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Abstract

In this thesis, we propose new mixed integer optimization (MIO) methods to ad-
dress problems in machine learning. The first part develops methods for supervised
bipartite ranking, which arises in prioritization tasks in diverse domains such as infor-
mation retrieval, recommender systems, natural language processing, bioinformatics,
and preventative maintenance. The primary advantage of using MIO for ranking
is that it allows for direct optimization of ranking quality measures, as opposed to
current state-of-the-art algorithms that use heuristic loss functions. We demonstrate
using a number of datasets that our approach can outperform other ranking methods.

The second part of the thesis focuses on reverse-engineering ranking models. This
is an application of a more general ranking problem than the bipartite case. Quality
rankings affect business for many organizations, and knowing the ranking models
would allow these organizations to better understand the standards by which their
products are judged and help them to create higher quality products. We introduce an
MIO method for reverse-engineering such models and demonstrate its performance
in a case-study with real data from a major ratings company. We also devise an
approach to find the most cost-effective way to increase the rank of a certain product.

In the final part of the thesis, we develop MIO methods to first generate association
rules and then use the rules to build an interpretable classifier in the form of a decision
list, which is an ordered list of rules. These are both combinatorially challenging
problems because even a small dataset may yield a large number of rules and a small
set of rules may correspond to many different orderings. We show how to use MIO to
mine useful rules, as well as to construct a classifier from them. We present results in
terms of both classification accuracy and interpretability for a variety of datasets.

Thesis Supervisor: Dimitris Bertsimas
Title: Boeing Leaders for Global Operations Professor
Co-Director, Operations Research Center

Thesis Supervisor: Cynthia Rudin
Title: Assistant Professor of Statistics
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Chapter 1

Introduction

In this thesis, we develop new algorithms based on mixed integer optimization (MIO)

to address various problems in machine learning. The primary motivation for studying

this topic is that the objective functions in many machine learning contexts are, in

fact, discrete. Therefore, MIO is a natural framework for modeling and solving these

problems. For example, consider the problem of binary classification, in which the

goal is to be able to correctly determine in which of two categories an object belongs;

the error to minimize is essentially the number of objects that are placed into the

wrong category, and this is a discrete quantity—that is, the set of all possible values

of the error is a subset of the integers. Even though MIO allows us to capture the

exact objectives of interest, conventional machine learning algorithms typically do not

use MIO, and instead use heuristics or convex proxies in place of the true objectives

in order to solve extremely large problems with minimal computation time. However,

not all problems are extremely large, and not all need to be solved quickly. For tasks

of moderate size or for which a longer runtime is acceptable, we show that using MIO

may have significant advantages.

The machine learning problems we study are supervised ranking, association rule

mining, and associative classification. The supervised ranking problem is to find a

scoring function such that when we rank a list of objects by their scores according to

the scoring function, the ranked list is optimal with respect to some ranking quality

measure. In the bipartite case, there are two classes of objects, positive and negative,

17



and one simple ranking quality measure is the number of positive-negative pairs for

which the positive object is ranked higher than the negative object by the scoring

function. In a more general setting than the bipartite case, in which perhaps we are

given a “true” ranking of objects, we might aim to construct a scoring function that

maximizes the number of all pairs for which the higher-ranked object according to our

scores is also higher according to the true ranks. In association rule mining, we find

correlations between features of objects, which indicate that the presence of a certain

set of features implies with high probability the presence of another set of features.

Associative classification is the problem of combining these patterns to form models

for classification. We describe in detail all of these machine learning problems later in

the thesis and show how to solve them using MIO. Below, we first give background on

MIO and the progress over the past few decades in our ability to solve MIO problems.

We use MIO to refer specifically to mixed integer linear optimization. The general

form of an MIO problem is

max
∑

j∈I
cjxj +

∑

j∈C
cjxj (1.1)

s.t.
∑

j∈I
aijxj +

∑

j∈C
aijxj



























≥

=

≤

bi, ∀i,

xj ∈ Z+, ∀j ∈ I,

xj ∈ R+, ∀j ∈ C.

In words, the problem is to maximize an objective function subject to a set of equal-

ity and inequality constraints, where the variables in I are restricted to be integral

and the variables in C can take continuous values. If I = ∅, then (1.1) is called a

linear optimization problem; if C = ∅, then (1.1) is an integer optimization problem;

and if all variables are restricted to be either 0 or 1, then (1.1) is a binary integer

optimization problem. If we relax the constraint xj ∈ Z+ to xj ∈ R+ for all j ∈ I,

then the resulting problem is called the linear relaxation of (1.1).
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MIO is a powerful modeling methodology primarily due to its ability to capture

logical relations among various decisions. To illustrate this point, suppose we would

like to select 10 players for a sports team out of a pool of 25 people, where we need

to obey the following restrictions:

• If player 3 is selected, then player 5 must also be selected,

• If player 6 is not selected, then players 13 and 20 cannot be selected,

• At least one of players 7, 8, and 9 must be selected,

• No more than two of players 10, 11, 12, 15, and 18 can be selected.

We use binary variables xi that take value 1 if player i is selected and 0 otherwise.

The first statement above says that x3 = 1 implies x5 = 1; the second says that

x6 = 0 implies both x13 = 0 and x20 = 0; and so on. These statements can be

captured respectively with:

x5 ≥ x3, x13 +x20 ≤ 2x6, x7 +x8 +x9 ≥ 1, and x10 +x11 +x12 +x15 +x18 ≤ 2.

There may be multiple correct formulations to solve the same problem. For in-

stance, the second statement above is also correctly captured by the pair of constraints

x13 ≤ x6, and x20 ≤ x6.

However, it is important to note that not all valid formulations are equally strong.

In fact, the choice of MIO formulation critically influences our ability to solve a

problem. Briefly, this is because even though two formulations may correspond to

the same discrete set F of feasible points, the polyhedra formed by the constraints of

their linear relaxations are not the same, as shown in Figure 1-1. An MIO formulation

is stronger if its linear relaxation corresponds to a smaller feasible set; in particular, it

is stronger if it is closer to the convex hull of F [see Bertsimas and Weismantel, 2005,

for details]. This is drastically different from the case of linear optimization, where a

good formulation is simply one that has a small number of variables and constraints,

19



0 1 2 3 4

0
1

2
3

4

x

y

0 1 2 3 4

0
1

2
3

4

x

y

0 1 2 3 4

0
1

2
3

4

x

y

Figure 1-1: Two polyhedra that both contain F = {(2, 1), (2, 2), (1, 3), (2, 3), (3, 3)}
(left and center), and the convex hull of F (right).

and the choice of formulation is not critical for solving a problem. In contrast, when

there are integer variables, it is often an improvement to the formulation to add valid

constraints that “cut” the feasible region so that it is closer to the convex hull of F .

MIO is known to be NP-hard. Nevertheless, our ability to solve MIO problems is

constantly improving. From the Gurobi Optimization website:

The computational progress in linear, quadratic and mixed integer program-

ming over the last twenty years has been nothing short of remarkable, enabling

business, scientific and other applications that literally would have been unap-

proachable just a few short years ago.1

In the 1980s, it was difficult to solve a problem with just a hundred integer variables,

but now it is possible to solve problems with millions of integer variables [Johnson

et al., 2000]. There have been dramatic advancements in both hardware and soft-

ware. Figure 1-2 shows the exponential increase in the speed of supercomputers

developed since the 1980s, measured in billion floating point operations per second

(gigaFLOPS).2 Figure 1-3 shows the time taken to solve the linear optimization prob-

lem PILOT on different machines between the late 1980s to 2000.3 The time decreased

by a factor greater than 6000.

Algorithms for solving MIO problems have also steadily progressed. Techniques

employed by modern solvers include branch-and-bound, cutting plane algorithms,

1http://www.gurobi.com/html/about.html
2http://ecelab.com/supercomputers-list.htm
3http://faculty.smu.edu/barr/ip/01ipBixby.PDF
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Figure 1-2: Speed of supercomputers.
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Figure 1-3: Solver times for the PILOT problem (1141 constraints, 3652 variables).

constraint programming, Lagrangian duality, basis reduction, approximation algo-

rithms, and heuristics [see Johnson et al., 2000, for a description of branch-and-bound

and a comprehensive list of references for other integer optimization algorithms].

Solvers for MIO depend heavily on solving linear optimization problems, and the

speed with which linear optimization problems can be solved has increased dramati-

cally. For example, Figure 1-4 shows the time taken to solve a problem called PDS-30,

which is well-known in the linear optimization community, using different versions of

the CPLEX solver on the same machine (296 MHz Sun UltraSparc) [Bixby et al.,

2000]. The times improved by a factor of 350 over eleven years, from approximately
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Figure 1-4: Solver times for PDS-30 problem (49944 rows, 177628 columns).

sixteen hours with the first version of CPLEX in 1988, to under three minutes in

1999; extrapolated to the present, the runtime would take on the order of one second.

With the advancements in both hardware and software, the size of MIO problems

that are solvable is increasing exponentially. For example, consider the traveling

salesman problem (TSP), which is the problem of finding the least expensive route

for a salesman to visit each of a set of cities exactly once and return to his starting

city. Table 1-5 shows the enormous progress made over the years in the size of TSP

instances that can be solved, starting from the result of Dantzig et al. [1954] in solving

a 49-city TSP.4

MIO methods are not commonly used to solve machine learning problems, partly

due to a perception starting from the early 1970s that MIO is computationally in-

tractable for most real-world problems [Bertsimas and Shioda, 2007]. However, de-

spite the inherent hardness of MIO, all of the examples above illustrate the rapid and

ongoing progress in our ability to solve MIO problems. Such progress encourages us

to explore the possibility of using MIO in domains in which it has not been widely

applied, including machine learning. Recent work that intersects machine learning

and discrete optimization has consisted largely of either using concepts from machine

learning to solve discrete optimization problems [e.g., Malagò et al., 2009, Furtlehner

and Schoenauer, 2010, Hsu and McIlraith, 2010] or using heuristics from combina-

4http://www.tsp.gatech.edu/history/milestone.html
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Figure 1-5: Milestones in solving the TSP (number of cities).

torial optimization that exploit problem structure to address machine learning tasks

[e.g., Cevher and Krause, 2009, Lin and Bilmes, 2010], instead of using MIO formula-

tions to directly solve machine learning problems. Still, MIO has already been shown

to be effective in feature selection, as well as in classification and regression [Nguyen

et al., 2009, Bertsimas and Shioda, 2007, Brooks, 2010]. This thesis is among these

first efforts in developing MIO methods for machine learning.

In Chapter 2, we derive MIO formulations for supervised bipartite ranking tasks.

There are a variety of ranking quality measures that we are interested in optimizing,

and our formulations can exactly capture many of them. Chapter 3 discusses an

application of supervised ranking in which we use MIO to reverse-engineer quality

ranking models. In Chapter 4, we show how to use MIO for both mining associa-

tion rules and combining the rules into an interpretable and accurate classifier. We

conclude in Chapter 5.
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Chapter 2

MIO for Supervised Ranking

Supervised ranking techniques can be used for a wide variety of prioritization tasks

in many domains, including information retrieval, recommender systems, natural lan-

guage processing, bioinformatics, and industrial maintenance. The ranking problem

is essentially that of ordering a set of entities by their probabilities of possessing a cer-

tain attribute. For many applications, improving the quality of a ranked list by even a

small percentage has significant consequences. For instance, a more accurate ranking

of electrical grid components in New York City, in order of vulnerability to failures or

dangerous events, helps prevent power outages as well as serious accidents from fires

and explosions [Gross et al., 2009, Rudin et al., 2010]. In the area of drug screening,

where developing a new drug costs over $1 billion, the ability to correctly rank the

top of a list of millions of compounds according to the chance of clinical success pro-

duces significant savings, in terms of both time and money [Agarwal et al., 2010]. For

Netflix, the accurate ranking of movies was sufficiently important that the company

offered a $1 million prize in a contest to beat the accuracy of its recommendation

system [Bennett and Lanning, 2007].1

In this chapter, we introduce an MIO approach for supervised ranking. The

primary advantage of using MIO for ranking is that it allows for direct optimization

of the true objective function rather than approximating with a heuristic choice of loss

functions. This means that the objective we optimize with MIO is also the measure we

1http://www.netflixprize.com/
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use to evaluate ranking quality. Our methods were designed to be able to optimize

many common ranking objectives, or rank statistics, including the area under the

ROC curve (AUC) [Metz, 1978, Bradley, 1997] and the discounted cumulative gain

(DCG) measure used in information retrieval [Järvelin and Kekäläinen, 2000]. This

work focuses on bipartite ranking problems, which are distinctly different from and

more challenging than binary classification. Currently, supervised ranking methods

are used almost exclusively for large scale problems that occur in the information

retrieval domain [for example, see Xu, 2007, Cao et al., 2007, Matveeva et al., 2006,

Lafferty and Zhai, 2001, Li et al., 2007, and the LETOR compilation of works2],

and there are many works that discuss how to approximately solve extremely large

ranking problems quickly [Freund et al., 2003a, Tsochantaridis et al., 2005, Joachims,

2002, Cossock and Zhang, 2006, Burges et al., 2006, Xu et al., 2008, Le and Smola,

2007, Ferri et al., 2002, Ataman et al., 2006]. In order to produce fast solutions, these

methods all use heuristic loss functions or other approximations that may be very

different from the true objectives.

On the other hand, not all ranking problems are large. Consider, for example,

the re-ranking problem [Ji et al., 2006, Collins and Koo, 2003]. In re-ranking, the

top N candidates are first generated by a classification model, and then the ranking

algorithm is applied only to those top candidates. These problems may be small

depending on the size of N , even if the original ranking problem is extremely large.

Moreover, there is a growing body of work that addresses supervised ranking in

domains where speed is not essential and a better solution is worth the extra compu-

tation time. Examples of such supervised ranking tasks include ranking manholes for

the purpose of power grid maintenance [Rudin et al., 2010], ranking chemicals for the

purpose of drug discovery [Agarwal et al., 2010], and ranking medical symptoms for

the purpose of future symptom prediction [McCormick et al., 2011]. In Chapter 3,

we use specialized MIO ranking methods to reverse-engineer quality ratings, where

the dataset is a decade’s worth of ratings data; this problem’s size is still able to be

handled effectively with MIO.

2http://research.microsoft.com/en-us/um/beijing/projects/letor/paper.aspx
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Our approach makes the following contributions:

1. Unification and extension of rank statistics: We present a method that

unifies a large class of rank statistics under the same formulation. This im-

plies that we can use the same optimization method to exactly solve ranking

problems, regardless of the specific rank statistic of interest. Further, by taking

different cases of our general formulation, we can derive and optimize new rank

statistics that are useful for specialized problems.

2. Guarantee of optimality: Our method is designed specifically to yield scoring

functions with optimal ranking performance, with respect to a given objective

function. For tasks for which the choice of algorithm makes little difference on

the solution, the MIO method serves as a benchmark and provides a guarantee

of optimality that other algorithms do not. Even if an MIO problem is too

large to solve to provable optimality, solvers provide a bound on the optimal

objective value, which may be a useful measure of closeness to optimality.

This chapter is organized as follows: Section 2.1 sets up our ranking notation and

definitions, and Section 2.2 contains our MIO formulations. In particular, we give

formulations that optimize two ranking objectives: the AUC, and a more general

ranking objective that we call a “rank risk functional.” In Section 2.3, we discuss

a result showing that in many cases, we can use a nonexact formulation to exactly

optimize the rank risk functional, the benefit of the nonexact formulation being that

it solves faster. In Section 2.4, we show computational results comparing the per-

formance of the MIO methods to that of several other methods. We give future

directions of the work in Section 2.5 and conclude in Section 4.6.

2.1 Supervised Bipartite Ranking

In this section, we establish our notation and propose a new way of representing

a general class of rank statistics. We also explain our means of handling ties and

describe current approximate methods for supervised bipartite ranking tasks.
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2.1.1 Notation

In supervised bipartite ranking, the data consist of labeled examples {(xi, yi)}ni=1, with

each example xi in some space X ⊂ Rd and each yi ∈ {0, 1}. The examples with

yi = 1 are labeled “positive,” and the examples with yi = 0 are labeled “negative.”

These ranking problems are called “supervised” because the labels are known, and

“bipartite” refers to the labels taking on two possible values. There are n+ positive

examples and n− negative examples, with index sets S+ = {i : yi = 1} and S− =

{k : yk = 0}. To rank the examples, we use a scoring function f : X → R to assign

them real-valued scores {f(xi)}ni=1. We define minimum rank as a function of f by

the following formula:

minrankf (xi) =

n
∑

k=1

1[f(xk)<f(xi)], ∀i = 1, . . . , n.

The minimum rank of an example is the number of examples that score strictly below

it. Note that examples with equal score are tied in their minimum ranks. We also

assign ranks to the examples according to the following definition:

Definition 1. The rank of example xi according to scoring function f , denoted

rankf(xi), is a number between 0 and n− 1 that obeys the following constraints:

1. The rank of an example is at least its minimum rank.

2. Each possible rank, 0 through n−1, may be assigned to only one example (even

though multiple examples may all share the same minimum rank).

3. If a positive example and a negative example have the same score, then the

negative example is assigned a higher rank.

When there are no ties in score, the rank is equal to the minimum rank. The

assignment of ranks to a set of examples is not necessarily unique; if two positive or

two negative examples have the same score, then either of them could take the higher

rank. Table 2.1 shows a ranked list of labeled examples along with their scores,

minimum ranks, and a possible choice of ranks. A misrank occurs when a negative
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Table 2.1: Demonstration of rank definitions.
Label + + + − − + − + −
Score 6 6 5 4 3 3 2 2 1

MinRank 7 7 6 5 3 3 1 1 0
Rank 8 7 6 5 4 3 2 1 0

example scores equal to or higher than a positive example. We use linear scoring

functions f(xi) = wTxi, where w ∈ Rd. Note that we can add features such as x2
i ,

log(xi), xixk, or 1[xi>10] to incorporate nonlinearity. Our goal is to generate a scoring

function f such that the coefficients w1, . . . , wd are optimal with respect to a specified

ranking quality measure.

2.1.2 Rank Statistics

There are several rank statistics used to measure ranking quality, the most popular

of which is arguably the AUC. Counting ties as misranks, the AUC is defined by:

AUC(f) =
1

n+n−

∑

i∈S+

∑

k∈S−

1[f(xk)<f(xi)].

There are n+n− positive-negative pairs of examples, or pairs with one positive example

and one negative example. Thus, the AUC is simply the fraction of correctly ranked

positive-negative pairs. We next introduce a general class of rank statistics:

Definition 2. Let a1 ≤ a2 ≤ · · · ≤ an be non-negative constants. A rank risk

functional is of the form

RRF(f) =

n
∑

i=1

yi

n
∑

ℓ=1

1[rankf (xi)=ℓ−1] · aℓ. (2.1)

This class captures a broad collection of rank statistics. The RRF equation coin-

cides with the definition of conditional linear rank statistics [Clemençon and Vayatis,

2008] when there are no ties in score. Special members of this class include:

• aℓ = ℓ: Wilcoxon Rank Sum (WRS) – related to the AUC [see Clemençon et al.,

2008, Clemençon and Vayatis, 2008].
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• aℓ = ℓ · 1[ℓ≥t] for some threshold t: local AUC – concentrates at the top of the

list [Clemençon and Vayatis, 2007, 2008, Dodd and Pepe, 2003].

• aℓ = 1[ℓ=n]: Winner Takes All (WTA) – concerned only with whether the top

example in the list is positively-labeled [Burges et al., 2006].

• aℓ = 1
n−ℓ+1

: Mean Reciprocal Rank (MRR) [Burges et al., 2006].

• aℓ = 1
log2(n−ℓ+2)

: Discounted Cumulative Gain (DCG) – popular in information

retrieval [Järvelin and Kekäläinen, 2000].

• aℓ = 1
log2(n−ℓ+2)

· 1[ℓ≥t]: DCG@N – concentrates at the top of the list [see, for

instance, Le and Smola, 2007].

• aℓ = ℓp for some p > 0: related to the P -Norm Push – concentrates on pushing

negatives down from the top of the list [Rudin, 2009].

A different framework that unifies ranking measures is presented in Le and Smola

[2007] and Le et al. [2010].

In addition to encompassing conventional rank statistics, (2.1) may be used to

define new rank statistics. We introduce the staircase rank statistic, which is appro-

priate for problems in which the user wants to specify priorities between several tiers

in a ranked list but does not discriminate within each tier. As a practical illustration

of this statistic, consider the task of ranking manholes, or access points to an electric

grid, in order of vulnerability, as faced by Rudin et al. [2010]. Suppose there is a

repair truck that visits all manholes in the top tier of a ranked list at approximately

the same time, and later on, the next tier of manholes all at approximately the same

time, and so on. In this case, it does not matter how manholes are ranked within a

particular tier because they will all be visited at about the same time, but the relative

placement of manholes between tiers does matter.

Definition 3. Let there be T ≤ n tiers with given rank thresholds {rt}Tt=1, and param-

eters {qt}Tt=1, where qt ∈ R+. Here qt represents the increase in the objective gained

by placing a positive example in tier t rather than in tier t− 1. The staircase rank
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statistic is:

RSstair(f) =
n
∑

i=1

yi

T
∑

t=1

qt1[rankf (xi)≥rt].

For instance, suppose n = 50 and there are three tiers: top ten, top twenty, and

top thirty. Assume that there are no ties. Then T = 3, r1 = 40, r2 = 30, and r3 = 20.

If q1 = 5, q2 = 3, and q3 = 1, then a positive example xi adds 9 = 5 + 3 + 1 to the

statistic if it is in the top ten, 4 = 3 + 1 if it is in the top twenty, 1 if it is in the top

thirty, and 0 otherwise. (2.1) represents the staircase rank statistic if we set:

aℓ =
T
∑

t=1

qt1[ℓ−1≥rt].

2.1.3 Treatment of Ties

Nonparametric statistics textbooks typically remove tied observations or assign av-

erage ranks [Tamhane and Dunlop, 2000, Wackerly et al., 2002], and there has been

some research in comparing different ways of handling ties [e.g., Putter, 1955]. How-

ever, the treatment of ties in rank is not critical in classical applications of statistics

in the sense that there is no unified treatment of ties [Savage, 1957].

On the other hand, handling ties is of central importance when we wish not only

to compute rank statistics, but also to optimize them. The key is to treat a tie

between a positive example and a negative example pessimistically as a misrank. To

see why this is essential, suppose tied positive-negative pairs were considered correctly

ranked. Then using w = 0, there would be no misranks because all positive-negative

pairs would be tied at score f(xi) = 0. Having no misranks usually implies a perfect

solution, but clearly w = 0 is not optimal in any reasonable sense. Thus, in our

formulations, a tied positive-negative pair is penalized as a misrank. Our definitions

reflect this in two specific places. First, the inequality in our definition of minimum

rank is strict (
∑n

k=1 1[f(xk)<f(xi)] instead of
∑n

k=1 1[f(xk)≤f(xi)]). Second, if there is

a tied positive-negative pair, we always give the negative example the higher rank,

according to the third constraint in Definition 1.

Rank statistics typically assume that there are no ties. In the case of no ties, we
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ensure that our formulas give the same value as the usual definitions. However, we

also handle ties in the pessimistic way described above, so that increasing the number

of ties between positive-negative pairs lowers ranking quality, which allows us to avoid

trivial solutions when optimizing rank statistics.

