

development of the idealized channel model used in Chapter 4.

The goals of chapter 2 were twofold: I wanted to expand the view of mixing

beyond just the Southern Ocean, and I wanted to incorporate real data into my

thesis. The use of satellite data limited the analysis to the surface flow, but at

the same time brings a degree of credibility to the results that is not possible with

umodels alone. The first step was to perform effective diffusivity calculations in a

"zonalized" East Pacific domain. This simplified flow facilitated the computation

and comparison of different diagnostics. One particularly encouraging result was

the close equivalence between Nakamura effective diffusivity and traditional zonally-

averaged flux-gradient diffusivity; despite the widespread recent use of the Nakanura

diagnostic, this equivalence has, to our knowledge, not yet been denionstrated in a

real flow. We introduced the Osborn-Cox diffusivity and showed that it is a reliable

diagnostic of local mixing associated with divergent eddy fluxes. We then calculated

the Osborn-Cox diffusivity worldwide, producing a global map of eddy mixing, the

first such global estimate using tracer-based methods. The mean flow was found

to have a strong effect on mixing, leading to both suppression and enhancement

depending of the region in question. As a final step, we used the map of mixing to

estimate eddy flux of quasi-geostophic potential vorticity near the surface. We related

this quantity to an eddy stress, which we found had a spatial pattern similar to the

wind stress. The magnitude of the eddy stress was generally weaker than the wind

stress, but far from negligible. On the other hand, the magnitude was much greater

than the eddy stress that would be produced by the Gent and McWilliams (1990)
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paraineterization using connon uxing coefficients. This suggests a significant role

for eddies in the surface ocean circulation that is not adequately captured by climate

models.

The idealized channel model of Chapter 4 presented a more self-contained setting

to study eddies and their role in ocean circulation, with closed budgets of heat,

momentum, and energy and a residual overturning circulation that could be calculated

directly, rather than inferred. We focused on a concrete question: what is the residual

overturning response to changes in winds'? The sensitivity to the winds, it turned out,

was largely deterimuined by the changes in eddy mixing rates. Therefore this seemingly

simple question forced us to grapple with the difficult and long-standing problem of

baroclinic equilibration. We made progress by analyzing the eddy energy budget, and

drew a link from the wind power input to the eddy dissipation at the bottom and

finally to eddy mixing rates. By examining, from first principles, why eddy mixing

rates have their observed magnitudes, the final chapter is truly more ambitious the

the first two and, despite being only a single chapter, represents the greatest amount

of my time and effort.

5.2 Future Directions

This research provokes many new questions. Many of these question lie at the in-

tersections between the three chapters. First and foremost is to reconcile the mixing

diagnostics in SOSE with those from the channel model. The channel nodel of chap-

ter 3 focused primarily on the horizontal mixing of buoyancy, while the SOSE analysis

calculated isopycnal tracer diffusivities, which we associate with potential vorticity

mixing. Horizontal buoyancy diffusivity is a very convenient quantity when dealing

with eddy-induced streamfunctions and is easily related to climate m (odels through

the Gent-McWilliams parameterization. It is also a very stable quantity to diag-

nose, since the lateral buoyancy gradient never changes sign in the Southern Ocean.

However, potential vorticity is in some sense more fundamental, since the enstrophy

budget requires it to be down-gradient onl average. The vertical structure of buoyancy
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diffusivity can be very different from the PV diffusivity (Smith and Marshall, 2009),

and the relationship between the two is related to the baroclinic criticality of the flow

(Held and Larichev, 1996; Thompson and Young, 2007; Jansen and Ferrari, 2012).

Both diffusivities are presumably related to the full diffusivity tensor K of Plumb and

Mahinan (1987). A straightforward comparison of all these quantities in the channel

model would help clarify this somewhat foggy landscape of different diffusivities.