2.1.4 Approximate Methods for Ranking

In this section, we contrast the discrete nature of rank statistics with current ranking

methods that approximate rank statistics with convex surrogate loss functions. As an

illustrative example, suppose that we want to minimize the misranking error, which

is equivalent to maximizing the AUC. The misranking error is the fraction of pairs

that are misranked:

ERR(f) =
1

n+n−

∑

i∈S+

∑

k∈S−

1[f(xi)≤f(xk)] =
1

n+n−

∑

i∈S+

∑

k∈S−

1[uik≤0], (2.2)

where uik = f(xi)− f(xk) for i ∈ S+, k ∈ S−. The 0-1 loss g(u) = 1[u≤0] is the step

function in Figure 2-1. The RankBoost algorithm of Freund et al. [2003a] uses the

exponential loss e−u as an upper bound for the 0-1 loss. That is, the loss function for

RankBoost is
∑

i∈S+

∑

k∈S−

e−(f(xi)−f(xk)). (2.3)

Support vector machine algorithms [e.g., Joachims, 2002, Herbrich et al., 2000, Shen

and Joshi, 2003] use a piecewise-linear function, the hinge loss g(u) = max{0, 1− u},
as the upper bound. For example, a possible SVM-style loss function is

∑

i∈S+

∑

k∈S−

max{0, 1− (f(xi)− f(xk))}. (2.4)

As shown in Figure 2-1, the exponential loss and hinge loss are convex upper bounds

for the misranking error. Instead of directly minimizing (2.2), current methods com-

monly minimize such upper bounds. In Section 2.2, we show how to use MIO to

directly optimize the misranking error.
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Figure 2-1: 0-1 loss g(u) = 1[u≤0] (left), exponential loss g(u) = e−u (center), and
hinge loss g(u) = max{0, 1− u} (right).

There are a variety of other ranking algorithms that similarly minimize convex loss

functions, such as RankProp and RankNet [Caruana et al., 1996, Burges et al., 2005].

The P -Norm Push algorithm [Rudin, 2009] generalizes RankBoost by introducing

an ℓp norm that acts as a soft-max, and is equivalent to RankBoost for p = 1; this

algorithm minimizes

∑

k∈S−





∑

i∈S+

e−(f(xi)−f(xk))





p

.

Bipartite ranking is different from binary classification, that is, a minimizer of

the ranking loss is not necessarily a minimizer of the classification loss and vice-

versa. Nevertheless, algorithms that produce estimates of P (y = 1|x), such as logistic

regression, can plausibly be used for both classification and ranking, though logistic

regression minimizes the following, which is not a rank statistic:

n
∑

i=1

ln
(

1 + e−yif(xi)
)

. (2.5)

To use logistic regression for ranking, we would use the probability estimates to

rank the examples [e.g., Cooper et al., 1994, Fine et al., 1997, Perlich et al., 2003].

The results of Kot lowski et al. [2011] support the minimization of classification loss

functions for ranking. Also see Ertekin and Rudin [2011] for a logistic regression-style

ranking algorithm and a comparison of classification versus ranking methods.

33



2.2 MIO Formulations

In this section, we introduce MIO formulations for maximizing the AUC and RRF

from Section 2.1.2. In our experiments, we also use the associated linear relaxations

of the MIO formulations, in which the binary variables are allowed to take continuous

values in [0, 1]. In this case, the objective value is no longer exactly the AUC or RRF,

but the solution w is still useful for ranking.

2.2.1 Maximizing AUC

Let vi = f(xi) = wTxi be the score for instance xi. For each pair (xi, xk) such that

i ∈ S+ and k ∈ S−, we want the binary variable zik to keep track of whether xi is

scored higher than xk. That is, our formulation captures for all i ∈ S+ and k ∈ S−:

• If vi > vk, then zik = 1.

• If vi ≤ vk, then zik = 0.

In what follows, we use (2.6) to refer to the entire MIO formulation and not just the

objective; likewise we refer to the other formulations in this thesis by the numbers

next to their objective functions. The formulation for maximizing the AUC is:

max
w,v,z

∑

i∈S+

∑

k∈S−

zik (2.6)

s.t. zik ≤ vi − vk + 1− ε, ∀i ∈ S+, k ∈ S−, (2.7)

vi = wTxi, ∀i ∈ S+,

vk = wTxk, ∀k ∈ S−,

− 1 ≤ wj ≤ 1, ∀j = 1, . . . , d,

zik ∈ {0, 1}, ∀i ∈ S+, k ∈ S−,

where ε > 0 is a small user-specified constant. The main constraint is (2.7). If

vi − vk ≥ ε, then the right-hand-side of (2.7) is at least 1, so the solver assigns

zik = 1 because we are maximizing zik. On the other hand, if vi − vk < ε, then the

right-hand-side is strictly less than 1, which forces zik = 0.
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The purpose of constraining each wj in the interval [−1, 1] is to bound the feasible

region over which the solver must search for the optimal solution, since a smaller

solution space generally implies a shorter runtime. The purpose of using a small

positive ε in the formulation is to force the strict inequality vi > vk. If we removed

ε, then the constraints would be satisfied by wj = 0 for all j and zik = 1 for all

i, k, corresponding to the trivial solution discussed in Section 2.1.3. To prohibit this

solution from being optimal, we need ε > 0. Note that the bounds on wj and choice of

ε are not completely independent, in the following sense: if we modified the bounds

to be −c ≤ wj ≤ c for some c > 0, then we would have an essentially equivalent

formulation as the original by replacing ε with cε.

In order for the formulation to be exact, we must have that for all positive-negative

example pairs in which the positive example scores higher, the difference between the

two scores is at least ε, that is

δ = min
{i∈S+,k∈S−:vi>vk}

(vi − vk) ≥ ε.

This is straightforward to verify after solving (2.6) as we can simply take the optimal

w and compute the AUC to check that it matches the objective value of (2.6). Larger

values of ε may lead to suboptimal solutions. For example, there may be two feasible

solutions w1 and w2, where δ = 0.003 for w1 and δ = 0.0003 for w2. It is possible that

for ε = 0.001, w1 would maximize (2.6), but that by lowering ε to 0.0001, w2 would

be optimal instead. In Section 2.4, we show the effect of varying ε.

2.2.2 Maximizing RRF

We aim now to maximize the general rank risk functional from Definition 2. We

want the binary variable tiℓ to be 1 if rankf (xi) ≥ ℓ − 1 and 0 otherwise. Then

rankf (xi) = ℓ−1 if and only if tiℓ−ti,ℓ+1 = 1 for ℓ = 1, . . . , n−1 and rankf (xi) = n−1

if and only if tin = 1. Thus, the objective to maximize is:

n
∑

i=1

yi

n
∑

ℓ=1

aℓ(tiℓ − ti,ℓ+1), ti,n+1 = 0, or equivalently
n
∑

i=1

yi

n
∑

ℓ=1

(aℓ − aℓ−1)tiℓ, a0 = 0.
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Since we have ti1 = 1 for all i, the cost function is:

∑

i∈S+

(

n
∑

ℓ=2

(aℓ − aℓ−1)tiℓ + a1

)

= |S+|a1 +
∑

i∈S+

n
∑

ℓ=2

(aℓ − aℓ−1)tiℓ.

For all i ∈ S+ and ℓ ≥ 2, the formulation sets tiℓ = 1 if feasible because aℓ−aℓ−1 ≥ 0.

Let ãℓ = aℓ− aℓ−1 and S2 = {ℓ ≥ 2 : ã > 0}. We further simplify the objective to be:

∑

i∈S+

∑

ℓ∈S2

ãltiℓ. (2.8)

We present two formulations to address the problem of maximizing the RRF (2.1).

In the first, we exactly maximize (2.1), with the simplification in (2.8). We define

variables ri ∈ [0, n − 1] to represent the rank of each example xi. As before, we use

linear scoring functions, so the score of instance xi is wTxi. The MIO formulation is:

max
w,z,t,r

∑

i∈S+

∑

ℓ∈S2

ãltiℓ (2.9)

s.t. zik ≤ wT (xi − xk) + 1− ε, ∀i, k = 1, . . . , n, (2.10)

zik ≥ wT (xi − xk), ∀i, k = 1, . . . , n, (2.11)

ri − rk ≥ 1 + n(zik − 1), ∀i, k = 1, . . . , n, (2.12)

rk − ri ≥ 1− nzik, ∀i ∈ S+, k ∈ S−, (2.13)

rk − ri ≥ 1− nzik, ∀i, k ∈ S+, i < k, (2.14)

rk − ri ≥ 1− nzik, ∀i, k ∈ S−, i < k, (2.15)

tiℓ ≤
ri

ℓ− 1
, ∀i ∈ S+, ℓ ∈ S2, (2.16)

− 1 ≤ wj ≤ 1, ∀j = 1, . . . , d,

0 ≤ ri ≤ n− 1, ∀i = 1, . . . , n,

zik ∈ {0, 1}, ∀i, k = 1, . . . , n,

tiℓ ∈ {0, 1}, ∀i ∈ S+, ℓ ∈ S2.

Constraint (2.10) implies zik = 0 if wTxi − wTxk < ε, and (2.11) implies zik = 1 if
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wTxi > wTxk. Note that this means a feasible solution cannot have the difference

between two scores strictly between 0 and ε. Constraint (2.12) specifies that for any

pair (xi, xk), ri ≥ rk + 1 if zik = 1, that is, if wTxi − wTxk ≥ ε. This constraint

does not handle ties in scores, so we need the following: (2.13) implies that for a tied

positive-negative pair, the negative example has higher rank; and (2.14) and (2.15)

imply that for positive-positive pairs and negative-negative pairs with tied scores,

the example with a higher index is (arbitrarily) assigned the higher rank. Constraint

(2.16) sets tiℓ = 1 when ri ≥ ℓ− 1.

For an alternative formulation to (2.9), consider the quantity

RRFmin(f) =
n
∑

i=1

yi

n
∑

ℓ=1

1[minrankf (xi)=ℓ−1] · aℓ, (2.17)

which is similar to (2.1) except it uses minimum ranks instead of ranks. We show

in Section 2.3 that in many cases, a maximizer of (2.17) also maximizes (2.1), the

advantage being that capturing minimum ranks with MIO requires fewer variables and

constraints than capturing ranks. The following MIO formulation maximizes (2.17):

max
w,z,t

∑

i∈S+

∑

ℓ∈S2

ãltiℓ (2.18)

s.t. zik ≤ wT (xi − xk) + 1− ε, ∀i ∈ S+, k = 1, . . . , n, (2.19)

tiℓ ≤
1

ℓ− 1

n
∑

k=1

zik, ∀i ∈ S+, ℓ ∈ S2, (2.20)

zik + zki = 1[xi 6=xk], ∀i, k ∈ S+, (2.21)

tiℓ ≥ ti,ℓ+1, ∀i ∈ S+, ℓ ∈ S2 \max(S2), (2.22)

∑

i∈S+

∑

ℓ∈S2

ãltiℓ ≤
n
∑

ℓ=1

aℓ, (2.23)

zik = 0, ∀i ∈ S+, k = 1, . . . , n, xi = xk, (2.24)

− 1 ≤ wj ≤ 1, ∀j = 1, . . . , d,

tiℓ, zik ∈ {0, 1}, ∀i ∈ S+, ℓ ∈ S2, k = 1, . . . , n.
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The minimum rank is
∑n

k=1 zik. Constraints (2.19) and (2.20) are similar to (2.10)

and (2.16). Constraints (2.21) through (2.24) are not necessary, but they are intended

to strengthen the linear relaxation and thus speed up computation. Note that we do

not need (2.11) since here, maximizing the tiℓ directly implies maximizing the zik.

In Section 2.3, we discuss the conditions under which (2.9) and (2.18) should be

used. Formulation (2.9) has d + n2 + n+|S2| + n variables, corresponding to w, z, t,

and r respectively. Formulation (2.18) has d+n+n+n+|S2| variables, corresponding

to w, z, and t respectively. Thus (2.9) has an additional n− ·n+n variables compared

to (2.18), which can be a significant difference when the negative class is large.

2.2.3 Alternative Formulations

In Sections 2.2.1 and 2.2.2, we presented formulations that we found worked well

empirically for the AUC and RRF problems. Here we show alternative formulations to

illustrate that there may be multiple correct formulations, as discussed in Chapter 1.

One alternative formulation for the AUC problem is:

max
w,z

∑

i∈S+

∑

k∈S−

zik

s.t. M(1 − zik) ≥ wT (xk − xi) + ε, ∀i ∈ S+, k ∈ S−,

zik ∈ {0, 1}, ∀i ∈ S+, k ∈ S−,

where M is a large constant. In MIO, this type of formulation is known as a big-M

formulation. If wT (xk−xi) > −ε, or wT (xi−xk) < ε, then the first constraint would

force zik = 0. If wT (xi − xk) ≥ ε, then zik would be 1 because we are maximizing.

Thus, this is also an exact formulation for the AUC problem. However, this formu-

lation is not as strong as (2.6) because the large coefficients tend to cause the linear

relaxation to be far from the convex hull of integer feasible points.

It is possible to formulate the RRF problem using special ordered set (SOS) con-

straints [Beale and Tomlin, 1970]. SOS constraints are designed to improve the effi-

ciency of the branch-and-bound process. There are two types: SOS1 constraints say
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that at most one variable in an ordered set may be nonzero; SOS2 constraints say

that at most two variables in an ordered set may be nonzero, and that if there are

two nonzero variables, then they must be consecutive within the set.

The constraint we aim to replace in (2.18) is

tiℓ ≤
1

ℓ− 1

n
∑

k=1

zik, ∀i ∈ S+, ℓ ∈ S2.

Since we are maximizing the tiℓ, this constraint captures the condition tiℓ = 1 if and

only if zik ≥ ℓ− 1. To capture the same relation using an SOS2 constraint, let

siℓ = 1− tiℓ,

hiℓ = h+
iℓ − h−

iℓ,

hiℓ =
1

ℓ− 1

n
∑

k=1

zik − 1,

h+
iℓ, h

−
iℓ ≥ 0.

If
∑n

k=1 zik ≥ ℓ− 1, then hiℓ ≥ 0. If
∑n

k=1 zik < ℓ− 1, then hiℓ < 0. Consider

h+
iℓ + 2tiℓ + 3siℓ + 4h−

iℓ = SOS2, ∀i ∈ S+, ℓ ∈ S2,

which states that within the ordered set {h+
iℓ, tiℓ, siℓ, h

−
iℓ}, at most two variables may

be nonzero, and that if two are nonzero, then they must be consecutive. Thus, h+
iℓ

and h−
iℓ cannot both be nonzero, so h+

iℓ = max{0, hiℓ} and h−
iℓ = max{0,−hiℓ}. If

∑n
k=1 zik ≥ ℓ− 1, then hiℓ ≥ 0, which implies h+

iℓ ≥ 0, so tiℓ = 1. If
∑n

k=1 zik < ℓ− 1,

then hiℓ < 0, which implies h−
iℓ > 0, so siℓ = 1 or tiℓ = 0. We can also add

zik + 2zki = SOS1, ∀i, k ∈ S+, i < k,

which is an SOS1 constraint that says that at most one of zik and zki can be nonzero

for all positive-positive pairs. This set of constraints is not necessary but strengthens

the linear relaxation.
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The MIO minimum rank formulation with SOS constraints is:

max
w,z,t,s,h+,h−

∑

i∈S+

∑

ℓ∈S2

ãltiℓ

s.t. zik ≤ wT (xi − xk) + 1− ε, ∀i ∈ S+, k = 1, . . . , n,

h+
iℓ − h−

iℓ =
1

ℓ− 1

n
∑

k=1

zik − 1, ∀i ∈ S+, ℓ ∈ S2,

siℓ = 1− tiℓ, ∀i ∈ S+, ℓ ∈ S2,

h+
iℓ + 2tiℓ + 3siℓ + 4h−

iℓ = SOS2, ∀i ∈ S+, ℓ ∈ S2,

zik + 2zki = SOS1, ∀(i, k) ∈ S+, i < k,

− 1 ≤ wj ≤ 1, ∀j = 1, . . . , d,

h+
iℓ, h

−
iℓ ≥ 0, ∀i ∈ S+, ℓ ∈ S2,

tiℓ, zik ∈ {0, 1}, ∀i ∈ S+, ℓ ∈ S2, k = 1, . . . , n.

Our preliminary tests for this formulation suggest that using SOS constraints

shortens runtimes on smaller problems, but that for larger problems, the additional

variables required for the SOS formulation take too much memory for the problem to

be solved on most computers; we have found that the formulations in Sections 2.2.1

and 2.2.2 are substantially more practical.

2.2.4 Generalization Beyond the Bipartite Case

So far we have discussed only the bipartite case. In fact it is possible to extend the

MIO methods to the general case of pairwise preferences [see, for example, Freund

et al., 2003a]. Let the preference function π(xi, xk) = πik capture the true ranking of

xi relative to xk for each pair of examples (xi, xk). That is, let

πik =











1, if xi is ranked strictly higher than xk,

0, otherwise.
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Also let

Π =
n
∑

i=1

n
∑

k=1

πik.

We want to find a scoring function that reproduces the rankings as close as possible

to the true rankings. This is the setting of the supervised ranking task in Chapter 3

of this thesis. Consider the rank statistic

AUCπ(f) =
1

Π

n
∑

i=1

n
∑

k=1

πik1[f(xi)>f(xk)].

This statistic is related to the disagreement measure introduced by Freund et al.

[2003a], as well as Kendall’s τ coefficient [Kendall, 1938]. The highest possible value

of AUCπ(f) is 1. We achieve this value if our scoring function f satisfies f(xi) > f(xk)

for all pairs (xi, xk) such that πik = 1. We can use the following MIO formulation to

maximize AUCπ:

max
w,z

n
∑

i=1

n
∑

k=1

πikzik

s.t. zik ≤ wT (xi − xk) + 1− ε, ∀i, k = 1, . . . , n,

− 1 ≤ wj ≤ 1, ∀j = 1, . . . , d,

zik ∈ {0, 1}, ∀i, k = 1, . . . , n.

The AUCπ statistic is quite general. For example, it encompasses the case of k-

partite or multipartite ranking [Rajaram and Agarwal, 2005, Fürnkranz et al., 2009],

which is similar to ordinal regression [Herbrich et al., 2000]. In particular, suppose

that there are C classes and that we would like Class 1 to be ranked above Class 2,

Class 2 above Class 3, and so on. Then denoting the class of example xi by Class(xi),

we would set

πik =











1, if Class(xi) > Class(xk),

0, otherwise.

If C = 2, then this formulation simply maximizes the WRS statistic, with the positive

class as Class 1 and the negative class as Class 2.
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Table 2.2: Pathological case.
Label + + − + + + +
Feature 3 3 2 1 1 1 1

MinRank w = 1 5 5 4 0 0 0 0
Rank w = 1 6 5 4 3 2 1 0

MinRank w = −1 0 0 2 3 3 3 3
Rank w = −1 0 1 2 3 4 5 6

Table 2.3: Local AUC (
∑n

i=1 yi
∑n

ℓ=1 1[rf (xi)=ℓ−1] · ℓ · 1[ℓ≥t]) with t = 5 for ranked
examples in Table 2.2, defined using rf = minrankf (left) and rf = rankf (right).

Local AUC with minranks Local AUC with ranks

w = 1 6+6=12 7+6=13
w = −1 0 7+6+5=18

2.3 Rank versus Minimum Rank

The minimum rank formulation (2.18) from Section 2.2.2 does not work for certain

pathological cases, namely those for which the same examples appear many times in

the data. For instance, suppose there are seven examples, each with just a single

feature, as shown in Table 2.2. If the scoring function is f(x) = wx, where w ∈ R
since there is only one feature, then there are two solutions that are unique up to a

constant positive factor: w = 1 and w = −1. Let the objective function be the local

AUC from Section 2.1.2 with t = 5. Table 2.3 shows calculations for the local AUC

when it is defined using rank and minimum rank, as in (2.1) and (2.17) respectively.

If we define the local AUC using minimum rank, then it is 12 for w = 1 and 0 for

w = −1. However, w = −1 is intuitively the better solution because it puts more

positive examples at the top of the list. We avoid this contradiction if we use rank to

define the local AUC. That is, when we use rank instead of minimum rank, the local

AUC is higher for w = −1 than for w = 1, which agrees with our intuition.

Thus, for such pathological cases, we should use the rank formulation (2.9). How-

ever, (2.9) has more variables than (2.18) and empirically has been difficult to solve ex-

cept for small problems. We show that in many cases, solving (2.18) also solves (2.9),

which allows us to scale up the size of problems that we can handle. We use RRF(f)

and RRFmin(f) to denote the objectives of (2.1) and (2.17) respectively.
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2.3.1 Using Minimum Ranks for Distinct Examples

We want to find f ∗ ∈ argmax{f linear}RRF(f), where {f linear} is the set of linear

scoring functions, but since it is difficult to solve (2.9), an alternative is to find

f ∗ ∈ argmax{f linear}RRFmin(f) using (2.18). The main result is stated in Theorem 1.

Theorem 1. If the examples are distinct, that is, xi 6= xk for i, k ∈ {1, . . . , n}, i 6= k,

and f ∗ ∈ argmax{f linear}RRFmin(f), then

f ∗ ∈ argmax{f linear}RRF(f).

The proof is presented in two steps. The first step, given in Lemma 2, shows that

a maximizer for (2.17) also maximizes (2.1) if there is a maximizer f̄ of (2.1) such that

there are no ties in score, that is, f̄(xi) 6= f̄(xk) for all i 6= k. The second step, given in

Lemma 3, shows that for linear scoring functions, this condition is satisfied when the

examples are distinct, meaning xi 6= xk for all i 6= k. Note that since RRFmin(f) and

RRF(f) take a discrete set of values, bounded between 0 and
∑n

ℓ=1 aℓ, maximizers

for both functions always exist. The following lemma establishes basic facts about

the two objectives:

Lemma 1. The following relationships always hold.

a. For any f , RRFmin(f) ≤ RRF(f).

b. For any f such that there are no ties in score, RRFmin(f) = RRF(f).

Proof. Fix a scoring function f .

a. The first part of Definition 1 says that minrankf (xi) ≤ rankf(xi) for all i =

1, . . . , n. Since the aℓ are non-decreasing with ℓ,

n
∑

ℓ=1

1[minrankf (xi)=ℓ−1] · aℓ = a(minrankf (xi)+1) (2.25)

≤ a(rankf (xi)+1) =
n
∑

ℓ=1

1[rankf (xi)=ℓ−1] · aℓ ∀i.

Combining this result with (2.1) and (2.17), we have RRFmin(f) ≤ RRF(f).
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b. If there are no ties in score, then it is clear from Definition 1 that we have

minrankf(xi) = rankf(xi) for all i. Thus, the inequality in (2.25) becomes an

equality, and RRFmin(f) = RRF(f).

In the following, the argmax is with respect to a particular set of scoring functions.

Lemma 2. Let f̄ ∈ argmaxfRRF(f) such that there are no ties in score, that is,

f̄(xi) 6= f̄(xk) for all i 6= k. If f ∗ ∈ argmaxfRRFmin(f), then

f ∗ ∈ argmaxfRRF(f).

Proof. Assume there exists f̄ ∈ argmaxfRRF(f) such that there are no ties in score.

Let f ∗ maximize RRFmin(f), which implies RRFmin(f
∗) ≥ RRFmin(f̄). We know

RRFmin(f̄) = RRF(f̄) by Lemma 1b.

Suppose f ∗ does not maximize RRF(f), so RRF(f̄) > RRF(f ∗). Then

RRFmin(f
∗) ≥ RRFmin(f̄) = RRF(f̄) > RRF(f ∗).

This contradicts Lemma 1a, so f ∗ ∈ argmaxfRRF(f).

It is interesting to note that under the condition of Lemma 2, namely that f̄ max-

imizes RRF(f) without any ties in score, we can also show f̄ ∈ argmaxfRRFmin(f).

By both parts of Lemma 1, we have that for any f ,

RRFmin(f) ≤ RRF(f) ≤ RRF(f̄) = RRFmin(f̄).

Thus, any f that maximizes RRF(f) without any ties in score maximizes RRFmin(f).

The results above did not use the structure of our scoring functions, in particular

the linear form f(x) = wTx. It used only the properties in Lemma 1. In what follows,

we incorporate the additional structure, which allows us to show that if the examples

are distinct—which happens with probability one if they are drawn from a continuous

44



distribution—and if w yields a scoring function with ties, then we can find a corrected

ŵ that has no ties and achieves at least as high a value for RRF(f). This implies that

there exists a maximizer of RRF(f) such that there are no ties in score, which satisfies

the condition of Lemma 2. From this point on, assume we are considering only linear

scoring functions; for example, argmaxfRRF(f) means argmax{f linear}RRF(f).

Recall that the number of features is d, that is xi ∈ Rd. We also use the fact

that for distinct examples {xi}ni=1, vectors that are orthogonal to any of the vectors

xi−xk, i 6= k, are in a set of measure zero. Thus, a vector u such that uT (xi−xk) 6= 0

for all i 6= k always exists.

Lemma 3. Assume the data lie in a bounded box, that is, there exists M such that

xij ∈ [−M,M ] for all i, j. Also assume the examples are distinct, so that for any

xi and xk, i 6= k, the vector xi − xk ∈ Rd has at least one nonzero entry. Consider

f̄ ∈ argmaxfRRF(f) that yields a scoring function f̄(x) = w̄Tx with ties. Construct

ŵ as follows:

ŵ = w̄ + γu,

where u is a vector in Rd with ‖u‖2 = 1 and uT (xi − xk) 6= 0 for all i 6= k, and γ is

a fixed real number such that 0 < γ < δ
2M

√
d
, with

δ = min
{i,k:f̄(xi)>f̄(xk)}

(

f̄(xi)− f̄(xk)
)

.

Then f̂(x) = ŵTx preserves all pairwise orderings of f̄ but does not have ties. That

is, f̄(xi) > f̄(xk)⇒ f̂(xi) > f̂(xk) and f̂(xi) 6= f̂(xk) for all i 6= k.

Proof. First we show that f̂ preserves all pairwise orderings for examples that are not

tied. Consider any pairwise ordering by choosing two examples x1 and x2 such that

f̄(x1) > f̄(x2). Now

f̂(x1)− f̂(x2) = (w̄ + γu)T (x1 − x2) = w̄T (x1 − x2) + γuT (x1 − x2)

= f̄(x1)− f̄(x2) + γuT (x1 − x2) ≥ δ + γuT (x1 − x2). (2.26)
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We know that:

‖x1 − x2‖2 =

(

d
∑

j=1

(x1j − x2j)
2

)1/2

≤
(

d
∑

j=1

(2M)2

)1/2

= 2M
√
d. (2.27)

Using the Cauchy-Schwarz inequality and then using (2.27), the fact that ||u||2 = 1,

and the bound on γ from the statement of the lemma:

∣

∣γuT (x1 − x2)
∣

∣ ≤ γ‖u‖2‖x1 − x2‖2 ≤ γ · 2M
√
d <

δ

2M
√
d
· 2M

√
d = δ.

This implies

γuT (x1 − x2) > −δ. (2.28)

Combining (2.26) with (2.28),

f̂(x1)− f̂(x2) ≥ δ + γuT (x1 − x2) > δ − δ = 0.

Thus, all pairwise orderings are preserved, that is, f̄(x1) > f̄(x2) −→ f̂(x1) > f̂(x2).

Next we prove that ŵ yields a scoring function with no ties. Take x1 and x2 such

that their scores according to f̄ are tied: f̄(x1) = f̄(x2). Then,

|f̂(x1)− f̂(x2)| =
∣

∣(w̄ + γu)T (x1 − x2)
∣

∣

=
∣

∣w̄T (x1 − x2) + γuT (x1 − x2)
∣

∣

=
∣

∣0 + γuT (x1 − x2)
∣

∣

= |γ|
∣

∣uT (x1 − x2)
∣

∣ > 0,

where the last inequality follows since γ > 0 and uT (x1 − x2) 6= 0 by assumption.

This implies that the corrected scores are not tied.

Now we prove Theorem 1, restated here: If the examples are distinct, that is,

xi 6= xk for i, k ∈ {1, . . . , n}, i 6= k, and f ∗ ∈ argmax{f linear}RRFmin(f), then

f ∗ ∈ argmax{f linear}RRF(f).
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Proof. We need only to satisfy the condition of Lemma 2, which says that (2.9) has a

maximizer with no ties. Let f̄ ∈ argmax{f linear}RRF(f). If f̄(x) = w̄Tx is a scoring

function with no ties, then we are done. Otherwise, the vector ŵ = w̄+γu constructed

according to Lemma 3 produces a scoring function with no ties. It only remains to

show that f̂(x) = ŵTx is also optimal. We prove here that RRF(f̂) ≥ RRF(f̄),

which means RRF(f̂) = RRF(f̄) since f̄ is optimal. Let rankf̄(xi) and rankf̂(xi) be

the ranks of xi according to f̄ and f̂ respectively. We have

RRF(f̄) =
n
∑

i=1

yi

n
∑

ℓ=1

1[rankf̄ (xi)=ℓ−1] · aℓ =
∑

i∈S+

a(rankf̄ (xi)+1),

RRF(f̂) =
n
∑

i=1

yi

n
∑

ℓ=1

1[rank
f̂
(xi)=ℓ−1] · aℓ =

∑

i∈S+

a(rank
f̂
(xi)+1).

Since a1 ≤ a2 ≤ · · · ≤ an, it suffices to show that the ranks occupied by the positive

examples under f̂ are at least as high as the ranks occupied by the positives under f̄ .

First consider the examples that are not tied with any other examples under f̄ .

The ranks of these examples are still the same under f̂ because all pairwise orderings

of examples that are not tied are preserved by Lemma 3. Now consider a set of

examples that are tied under f̄ . The ranks of these examples will be permuted within

the set. If all of the examples are positive, or all of the examples are negative, then the

objective value remains the same since the positive examples in the set still occupy the

exact same ranks. On the other hand, suppose there are both positive and negative

examples in the tied set. By Definition 1, the negative examples have the highest

ranks in the set under f̄ . Once the ties are broken under f̂ , the objective value

changes only if a positive example moves into a position in the ranked list that was

previously the position of a negative example. Thus, the positive examples can occupy

only higher ranks under f̂ , not lower ranks. This proves RRF(f̂) ≥ RRF(f̄), which

implies f̂ ∈ argmaxfRRF(f) has no ties, satisfying the condition of Lemma 2.
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2.4 Computational Results

In this section, we demonstrate the performance of two of the MIO formulations

presented above: (2.6) and (2.18). Unlike (2.18), (2.9) currently may be too hard for

most computers to solve, except for small or sparse problems.

2.4.1 Proof-of-Concept

We begin with a proof-of-concept study, using an artificial dataset called ROC Flex-

ibility.3 Before describing the dataset, we briefly explain ROC (receiver operating

characteristic) curves: To plot an ROC curve for a given ranking of examples, start

at the origin, and for each example in order of the ranking, trace the curve one unit

up if the example is positive and one unit to the right if the example is negative.

The axes are normalized so that the curve ends at the point (1,1). Figure 2-2 shows

ROC curves corresponding to a perfect ranking (all positive examples on top of all

negatives), a perfect misranking (all negative examples on top of all positives), and a

random ranking (each example in the ranked list is positive with probability 0.5 and

negative with probability 0.5). The area under the ROC curve (AUC) is one for a

perfect ranking and zero for a perfect misranking.
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Figure 2-2: ROC curves for perfect ranking, perfect misranking, and random ranking.

One interpretation of an ROC curve is as a visualization of how the false positive

and true positive rates of a binary classifier change as its discrimination threshold is

3Available at: http://web.mit.edu/rudin/www/ROCFlexibilityData/ROCFlexibilityData.html.
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varied. For instance, Figure 2-3 shows the ROC curve for ten examples, five positive

and five negative, corresponding to the ranking in the adjacent table. Consider using

the ranking function for classification instead, and consider different settings of the

discrimination threshold. If the threshold were such that only the highest example is

classified as positive and the rest as negative, then 0.2 of the positive examples are

true positives and 0 of the negative examples are false positives, so the false positive

and true positive rates are 0 and 0.2 respectively. The rates for the other settings of

the threshold are shown in the table in Figure 2-3. This example shows how plotting

the false positive rate versus true positive rate also yields the ROC curve.
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i Label False Pos. Rate True Pos. Rate

1 + 0 0.2
2 + 0 0.4
3 + 0 0.6
4 + 0 0.8
5 − 0.2 0.8
6 + 0.2 1
7 − 0.4 1
8 − 0.6 1
9 − 0.8 1
10 − 1 1

Figure 2-3: ROC curve with corresponding false positive and true positive rates for
discrimination thresholds between examples i and i + 1.

The ROC Flexibility dataset was designed so that there would be flexibility in

the performance of different algorithms. To illustrate what is meant by flexibility,

we plot the ROC curves that correspond to ranking the examples by each of the five

features, that is, for each feature in turn, treating the feature value as the score and

ranking the examples by this score. Figure 2-4 shows the ROC curves corresponding

to ranking by each of the five features of the ROC Flexibility dataset. For example,

in the first plot, we use the first feature as the score and construct the corresponding

ROC curve. The sixth plot in the figure that overlays all five ROC curves shows that

there is a “step” in each of the curves, and the position of each step is distinct, so

that there is a portion of the ROC curve for each feature that does not overlap with

the ROC curve of any other feature. Thus, linear combinations of the features can
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correspond to rankings that lead to a wide variety of ROC curves, and we expect

different algorithms to perform differently from each other.
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Figure 2-4: ROC curves for individual features of ROC Flexibility data.

We compare the performance of our AUC method—both the MIO formulation

and its linear relaxation (LP)—to that of three algorithms: RankBoost (RB), logistic

regression (LR), and a support vector machine (SVM)-style ranking algorithm, corre-

sponding to minimizing (2.3), (2.5), and (2.4) respectively. There are other possible

ranking algorithms, such as the others listed in Section 2.1.4, but we chose these three

as a sample of practical and widely used methods. Note that for these algorithms, we

minimize only the loss functions, without regularization terms in the objectives. In

this work, we do not tune regularization parameters for any algorithm since our main

goal is to investigate the advantage of optimizing the exact loss function over heuristic

loss functions; by tuning parameters, it would be unclear whether the advantage is

from the loss function or from the regularization.

The approximate methods were all run using MATLAB 7.8.0. To solve the MIO

and LP versions of (2.6), we used ILOG AMPL 11.210 with the CPLEX 11.2.1 solver.

For each algorithm, we randomly divided the dataset into 250 training and 250 test
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Table 2.4: Mean AUC (%) on ROC Flexibility data (approximate algorithms).

RB LR SVM LP

Train 71.0959 72.0945 71.1840 70.6327
Test 65.9028 67.4607 67.7844 67.1797

Table 2.5: Mean AUC (%) on ROC Flexibility data (MIO algorithm).

MIO (ε = 10−6) MIO (ε = 10−5) MIO (ε = 10−4) MIO (ε = 10−3)

Train 78.8738 80.6163 80.6163 80.5848
Test 78.8464 81.7706 81.7706 81.6525

Time (s) 69.331 173.992 206.172 356.878

examples, and after generating the model using the training data, computed the AUC

for both sets of data. We repeated this process ten times. Table 2.4 shows the mean

training and test AUC values over the ten trials for RB, LR, SVM, and LP, which

all had negligible runtimes; the LP results are presented for ε = 10−4 as this value

resulted in better performance than 10−3, 10−5, and 10−6. Table 2.5 shows the mean

AUC values for the MIO method with various values of ε. We note the following:

• Increasing ε results in slower runtimes for the MIO algorithm. Also, as explained

in Section 2.2.1, the MIO formulation may terminate with a suboptimal solution

if ε is too large because then the formulation is no longer exact. For ε = 10−3 in

Table 2.5, eight of the ten trials produced the same training AUC as ε = 10−4

and ε = 10−5, but the other two produced a lower AUC.

• Decreasing ε expands the solution space, so theoretically the optimal value can

only increase with smaller ε for the MIO algorithm. However, ε must be large

enough for the solver to recognize it as nonzero; if ε is too small, the numerical

instability may cause the solver to terminate with suboptimal solutions. For

ε = 10−6 in Table 2.5, half of the ten trials produced the same training AUC as

ε = 10−4 and ε = 10−5, but the other half produced a lower AUC.

• The MIO algorithm for ε = 10−4 and ε = 10−5 performed dramatically better

than the approximate algorithms. The mean MIO training AUC was about

11.8% higher than the best of its competitors (LR), and the mean MIO test

AUC was about 20.6% higher than the best of its competitors (SVM).
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Results on the ROC Flexibility data show that the MIO has the potential to

perform substantially better than other methods. This dataset was designed so that

optimizing a performance metric using different algorithms can lead to dramatically

different ranked lists. It appears that when a dataset has this level of flexibility,

optimizing the objective exactly can have a substantial benefit. In the remainder of

this section, we show computational results using other datasets. The experiments

using (2.6) and (2.18) were run using ILOG AMPL 11.210 on a computer with two

Intel quad core Xeon E5440 2.83GHz processors and 32GB of RAM. The LP solutions

were generated using the CPLEX 11.2.1 solver with ε = 10−4. The MIO solutions

were generated using the Gurobi 3.0.0 solver with ε = 10−6. These choices of solver

and value of ε were based on results from Section 2.4.1 and preliminary experiments

for each dataset. For the experiments in Sections 2.4.2 and 2.4.3, the Gurobi solver

was numerically stable with ε = 10−6. ROC Flexibility was the only dataset for which

CPLEX performed better than Gurobi on the MIO problem, thus we used Gurobi for

all other datasets. The approximate methods were all run using MATLAB 7.8.0.

2.4.2 Maximizing AUC

We solved (2.6) using five other datasets: FourClass and SVMGuide1 are from the

LIBSVM collection,4 and the others are from the UCI Machine Learning Reposi-

tory [Asuncion and Newman, 2007]. For each dataset, we randomly divided the data

into training and test sets, and compared the performance of RB, LR, SVM, LP, and

MIO. This experiment was repeated ten times. As an example of the ROC curves

that occur in these datasets, Figure 2-5 shows the curves for the Liver, SVMGuide1,

and MAGIC data. There is generally more overlap between the ROC curves of the

features than in the ROC Flexibility dataset. For the SVMGuide1 data, there are in

fact two overlapping features that both correspond to nearly perfect ranking. Thus,

we expect less variation in the performance of the different methods, but we can still

use the MIO method as a benchmark to corroborate their ranking quality.

Table 2.6 shows the mean training and test AUC over the ten trials for each dataset

4http://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/
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Figure 2-5: ROC curves for Liver, SVMGuide1, and MAGIC datasets.

and algorithm; for completeness we included the ROC Flexibility dataset in the table.

Bold indicates the value is not significantly smaller than the highest value in its row

at the 0.05 significance level, according to a matched pairs t-test. In particular, for

each row in the table, let µ1 be the population mean AUC for the algorithm with the

largest sample mean AUC, where the sample consists of the ten AUC values recorded

for that algorithm. Then for each of the algorithms, denote by µ2 the population

mean AUC for that algorithm, and test the null hypothesis H0 : µ1 = µ2 against the

alternative H1 : µ1 > µ2. We use boldface for that algorithm’s entry in the table

whenever the test does not reject H0. It is possible for multiple numbers in a row to

be bold if they are all not statistically smaller than the highest in the row. It is also

possible for numbers to not be bold even though they are greater than others in the

row if the corresponding t-statistic is sufficiently large to reject H0.

The MIO achieved the statistically highest mean AUC for all training and test

sets. The LP also performed well on the test data. Table 2.7 shows for each dataset

the number of times out of ten that each method performed best, that is, achieved

the highest AUC, on the training and test data; bold indicates the highest count in

each row. The counts in the MIO column clearly dominate the counts of the other

methods. Not all of the training AUC values are highest for the MIO since not all

of the problems solved to optimality. For the Liver data, there were some trials for

which certain algorithms tied for the highest test AUC, and for the MAGIC data,

there was one trial for which the LP and MIO algorithms tied for the highest training

AUC, thus the counts in these rows sum to greater than ten.
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Table 2.6: Mean AUC (%) on training and test.

Dataset RB LR SVM LP MIO

Liver Disorders train 73.6621 74.0374 74.2802 74.2816 75.3802
test 70.6463 70.8567 70.9705 70.9691 71.0257

ROC Flexibility train 71.0959 72.0945 71.1840 70.6327 80.6163
test 65.9028 67.4607 67.7844 67.1797 81.7706

FourClass train 83.0278 82.9907 83.1853 83.1857 83.2230
test 82.8790 82.8050 83.0438 83.0492 82.9861

SVMGuide1 train 99.1929 99.2255 99.2330 99.2327 99.2384
test 99.0520 99.0563 99.0649 99.0651 99.0642

Abalone train 91.3733 91.4723 91.5078 91.5067 91.5135
test 90.5580 90.6139 90.6415 90.6411 90.6419

MAGIC train 84.0105 84.0280 84.4880 84.4903 84.4943
test 83.5273 83.5984 83.9349 83.9365 83.9370

Table 2.7: Problem dimensions and number of times each method performs best.

Dataset ntrain ntest d RB LR SVM LP MIO

Liver Disorders 172 173 6 train 0 0 0 0 10
test 1 1 3 3 5

ROC Flexibility 250 250 5 train 0 0 0 0 10
test 0 0 0 0 10

FourClass 431 431 2 train 0 0 0 1 9
test 1 1 0 3 5

SVMGuide1 700 6389 4 train 0 2 0 0 8
test 1 3 0 2 4

Abalone 1000 3177 10 train 0 0 0 0 10
test 1 1 2 2 4

MAGIC 1000 18020 10 train 0 0 0 3 8
test 0 0 2 4 4

2.4.3 Maximizing RRF

As illustrated in Section 2.1.2, the RRF formulation encompasses many rank statis-

tics. For this set of experiments, we choose one rank statistic—DCG@N—and solve

the formulation with three datasets. The first was the ROC Flexibility dataset we

solved for the previous formulation, and the objective of interest was the DCG over

the top 30% of the ranked list. The other two were the Haberman’s Survival and

Pima Indians Diabetes datasets from the UCI Machine Learning Repository. The

objective of interest for both of these datasets was the DCG over the top 10% of the

ranked list. Note that the more we focus at the top of the list, the faster the MIO
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solves since more of the aℓ coefficients are zero. We used the top 30% instead of top

10% for the ROC Flexibility dataset because it contains so many identical examples

that out of 250 examples in a training set, there would be no examples with minimum

ranks between 225 and 249.

For each dataset, we randomly divided the data into training and test sets, and

compared the performance of RankBoost (RB), the P -Norm Push with p = 2, 4, 8 (P2,

P4, P8), logistic regression (LR), the support vector machine (SVM)-style ranking

algorithm, the linear relaxation (LP), and the MIO. This experiment was repeated ten

times, using ε = 10−4 to solve all LPs and ε = 10−6 to solve all MIOs. Again, we chose

these parameters based on insights from Section 2.4.1 and preliminary experiments

on the datasets. Note that the Haberman’s Survival and Pima Indians Diabetes

problems were solved using (2.18) as shown in Section 2.2.2, but the ROC Flexibility

problem was solved using a slightly different formulation—namely, we omitted (2.21)

through (2.23), and replaced (2.19) with vi = wTxi for all i and zik ≤ vi−vk +1−ε for

i ∈ S+, k ∈ 1, . . . , n; this choice of constraints ran faster for this particular dataset.

In the ROC Flexibility dataset, there are 500 examples in total, but only 20

unique examples. In the Haberman’s Survival dataset, there are 306 examples in

total, and 283 unique examples. In the Pima Indians Diabetes dataset, there are

768 unique examples. We evaluate solutions from (2.18) in terms of two quality

measures: DCG@N defined with minimum ranks and DCG@N defined with ranks.

The difference between the two objectives is largest for the ROC Flexibility data

because the percentage of unique examples is smallest in this dataset. The two

objectives are close for the Haberman’s Survival data since most examples are unique,

and they are exactly equal for the Pima Indians Diabetes data since all examples are

unique, in accordance with Theorem 1.

Tables 2.8 and 2.9 show the mean training and test objectives over the ten trials

for each dataset and algorithm; bold indicates the value is not significantly smaller

than the highest value in its row at the 0.05 significance level, according to a matched

pairs t-test. Tables 2.10 and 2.11 show for each dataset the number of times out of

ten that each method performed best on the training and test data; bold indicates the
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Table 2.8: Mean RRF (with minimum ranks) on training (top) and test (bottom).
Data RB P2 P4 P8 LR SVM LP MIO

ROC Flexibility 7.5845 7.9456 8.3329 9.3744 8.1970 8.1262 6.7895 11.7136

6.9096 7.3402 7.8322 8.1412 7.6468 7.1133 6.8940 12.0470

Haberman 5.1133 5.1890 5.1768 5.2478 5.0423 5.0381 4.8950 5.8080

4.7644 4.7170 4.6961 4.7508 4.7901 4.7877 4.8679 5.1701

Pima Diabetes 7.1586 7.3360 7.4221 7.5265 7.1732 6.8701 6.7943 7.5849

10.7014 10.6961 10.7544 10.6886 10.7582 10.7116 10.3859 10.0964

Table 2.9: Mean RRF (with ranks) on training (top) and test (bottom).
Data RB P2 P4 P8 LR SVM LP MIO

ROC Flexibility 13.8694 14.3971 14.8264 15.3331 14.1901 13.5106 8.1689 15.9534

12.6536 13.3732 13.9773 14.9208 13.0913 12.3905 8.8177 16.2293

Haberman 5.1230 5.2003 5.1908 5.2954 5.0517 5.0503 4.9309 5.8227

4.8127 4.7567 4.7836 4.7886 4.8136 4.8254 4.8907 5.1756

Pima Diabetes 7.1586 7.3360 7.4221 7.5265 7.1732 6.8701 6.7943 7.5849

10.7014 10.6961 10.7544 10.6886 10.7582 10.7116 10.3859 10.0964

highest count in each row. For some trials, there were multiple algorithms that tied for

the best, so the counts in the rows do not necessarily sum to ten. Both sets of tables

show an advantage of the MIO over the other methods for the ROC Flexibility and

Haberman’s Survival data. The MIO performed well on the Pima Indians Diabetes

training data too, but there were not enough examples for the results to generalize

to the test data. Overall, our experiments support the hypothesis that MIO yields

useful solutions, and has a competitive advantage over other methods.

2.4.4 Computational Speed

Table 2.12 shows for each MIO and LP problem the mean and standard deviation of

time (in seconds) taken to find the final solutions for the ten trials. Certain problems

solved to optimality, so the time recorded was the time until the optimal solution was

found. Most of the MIOs did not solve to optimality before the cutoff time indicated

in Table 2.12, in which case the time recorded was the time until the last (possibly

Table 2.10: Number of times each method performs best (RRF with minimum ranks).
Data ntrain ntest d RB P2 P4 P8 LR SVM LP MIO

ROC Flexibility 250 250 5 train 0 0 0 0 1 1 0 8

test 0 0 0 1 1 1 0 8

Haberman 153 153 3 train 0 1 1 0 0 0 0 10

test 0 0 0 0 1 1 1 7

Pima Diabetes 250 518 8 train 0 0 0 4 0 0 0 6

test 2 0 1 2 3 2 1 0

56



Table 2.11: Number of times each method performs best (RRF with ranks).
Data ntrain ntest d RB P2 P4 P8 LR SVM LP MIO

ROC Flexibility 250 250 5 Train 1 2 2 3 2 1 0 8

Test 0 1 2 2 1 1 0 9

Haberman 153 153 3 Train 1 2 2 2 1 1 0 10

Test 0 0 0 0 1 1 1 7

Pima Diabetes 250 518 8 Train 0 0 0 4 0 0 0 6

Test 2 0 1 2 3 2 1 0
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Figure 2-6: Solution paths for RRF problem on Pima Indians Diabetes data.

suboptimal) solution was found. A star in place of a cutoff time for a particular

dataset and problem signifies that all ten trials solved to optimality; a star next to a

cutoff time signifies that at least one of the trials solved to optimality.

Figure 2-6 shows how the objective value changed over time as we solved the MIO

for the ten trials of the RRF minimum rank problem using the Pima Indians Diabetes

data. For most of the trials, the solution did not change much after two hours. There

was one trial that solved to optimality after 460 seconds. Note that it is often the

case that after a solver finds the optimal solution of an MIO problem, it can take an

inordinately long time to prove optimality. Thus, it may be that for many problems

in our experiments, the solver did in fact find the optimal solution, but was not able

to prove optimality before the time limit. Table 2.12 and Figure 2-6 both show that

there can be huge variation in the amount of time it takes to solve an MIO problem,

even for instances of the same size and from the same dataset.
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Table 2.12: Cutoff times and mean times (± one standard deviation) until final
solution (in seconds).