A related question is how to best make use of observational mixing data to in-

fer eddy-induced circulations. The Diapycnal and Isopycnal Mixing Experiment in

the Southern Ocean (DIMES, Gille et al., 2007) aims to directly measure mixing

rates using floats and tracers. Klocker et al. (2011b) made an important contribution

to the eventual interpretation of the DIMES results by showing that, under ideal

circumstances, the tracer- and float-based isopycnal diffusivities should agree. But a

further step is required. The original DIMES announcement claims that "[u]ltimately,

results from the experiment should facilitate improvements in the representation of

mixing in numerical models of the ocean and climate." In order to reach this point,

we must know how to translate the tracer- and float-based data into diffusivities of

potential vorticity and / or buoyancy, in a form that models can use. Our idealized

channel model could be an ideal test-bed for making this link, allowing us to simnu-

late DIMES-style experiments and test methodologies for inferring / parameterizing

the eddy transport in terms of the simulated experimental results. Some first steps

towards this goal are contained in Hill et al. (2011), who focus mainly on diapycnal

mixing rather than mesoscale eddy mixing.

One unfortunate conclusion of Klocker et al. (2011b) is that the numel)er of floats

used in the DIMES experiment may not be enough to constrain even the sign of the

Lagrangian isopycnal diffusivity. In other words, the magnitude of the error will likely

exceed the mean, rendering the results effectively meaningless. If this is the case, the

best means for measuring eddy mixing rates will continue to be satellite altimetric

data. Chapter 3 presented a comprehensive global view of mixing rates derived from

altinmetric data, but this view is only at the surface. Therefore new theories and meth-

ods must be developed to extrapolate the surface results to the interior. Killworth
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and Hughes (2002) concluded that in the ACC the flow can be accurately described

in with an equivalent barotropic framework, wherein the horizontal geostrophic veloc-

ities decay exponentially with depth from their surface values. Klocker et al. (2011b)

made use of this idea to rescale the satellite-derived surface velocities in the ACC

and derive diffusivities at every depth, with results consistent with Abernathey et al.

(2010) from the SOSE model. Unfortunately, the prospect of applying such a pro-

cedure gkobally is (loubtful, since the equivalent 1)arotropic structure does not apply

outside of the ACC. Scott and Furnival (2011) recently assessed different strategies

for extrapolating surface geostrophic velocities to the interior using basis functions

(e.g. baroclinic modes) and introduced a new set of functions with relatively good

predictive skill at 400m depth; this could be a way forward for assessing subsurface

mixing rates globally. Alternatively, statistical / stochastic methods may be able to

estimate the eddy fluxes directly without explicitly resolving the sub-surface flow, but

such techniques are still in their infancy in oceanic applications (Keating et al., 2012).

A final possibility would be to apply the formula of Ferrari and Nikurashin (2010)

globally inl conjunction with accurate estimates of the eddy phase speed, comparing

with results from eddy-resolving models.

Another potential direction for the ideas explored in this thesis, Chapter 4 in

particular, is in the area of eddy parameterization. A common refinement to the Gent

and McWilliams (1990) parameterization is to make the eddy diffusivity proportional

to the local Eady growth rate, related to the isopycnal slopes (e.g. Visbeck et al.,

1997). This approach is grounded fundamentally in linear theory. In Chapter 4 we

pursued a slightly different path; following Cessi (2008), we trie(l to relate the eddy

mixing rate to the energy dissipation rate, a perspective consistent with theories

of fully-developed, forced-dissipative baroclinic turbulence. Since the rate of energy

inp1)ut to the system was largely controlled by the wind, this pathway proved to be

sufficient for understand the scaliig of the mixing rates with the wind. It would be

interesting to explore this idea in more generality and to ask to what extent wind-

power input, dissipation, and eddy mixing are correlated globally. Along these lines,

a franmework for an eiergetically-muotivatedl paramieterizations of the eddy flux of
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potential vorticity was recently developed by (Marshall et al., 2012). This area seems

ripe for progress.

A final issue left relatively unexplored by this work is the issue of topography and

its influence on mixing. It is well known that the presence of bottoi topography

can strongly affect eddy fluxes by altering potential vorticity gradients (Holloway,

1997). A recent study by Thompson (2010) showed that the presence of rough to-

pography leads to intermittent an(d mixing and variability in zonal jets. A futher

study (Thompson and Sall6e, 2011) suggested that mixing in the Southern Ocean is

concentrated in "hotspots" near topographic features. It would be very interesting to

explore how the mixing patterns found in Chapters 2 and 3 correlate with topographic

features. Futhermore, the model of Chapter 4 could be easily modified to create a

mixing hotspot, allowing us to explore the role of topographically-induced mixing in

the the meridional overturning circulation.
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