Dataset Method Cutoff Time Mean Time To Final Sol.

AUC Liver Disorders MIO 3600 (1 hr) 1950.1 ± 1124.3
LP * 0.34 ± 0.08

AUC ROC Flexibility MIO * 174.0 ± 54.4
LP * 0.56 ± 0.07

AUC FourClass MIO 10800 (3 hrs) 5031.3 ± 3394.8
LP * 4.0± 2.2

AUC SVMGuide1 MIO 10800 (3 hrs) 3529.5 ± 3896.2
LP * 29.1 ± 8.4

AUC Abalone MIO 25200 (7 hrs) 6199.2 ± 7528.8
LP * 2103.8 ± 618.7

AUC MAGIC MIO 36000 (10 hrs) 20630.7 ± 13267.6
LP * 2178.0 ± 2249.2

RRF ROC Flexibility MIO 14400 (4 hrs) 2990.9 ± 1445.2
LP * 2546.7 ± 550.4

RRF Haberman Surv. MIO 3600 (1 hr)* 1361.7 ± 1348.6
LP * 6.1± 0.6

RRF Pima Diabetes MIO 18000 (5 hrs)* 10752.7 ± 5431.8
LP * 13.3 ± 2.4

*Solved to optimality: all LPs, all MIOs for ROC Flexibility AUC, 3 MIOs for Haberman

Survival RRF, 1 MIO for Pima Indians Diabetes RRF

2.5 Future Work

In order to scale the MIO methods to larger problems, it may be possible to find

conditions–that is, characteristics of the data–under which the linear relaxation is

close to the convex hull of integer feasible solutions. In these cases, the LP may

yield particularly high-quality solutions. Since the LP can already be solved for

larger problems, this would be a way to leverage the advantages of MIO to get higher

quality solutions on the large scale. Another possible direction is to experiment with

different types of regularization that are natural for MIO. A simple example is to vary

ε and/or the bounds on the wj ’s. This may serve two purposes at once; with these

forms of regularization we might be able to gain better test accuracy as well as better

computational speed.
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2.6 Summary

We have developed a new approach to address supervised ranking tasks in machine

learning. We have defined the class of rank risk functionals (RRF), which includes

a number of established linear rank statistics as well as novel measures such as the

staircase rank statistic. We have introduced methods for maximizing the AUC and

the RRF. Our methods take advantage of the modeling power of MIO, and we have

presented promising evidence for the ability of MIO to solve ranking problems. Since

the MIO approach directly optimizes the objective functions of interest instead of

using surrogates, optimal solutions to the MIO formulations achieve higher training

objective values than solutions generated from other machine learning methods. The

MIO methods also demonstrate an ability to generalize to test data, and they compete

well against other methods.
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Chapter 3

MIO for Reverse-Engineering

Quality Rankings

Many organizations depend on the top ratings given to their products or services by

quality rating companies. For instance, the reputations of undergraduate and grad-

uate programs at colleges and universities depend heavily on their U.S. News and

World Report rankings. Similarly, mortgage providers rely on the models of credit

rating agencies such as Experian, Equifax and TransUnion, while businesses rely on

Standard and Poor’s, Moody’s, and Dunn and Bradstreet credit ratings, and mutual

funds rely on Morningstar ratings. For electronics, rating companies include CNET

and PCMag ; and for vehicles, they include What Car?, JDPower, Edmunds, Kelley

Blue Book, and Car and Driver. Most of these rating companies use a formula to

score products, and few of them make their complete rating formulas public. If or-

ganizations were able to recreate these formulas, they would better understand the

standards by which their products were being judged, which would potentially allow

them to produce better products, or at least products with better ratings. Further-

more, rating companies that are aware of reverse-engineering may be motivated to

re-evaluate the accuracy of their formulas in representing the quality of products.

In this chapter, we introduce a method for reverse-engineering product ranking

models. The method integrates knowledge about the way many such ranking models

are commonly constructed, which is summarized in the following points:
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• Point 1 (Linear scoring functions): The rating company states publicly

that its product rankings are based on real-valued scores given to each product,

and that the score is a weighted linear combination of a known set of factors.

The precise values for some factors can be obtained directly, but other factors

have been discretized into a number of “stars” between 1 and 5 and are thus

noisy versions of the true values. For example, the National Highway Traffic

Safety Administration discretizes factors pertaining to vehicle safety ratings.

• Point 2 (Category structure): Products are organized into categories, and

within each category there are one or more subcategories. For example, a com-

puter rating company may have a laptop category with subcategories such as

netbooks and tablets. Products within a category share the same scoring sys-

tem, but the ranking of each product is with respect to its subcategory.

• Point 3 (Ranks over scores): It is not as essential for organizations to be

able to reproduce the scores assigned by rating companies as it is to reproduce

the ranks, since consumers pay more attention to product ranks than to scores

or to differences in score. Moreover, sometimes only the ranks are available in

the data, and not the scores.

• Point 4 (Focus on top products): Consumers generally focus on top-ranked

products, so a model that can reproduce the top of each subcategory’s ranked

list accurately is more valuable than one that better reproduces the middle or

bottom of the list.

Reverse-engineering product quality rankings is a new application for machine learn-

ing, and the algorithm we provide for this task matches the application in conforming

to the four points above. We use linear combinations of the same factors used by the

rating company, and generate a separate model for each category, in accordance with

Points 1 and 2. The reverse-engineered model for a given category is provided by a su-

pervised ranking algorithm that uses discrete optimization to force the ranks produced

by our algorithm to be similar to the ranks from the rating company; note that the
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algorithm reproduces the ranks, not the scores, as in Point 3. Specifically, the model

is constructed to obey certain preference relationships in accordance with Point 4,

that is, within each subcategory, the rankings of the rating companies’ top-k prod-

ucts should match the top-k rankings from our model. When there are not enough

data within a category to reliably determine the ranking model for that category,

our algorithm draws strength across categories by using data from other categories as

a type of regularization. Our experimental results indicate an advantage in sharing

information across product categories, modeling ranks rather than scores, and using

discrete optimization to maximize the exact rank statistic of interest rather than a

convex proxy, similar to the results of the previous chapter.

Note that even though Point 1 makes the assumption of known factors, it is also

possible to use our method for problems in which the factors are unknown. As long

as the factors in our model encompass the information used for the rating system,

our algorithm can be applied regardless of whether or not the factors are precisely the

same as those used by the rating company. For instance, a camera expert might know

all of the potential camera characteristics that could contribute to camera quality,

which we could then use as the factors in our model.

After the model has been reverse-engineered, we can use it to determine the most

cost-effective way to increase product rankings, and we present discrete optimization

algorithms for this task. These algorithms may be used independently of the reverse-

engineering method. That is, if the reverse-engineered formula were obtained using

a different method from ours, or if the formula were made public, we could still use

these algorithms to cost-effectively increase a product’s rank.

We describe related work in Section 3.1. In Section 3.2, we derive a ranking quality

objective that encodes the preference relationships discussed above. In Section 3.3 we

provide the machine learning algorithm, based on discrete optimization, that exactly

maximizes the ranking quality objective. In Section 3.4, we establish new measures

that can be used to evaluate the performance of our model. In Section 3.5, we derive

several baseline algorithms for reverse-engineering that all involve convex optimiza-

tion. Section 3.6 contains results from a proof-of-concept experiment, and Section 3.7
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provides experimental results using rating data from a major quality rating company.

Section 3.8 discusses the separate problem of how to cost-effectively increase the rank

of a product. We conclude in Section 3.9. The main contributions are: the applica-

tion of machine learning to reverse-engineering product quality rankings; our method

of encoding the preference relationships in accordance with Points 1 through 4; using

data from other product categories as regularization; the design of novel evaluation

measures; and the mechanism to cost-effectively achieve a highly ranked product.

3.1 Related Work

We have considered the reverse-engineering task as an application of supervised rank-

ing (see Chapter 2 for ranking references). This problem is related to the area of

conjoint analysis in marketing [Green et al., 2001]. Conjoint analysts aim to model

how a consumer chooses one brand over another, with the goal of learning which

product characteristics are most important to consumers.

Reverse-engineering and approximation of rating models has been done in a num-

ber of industries, albeit not applied to rankings for consumer products with the cat-

egory/subcategory structure. This work has mostly been published within blogs and

deals with the problem of approximating the ranking function with a smaller number

of variables, rather than using the exact factors in the rating company’s formula. For

instance, Chandler [2006] approximated the U.S. News and World Report Law School

rankings using symbolic regression to obtain a formula with four factors and another

with seven. Hammer et al. [2007] approximated credit rating models using Logical

Analysis of Data. In the sports industry, there has been work in reverse-engineering

Elias Sports Bureau rankings, which are used to determine compensation for free

agents [Bajek, 2008]. The search engine optimization (SEO) industry aims to be able

to boost the search engine rank of a web page by figuring out which features have

high influence in the ranking algorithm. For instance, Su et al. [2010] used a linear

optimization model to approximate Google web page rankings.

If the ratings are accurate measures of quality, then making the rating model more
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transparent could have a uniformly positive impact: it would help companies to make

better rated products, and it would encourage rating companies to receive feedback

as to whether their rating systems fairly represent quality. However, problems may

arise if the ratings are not accurate measures of quality. Unethical manipulation of

reverse-engineered credit rating models heavily contributed to the 2007-2010 financial

crisis [Morgenson and Story, 2010]. These ratings permitted some companies to sell

“junk bonds” with very high ratings. In such cases, the transparency gained from

reverse-engineering may encourage the rating companies to align their formulas more

closely with quality as defined according to the public interest.

3.2 Encoding Preferences for Quality Rating Data

We derive a rank statistic that serves as our objective for reverse-engineering. Max-

imizing this objective yields estimates of the weights on each of the factors in the

rating company’s model. We start with the simple case of one category with one sub-

category. Then, we generalize to the case of multiple categories and subcategories.

Our method can be used to reverse-engineer quality rankings whether or not the

underlying scores are made available; we need only to know the ranks.

3.2.1 One Category, One Subcategory

Let n denote the number of products to be ranked. We represent product i by a vector

of d factors xi ∈ X , where X ⊂ Rd. The rating company assigns a score ζi ∈ R to

each product i, which translates into a rank. Higher scores imply higher ranks, so

that a product with rank 0 is at the bottom of the list with the lowest quality. For

all pairs of products, let the preference function π : X ×X → {0, 1} capture the true

pairwise preferences according to the scores ζi. That is, let:

π(xi, xk) := πik := 1[ζi>ζk ],
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where 1q is the indicator function that equals 1 if condition q holds and 0 otherwise.

In other words, if product i is ranked higher than product k by the rating company,

then πik is 1. Even if the ζi are not available, we assume that the ranks are known,

so we can derive the πik. Our goal is to generate a scoring function f : X → R that

assigns real-valued scores f(xi) to each product xi such that the πik values match as

closely as possible our model associated preferences 1[f(xi)>f(xk)].

Let Π =
∑n

i=1

∑n
k=1 πik. We first consider a rank statistic that generalizes the

area under the ROC curve (AUC):

AUCπ(f) :=
1

Π

n
∑

i=1

n
∑

k=1

πik1[f(xi)>f(xk)]. (3.1)

This statistic is related to the disagreement measure introduced by Freund et al.

[2003b], as well as Kendall’s τ coefficient [Kendall, 1938]. That is, in the absence of

ties, the disagreement measure is 1−AUCπ(f) and Kendall’s τ is 2AUCπ(f)−1. The

highest possible value of AUCπ(f) is 1, which is achieved if the scoring function f

satisfies f(xi) > f(xk) for all pairs (xi, xk) such that πik = 1. There is a formulation in

Chapter 2 that maximizes AUCπ(f). Here we modify AUCπ(f) to capture additional

information about product quality rankings.

AUCπ(f) does not put any emphasis on the top of the ranked list; a product

at the bottom of the ranked list can contribute the same amount to AUCπ(f) as a

product at the top. However, as noted in Point 4 in the introduction, it is often more

important to accurately reproduce rankings at the top of the list than in the middle

or at the bottom. Suppose we want to concentrate on the top T̄ products within the

subcategory. In particular, we want to weigh the top T̄ products 1 + θ times more

than the rest of the list, where θ ≥ 0. To do this, we first define the rank of product i,

with respect to scoring function f , to be the number of products it is scored strictly

above:

rankf(xi) :=
n
∑

k=1

1[f(xi)>f(xk)].

Note that this is the minimum rank from Chapter 2; we assume in this chapter that
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the different products being ranked are distinct, so that the minimum rank equals

the rank. The top T̄ products have rank at least T := n− T̄ . For example, if n = 10,

then assuming no ties in rank, the top T̄ = 4 products have ranks at least T = 6,

that is, their ranks are 6, 7, 8, and 9. We consider the objective function:

AUCtop
π (f) :=

1

Π(θ)

n
∑

i=1

n
∑

k=1

πik1[f(xi)>f(xk)]

(

1 + θ1[rankf (xi)≥T ]

)

,

where we normalize by

Π(θ) =
n
∑

i=1

n
∑

k=1

πik

(

1 + θ1[
∑n

k=1 πik≥T ]

)

.

Note that AUCtop
π (f) varies between 0 and 1 since the largest possible value of the

summation in AUCtop
π (f) is Π(θ), which is achieved if f ranks all pairs (xi, xk) cor-

rectly. Each pair of products (xi, xk) contributes 1
Π(θ)

πik1[f(xi)>f(xk)](1 + θ) to the

objective if the rank of xi is at least T , and contributes 1
Π(θ)

πik1[f(xi)>f(xk)] otherwise.

If either θ = 0 or T = 0, then maximizing this objective is equivalent to maximizing

AUCπ(f), which does not focus at the top.

3.2.2 Multiple Categories and Subcategories

We assume that different categories have different ranking models, as stated in the

introduction. Even so, these models may be similar enough that knowledge obtained

from other categories can be used to “borrow strength” when there are limited data

in the category of interest. Thus, as we derive the objective for reverse-engineering

the model f for one prespecified category, we use data from all of its subcategories

as well as from the subcategories in other categories.

Let Ssub be the set of all subcategories across all categories, including the category

of interest, and let there be ns products in subcategory s. Analogous to our previous

notation, xs
i ∈ Rd represents product i in subcategory s, ζsi ∈ R is the score assigned

to product i in subcategory s, and πs
ik is 1 if ζsi > ζsk and is 0 otherwise. The threshold

Ts defines the top of the list for subcategory s.
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Our general objective is a weighted sum of AUCtop
π (f) over all subcategories:

AUCtop,sub
π (θ, C)(f) =

∑

s∈Ssub

Cs

Πs(θ)

ns
∑

i=1

ns
∑

k=1

πs
ik1[f(xs

i )>f(xs
k
)]

(

1 + θ1[ranksf (x
s
i )≥Ts]

)

, (3.2)

where

ranks
f (xs

i ) =
ns
∑

k=1

1[f(xs
i )>f(xs

k
)]. (3.3)

The normalization constants are

Πs(θ) =
∑

r∈cat(s)

nr
∑

i=1

nr
∑

k=1

πr
ik

(

1+θ1[
∑nr

k=1
πr
ik
≥Tr]

)

, (3.4)

where cat(s) denotes the category to which subcategory s belongs. The values Cs

determine how much influence each subcategory has on the model. It is logical in

general for Cs to be the same for all subcategories within a certain category. If there

is a sufficient number of rated products in the category of interest, relative to the total

number d of factors, then we can train the model with only these data. In that case,

we would set Cs = 1 for subcategories within the category of interest and Cs = 0 for

subcategories in all other categories. On the other hand, if the number of products

in the category of interest is too small to permit the model to generalize, then we can

regularize by setting Cs ∈ (0, 1] for subcategories of other categories, choosing the

values of Cs by cross-validation.

Note that Πs(θ) is the same for all subcategories s within the same category,

instead of being proportional to the size of the subcategory. This is because we want

each pair of products within the same category to have the same influence on the

objective function. Consider if the normalization constants were alternatively

Πs(θ) =
ns
∑

i=1

ns
∑

k=1

πs
ik

(

1+θ1[
∑ns

k=1
πs
ik
≥Ts]

)

.

Then for a particular category, there may be subcategories with large values of Πs(θ)
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and others with small values. But in this case, assuming Cs is the same for all

subcategories in this category, a misranked pair lowers the objective by much more

in the subcategories with small Πs(θ) values than with large values (since Πs(θ) is

in the denominator). Thus in some sense, normalizing this way puts more weight on

accurately ranking within the smaller subcategories. To avoid this issue, we use (3.4)

to normalize. Conventional ranking methods do not address the subcategory/category

structure of our product ranking problem in this manner, and in fact it can be difficult

to take the normalization into account accurately if the learning algorithm is limited

to convex optimization. We show in Section 3.3 how our algorithm incorporates this

form of normalization in an exact way.

We assume a linear form for the model. That is, we assume that the scoring

function has the form f(x) = wTx, so that w ∈ Rd is a vector of variables in our

formulation, and the objective in (3.2) is a function of w. Note that we can also

capture nonlinear rating systems using a linear model with nonlinear factors.

3.3 Optimization

We now provide an algorithm to reverse-engineer quality rankings that exactly max-

imizes (3.2). The algorithm is called MIO-RE—Mixed Integer Optimization for

Reverse-Engineering, and expands on the technique in Chapter 2 for supervised rank-

ing in machine learning. Recall from the previous chapter that this type of approach

has an advantage over other machine learning techniques in that it exactly optimizes

the objective, which tends to achieve higher levels of performance. This advantage

is counterbalanced by a sacrifice in computational speed, but for the rating problem,

new data come out occasionally (e.g., yearly, monthly, weekly) whereas the compu-

tation time is generally on the order of hours, depending on the number of products

in the training data and the number of factors. In this case, the extra computation

time needed to produce a better solution is worthwhile.
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3.3.1 Model for Reverse-Engineering

The variable vsi represents the model’s score wTxs
i of product i in subcategory s, and

the binary variable zsik captures the decision 1[vsi>vs
k
], as in (3.3). The strict inequality

is numerically defined using a small positive constant ε, that is:

zsik = 1[vsi−vs
k
≥ε]. (3.5)

Thus ranks
f (xs

i ) =
∑ns

k=1 z
s
ik. To keep track of which products are in the top, we want

the binary variable tsi to be 1 only if ranks
f(xs

i ) is at least Ts:

tsi = 1[
∑ns

k=1
zs
ik
≥Ts]. (3.6)

Also, we want the binary variable us
ik to be 1 only if both vsi −vsk ≥ ε and ranks

f (xs
i ) ≥

Ts, which is equivalent to:

us
ik = min{zsik, tsi}. (3.7)

Here is the MIO formulation that maximizes (3.2):

max
w,v,z,t,u

∑

s∈Ssub

Cs

Πs(θ)

ns
∑

i=1

ns
∑

k=1

πs
ik(zsik + θus

ik) (3.8)

s.t. vsi = wTxs
i , ∀s, i,

zsik ≤ vsi − vsk + 1− ε, ∀s, i, k, (3.9)

Tst
s
i ≤

ns
∑

k=1

zsik, ∀s, i, k, (3.10)

us
ik ≤ zsik, ∀s, i, k, (3.11)

us
ik ≤ tsi , ∀s, i, k, (3.12)

0 ≤ wj , u
s
ik ≤ 1, ∀j, s, i, k,

zsik, t
s
i ∈ {0, 1}, ∀s, i, k.

As in Chapter 2, we use (3.8) to refer to the entire formulation. Constraints (3.9)

through (3.12) capture (3.5) through (3.7). If vsi − vsk ≥ ε, then the right-hand-side
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of (3.9) is at least 1, so the solver sets zsik = 1 because it is maximizing zsik. Otherwise,

the right-hand-side is strictly smaller than 1, so the solver sets zsik = 0. Similarly,

if
∑ns

k=1 z
s
ik ≥ Ts, then (3.10) implies tsi = 1; note that since we are maximizing us

ik

in (3.8), we are also maximizing tsi because of (3.12). And if both vsi − vsk ≥ ε and

ranks
f (xs

i ) ≥ Ts, then zsik = tsi = 1, so (3.11) and (3.12) imply us
ik = 1. We do not

need to explicitly specify us
ik as a binary variable because us

ik is the minimum of two

binary variables; if either zsik or tsi is 0, then us
ik is 0, and otherwise it is 1.

We enforce that the weights {wj}dj=1 are nonnegative, in accordance with our

knowledge of how most quality ratings are constructed. If there is a case in which

a factor is negatively correlated with rank, then we would simply use the negative

of the factor, so that the corresponding weight would be positive. Also, if w∗ max-

imizes (3.2), then so does γw∗, for any constant γ > 0; thus we can constrain each

wj to be in the interval [0, 1] without loss of generality. The primary purpose of this

constraint is to reduce the size of the region of feasible solutions, which is intended to

speed up the computation. There is a single parameter ε > 0 that the user specifies.

Since increasing ε tends to increase runtimes, as shown in the experimental results

of the previous chapter, we choose ε to be 10−6, which is just large enough to be

recognized as nonzero by the solver.

After the optimization problem (3.8) is solved for our category of interest, we use

the maximizing weights w∗ to determine the score f(x) = w∗Tx of a new product x

within the same category.

3.4 Evaluation Metrics

In the case of our rating data, one goal is to predict, for instance, whether a new

product that has not yet been rated will be among the top-k products that have

already been rated. That is, the training data are included in the assessment of

test performance. This type of evaluation is contrary to common machine learning

practice in which evaluations on the training and test sets are separate, and thus it

is not immediately clear how these evaluations should be performed.
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Table 3.1: Notation for evaluation metrics. Note that ζs and f s
w are computed from

only the training data.

ζsi = true score for product xs
i (training or test)

ζs = true score of product in position T̄s within the training set,
where products are ranked according to true scores ζsi

f s
w = model score of product in position T̄s within the training set,

where products are ranked according to model scores wTxs
i

Ss
train = {i : product xs

i is in the training set}
Ss
test = {j : product xs

j is in the test set}
Ss
all = Ss

train ∪ Ss
test

Ss
train,top = {i : i ∈ Ss

train and ζsi ≥ ζs}
Ss
test,top = {j : j ∈ Ss

test and ζsj ≥ ζs}
Ss
all,top = Ss

train,top ∪ Ss
test,top

In this section, we define three measures that are useful for ranking problems in

which test predictions are gauged relative to the training set. The measures are first

computed separately for each subcategory and then aggregated over the subcategories

to produce a concise result. We focus on the top T̄s products in subcategory s, and

use the notation in Table 3.1, where f(x) = wTx is a given scoring function.

Measure 1: Fraction of correctly ranked pairs among top of ranked list

This is the most useful and important of the three measures because it specifically

captures ranking quality at the top of the list. Using the same notation as in (3.8),

let πik = 1 if ζsi > ζsk and 0 otherwise, and zik = 1 if wTxi > wTxk and 0 otherwise.

The evaluation measures for the training and test data are:

M1train(s) =

∑

i,k∈Ss
train,top

πikzik
∑

i,k∈Ss
train,top

πik
,

M1test(s) =

∑

i,k∈Ss
all,top

πikzik −
∑

i,k∈Ss
train,top

πikzik
∑

i,k∈Ss
all,top

πik −
∑

i,k∈Ss
train,top

πik
.

The M1 metric does not require the actual values of the true scores ζsi ; it suffices

to know the pairwise preferences πik. Note that M1test(s) is the fraction of correctly

ranked pairs among both training and test products, excluding pairs for which both

products are in the training set.
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Measure 2: Fraction of correctly ranked pairs over entire ranked list

This measure is similar to Measure 1, except that instead of considering only the

top of the ranked list, it considers the entire list.

M2train(s) =

∑

i,k∈Ss
train

πikzik
∑

i,k∈Ss
train

πik

,

M2test(s) =

∑

i,k∈Ss
all
πikzik −

∑

i,k∈Ss
train

πikzik
∑

i,k∈Ss
all
πik −

∑

i,k∈Ss
train

πik
.

Note that M2train is the same as AUCπ in (3.1).

Measure 3: Fraction of correctly classified products

This evaluation metric is the fraction of products that are correctly classified in

terms of being among the top of the list:

M3train(s) =
1

|Ss
train|

∑

i∈Ss
train

(

1[ζsi ≥ζs and wTxi≥fs
w] + 1[ζsi <ζs and wTxi<fs

w]

)

,

M3test(s) =
1

|Ss
test|

∑

j∈Ss
test

(

1[ζsj≥ζs and wT xj≥fs
w] + 1[ζsj<ζs and wTxj<fs

w]

)

.

Although M3test(s) measures quality on the test set, the values ζs and f s
w depend on

the true scores and model scores from the training set. If the true scores ζsi are not

available, then it suffices to know the rank of each product relative to the product in

position T̄s in the training set in order to compute this metric.

Aggregation of measures

To produce a single numerical evaluation for each of the three measures, we aggre-

gate by taking a weighted sum of the measures over subcategories in a given category,

where the weights are proportional to the sizes of the subcategories. The three eval-

uation measures defined above all have the form: M(s) = numer(s)
denom(s)

. The version of

evaluation measure M aggregated over subcategories for either the training set or the

test set is:

M =

∑

s numer(s)
∑

s denom(s)
=

∑

s denom(s)M(s)
∑

s denom(s)
.
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3.5 Other Methods for Reverse-Engineering

We compare our approach with several other methods. The first set of methods are

based on least squares regression, and the second set are convex relaxations of the

MIO method.

3.5.1 Least Squares Methods for Reverse-Engineering

The organization that provides our rating data currently uses a proprietary method to

reverse-engineer the ranking model, the core of which is very similar to least squares

regression on the scores. If the scores were not available—for instance, when working

with data from a different rating company—the organization would conceivably use

least squares regression on the ranks. Thus, our baselines are variations on least

squares regression, minimizing:

∑

s∈Ssub

Cs

Ns

ns
∑

i=1

(ysi − (w0 + wTxs
i ))

2,

where Ns is the number of products in the category to which subcategory s belongs:

Ns =
∑

r∈cat(s)
nr,

and ysi can be one of three quantities:

1. the true score ζsi for product xs
i (method LS1),

2. the rank over all training products, that is, the number of training products

that are within subcategories r such that Cr > 0 and are ranked strictly below

xs
i according to the true scores ζsi (method LS2),

3. the rank within the subcategory, that is, the number of training products in the

same subcategory as xs
i that are ranked strictly below xs

i according to the true

scores ζsi (method LS3).
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3.5.2 The ℓp Reverse-Engineering Algorithm

As another point of comparison, we introduce a new method called “ℓp Reverse-

Engineering” (ℓpRE) that generalizes the P -Norm Push algorithm for supervised

ranking [Rudin, 2009]. This algorithm minimizes an objective with two terms, one

that “pushes” low-quality products to the bottom of the list, and another that “pulls”

high-quality products to the top. To derive this algorithm, we first consider the fol-

lowing loss function:

Losss,p,low,0−1(f) :=

(

ns
∑

k=1

(

ns
∑

i=1

πs
ik1[f(xs

i )≤f(xs
k
)]

)p)1/p

.

In order to interpret Losss,p,low,0−1(f), consider that
∑ns

i=1 π
s
ik1[f(xs

i )≤f(xs
k
)] is the num-

ber of products i that should be ranked higher than k (that is, πs
ik = 1), but are ranked

lower by f (that is, 1[f(xs
i )≤f(xs

k
)]). This quantity is large when k is a low-quality prod-

uct that is near the top of the ranked list. In other words, the largest terms in the

sum
∑ns

k=1

(
∑ns

i=1 π
s
ik1[f(xs

i )≤f(xs
k
)]

)p
correspond to low quality products that are highly

ranked. Thus, minimizing Losss,p,low,0−1(f) tends to “push” low-quality products to-

wards the bottom of the list.

Instead of minimizing Losss,p,low,0−1(f) directly, we can minimize the following

convex upper bound:

Losss,p,low(f) :=

(

ns
∑

k=1

(

ns
∑

i=1

πs
ike

−(f(xs
i )−f(xs

k
))

)p)1/p

.

We reverse the sums over i and k to define another quantity:

Losss,p,high(f) :=

(

ns
∑

i=1

(

ns
∑

k=1

πs
ike

−(f(xs
i )−f(xs

k
))

)p)1/p

.

Minimizing Losss,p,high(f) tends to “pull” high-quality products towards the top of the

list. The ℓpRE method uses both Losss,p,low(f) and Losss,p,high(f). The loss function
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minimized by ℓpRE is:

∑

s∈Ssub

Cs

Ns,p

(

Losss,p,low(f) + Chigh · Losss,p,high(f)
)

,

where the normalization factor Ns,p is:

Ns,p =
∑

r∈cat(s)





(

nr
∑

k=1

(

nr
∑

i=1

πr
ik

)p)1/p

+ Chigh

(

nr
∑

i=1

(

nr
∑

k=1

πr
ik

)p)1/p


 ,

and Cs and Chigh are user-specified parameters that control the relative importance

of each subcategory, and the importance of Losss,p,high(f) relative to Losss,p,low(f)

respectively. We use p = 1 and p = 2, and denote the corresponding methods by

ℓ1RE and ℓ2RE respectively.

3.6 Proof of Concept

As a preliminary experiment, we tested the methods using an artificial dataset.1

Figure 3-1 shows for each of the five factors of this dataset, a scatterplot of the factor

values versus the scores. The sixth plot in the figure shows all five factors versus

the scores in the same window. For each factor, there is one set of products for

which there is perfect correlation between the factor values and scores, another set

for which there is perfect negative correlation, and the remainder for which the factor

value is constant. By constructing the dataset in this manner, we expect there to

be significant variation in the ranking performance of the different methods. This

dataset is similar to the ROC Flexibility data from Chapter 2.

There is only one category with one subcategory. There are 200 products total,

and we randomly divided the data into 100 products for training and 100 products

for testing. We tested five methods: LS1, LS2, ℓ1RE, ℓ2RE, and MIO-RE; LS3 is

equivalent to LS2 since there is only one subcategory.2 We ran the methods for three

1Dataset available at: http://web.mit.edu/rudin/www/ReverseEngineering Flex Data.csv.
2All least-squares methods were implemented using R 2.8.1, and all ℓpRE methods using MAT-

LAB 7.8.0, on an Intel Core 2 Duo 2GHz processor with 1.98GB of RAM. MIO-RE was implemented
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Figure 3-1: Factor values vs. scores for artificial dataset.

Table 3.2: Train and test values for M1, M2, and M3 on artificial dataset (top 60).

Algorithm M1 M2 M3

LS1, ℓ1RE, ℓ2RE train 0.878 0.912 0.780
test 0.892 0.909 0.770

LS2 train 0.909 0.923 0.780
test 0.915 0.918 0.770

MIO-RE train 0.925 0.928 0.780
test 0.943 0.929 0.770

cases: concentrating on the top 60, the top 45, and the top 25, that is, T = 40, T = 55,

and T = 75 respectively. We ran ℓ1RE with Chigh = 0; ℓ2RE with Chigh = 0, 0.5, and 1;

and MIO-RE with θ = 9. MIO-RE found the final solutions within three minutes for

each case, and the other methods ran within seconds. Tables 3.2, 3.3, and 3.4 show

the results. The highest training and test measures across the methods are highlighted

in bold. LS1, ℓ1RE, and ℓ2RE (with Chigh = 0, 0.5, and 1) always produced the same

values for the three evaluation measures.

The methods all performed similarly according to the classification measure M3.

MIO-RE had a significant advantage with respect to M2, regardless of the threshold

we used for top of the list (top 60 in Table 3.2, top 45 in Table 3.3, or top 25 in

using ILOG AMPL 11.210 with the Gurobi 3.0.0 solver on two Intel quad core Xeon E5440 2.83GHz
processors with 32GB of RAM. We always used ε = 10−6 for MIO-RE.
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Table 3.3: Train and test values for M1, M2, and M3 on artificial dataset (top 45).

Algorithm M1 M2 M3

LS1, ℓ1RE, ℓ2RE train 0.880 0.912 0.920
test 0.898 0.909 0.930

LS2 train 0.935 0.923 0.920
test 0.942 0.918 0.930

MIO-RE train 0.964 0.928 0.920
test 0.994 0.929 0.930

Table 3.4: Train and test values for M1, M2, and M3 on artificial dataset (top 25).

Algorithm M1 M2 M3

LS1, ℓ1RE, ℓ2RE train 0.907 0.912 1.000
test 0.899 0.909 0.980

LS2 train 0.907 0.923 1.000
test 0.899 0.918 0.980

MIO-RE train 1.000 0.928 1.000
test 1.000 0.929 1.000

Table 3.4). For M1, MIO-RE performed substantially better than the others, and its

advantage over the other methods was more pronounced as the evaluation measure

concentrated more on the top of the list. One can see this by comparing the M1

column in Tables 3.2, 3.3, and 3.4. In Table 3.4, MIO-RE performed better than the

other methods by 10.3% on training and 11.3% on testing. Using exact optimization

rather than approximations, the MIO-RE method was able to find solutions that none

of the other methods could find. This study demonstrates the potential of MIO-RE

to substantially outperform other methods.

3.7 Experiments on Rating Data

For our main experiments, the dataset contains approximately a decade’s worth of

rating data from a major rating company, compiled by an organization that is aim-

ing to reverse-engineer the ranking model. The values of the factors are discretized

versions of the true values. The rating company periodically makes ratings for new

products available, and our goal is to predict, with respect to the products that are

already rated: where each new product is within the top-k (M1), where it is in the
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full list, even if not in the top-k (M2), and whether each new product falls within

the top-k (M3). We generate a scoring function for one category, “Category A,” reg-

ularizing with data from “Category B.” Category A has eight subcategories with a

current total of 209 products, and Category B has eight subcategories with a total of

212 products. There are 19 factors.

The size of the dataset is small and thus challenging to deal with from a ma-

chine learning perspective. The small size causes problems with accurate reverse-

engineering in training and evaluating generalization ability in testing. That is, for

all algorithms, the variance of the test evaluation measures is high compared to the

difference in training performance. The worst performing algorithm in training some-

times has the best test performance, and vice versa. We aim to determine whether

MIO-RE has consistently good performance, compared to other algorithms that some-

times perform very poorly.

3.7.1 Experimental Setup

For this set of experiments, we divided the data for Category A into four folds, and

used each fold in turn as the test set. The first fold had 53 products, and the other

three folds each had 52 products. Our experiment was as follows, where M1, M2,

and M3 refer to the three aggregate evaluation measures, computed using just data

from Category A and not Category B, though data from both categories were used

for training:

1. For each set of parameters, perform three-fold cross-validation using the first

three folds as follows:

a. Train using Folds 1 and 2, and Category B, and validate using Fold 3.

Compute M1, M2, and M3 for training and validation.

b. Train using Folds 1 and 3, and Category B, and validate using Fold 2.

Compute M1, M2, and M3 for training and validation.

c. Train using Folds 2 and 3, and Category B, and validate using Fold 1.

Compute M1, M2, and M3 for training and validation.
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d. Compute the average over the three folds of the training and validation

values for each of M1, M2, and M3.

Note that when we compute M1, M2, and M3 on validation data, this also takes

into account the training data, as in Section 3.4.

2. Sum the three average validation measures, and choose the parameters corre-

sponding to the largest sum.

3. Train using Folds 1, 2, and 3, and Category B, together with the parameters

chosen in the previous step, and test using Fold 4. Compute M1, M2, and M3

for training and testing.

4. Repeat steps 1 through 3 using Folds 1, 2, and 4 for cross-validation and Fold

3 for the final test set.

5. Repeat steps 1 through 3 using Folds 1, 3, and 4 for cross-validation and Fold

2 for the final test set.

6. Repeat steps 1 through 3 using Folds 2, 3, and 4 for cross-validation and Fold

1 for the final test set.

We followed this experimental procedure for each algorithm, repeating the same steps

four times to avoid the possibility that by chance our results would be good or bad

because of our choice of training data.

For all algorithms, we set Cs = 1 for all subcategories s in Category A. The

regularization parameter Cs = C for all subcategories s in Category B varied for each

method in a range such that the contribution in the objective function from Category

B was smaller than the contribution from Category A. Table 3.5 shows the different

parameter values tested for each algorithm. For ℓ1RE, the two terms of the objective

function are identical, so we chose Chigh to be 0. For ℓ2RE, we chose Chigh to be 0,

0.5, or 1. For MIO-RE, we chose θ to be 0 or 9, so that the top of the list was weighed

by a factor of 1 or 10 respectively.

In total, for the cross-validation step, there were 6 × 3 = 18 problems to solve

for LS1, LS2, and LS3; 6 × 2 = 12 problems for ℓ1RE, 6 × 2 × 3 = 36 problems for
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Table 3.5: Parameter values tested for each algorithm.

Algorithm Parameter1 Parameter2

LS1 C=0, 0.1, or 0.2
LS2 C=0, 0.1, or 0.2
LS3 C=0, 0.025, or 0.05
ℓ1RE C=0 or 0.1 Chigh=0
ℓ2RE C=0 or 0.1 Chigh=0, 0.5, or 1

MIO-RE C=0 or 0.5 θ=0 or 9

ℓ2RE, and 6× 2× 2 = 24 problems for MIO-RE. (For each method, the total number

of problems was the number of different parameter settings times six, which is the

number of ways to choose two out of four folds for training.) For the test step, there

were an additional four problems for each method. This set of experiments required

approximately 163 hours of computation time.

3.7.2 Results

There are four rounds of the experiment in which we train on three folds and test

on the fourth fold (step 3 in the procedure above), with the parameter values found

through cross-validation. Tables 3.6 through 3.9 show the training and test values of

M1, M2, and M3 in each of these four rounds. The highest training and test measures

are highlighted in bold. The integer number next to each measure is the rank of the

method, that is, the number of other methods below it for the particular measure and

dataset (training or test). Note that 0 is the lowest possible rank by this definition.

Figure 3-2 is a visualization of Tables 3.6 through 3.9 and shows barplots of M1,

M2, and M3 from each of the four rounds; note that for each algorithm, the bars for

the three measures have been stacked for compactness. The bar heights are relative

instead of absolute; for example, the bar heights for the dark bars (M1) in the top

left plot were computed as follows:

1. Let M1m be the value of M1 for method m, where m is either LS1, LS2, LS3,

ℓ1RE, ℓ2RE, or MIO-RE. Note that these are the M1 values from training on

Folds 1, 2, and 3.
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Figure 3-2: Barplot summary of results from four rounds of training on three folds
and testing on the fourth: M1 (dark), M2 (medium), and M3 (light).
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Table 3.6: Training and test values of M1, M2, and M3 on ratings data, and ranks of
algorithms (train on Folds 1, 2, and 3; test on Fold 4).

Algorithm M1 M2 M3

LS1 train 0.686 0 0.920 2 0.930 2
C = 0 test 0.714 0 0.922 5 0.865 3

LS2 train 0.706 2 0.911 1 0.924 1
C = 0.1 test 0.762 2 0.911 1 0.885 5

LS3 train 0.725 4 0.832 0 0.866 0
C = 0.05 test 0.738 1 0.797 0 0.827 0

ℓ1RE train 0.706 2 0.921 3 0.930 2
C = 0.1, Chigh = 0 test 0.762 2 0.919 4 0.846 1

ℓ2RE train 0.686 0 0.921 3 0.930 2
C = 0.1, Chigh = 1 test 0.762 2 0.918 3 0.865 3

MIO-RE train 0.765 5 0.932 5 0.955 5
C = 0.5, θ = 0 test 0.786 5 0.916 2 0.846 1

2. Let M1min be the minimum of the six M1m values.

3. The bar height for method m is the percentage increase of M1m from M1min:

M1m −M1min

M1min
.

The method for which M1m = M1min has bar height 0. The other bar heights were

computed similarly; for each measure, there is at least one method for which the bar

height is 0. Thus it is easy from the figure to see, within each barplot, the relative

magnitudes of the three measures across all algorithms. For instance, in the top left

barplot, MIO-RE clearly is largest in terms of dark bars (M1) and light bars (M3),

though it is about the same as all other algorithms in terms of medium bars (M2).

As stated in Section 3.4, we are most interested in M1, which measures ranking

quality at the top of the list. Figure 3-2 shows that with respect to M1, though not

always the best, MIO-RE performed consistently well for both training and testing. In

contrast, the other algorithms may have performed well for some training or test cases

but also performed poorly for other cases. Table 3.10 shows just the M1 metric from

Tables 3.6 through 3.9, averaged for each algorithm over the four rounds. MIO-RE

has a clear advantage over the other methods according to these sums.
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Table 3.7: Training and test values of M1, M2, and M3 on ratings data, and ranks of
algorithms (train on Folds 1, 2, and 4; test on Fold 3).

Algorithm M1 M2 M3

LS1 train 0.833 1 0.925 2 0.904 2
C = 0 test 0.784 4 0.922 5 0.846 1

LS2 train 0.833 1 0.917 1 0.892 1
C = 0.2 test 0.773 2 0.918 3 0.885 5

LS3 train 0.792 0 0.850 0 0.879 0
C = 0.05 test 0.750 0 0.831 0 0.808 0

ℓ1RE train 0.854 3 0.930 4 0.904 2
C = 0.1, Chigh = 0 test 0.761 1 0.919 4 0.846 1

ℓ2RE train 0.854 3 0.930 3 0.904 2
C = 0, Chigh = 0 test 0.773 2 0.915 2 0.865 4

MIO-RE train 0.875 5 0.937 5 0.917 5
C = 0.5, θ = 0 test 0.784 4 0.914 1 0.846 1

Table 3.8: Training and test values of M1, M2, and M3 on ratings data, and ranks of
algorithms (train on Folds 1, 3, and 4; test on Fold 2).

Algorithm M1 M2 M3

LS1 train 0.843 1 0.913 2 0.841 1
C = 0.1 test 0.778 0 0.925 2 0.942 1

LS2 train 0.902 4 0.908 1 0.866 3
C = 0 test 0.822 1 0.929 3 0.942 1

LS3 train 0.804 0 0.860 0 0.828 0
C = 0.05 test 0.889 5 0.896 0 0.904 0

ℓ1RE train 0.882 2 0.919 3 0.866 3
C = 0.1, Chigh = 0 test 0.822 1 0.933 5 0.942 1

ℓ2RE train 0.902 4 0.920 4 0.854 2
C = 0.1, Chigh = 1 test 0.822 1 0.931 4 0.942 1

MIO-RE train 0.882 2 0.928 5 0.866 3
C = 0.5, θ = 0 test 0.822 1 0.923 1 0.942 1
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Table 3.9: Training and test values of M1, M2, and M3 on ratings data, and ranks of
algorithms (train on Folds 2, 3, and 4; test on Fold 1).

Algorithm M1 M2 M3

LS1 train 0.706 1 0.932 2 0.929 3
C = 0 test 0.900 2 0.902 2 0.868 0

LS2 train 0.725 2 0.925 1 0.929 3
C = 0.2 test 0.833 0 0.894 1 0.868 0

LS3 train 0.686 0 0.839 0 0.878 0
C = 0.05 test 0.867 1 0.796 0 0.868 0

ℓ1RE train 0.745 4 0.933 3 0.917 1
C = 0.1, Chigh = 0 test 0.933 4 0.906 5 0.868 0

ℓ2RE train 0.725 2 0.933 3 0.917 1
C = 0.1, Chigh = 0.5 test 0.900 2 0.902 2 0.868 0

MIO-RE train 0.824 5 0.944 5 0.942 5
C = 0.5, θ = 0 test 0.967 5 0.904 4 0.887 5

Table 3.10: Average of M1 metric over four rounds for each algorithm.

Algorithm M1 (train) M1 (test)

LS1 0.767 0.794
LS2 0.792 0.798
LS3 0.752 0.811
ℓ1RE 0.797 0.820
ℓ2RE 0.792 0.814

MIO-RE 0.836 0.840

To view the results in a nonparametric way, we use the ranks in Tables 3.6

through 3.9. There are four sets of ranks corresponding to the four rounds of training

and testing. In Table 3.11, we sum up the ranks over the four rounds. The consis-

tently high performance of MIO-RE is also reflected in this table, particularly in its

advantage in terms of training and testing for M1.

Note that LS1 has an inherent advantage over the other five methods in that it

uses information—namely the true scores—that is not available to the other methods

that use only the ranks. As discussed earlier, in many cases the true scores may not

be available if the rating company does not provide them. Even if the scores are

available, our experiment demonstrates that it is possible for methods that encode

only the ranks, such as MIO-RE, to have comparable or better performance than

methods that directly use the scores. For example, in all but the third round of
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Table 3.11: Sums of ranks over four rounds for each algorithm.

LS3 LS1 LS2 ℓ2RE ℓ1RE MIO-RE

M1 4 3 9 9 11 17
Train M2 0 8 4 13 13 20

M3 0 8 8 7 8 18

Total 4 19 21 29 32 55

M1 7 6 5 7 8 15
Test M2 0 14 8 11 18 8

M3 0 5 11 8 3 8

Total 7 25 24 26 29 31

our experiment, it appears that there was a particularly good solution that none

of the approximate methods found, but that MIO-RE did, similar to the results in

Section 3.6. This is the major advantage of exactly optimizing the objective function

rather than using a convex proxy.

3.7.3 Example of Differences Between Methods on Evalua-

tion Measures

It is not immediately clear how a difference in evaluation measures corresponds to

differences between ranked lists in our experiment. To illustrate this, we directly

compare ranked lists corresponding to the test set in the fourth round (train on Folds

2, 3, and 4; test on Fold 1). The ranked lists shown in Table 3.12 were generated by

scoring the products using MIO-RE and LS3, and are divided into the eight subcat-

egories in Category A. For confidentiality purposes, the actual product names have

been replaced by the names of various wineries in eight different regions of California.3

As indicated by the test measures, reproduced in Table 3.13, MIO-RE and LS3

were comparable in terms of correctly classifying products as either in the top or

not in the top (M3). However, MIO-RE performed much better in terms of pairwise

rankings (M1 and M2). For example, MIO-RE correctly ranked all products in the

Lake County subcategory while LS3 switched the first and third products; MIO-RE

switched the first two products in the Southern California subcategory while LS3 also

3http://www.cawinemall.com/region.shtml
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Table 3.12: Example of ranked lists produced by different algorithms, corresponding
to metrics in Table 3.13.

True MIO-RE LS3

LakeCounty

Brassfield Brassfield Wildhurst
Langtry Langtry Langtry
Wildhurst Wildhurst Brassfield

NorthCoast

Alpen Alpen Alpen
Fieldbrook Fieldbrook Fieldbrook
Winnett Winnett Winnett

SouthCali

Faulkner Lenora Lenora
Lenora Faulkner Faulkner
Peralta Peralta Peralta
Salerno Salerno Thompkin
Thompkin Thompkin Salerno

Mendocino

Baxter Navarro Navarro
Goldeneye Baxter Baxter
Navarro Goldeneye Goldeneye
Skylark Skylark Skylark

CentralCoast

Blackstone Blackstone Morgan
Estancia Estancia Blackstone
Jenkins Morgan Ronan
Morgan Parsonage Estancia
Newell Newell Ventana
Parsonage Jenkins Jenkins
Ronan Ronan Newell
Ventana Ventana Parsonage

True MIO-RE LS3

CentralVal

Accardi Accardi Accardi
Baywood Baywood Mariposa
Cantiga Mariposa Trimble
Harmony Cantiga Harmony
Mariposa Omega Cantiga
Omega Watts Omega
Trimble Harmony Watts
Watts Trimble Baywood

SierraFoot

Auriga Auriga Auriga
Chevalier Chevalier Paravi
Dillian Paravi Chevalier
Fitzpatrick Dillian Solomon
Hatcher Fitzpatrick Oakstone
Montevina Hatcher Hatcher
Oakstone Montevina Fitzpatrick
Paravi Oakstone Dillian
Renwood Solomon Renwood
Solomon Renwood Montevina
Venezio Venezio Venezio

NapaValley

Carter Falcor Falcor
Falcor Carter Carter
Ilsley Ilsley Kelham
Kelham Kelham Ilsley
Mason Mason Mason
Oberon Oberon Oberon
Quintessa Relic Quintessa
Relic Quintessa Trefethen
Sawyer Sawyer Relic
Trefethen Varozza Sawyer
Varozza Trefethen Varozza

Table 3.13: Comparison of MIO-RE and LS3 (train on Folds 2, 3, and 4; test on
Fold 1), corresponding to ranked lists in Table 3.12.

Algorithm M1 M2 M3

MIO-RE 0.967 0.904 0.887

LS3 0.867 0.796 0.868
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switched the last two; and the MIO-RE rankings for the Central Valley subcategory

were not inaccurate by more than three places for any product while LS3 ranked the

second product in the eighth position and the eighth product in the third position.

There are several other differences between the ranked lists that help to explain the

differences in the evaluation measures.

3.8 Determining a Cost-Effective Way to Achieve

Top Rankings

Having reverse-engineered the ranking model, it is useful to investigate the following:

given a current product x, how can its features be cost-effectively modified so that the

new product achieves a top ranking? For instance, suppose we would like to find the

most cost-effective way to achieve a top ranking point-and-shoot digital camera. In

particular, let there be L ways to change a current product, where multiple changes

could potentially be made simultaneously. For example, we can change a current

digital camera by enlarging the battery and by making it out of heavier material. Let

the decision variable αℓ encode whether change ℓ is implemented. The αℓ are binary,

that is, either the change is implemented or not:

αℓ =











1, if change ℓ is implemented,

0, otherwise.

If change ℓ is implemented, then there is an associated cost, denoted cℓ, and factor j

of product x will increase by an amount δjℓ(x):

αℓ = 1 =⇒ xj ← xj + δjℓ(x).

It is possible that implementing change ℓ can affect more than one factor. Making a

digital camera out of heavier material affects its weight and perhaps also its ability

to handle shake, for example. Moreover, some of the δjℓ values and costs may be
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negative, as the most cost-effective way to increase the ranking of a product may be

to decrease some factors while increasing others. That is, it might be economical to

spend less on one factor and instead fund another change that contributes more to

increasing the score. The total change in factor j of product x is

L
∑

ℓ=1

αℓδjℓ(x).

There may be possible changes that conflict with each other, and we take this into

account as follows: let there be M index sets of changes where at most one of these

changes is allowed, and let Sm denote the mth set. Then we have the exclusivity

constraints
∑

ℓ∈Sm

αℓ ≤ 1, ∀m = 1, . . . ,M.

For instance, we cannot increase a camera’s resolution both by one megapixel and by

two megapixels; at most one of these two changes can occur.

Let the current score of product x be

v0(x) = wTx =

d
∑

j=1

wjxj .

For a given vector of changes α ∈ {0, 1}L, the new score of product x after the changes

are made is

vnew(x) =

d
∑

j=1

wj

(

xj +

L
∑

ℓ=1

αℓδjℓ(x)

)

=

d
∑

j=1

wjxj +

d
∑

j=1

wj

(

L
∑

ℓ=1

αℓδjℓ(x)

)

= v0(x) +

d
∑

j=1

wj

L
∑

ℓ=1

αℓδjℓ(x) = v0(x) +

L
∑

ℓ=1

αℓ

d
∑

j=1

wjδjℓ(x)

= v0(x) +
L
∑

ℓ=1

αℓWℓ(x),

where Wℓ(x) =
∑d

j=1wjδjℓ(x). Note that Wℓ(x) is the change in score that would
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result from making change ℓ. Then

vdiff(x) = vnew(x)− v0(x) =

L
∑

ℓ=1

αℓWℓ(x)

is the total score difference. The total cost associated with the changes in α is

cdiff(α) =

L
∑

ℓ=1

cℓαℓ.

The cost trades off with the change in score. In what follows, we show how to both

maximize the change in score on a fixed budget, and how to minimize the cost to

achieve a certain change in score.

3.8.1 Two Formulations

Maximizing score on a fixed budget: The first problem is to fix the budget for

making changes and maximize the new score of product x, which is equivalent to

maximizing vdiff. That is, we want to maximize
∑L

ℓ=1 αℓWℓ(x) while not exceeding

some bound on the cost, denoted c̄. The integer optimization formulation to solve

this problem is given by:

max
α

L
∑

ℓ=1

αℓWℓ(x) (3.13)

s.t.

L
∑

ℓ=1

cℓαℓ ≤ c̄,

∑

ℓ∈Sm

αℓ ≤ 1, ∀m = 1, . . . ,M,

αℓ ∈ {0, 1}, ∀ℓ = 1, . . . , L.

Minimizing cost with a fixed target score: Suppose the target score is vtar,

so that the desired score difference is v∗diff = vtar − v0(x). The integer optimization

90



Table 3.14: Point-and-shoot digital camera factors.
1 2 3 4 5

Resolution Weight Photo Quality Video Quality Response Time

6 7 8 9 10

Handling Shake Versatility LCD Quality Widest Angle Battery Life

formulation is given by:

min
α

L
∑

ℓ=1

cℓαℓ (3.14)

s.t.

L
∑

ℓ=1

αℓWℓ(x) ≥ v∗diff,

∑

ℓ∈Sm

αℓ ≤ 1, ∀m = 1, . . . ,M,

αℓ ∈ {0, 1}, ∀ℓ = 1, . . . , L.

By solving the first formulation for a range of budgets, or by solving the second

formulation for a range of target scores, we can map out an efficient frontier of max-

imum score for minimum cost. This concept is best explained through the following

example.

3.8.2 Fictitious Example

We use the example of finding the most cost-effective way to increase the rank of a

point-and-shoot digital camera. The data are fictitious. There are 10 factors, shown

in Table 3.14. Resolution is in number of megapixels, weight is in ounces, widest

angle is in millimeters, and battery life is in number of shots. All other factors take

values between 1 and 5, in increments of 0.5, with 1 representing poor quality and 5

representing excellent quality. Let the coefficients of the scoring function f(x) = wTx

be as shown in Table 3.15. The coefficient corresponding to camera weight is negative

since it is desirable to have a lighter camera. Table 3.16 shows the scores of two

different cameras according to this scoring function.

There are twelve possible changes that we can make to a particular hypothetical
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Table 3.15: Coefficients of scoring function for digital cameras.
w1 w2 w3 w4 w5

0.5842 −0.5706 4.3421 2.9256 3.7692

w6 w7 w8 w9 w10

1.1374 1.4423 2.8960 0.0054 0.0006

Table 3.16: Scores of two example cameras.
Camera x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 Score

1 14 5 5 5 5 5 5 5 35 500 88.38
2 12 5 4 4 4 3 4 4 30 300 69.41

digital camera x. Table 3.17 shows the cost of making each change in dollars per

camera, as well as the effect δjℓ each change ℓ has on factor j. A dot indicates the

effect is 0. Table 3.17 does not apply to all cameras, and the δjℓ’s might need to

be constructed individually for each camera. In particular, we assume that none of

the six integer factors of camera x would exceed the upper bound of 5 if any of the

changes were implemented. For instance, x could not be the first camera in Table 3.16

since factors 2 through 8 are already at their maximum possible value, but it could

be the second.

Table 3.18 shows the conflict sets Sm. For instance, the changes “Add 1 Megapixel”

(change 2) and “Add 2 Megapixels” (change 6) are mutually exclusive. These conflicts

are incorporated in (3.13) and (3.14) in the exclusivity constraints. We represent the

conflict between changes 2 and 6 as

α2 + α6 ≤ 1, or
∑

ℓ∈S1

αℓ ≤ 1,

where S1 = {2, 6}. Table 3.19 gives an alternative way to represent the conflicts and

shows for each of the twelve changes, which of the other changes conflict with it.

The points in Figures 3-3 and 3-4 correspond to the 512 feasible changes or com-

binations of changes. The coordinates of each point indicate its cost and effect on

the score. We can trace out a frontier of solutions that lead to maximum changes in

score for minimum cost. For example, suppose that we fix the maximum cost at 7.

Figure 3-3 shows that for a cost of 7, the maximum difference in score is 5.097, which
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Table 3.17: Change information for a digital camera.
Change δ1 δ2 δ3 δ4 δ5 δ6 δ7 δ8 δ9 δ10 Cost

1 Larger Battery · · · · · · · · · 50 2
2 Add 1 Megapixel 1 · · · · · · · · · 3
3 Better LCD · · · · · · · 0.5 · · 4
4 More Modes · · · · · · 1 · · · 4
5 Wider Angle · · 0.5 · · · · · 2 · 5
6 Add 2 Megapixels 2 · 0.5 · · · · · · · 5
7 Heavier Material · 1 · · · 1 · · · · 5
8 Better Video · · · 1 · · · · · · 6
9 Faster Response · · · · 0.5 · · · · · 6
10 Better Lens · · 0.5 1 · · · · · · 7
11 Fastest Response · · · · 0.5 1 · · · · 7
12 Most Modes · · 1 · 0.5 · 1 · · · 9

Table 3.18: Conflict sets (M = 6).
m Sm

1 {2, 6}
2 {5, 6, 10, 12}
3 {8, 10}
4 {9, 11, 12}
5 {7, 11}
6 {4, 12}

Table 3.19: Conflicts between changes.
Change Conflicts

1 Larger Battery ·
2 Add 1 Megapixel 6
3 Better LCD ·
4 More Modes 12
5 Wider Angle 6, 10, 12
6 Add 2 Megapixels 2, 5, 10, 12
7 Heavier Material 11
8 Better Video 10
9 Faster Response 11, 12
10 Better Lens 5, 6, 8, 12
11 Fastest Response 7, 9, 12
12 Most Modes 4, 5, 6, 9, 10, 11

corresponds to the single change “Better Lens.” Note that for a maximum cost of 8,

the best solution stays the same. That is, even if we were willing to spend up to 8,

the maximum difference in score would be achieved by the same solution as if we were

willing to spend only up to 7. These results address the first problem in Section 3.8.1.

Figure 3-4 addresses the second problem in Section 3.8.1. For instance, suppose that

we specify that the difference in score is at least 2. There are two ways to achieve

this difference with the minimum cost of 5, namely by the changes “Wider Angle,”

which corresponds to an actual score difference of 2.182, or “Add 2 Megapixels,”

which corresponds to a higher score difference of 3.339.

For large datasets, (3.13) and (3.14) provide an efficient way to generate the
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Figure 3-3: If we fix the maximum allowed
cost at 7 (dotted line), then the highest
possible change in score is 5.097 (one opti-
mum, indicated by a diamond).
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Figure 3-4: If we fix the minimum
allowed change in score at 2 (dotted
line), then the lowest possible cost is 5
(two optima, indicated by diamonds).

frontier without having to enumerate all possible solutions as we did in Figures 3-3

and 3-4. There may be multiple optima, but it is straightforward to find them by

iteratively solving (3.13) or (3.14), and adding a constraint in each iteration that

makes the previous optimum infeasible, until the optimal cost changes.

3.9 Summary

We have presented a new approach to reverse-engineering ranking models. The for-

mulation encodes a specific preference structure and categorical organization of the

products. Another contribution of our work is the introduction of evaluation mea-

sures that take into account the rank of a new product relative to the products that

have already been ranked. Finally, we showed how to use a reverse-engineered rank-

ing model to find a cost-effective means of modifying a current product so that the

modified product achieves a high rank.
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Chapter 4

MIO for Associative Classification

Our goal in this chapter is to develop classification models that are on par in terms

of accuracy with the top classification algorithms, yet are interpretable, or easily

understood, by humans. This work thus addresses a dichotomy in the current state-

of-the-art for classification: On the one hand, there are algorithms such as support

vector machines (SVM) [Vapnik, 1995] that are highly accurate but not interpretable;

for instance, trying to explain a support vector kernel to a medical doctor is not likely

to persuade him to use an SVM-based diagnostic system. On the other hand, there

are algorithms such as decision trees (CART) [Breiman et al., 1984] that are highly

interpretable but not as accurate; the popularity of decision trees is primarily due to

their intutiveness.

Our models are designed to be interpretable from multiple perspectives. First, the

models are designed to be convincing : for each prediction, the algorithm also provides

the reasons for why this particular prediction was made, highlighting exactly which

data were used to make that prediction. To achieve this, we use “association rules”

to build the models into “decision lists,” that is, ordered sets of rules. The second

way our models are interpretable involves their size: these models are designed to

be concise. Specifically, our formulations include two types of regularization. The

first encourages rules to have small left-hand-sides, so that the reasons given for each

prediction are as sparse as possible. The second encourages the decision list to be

shorter. That is, the regularization essentially pulls the default rule (the rule that
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applies if none of the rules above it apply) as high as possible in the list. There is

no single correct way to measure interpretability, as it is necessarily subjective. Nev-

ertheless, psychologists have long studied human ability to process data, and have

shown that humans can simultaneously process only a handful of cognitive entities,

and are able to estimate relatedness of only a few variables at a time [e.g. Miller,

1956, Jennings et al., 1982]. We aim in this work to construct a convincing and con-

cise model that captures relationships between variables, which limits the reasoning

required by humans to understand and believe its predictions. These models allow

predictions to more easily be communicated in words, rather than in equations.

The principal methodology we use in this work is mixed integer optimization

(MIO), which helps our classification algorithm achieve high accuracy. Rule learn-

ing problems suffer from combinatorial explosion, in terms of both searching through

a database for rules and managing a massive pile of potentially interesting rules. A

dataset with even a modest number of items can contain thousands of rules, thus mak-

ing it difficult to find useful ones. Moreover, for a set of L rules, there are L! ways to

order them into a decision list. On the other hand, MIO solvers are designed precisely

to handle combinatorial problems, and the application of MIO to rule learning prob-

lems is reasonable given the discrete nature of rules. We create MIO formulations for

both the problem of mining rules and the problem of learning to rank them, and our

experiments show predictive accuracy on a collection of datasets at approximately

the same level as some of the top current algorithms in machine learning, including

support vector machines with Gaussian kernels and boosted decision trees.

In Section 4.1, we discuss related work. In Section 4.2, we state our notation and

derive MIO formulations for association rule mining. In Section 4.3, we present a

learning algorithm, also an MIO formulation, that uses the generated rules to build a

classifier. In Section 4.4, we show results on classification accuracy, and in Section 4.5,

we demonstrate the interpretability of our classifiers. We conclude in Section 4.6.
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4.1 Related Work

Association rule mining was introduced by Agrawal et al. [1993] to aid market-basket

analysis, the purpose of which was to discover sets of items, or itemsets, that were

often purchased together, such as the well-known (though probably fictitious) corre-

lation between sales of beer and diapers [Büchter and Wirth, 1998]. To help increase

store profit and customer satisfaction, these easy-to-understand patterns could be

used to guide the management of store layout, customer segmentation, and items for

sale. Consider the rule {i, j} ⇒ k, where s% of customers purchased items i, j, and k;

and c% of customers who purchased items i and j also purchased item k. In this case,

{i, j} is the body of the rule, k is the head, s is the support, and c is the confidence. In

general, the most challenging part of rule mining is to first generate all itemsets with

support exceeding a specified threshold, called frequent itemsets. Frequent itemsets

have a downward closure property, that is, any subset of a frequent itemset must

also be frequent. Even so, the problem of counting the number of maximal frequent

itemsets, or itemsets that are not subsets of other frequent itemsets, is #P-complete,

suggesting that the problem of enumerating all frequent itemsets can in general be

hard [Yang, 2004]. Since the introduction of the Apriori method by Agrawal and

Srikant [1994], researchers have proposed many algorithms for frequent pattern min-

ing that apply various heuristic techniques to traverse the search space, which grows

exponentially with the number of items in the database [Han et al., 2007, Hipp et al.,

2000, Goethals, 2003].

Frequent itemset generation often leads to an overwhelming number of rules, mak-

ing it difficult to distinguish the most useful rules. To make sense of such an enormous

collection of rules, users typically rank them by a measure of “interestingness,” which

can be defined in many different ways. There is a large body of literature on interest-

ingness measures, such as lift, conviction, Laplace, and gain [review articles include

those of Tan and Kumar, 2000, McGarry, 2005, Geng and Hamilton, 2006]. The ex-

istence of so many interestingness measures introduces another problem of how to

select an interestingness measure for a particular task. Bayardo and Agrawal [1999]
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showed that if the head of the rule is fixed, then a number of metrics, including those

listed above, are optimized by rules that lie along the upper support-confidence bor-

der, where a rule on this border has the highest confidence among rules with equal or

higher support. They proposed an algorithm to mine only this border, which indeed

produces a reduced set of rules. In this paper, we extend the idea of an optimal

border to general rules, not just the case of rules with fixed heads, and we use MIO

to find the border.

Association rules were originally designed for data exploration, and later associa-

tive classification developed as a framework to use the rules for classification, with

algorithms such as CBA, CMAR, and CPAR [Liu et al., 1998, Li et al., 2001, Yin

and Han, 2003, Simon et al., 2011]. Reviews of the different approaches are given by

Thabtah [2007], Rückert [2008], and Vanhoof and Depaire [2010]. Methods to build a

classifier using a sorted set of association rules fall into two categories: those that pre-

dict based on multiple rules, and those that predict based on a single rule in a ranked

list of rules. The first category uses more information by classifying based on a sort of

majority vote of rules, but typically has two major disadvantages: first, it ignores the

dependency between rules, so even two rules that are almost exactly the same have

two separate votes instead of one; and second, the model loses interpretability by com-

bining rules together. Boosted decision trees share a related problem–they no longer

have the interpretability of single decision trees. Examples of rule ensemble classi-

fiers are in Friedman and Popescu [2008] and Meinshausen [2010]. These models are

similar to the Logical Analysis of Data (LAD) model [Boros et al., 2000], though the

LAD model uses only rules that have confidence equal to one, so that even rules with

confidence 0.99 are discarded, which could lead to overfitting. The second category

of sorted-rule-based classification algorithms produces decision lists, and are related

to the “teleo-reactive programs” introduced by Nilsson [1994]. These classifiers are

simple to understand and use the highest ranked rules for prediction. However, if the

list is not properly ordered, it may not yield an accurate classifier. There is a small

literature of theoretical work on decision lists [see Rivest, 1987, Klivans and Servedio,

2006, Sokolova et al., 2003, Anthony, 2005, Long and Servedio, 2007, Marchand and
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Sokolova, 2005, Rudin et al., 2011]. Decision lists can be created by ordering rules

according to an interestingness measure. Alternatively, the ordering of rules can be

learned from data, which is the approach we take here. Learning the rule list has the

potential to be substantially more accurate in terms of misclassification error than

ranking rules by an arbitrary choice of interestingness measure. As far as we know,

there are no other mathematical programming approaches to creating decision lists

in the literature.

4.2 Mining Optimal Association Rules

In this section, we describe an MIO method to generate the rules that form the

building blocks for the classifier. First, we derive constraints that characterize the

full set of possible rules for a database. Then, we present an MIO algorithm to find

a set of general rules. Finally, we address the special case of mining rules for binary

classification, for which the rules have a particular form.

4.2.1 Interestingness and the Frontier

We use the following standard notation: let I = {1, . . . , d} be a set of items, and

X ⊆ I be an itemset. Let D be a database of itemsets. Each itemset or row in the

database is called a transaction. An association rule has the form X ⇒ Y , where

X, Y ⊆ I and X ∩ Y = ∅.
Suppose there are n transactions in the database D, and let ti ∈ {0, 1}d represent

transaction i:

tij = 1[transaction i includes item j], 1 ≤ i ≤ n, 1 ≤ j ≤ d.

The ti are data. Now we introduce the decision variables. Let b, h ∈ {0, 1}d represent

the body and head of a given rule X ⇒ Y . That is, for j = 1, . . . , d, let

bj = 1[j∈X] and hj = 1[j∈Y ].
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We also use decision variables xi, yi, and zi, for i = 1, . . . , n, where

xi = 1[transaction i includes X ],

yi = 1[transaction i includes Y ],

zi = 1[transaction i includes X and Y ].

The following constraints define the space P of possible association rules. Each con-

straint is explained below.

bj + hj ≤ 1, ∀j, (4.1)

xi ≤ 1 + (tij − 1)bj , ∀i, j, (4.2)

xi ≥ 1 + (ti − ed)
T b, ∀i, (4.3)

yi ≤ 1 + (tij − 1)hj , ∀i, j, (4.4)

yi ≥ 1 + (ti − ed)
Th, ∀i, (4.5)

zi ≤ xi, ∀i, (4.6)

zi ≤ yi, ∀i, (4.7)

zi ≥ xi + yi − 1, ∀i, (4.8)

bj , hj ∈ {0, 1}, ∀j, (4.9)

0 ≤ xi, yi, zi ≤ 1, ∀i. (4.10)

Note that ed is the d-vector of ones. Since an item cannot be in both the body and

head of a rule (X ∩Y = ∅), b and h must satisfy (4.1). To understand (4.2), consider

the two cases bj = 0 and bj = 1. If bj = 0, then the constraint is just xi ≤ 1, so the

constraint has no effect. If bj = 1, then the constraint is xi ≤ tij . That is, if bj = 1

(item j is in X) but tij = 0 (item j is not in transaction i), then xi = 0. This set

of constraints implies that xi = 0 if transaction i does not include X . We need (4.3)

to enforce that xi = 1 if transaction i includes X . Note that tTi b is the number of

items in the intersection of transaction i and X , and eTd b is the number of items in X .
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Table 4.1: The body X of the rule is in transaction i since (4.2) and (4.3) are satisfied.

j
1 2 3 4 5

ti (1 if item j in transaction i, 0 otherwise) 1 0 1 1 0

b (1 if item j in body of rule, 0 otherwise) 1 0 0 1 0

Constraint (4.3) is valid because

tTi b =

d
∑

j=1

tijbj ≤
d
∑

j=1

bj = eTd b,

where equality holds if and only if transaction i includes X and otherwise tTi b ≤
eTd b−1. Table 4.1 helps to clarify (4.2) and (4.3). Constraints (4.4) and (4.5) capture

the yi in the same way that (4.2) and (4.3) capture the xi. The zi are 1 if and only

if xi = yi = 1, which is captured by (4.6) through (4.8). Constraints (4.9) and (4.10)

specify that b and h are restricted to be binary, while the values of x, y, and z are

restricted only to be between 0 and 1.

Each point in P corresponds to a rule X ⇒ Y , where X = {j : bj = 1} and

Y = {j : hj = 1}. There are 2d binary variables, 3n continuous variables, and

d + 2nd + 5n constraints. Computationally, it is favorable to reduce the number of

integer variables, and here we explain why x, y, and z are not also restricted to be

integral. There are two cases when deciding whether X is in transaction i. If it is,

then (4.3) says xi ≥ 1, which implies xi = 1. If it is not, then there exists j such

that tij = 0 and bj = 1, so (4.2) says xi ≤ 0 for some j, which implies xi = 0. Thus,

in either case, xi is forced to be an integer, regardless of whether we specify it as an

integer variable. The argument is similar for yi. For zi, there are two cases when

deciding whether X and Y are both in transaction i. If they are, then xi = yi = 1,

so (4.8) says zi ≥ 1, which implies zi = 1. If they are not, then either (4.6) or (4.7)

says zi ≤ 0, which implies zi = 0. Thus, zi is also always integral.

The number of feasible points in P grows exponentially in the number of items

d = |I|. It includes the full set of association rules, which is many more than we

usually need or wish to collect. In order to capture only the potentially interesting
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Table 4.2: Interestingness measures.

Measure Definition

Coverage P (X) sX
Prevalence P (Y ) sY
Support P (X ∪ Y ) s

Confidence/Precision P (Y |X)
s

sX
Recall P (X|Y )

s

sY
Accuracy P (X ∪ Y ) + P (Xc ∪ Y c) 1− sX − sY + 2s

Lift/Interest
P (X ∪ Y )

P (X)P (Y )

s

sXsY

Conviction
P (X)P (Y c)

P (X ∪ Y c)

1− sY
1− s/sX

Laplace Correction
nP (X ∪ Y ) + 1

nP (X) + k
, k is number of classes

ns+ 1

nsX + k
Piatetsky-Shapiro P (X ∪ Y )− P (X)P (Y ) s− sXsY

rules, we judge each rule according to three of its fundamental properties, namely

sX =
1

n

n
∑

i=1

xi, sY =
1

n

n
∑

i=1

yi, and s =
1

n

n
∑

i=1

zi,

called coverage, prevalence, and support respectively. When we refer to these measures

for a particular rule r, we use the notation sX(r), sY (r), and s(r); we omit the

parenthetical “(r)” when referring to them in general. Using sX , sY , and s, we

can capture many interestingness measures in addition to coverage, prevalence, and

support, some of which are shown in Table 4.2. The notation P (A) means the fraction,

or empirical probability, of transactions containing itemset A.

We define a partial order ≤p over the set of possible of rules. Given two rules r

and r∗, we have r ≤p r
∗ if and only if:

sX(r) ≥ sX(r∗), sY (r) ≥ sY (r∗), and s(r) ≤ s(r∗). (4.11)

Moreover, r =p r∗ if and only if sX(r) = sX(r∗), sY (r) = sY (r∗), and s(r) = s(r∗).

In words, “r ≤p r∗” means that the coverage and prevalence of r∗ are no greater

than that of r, but the support of r∗ is at least that of r. For intuition, consider the

interestingness measure of confidence, which is the empirical probability of Y given X .
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Table 4.3: Number of transactions containing certain items.

Case 1 Case 2

{chips} 8 10
{cookies} 8 8

{chips, guacamole} 7 5
{cookies, milk} 5 5

Suppose we have two rules—a: {chips}⇒{guacamole} and b: {cookies}⇒{milk}—
and refer to the data in Table 4.3. In Case 1, we have:

sX(a) = sX(b) = 8, s(a) = 7, and s(b) = 5,

so the two rules have equal coverage, but the support is higher for a. The confidence

of a and b are 7
8

and 5
8

respectively, thus a dominates b in confidence. In Case 2, we

have:

sX(a) = 10, sX(b) = 8, and s(a) = s(b) = 5,

so the rules have equal support, but the coverage is lower for b. The confidence of a

and b are 5
10

and 5
8

respectively, thus b dominates a. This example shows that higher

support and lower coverage increase the confidence of a rule; for other measures, lower

prevalence also often increases the interestingness.

Let F ∗ be the set of rules that are not dominated by any other rules, that is,

F∗ = {r : There does not exist any r̄ such that r <p r̄.}.

The rules r ∈ F∗ fall along a three dimensional frontier in sX , sY , and s. Many

interestingness measures, including those in Table 4.2, increase with decreasing sX

(holding sY and s constant), decreasing sY (holding sX and s constant), and increas-

ing s (holding sX and sY constant). Thus, the rules that optimize each of these

measures are in F∗. Since we do not wish to generate all possible rules, we choose

to focus on mining this particular frontier because it contains the most “interesting”

rules according to a variety of measures.
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4.2.2 MIO Algorithm for General Association Rule Mining

We can find each rule on the frontier F∗ corresponding to ≤p by putting upper bounds

on both sX and sY , and then maximizing s. We vary the bounds over all possible

values to produce the entire frontier. In particular, Formulation (4.12) maximizes

the “scaled support” (n · s) for a certain choice s̄X and s̄Y , which denote the user-

specified upper bounds on the “scaled coverage” (n · sX) and “scaled prevalence”

(n · sY ) respectively.

max
b,h,x,y,z

n
∑

i=1

zi − Rgen xy

(

n
∑

i=1

xi +
n
∑

i=1

yi

)

− Rgen bh

(

d
∑

j=1

bj +
d
∑

j=1

hj

)

(4.12)

s.t.

n
∑

i=1

xi ≤ s̄X ,

n
∑

i=1

yi ≤ s̄Y ,

(b, h, x, y, z) ∈ P.

The first term in the objective is the scaled support. The second set of terms
∑n

i=1 xi+
∑n

i=1 yi correspond to the coverage sX and prevalence sY ; if there are multiple rules

with optimal support, we want those with smaller coverage and prevalence since

otherwise we would be generating rules not on the frontier. The third set of terms
∑d

j=1 bj +
∑d

j=1 hj are for regularization, and correspond to the sparsity of the rule;

if there are multiple rules that maximize s and have equal sX and sY , we want those

with smaller bodies and heads, that is, more zeros in b and h. The parameters Rgen xy

and Rgen bh control the weight of these terms in the objective, where the former

ensures that we properly trace out the frontier, and the latter could potentially trade

off sparsity for closeness to the frontier.

Solving (4.12) once for each possible pair (s̄X , s̄Y ) does not yield the entire frontier

since there may be multiple optimal rules at each point on the frontier. To find other

optima, we add constraints making each solution found so far infeasible, so that

they cannot be found again when we re-solve. Specifically, for each pair (s̄X , s̄Y ), we
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iteratively solve the formulation as follows: Let (h∗, b∗) be the first optimum we find

for (4.12). In each iteration, we add the constraint

∑

j:b∗j=0

bj +
∑

j:b∗j=1

(1− bj) +
∑

j:h∗

j=0

hj +
∑

j:h∗

j=1

(1− hj) ≥ 1 (4.13)

to the formulation. This constraint says that in either the vector b or the vector h, at

least one of the components must be different from in the previous solution; that is,

at least one of the zeros must be one or one of the ones must be zero. The previous

solution bj = b∗j and hj = h∗
j is infeasible since it would yield 0 ≥ 1 in (4.13). After

adding this constraint, we solve again. If the optimal value of s̄ =
∑n

i=1 zi decreases,

then we exit the loop. Otherwise, we have a new optimum, so we repeat the step

above to generate another constraint and re-solve.

4.2.3 MIO Algorithm for Associative Classification

As our main goal is to use association rules to construct a decision list for binary

classification, we show in this section how to use MIO to mine rules for this purpose.

In this case, the rules are of a specific form, either X ⇒ 1 or X ⇒ −1. That is, we

prespecify the heads Y of the rules to be a class attribute, 1 or -1. Our rule generation

algorithm mines two separate frontiers of rules, one frontier for each class.

Suppose we want to generate rules on the frontier for class y ∈ {−1, 1}. Let

S = {i : transaction i has class label y}. Then s = 1
n

∑

i∈S xi. Since sY = |S| is

equal for all rules of interest, we simplify the partial order (4.11) so that given two

rules r and r∗, we have r ≤p r
∗ if and only if:

sX(r) ≥ sX(r∗) and s(r) ≤ s(r∗).

Also, r =p r∗ if and only if sX(r) = sX(r∗) and s(r) = s(r∗). The correspond-

ing two dimensional frontier in sX and s can be found by upper bounding sX and

maximizing s. Since Y is fixed, we do not need the h, y, or z variables from (4.12).
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Formulation (4.14) finds a rule with maximum s for a given upper bound s̄X on n ·sX .

max
b,x

∑

i∈S
xi − Rgen x

n
∑

i=1

xi − Rgen b

d
∑

j=1

bj (4.14)

s.t.
n
∑

i=1

xi ≤ s̄X ,

xi ≤ 1 + (tij − 1)bj , ∀i, j,

xi ≥ 1 + (ti − ed)
T b, ∀i,

bj ∈ {0, 1}, ∀j,

0 ≤ xi ≤ 1, ∀i.

The first term in the objective corresponds to support, and the others correspond

to coverage and sparsity, similar to the terms in (4.12). Solving (4.14) once for each

value of s̄X does not yield the entire frontier since there may be multiple optima.

Analogous to the general case, we solve the formulation iteratively: Start by setting

s̄X = n since the largest possible value of the scaled coverage is n. Let b∗ be the first

optimum. Add the “infeasibility constraint”

∑

j:b∗j=0

bj +
∑

j:b∗j=1

(1− bj) ≥ 1 (4.15)

to the formulation, and solve again. If we find another optimum, then we repeat

the step above to generate another constraint and re-solve. If the optimal value of

s̄ =
∑

i∈S xi decreases, then we set the upper bound on s̄X to a smaller value and

iterate again. Note that we can set this new value to be the minimum of
∑n

i=1 xi and

s̄X − 1 (previous bound minus one); we know that no rule on the remainder of the

frontier has scaled coverage greater than
∑n

i=1 xi, so using this as the bound provides

a tighter constraint than using s̄X − 1 whenever
∑n

i=1 xi < s̄X − 1.

Thus our rule generation algorithm, called “RuleGen,” generates the frontier, one

rule at a time, from largest to smallest coverage. The details are shown in Figure 4-1.

RuleGen allows optional minimum coverage thresholds mincov−1 and mincov1 to be
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Set mincov−1, mincov1, iter lim.

For Y in {-1,1}
Initialize sX ← n, iter ← 1, s ← 0.

Initialize collection of rule bodies RY = ∅.
Repeat

If iter = 1 then

Solve (4.14) to obtain rule X⇒ Y.

s←
∑

i∈S
x[i]

iter← iter+ 1

RY ←RY ∪ X
Add new constraint (4.15).

If iter ≤ iter lim then

Solve (4.14) to obtain rule X⇒ Y.

If
∑

i∈S
x[i] < s then

sX← min

(

n
∑

i=1

x[i], sX− 1

)

iter← 1

Else iter← iter+ 1

Else

sX← sX− 1

iter← 1

While sX ≥ n · mincovY

Figure 4-1: RuleGen algorithm. (Note sX=s̄X and s=s̄.)

imposed on each of the classes of rules. Also, iter lim limits the number of times we

iterate the procedure above for a fixed value of sX with adding (4.15) between iterates.

To find all rules on the frontiers, set mincov−1 = mincov1 = 0 and iter lim = ∞.

Figure 4-2 shows a fictitious example to illustrate the steps of the algorithm:

a. Suppose we are constructing the frontier for data with n = 100. Initialize sX

to n and solve (4.14). Assume the first solution has
∑

i∈S xi = 67. Then the

algorithm adds the first rule to RY and sets s to 67. It adds the infeasibil-

ity constraint (4.15) to (4.14) and re-solves. Assume the new rule still has
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Figure 4-2: Illustrative example to demonstrate the steps in the RuleGen algorithm.

∑

i∈S xi = 67, so the algorithm adds this rule to RY, adds another infeasibility

constraint to (4.14) and re-solves.

b. Assume the new rule has
∑

i∈S xi = 65 and
∑n

i=1 xi = 83 (corresponding to the

support and coverage respectively). Since
∑

i∈S xi decreased, the algorithm sets

sX to min (
∑n

i=1 xi, sX− 1) = min(83, 99) = 83 before re-solving to obtain the

next rule on the frontier and adding it to RY.

c. This process continues until the minimum coverage threshold is reached.

4.3 Building a Classifier

Suppose we have generated L rules, where each rule ℓ is of the form Xℓ ⇒ −1 or

Xℓ ⇒ 1. Our task is now to rank them to build a decision list for classification.

Given a new transaction, the decision list classifies it according to the highest ranked

rule ℓ such that Xℓ is in the transaction, or the highest rule that “applies” to the

transaction. In this section, we derive an empirical risk minimization algorithm using

MIO that yields an optimal ranking of rules. That is, the ranking returned by our

algorithm optimizes the classification accuracy on a training sample.

We always include in the set of rules to be ranked two “null rules:” ∅ ⇒ −1,

which predicts class -1 for any transaction, and ∅ ⇒ 1, which predicts class 1 for any

transaction. In the final ranking, the higher of the null rules corresponds effectively to

the bottom of the ranked list of rules; all examples that reach this rule are classified

by it, thus the class it predicts is the default class. We include both null rules in the

set of rules because we do not know which of them would serve as the better default,
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Table 4.4: Transaction i is classified as -1 (highest rule that applies predicts -1).

Transaction i ci
{1 0 1 1 0} -1

Ranked rules piℓ rℓ uiℓ
{0 1 0 0 1} ⇒ -1 0 10 0
{0 1 1 0 0} ⇒ 1 0 9 0
{1 0 1 0 0} ⇒ -1 -1 8 1
{0 0 0 0 0} ⇒ 1 1 7 0

...
...

...
...

{0 0 1 1 0} ⇒ -1 -1 1 0

that is, which would help the decision list to achieve the highest possible classification

accuracy; our algorithm learns which null rule to rank higher.

We use the following parameters:

ai = true class attribute of transaction i,

piℓ =



























1 if rule ℓ predicts class 1 for transaction i,

−1 if rule ℓ predicts class −1 for transaction i,

0 if rule ℓ does not apply to transaction i,

viℓ = 1[Xℓ is in transaction i] = |piℓ|,

and decision variables:

ci = predicted class of transaction i, rℓ = rank of rule ℓ,

uiℓ = 1[rule ℓ is the rule that predicts the class of transaction i].

Then ci =
L
∑

ℓ=1

piℓuiℓ, where uiℓ ∈ {0, 1} ∀i, ℓ and
L
∑

ℓ=1

uiℓ = 1. (4.16)

In words, for a particular transaction i, uiℓ = 0 for all except one rule, which is the

one among those that apply with the highest rank rℓ. Table 4.4 shows an example

of these parameters (piℓ) and variables (rℓ, uiℓ, ci) for a particular transaction to be

classified by a given decision list. The formulation to build the optimal classifier is:
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max
r,r∗,g,u,s,α,β

n
∑

i=1

L
∑

ℓ=1

p̃iℓuiℓ + Rrankr∗ (4.17)

s.t.
L
∑

ℓ=1

uiℓ = 1, ∀i, (4.18)

gi ≥ viℓrℓ, ∀i, ℓ, (4.19)

gi ≤ viℓrℓ + L(1 − uiℓ), ∀i, ℓ, (4.20)

uiℓ ≥ 1− gi + viℓrℓ, ∀i, ℓ, (4.21)

uiℓ ≤ viℓ, ∀i, ℓ, (4.22)

rℓ =
L
∑

k=1

ksℓk, ∀ℓ, (4.23)

L
∑

k=1

sℓk = 1, ∀ℓ, (4.24)

L
∑

ℓ=1

sℓk = 1, ∀k, (4.25)

r∗ ≥ rA, (4.26)

r∗ ≥ rB, (4.27)

r∗ − rA ≤ (L− 1)α, (4.28)

rA − r∗ ≤ (L− 1)α, (4.29)

r∗ − rB ≤ (L− 1)β, (4.30)

rB − r∗ ≤ (L− 1)β, (4.31)

α + β = 1, (4.32)

uiℓ ≤ 1− r∗ − rℓ

L− 1
, ∀i, ℓ, (4.33)

α, uiℓ, sℓk ∈ {0, 1}, ∀i, ℓ, k,

0 ≤ β ≤ 1,

rℓ ∈ {1, 2, . . . , L}, ∀ℓ.

As in previous chapters, we use (4.17) to refer to the entire MIO formulation and

not just the objective. The first term in the objective corresponds to accuracy: Since
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aici is 1 if transaction i is correctly classified and -1 otherwise, the number of correct

classifications is
n
∑

i=1

(

aici + 1

2

)

=
1

2

(

n +

n
∑

i=1

aici

)

.

Thus, using (4.16) and letting p̃iℓ = aipiℓ, we want to maximize

n
∑

i=1

aici =

n
∑

i=1

L
∑

ℓ=1

p̃iℓuiℓ.

Constraint (4.18) enforces that for each i, only one of the uiℓ variables equals one while

the rest are zero. To capture the definition of uiℓ, we use an auxiliary variable gi, which

represents the rank of highest the applicable rule for transaction i. Through (4.19)

and (4.20), there is only one ℓ such that uiℓ = 1 is feasible, namely the ℓ corresponding

to the highest value of viℓrℓ. Constraints (4.21) and (4.22) are not necessary but help

improve the linear relaxation and thus are intended to speed up computation. We

assign the integral ranks rℓ using (4.23) through (4.25), which imply sℓk = 1 if rule ℓ

is assigned to rank k. The matching between ranks and rules is one-to-one.

We add regularization in order to favor a shorter overall list of rules. That is, our

regularizer pulls the rank of the higher null rule as high as possible. If rA is the rank

of ∅ ⇒ −1 and rB is the rank of ∅ ⇒ 1, then we add r∗ to the objective function,

where r∗ is the maximum of rA and rB. The regularization coefficient of r∗ in the

objective is Rrank. We capture r∗ using (4.26) through (4.32): Either α = 1 and β = 0

or β = 1 and α = 0. If α = 1, then r∗ = rA. If β = 1, then r∗ = rB. Since we

are maximizing, r∗ equals the higher of rA and rB. Note that if α is binary, then β

need not be binary because the constraint α + β = 1 forces integral values for β. If

the rank rℓ of rule ℓ is below r∗, then uiℓ = 0 for all i, so (4.33) is also valid, and we

include it to help speed up computation.

The Ordered Rules for Classification (ORC) algorithm consists of generating rules

using RuleGen, computing the piℓ and viℓ, and then solving (4.17). The rule generation

step could also be replaced by a different method, such as Apriori [Agrawal and

Srikant, 1994]. We use RuleGen in the experiments.
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4.4 Computational Results

We used various publicly available datasets from the UCI Machine Learning Reposi-

tory [Asuncion and Newman, 2007], so our results can be easily compared with those

of other works. For each dataset, we divided the data evenly into three folds and used

each fold in turn as a test set, training each time with the other two folds. The train-

ing and test accuracy were averaged over these three folds. We compared the ORC

algorithm with four other classification methods—logistic regression [see Hastie et al.,

2001, Dreiseitl and Ohno-Machado, 2002], Support Vector Machines (SVM) [Vapnik,

1995, Burges, 1998], Classification and Regression Trees (CART) [Breiman et al.,

1984], and AdaBoost [Freund and Schapire, 1995]—all run using R 2.8.1. We used

the radial basis kernel and regularization parameter C = 1 for SVM, and decision

trees as base classifiers for AdaBoost. The ORC algorithm was implemented using

ILOG AMPL 11.210 with the Gurobi solver.1

Here we explain how we chose the parameter settings for the ORC experiments. In

generating rules with Formulation (4.14), we wanted to ensure that Rgen x was small

enough that the solver would never choose to decrease the scaled support
∑

i∈S xi

just to decrease the scaled coverage
∑n

i=1 xi. That is, Rgen x should be such that we

would not sacrifice maximizing s for lower sX ; this required only that this parameter

be a small positive constant, so we chose Rgen x = 0.1
n

. Similarly, we did not want to

sacrifice maximizing s or lowering sX for greater sparsity, so we chose Rgen b = 0.1
nd

.

In order to not sacrifice classification accuracy for a shorter decision list in ranking

the rules with Formulation (4.17), we chose Rrank = 1
L

. We also used a minimum

coverage threshold of 0.05, and iterated five times (mincov−1 = mincov1 = 0.05,

iter lim = 5); these choices were based on preliminary experiments on the datasets

to determine parameters that would yield in a reasonable number of rules.

Table 4.5 shows the dataset sizes as well as average number of rules generated by

RuleGen and runtimes in seconds for our algorithms; the runtimes for other methods

1For SPECT, Haberman, Votes, and CarEval, we used Gurobi 4.5.2 on a computer with an Intel
quad core Xeon E5687 3.60GHz processor and 48GB of RAM. For the other datasets, we used Gurobi
3.0.0 on a computer with two Intel quad core Xeon E5440 2.83GHz processors and 32GB of RAM.
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were negligible. We generally terminated the solver before (4.17) solved to provable

optimality; see the appendix at the end of this chapter for details on the experiments.

Table 4.6 shows the average training and test classification accuracy (± one standard

deviation) for each dataset. Bold indicates the highest average in the row. These

results show that in terms of accuracy, the ORC algorithm is on par with top methods

such as SVM or boosted decision trees. In fact, in an extensive empirical comparison of

machine learning algorithms, Caruana and Niculescu-Mizil [2006] found that boosted

decision trees performed best overall.

Table 4.5: Dataset sizes and for each dataset: average number of rules generated by
RuleGen (for both classes), Time1 = average time to generate all rules using RuleGen
(seconds), and Time2 = average time to rank rules using ORC algorithm (seconds).

Dataset n |S| d #Rules Time1 Time2

SPECT 267 212 22 145 72 8862
Haberman 306 225 10 15 15 6
MONK1 432 216 17 55 101 247
MONK2 432 142 17 45 124 5314
MONK3 432 228 17 58 100 731
Votes 435 267 16 266 108 21506
B.Cancer 683 239 27 198 616 12959
Mammo 830 403 25 58 671 3753
TicTac 958 626 27 53 1241 4031
CarEval 1728 518 21 58 706 7335

*(4.17) solved to provable optimality for MONK1 and MONK3

4.5 Interpretability

Interpretability is a subjective matter, but we aim to demonstrate that the ORC

classifier performs well in terms of being easy to understand. We give examples

using a few of the datasets from Section 4.4. For each dataset, we take the rules from

training on Folds 1 and 2 of the data. Classifiers generated by CART are interpretable

because of their decision tree structure. The other methods for classification are not

as easily interpreted. For example, the logistic regression model is

p =
1

1 + e−β0+βT t
,
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Table 4.6: Classification accuracy (averaged over three folds).
Dataset LogReg SVM CART AdaBoost ORC

SPECT train 0.8783± 0.0399 0.8633 ± 0.0366 0.8390 ± 0.0227 0.8764 ± 0.0149 0.8970± 0.0471
test 0.7978± 0.0297 0.8464± 0.0619 0.7828 ± 0.0425 0.8202 ± 0.0297 0.7753 ± 0.0389

Haberman train 0.7712± 0.0247 0.7876± 0.0221 0.7680 ± 0.0221 0.7761 ± 0.0123 0.7680 ± 0.0242
test 0.7582± 0.0442 0.7386 ± 0.0204 0.7418 ± 0.0453 0.7418 ± 0.0226 0.7582± 0.0442

MONK1 train 0.7523± 0.0053 0.9907 ± 0.0080 0.9282 ± 0.0040 1 1

test 0.7454± 0.0106 0.9537 ± 0.0424 0.8843 ± 0.0212 1 1

MONK2 train 0.6470± 0.0256 0.6736 ± 0.0035 0.7500 ± 0.0284 0.7523 ± 0.0106 0.8299± 0.0217
test 0.6019± 0.0526 0.6713 ± 0.0145 0.6690 ± 0.0729 0.6505 ± 0.0395 0.7338± 0.0356

MONK3 train 1 0.9861 ± 0.0104 1 1 1

test 1 0.9722 ± 0.0069 1 1 1

Votes train 0.9816± 0.0190 0.9747 ± 0.0020 0.9598 ± 0.0105 0.9724 ± 0.0103 0.9747 ± 0.0072
test 0.9586± 0.0276 0.9563 ± 0.0080 0.9540 ± 0.0159 0.9563 ± 0.0040 0.9563 ± 0.0080

B.Cancer train 0.9788± 0.0121 0.9846± 0.0022 0.9561 ± 0.0110 0.9692 ± 0.0134 0.9766 ± 0.0108
test 0.9502± 0.0417 0.9619± 0.0142 0.9488 ± 0.0091 0.9619± 0.0268 0.9532 ± 0.0091

Mammo train 0.8482± 0.0136 0.8687± 0.0088 0.8422 ± 0.0076 0.8560 ± 0.0089 0.8536 ± 0.0165
test 0.8374± 0.0249 0.8217 ± 0.0245 0.8301 ± 0.0217 0.8422± 0.0265 0.8337 ± 0.0202

TicTac train 0.9833± 0.0080 0.9494 ± 0.0133 0.9348 ± 0.0047 0.9937 ± 0.0027 1

test 0.9823± 0.0148 0.9165 ± 0.0262 0.8873 ± 0.0061 0.9750 ± 0.0062 1

CarEval train 0.9580± 0.0027 0.9821 ± 0.0018 0.9659 ± 0.0035 0.9962± 5e-04 0.9598 ± 0.0093
test 0.9485± 0.0027 0.9728 ± 0.0066 0.9618 ± 0.0046 0.9907± 0.0044 0.9508 ± 0.0036

where p is the probability that the class of transaction t is 1. The SVM model is a

hyperplane that maximizes the margin between the hyperplane and the closest point

to it from both classes; by using kernels, we can raise the dimension of the model

and achieve high accuracy, but not interpretability. Though there is work devoted to

interpreting SVMs, the result is usually a smaller set of nonlinear features, still within

a linear combination [Sonnenburg et al., 2005]. AdaBoost combines weak classifiers—

decision trees in our experiments—by minimizing an exponential loss function; thus,

even though the base classifiers may be interpretable, the final model is not.

4.5.1 Haberman’s Survival

In this dataset, each “transaction” represents a patient who underwent surgery for

breast cancer. We split the two original features representing age, and number of

positive axillary lymph nodes detected, each into five bins, so that our final dataset

has ten binary features. RuleGen generated six rules predicting that the patient died

within five years (<5) and ten rules predicting that the patient survived at least five

years (5+). The classifier constructed by the ORC algorithm has four rules ranked

above the highest null rule, that is, it has five rules. This is shown in Table 4.7. This

simple classifier essentially implies the following:
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Table 4.7: ORC classifier for Haberman’s Survival data, predict 5+ (survived 5+ yrs)
or <5 (died in <5 yrs).

Rule Patient Age Number of Nodes Y s̄ s̄X
30s 40s 50s 60s >69 0 1-9 10-19 20-29 >29

1 X 5+ 80 93
2 X 5+ 53 83

3 X <5 18 55
4 X <5 20 71

5 5+ 147 204

1. If the patient has at most nine positive axillary nodes, then predict “5+.”

2. If she has more than nine nodes and is in her 40s or 50s, then predict “<5.”

3. Otherwise, predict “5+.”

For comparison, CART generates the classification tree shown in Figure 4-3. Denoting

by P (x, 5+) the probability of patient x being in class “5+,” the classifier implies:

1. If patient x has zero nodes and is not in her 40s, then P (x, 5+) = 0.91.

2. If patient x has zero nodes and is in her 40s, then P (x, 5+) = 0.71.

3. If patient x has more than zero nodes and is in her 30s, then P (x, 5+) = 0.91.

4. If patient x is not in her 30s, and has one to nine or more than nineteen nodes,

then P (x, 5+) = 0.61.

5. If patient x is not in her 30s and has ten to nineteen nodes, then P (x, 5+) = 0.33.

We typically use a threshold probability of 0.5 for classification, in which case the tree

can be summarized as: if the patient is not in her 30s and has ten to nineteen nodes,

then predict “< 5;” otherwise, predict “5+.” This is similar to the ORC classifier.

4.5.2 MONK’s Problem 1

There are 17 binary features in this dataset, derived from the following six integer-

valued features.

a1 = 1, 2, 3 a2 = 1, 2, 3 a3 = 1, 2 a4 = 1, 2, 3 a5 = 1, 2, 3, 4 a6 = 1, 2
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Figure 4-3: CART classifier for Haberman’s Survival data (predicted class in paren-
theses).

This dataset is constructed so that each transaction is in class 1 if either a1=a2 or

a5=1, and is in class -1 otherwise. RuleGen generated a total of 19 rules that predict

class -1 and 33 rules that predict class 1. The ORC classifier is shown in Table 4.8. It

Table 4.8: ORC classifier for MONK’s Problem 1 data, predict class 1 or -1.

Rule s sX

{a1=3, a2=3} → 1 33 33
{a1=2, a2=2} → 1 30 30
{a5=1} → 1 65 65

{a1=1, a2=1} → 1 31 31
∅ → -1 152 288

implies that if a row satisfies one of the four possible conditions to be in class 1, then

predict class 1; otherwise predict -1. Thus, it achieves perfect accuracy. The CART

classifier is shown in Figure 4-4 and implies:

If Predict

a5 = 1 1 (a5 = 1)

a5 6= 1, a4 = 3 -1

a5 6= 1, a4 6= 3, a1 = 2, a2 6= 2 -1

a5 6= 1, a4 6= 3, a1 = 2, a2 = 2 1 (a5 6= 1, a4 6= 3, a1 = a2 = 2)

a5 6= 1, a4 6= 3, a1 6= 2, a2 = 2 -1

a5 6= 1, a4 6= 3, a1 6= 2, a2 = 1, a1 6= 1 -1

a5 6= 1, a4 6= 3, a2 = 1, a1 = 1 1 (a5 6= 1, a4 6= 3, a1 = a2 = 1)

a5 6= 1, a4 6= 3, a2 6= 2, a2 6= 1, a1 = 1 -1

a5 6= 1, a4 6= 3, a1 6= 2, a2 6= 2, a2 6= 1, a1 6= 1 1 (a5 6= 1, a4 6= 3, a1 = a2 = 3)
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Figure 4-4: CART classifier for MONK’s Problem 1 data (predicted class in paren-
theses).

In fact, the rules for predicting class 1, highlighted above in parentheses, are

almost correct. However, the CART classifier specifies extra conditions on feature a4,

which lowers the accuracy.

4.5.3 Congressional Votes

Each transaction in this dataset represents a member of the U.S. House of Represen-

tatives in 1984. There were sixteen key votes, shown in Table 4.9.2 In addition, the

table shows how many Republicans voted yes or no (Ry and Rn, respectively) and

how many Democrats voted yes or no (Dy and Dn, respectively). Note that a repre-

sentative could also vote neither yes nor no. Each of the sixteen binary features of the

dataset corresponds to one of the sixteen key votes, and is one if the representative

voted yes. In total, RuleGen generated 110 rules for Republicans and 116 rules for

Democrats.

The ORC classifier is shown in Table 4.10; an “X” indicates a vote for yes. There

is almost no overlap between the votes contained in the rules for Democrats and

the rules for Republicans. The only overlap is with key vote 6, which was to allow

student religious groups to meet in public secondary schools during non-class hours

2For details, see the CQ Almanac at http://library.cqpress.com/cqalmanac/.
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Table 4.9: Key votes for Congressional Votes data.
V Key Vote Ry Rn Dy Dn V Key Vote Ry Rn Dy Dn

1 handicapped-infants 31 131 151 100 9 mx-missile 17 141 182 56
2 water-project-cost 75 73 119 119 10 immigration 91 73 125 138
3 budget-resolution 21 139 229 29 11 synfuels-cutback 21 135 127 126
4 physician-fee-freeze 157 2 15 240 12 education-spending 133 20 36 213
5 el-salvador-aid 156 8 56 200 13 superfund-right-to-sue 135 22 73 178
6 religious-in-schools 147 17 123 134 14 crime 154 3 89 163
7 anti-satellite-test-ban 39 122 199 59 15 duty-free-exports 14 142 160 91
8 aid-to-nicaraguan 24 132 217 45 16 export-act-south-africa 96 50 173 12

Table 4.10: ORC classifier for Congressional Votes data, predict D (Democrat) or R
(Republican).

Rule 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Y s sX

1 X X X D 20 20
2 X X X X D 28 28
3 X X X R 106 115
4 X X X R 103 112
5 X X R 95 101
6 X X X R 67 69
7 D 168 290

if other groups did so; the Democrats were split on this vote (that is, the number

voting yes was approximately the same as the number voting no), while the majority

of Republicans voted yes. The other key votes that characterized the Democrats were

all one of the following two kinds:

• split for Democrats, majority no or split for Republicans (this was true for key

votes 2 and 11),

• majority yes for Democrats, majority no for Republicans (this was true for key

votes 3 and 9).

Most of the key votes other than V6 that characterized the Republicans followed one

pattern: majority yes for Republicans and majority no for Democrats; this was true

for key votes 4, 5, 12, and 14. The exception was key vote 16, which was majority

yes for both Republicans and Democrats. The key vote (4) that appears in all rules

for Republicans was to include provisions imposing a one-year physician fee freeze for

Medicare services and to remove provisions that increased spending.

The CART classifier is shown in Figure 4-5. Using a threshold probability of 0.5,

it implies: if a representative either did not vote yes for key vote 4, or voted yes for all

three of key votes 4, 11, and 3, then the class is Democrat; otherwise it is Republican.
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Figure 4-5: CART classifier for Congressional Votes data (predicted class in paren-
theses).

4.5.4 Tic-Tac-Toe

Our final example is the Tic-Tac-Toe dataset. Each data point represents a board

configuration at the end of a tic-tac-toe game where player x played first, and the

classification problem is to identify whether player x won. This is an easy task for a

human, who just has to see if there are three x’s in a line. There are nine features

in the original data, each representing a square on a tic-tac-toe board. The possible

values for each feature are: x, o, or b (player x, player o, or blank). We use 27 binary

variables to capture the board configurations. In total, RuleGen generated 11 rules

that predict that player x does not win and 43 rules that predict that player x wins.

Figure 4-6 shows the CART classifier. The ORC classifier, shown in Figure 4-7, is

much simpler and decides the class of a board the same way a typical human would:

if the board has three x’s in a line, which can occur in eight different configurations,

then player x wins; otherwise, player x does not win. It achieves perfect accuracy,

whereas the accuracy of CART is about 0.94.

4.6 Summary

In this work, we have developed algorithms for producing interpretable, yet accurate,

classifiers. The classifiers we construct are decision lists, which use association rules

as building blocks. Both of the challenges addressed in this work, namely the task of
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Notation

x.1 ‘x’ in box 1
o.1 ‘o’ in box 1
b.1 box 1 is blank
x.2 ‘x’ in box 2
o.2 ‘o’ in box 2
b.2 box 2 is blank
x.3 ‘x’ in box 3
...

...

Figure 4-6: CART Classifier for Tic-Tac-Toe data (predicted class in parentheses).

1

win x

54 x

54 x

2

win x

61 x

61 x

3

win x x x

42

42

4

win

54

54 x x x

5

win x

57 x

57 x

6

win x

61 x

61 x

7

win x

54 x

54 x

8

win

55 x x x

55

9

no win

215

638

Figure 4-7: ORC classifier for Tic-Tac-Toe data (predicted class, s̄, and s̄X on left).

mining interesting rules, and the task of ordering them, have always been hampered

by “combinatorial explosion.” Even with a modest number of items in the dataset,

there may be an enormous number of possible rules, and even with a modest number

of rules, there are an enormous number of ways to order them. On the other hand,

MIO methods are naturally suited to handle such problems; they not only encode the

combinatorial structure of rule mining and rule ordering problems, but also are able

to capture the new forms of regularization introduced in this work, that is, favoring

more compact rules and shorter lists.

Our computational experiments show that ORC competes well in terms of accu-

racy against the top classification algorithms on a variety of datasets. In this work, we
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used only one setting of the parameters for all of the experiments to show that even

an “untuned” version of our algorithm performs well; however, by varying these pa-

rameters, it may be possible to achieve still better predictive performance. Since this

research is among the first to use MIO methods for machine learning, and in particular

to create decision lists using optimization-based (non-heuristic) approaches, it opens

the door for further research on how to use optimization-based approaches for rule

mining, forming interpretable classifiers, and handling new forms of regularization.
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Appendix: Details from Experiments

In Section 4.4, we summarized training and test classification accuracies that were

averaged over three folds for each dataset. In Tables 4.11 through 4.20 of this ap-

pendix, we show the accuracy for each of the individual folds. Train12 and Test3 refer

to training on Folds 1 and 2 and testing on Fold 3. Train13 and Test2 refer to training

on Folds 1 and 3 and testing on Fold 2. Train23 and Test1 refer to training on Folds

2 and 3 and testing on Fold 1. L−1 and L1 are the numbers of rules generated by

RuleGen for class -1 and class 1 respectively. For these tables, Time1 is the total

time for generating all L−1 + L1 rules; Time2 is the time when the final solution was

found, either before solving to optimality or before being terminated after a specified

amount of time. Runtimes for the other methods were too small to be a significant

factor in assessment. Here we list specific details for individual datasets:

1. SPECT Heart. We terminated each run of (4.17) after three hours.

2. Haberman’s Survival. The original data set has 3 features, and we expanded

the first and third features into 10 binary features. We terminated each run

of (4.17) after 10 minutes.

3. MONK’s Problem 1. For (4.17), it took 83, 602, and 5645 seconds to solve to

optimality for Train12, Train13, and Train23 respectively, even though it took

substantially less time to find the final solution.

4. MONK’s Problem 2. We terminated each run of (4.17) after three hours.

5. MONK’s Problem 3. (4.17) solved to optimality when the last solution was

found.

6. Congressional Voting Records. We terminated each run of (4.17) after

seven hours.

7. Breast Cancer Wisconsin (Original). The dataset has 699 rows, each rep-

resenting a patient. There are n = 683 remaining transactions after removing

rows with missing values. There are nine original attributes, each taking integer

values between 1 and 10. We used categorical variables to capture whether each
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Table 4.11: Classification accuracy on SPECT Heart dataset.
LogReg SVM CART Adaboost ORC L−1 L1 Time1 Time2

Train12 0.8426966 0.8258427 0.8258427 0.8651685 0.8426966 10 127 73 9611
Test3 0.8314607 0.9101124 0.8314607 0.8314607 0.7977528 – – – –

Train13 0.9213483 0.8988764 0.8651685 0.8932584 0.9213483 6 144 62 10686
Test2 0.7752809 0.7865169 0.7640450 0.7865169 0.7977528 – – – –

Train23 0.8707865 0.8651685 0.8258427 0.8707865 0.9269663 10 139 80 6289
Test1 0.7865169 0.8426966 0.7528090 0.8426966 0.7303371 – – – –

Table 4.12: Classification accuracy on Haberman’s Survival dataset.
LogReg SVM CART Adaboost ORC L−1 L1 Time1 Time2

Train12 0.7450980 0.7647059 0.7450980 0.7647059 0.7401961 6 10 19 9
Test3 0.8039216 0.7549020 0.7941176 0.7549020 0.8039216 – – – –

Train13 0.7745098 0.7892157 0.7696078 0.7745098 0.7794118 4 11 11 5
Test2 0.7549020 0.7450980 0.7156863 0.7549020 0.7549020 – – – –

Train23 0.7941176 0.8088235 0.7892157 0.7892157 0.7843137 5 10 14 5
Test1 0.7156863 0.7156863 0.7156863 0.7156863 0.7156863 – – – –

attribute is between 1–4, 5–7, and 8–10, so in total there are d = 27 items. We

terminated each run of (4.17) after four hours.

8. Mammographic Mass. The dataset has 961 rows, each representing a patient.

There are n = 830 remaining transactions after removing rows with missing

values. After transforming the attributes using binary variables, there are d =

25 items. The patient ages were categorized into seven bins: 29 and under,

30–39, 40–49, 50–59, 60–69, 70–79, and 80 and over. We terminated each run

of (4.17) after three hours.

9. Tic-Tac-Toe. The original data set has 9 features, which we expanded to

d = 27 binary variables to capture the board configurations. For (4.17), Train12

solved to optimality in 1271 seconds; Train13 and Train23 had optimality gaps

of about 0.02% and 0.01% respectively when the final solutions were found, and

we terminated solving after three hours.

10. Car Evaluation. The original data set has 9 features, which we expanded to

21 binary features. We terminated each run of (4.17) after seven hours.

We performed one set of experiments that involved tuning parameters. Table 4.21

shows the average classification accuracy for three methods. The first is SVM with

C = 1; the second is a tuned version of SVM, where we varied the C parameter

and chose the one with the best average test performance in hindsight; and the third

123



Table 4.13: Classification accuracy on MONK’s Problem 1 dataset.
LogReg SVM CART Adaboost ORC L−1 L1 Time1 Time2

Train12 0.7534722 1 0.9236111 1 1 19 33 96 58
Test3 0.7430556 1 0.9027778 1 1 – – – –

Train13 0.7465278 0.9861111 0.9305556 1 1 21 35 102 338
Test2 0.7569444 0.9444444 0.8611111 1 1 – – – –

Train23 0.7569444 0.9861111 0.9305556 1 1 19 39 105 344
Test1 0.7361111 0.9166667 0.8888889 1 1 – – – –

Table 4.14: Classification accuracy on MONK’s Problem 2 dataset.
LogReg SVM CART Adaboost ORC L−1 L1 Time1 Time2

Train12 0.6562500 0.6736111 0.7569444 0.7430556 0.8472222 28 21 135 2786
Test3 0.6388889 0.6666667 0.6666667 0.6388889 0.7638889 – – – –

Train13 0.6666667 0.6770833 0.7187500 0.7638889 0.8055556 30 16 125 8440
Test2 0.6250000 0.6597222 0.5972222 0.6944444 0.6944444 – – – –

Train23 0.6180556 0.6701389 0.7743056 0.7500000 0.8368056 27 14 112 4717
Test1 0.5416667 0.6875000 0.7430556 0.6180556 0.7430556 – – – –

Table 4.15: Classification accuracy on MONK’s Problem 3 dataset.
LogReg SVM CART Adaboost ORC L−1 L1 Time1 Time2

Train12 1 0.9756944 1 1 1 41 18 97 961
Test3 1 0.9652778 1 1 1 – – – –

Train13 1 0.9965278 1 1 1 35 27 102 1008
Test2 1 0.9791667 1 1 1 – – – –

Train23 1 0.9861111 1 1 1 31 23 102 224
Test1 1 0.9722222 1 1 1 – – – –

Table 4.16: Classification accuracy on Congressional Voting Records dataset.
LogReg SVM CART Adaboost ORC L−1 L1 Time1 Time2

Train12 1 0.9758620 0.9689655 0.9827586 0.9827586 110 116 103 22899
Test3 0.9310345 0.9517241 0.9448276 0.9586207 0.9517241 – – – –

Train13 0.9620690 0.9724138 0.9620690 0.9620690 0.9689655 137 146 109 20536
Test2 0.9862069 0.9517241 0.9448276 0.9586207 0.9517241 – – – –

Train23 0.9827586 0.9758620 0.9482759 0.9724138 0.9724138 141 148 113 21082
Test1 0.9586207 0.9655172 0.9724138 0.9517241 0.9655172 – – – –

Table 4.17: Classification accuracy on Breast Cancer dataset.
LogReg SVM CART Adaboost ORC L−1 L1 Time1 Time2

Train12 0.9868421 0.9868421 0.9561404 0.9758772 0.9714912 123 66 551 12802
Test3 0.9515419 0.9515419 0.9515419 0.9559471 0.9603524 – – – –

Train13 0.9648352 0.9824176 0.9450550 0.9538462 0.9692308 136 53 637 11703
Test2 0.9912280 0.9780702 0.9561404 0.9912280 0.9561404 – – – –

Train23 0.9846154 0.9846154 0.9670330 0.9780220 0.9890110 135 82 661 14373
Test1 0.9078947 0.9561404 0.9385965 0.9385965 0.9429825 – – – –

Table 4.18: Classification accuracy on Mammographic Mass dataset.
LogReg SVM CART Adaboost ORC L−1 L1 Time1 Time2

Train12 0.8465704 0.8628159 0.8447653 0.8519856 0.8501805 33 26 637 1340
Test3 0.8514493 0.8297101 0.8297101 0.8514493 0.8297101 – – – –

Train13 0.8354430 0.8643761 0.8336347 0.8499096 0.8390597 29 28 706 2498
Test2 0.8519856 0.8411552 0.8519856 0.8628159 0.8555957 – – – –

Train23 0.8625678 0.8788427 0.8481013 0.8661844 0.8716094 29 30 669 7422
Test1 0.8086643 0.7942238 0.8086643 0.8122744 0.8158845 – – – –
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Table 4.19: Classification accuracy on Tic-Tac-Toe dataset.
LogReg SVM CART Adaboost ORC L−1 L1 Time1 Time2

Train12 0.9921630 0.9545455 0.9388715 0.9968652 1 11 43 1278 1232
Test3 0.9656250 0.9031250 0.8812500 0.9687500 1 – – – –

Train13 0.9765258 0.9593114 0.9295775 0.9921753 1 14 36 1202 3292
Test2 0.9937304 0.9467085 0.8934170 0.9811912 1 – – – –

Train23 0.9812207 0.9342723 0.9358372 0.9921753 1 12 44 1244 7570
Test1 0.9874608 0.8996865 0.8871473 0.9749216 1 – – – –

Table 4.20: Classification accuracy on Car Evaluation dataset.
LogReg SVM CART Adaboost ORC L−1 L1 Time1 Time2

Train12 0.9574653 0.9826389 0.9696180 0.9965278 0.9539931 45 13 598 8241
Test3 0.9513889 0.9756944 0.9670139 0.9913194 0.9496528 – – – –

Train13 0.9609375 0.9800347 0.9652778 0.9965278 0.9548611 45 13 610 4952
Test2 0.9461806 0.9774306 0.9583333 0.9947917 0.9479167 – – – –

Train23 0.9557292 0.9835070 0.9626736 0.9956597 0.9704861 48 10 911 8813
Test1 0.9479167 0.9652778 0.9600694 0.9861111 0.9548611 – – – –

is ORC. The results for SVM with C = 1 and ORC are repeated from Table 4.6.

Table 4.21 shows that the overall performance of the untuned ORC algorithm is still

on par with that of the tuned SVM algorithm.

Table 4.21: Results of tuned SVM (highest in row highlighted in bold).
Dataset SVM (default C = 1) SVM (hindsight) C ORC

SPECT train 0.8633 ± 0.0366 0.8745± 0.0319 1.2 0.8970± 0.0471
test 0.8464 ± 0.0619 0.8502± 0.0566 0.7753 ± 0.0389

Haberman train 0.7876± 0.0221 0.7761± 0.0279 0.4 0.7680 ± 0.0242
test 0.7386 ± 0.0204 0.7582± 0.0442 0.7582± 0.0442

MONK1 train 0.9907 ± 0.0080 1 1.4 1

test 0.9537 ± 0.0424 1 1

MONK2 train 0.6736 ± 0.0035 0.6736± 0.0035 1 0.8299± 0.0217
test 0.6713 ± 0.0145 0.6713± 0.0145 0.7338± 0.0356

MONK3 train 0.9861 ± 0.0104 1 1.6 1

test 0.9722 ± 0.0069 1 1

Votes train 0.9747 ± 0.0020 0.9793± 0.0034 1.4 0.9747 ± 0.0072
test 0.9563 ± 0.0080 0.9586± 0.0069 0.9563 ± 0.0080

B.Cancer train 0.9846 ± 0.0022 0.9868± 0.0044 1.2 0.9766 ± 0.0108
test 0.9619 ± 0.0142 0.9634± 0.0203 0.9532 ± 0.0091

Mammo train 0.8687± 0.0088 0.8608± 0.0095 0.6 0.8536 ± 0.0165
test 0.8217 ± 0.0245 0.8313± 0.0197 0.8337± 0.0202

TicTac train 0.9494 ± 0.0133 0.9901± 0.0009 6 1

test 0.9165 ± 0.0262 0.9844± 0.0143 1

CarEval train 0.9821 ± 0.0018 1 7.2 0.9598 ± 0.0093
test 0.9728 ± 0.0066 0.9988± 0.0010 0.9508 ± 0.0036
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Chapter 5

Conclusion

In a recent article by the McKinsey Global Institute, reporters estimated that by 2009,

nearly all economic sectors in the United States had on average over 200 terabytes

(200,000 gigabytes) of data per company with at least 1000 employees.1 The growing

availability of “big data” allows companies to conduct ever more precise studies about

their clients, products, services, transactions, inventory, equipment, etc., thus giving

them the opportunity and capability to make increasingly informed decisions. In an

age in which analytics is of primary interest for many businesses and industries, both

MIO and machine learning are highly useful in their own right. The broad aspiration

of this thesis was to explore the intersection of these two analytic paradigms.

MIO involves the mathematical modeling and optimization of the exact objective

of interest in order to make the best possible decision, and its applications span a

tremendous range of areas such as healthcare, energy, transportation, and sports.

Machine learning concerns the design of efficient algorithms that automatically learn

complex patterns from data, giving rise to computing applications such as spam

detection, object recognition in images, and web search. The companies of today’s

business world amass tremendous amounts of data, prompting the need to be able to

make optimal choices based on data-driven methods. These circumstances motivated

us to consider the combination of MIO and machine learning.

1http://www.mckinsey.com/Insights/MGI/Research/Technology and Innovation/Big data The
next frontier for innovation
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MIO is a natural framework for a number of machine learning problems that

have loss functions with discrete components. In this thesis, we designed MIO-based

algorithms for supervised ranking, association rule mining, and associative classifica-

tion. Whereas most conventional machine learning methods are heuristic in nature

and not designed to find truly optimal solutions, MIO methods provide a means to

optimize the exact objectives of interest. In computational experiments, our MIO ap-

proach either matched or improved upon state-of-the-art machine learning methods.

We hope that this work inspires and guides further research in the development of

mathematical programming methodologies for problems in machine learning.
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