
Customizing Mass Housing:
A Discursive Grammar for Siza's Malagueira Houses

by

Jos6 Pinto Duarte

Bachelor in Architecture,
Lisbon Technical University,

1987
Portugal

Master of Science in Architecture, 1993
Massachusetts Institute of Technology

Submitted to the Department of Architecture in
Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy in Architecture: Design and Computation

at the

Massachusetts Institute of Technology

September 2001

@ 2001 Jos6 Pinto Duarte. All rights reserved.

The author hereby grants to MIT permission to reproduce and to distribute publicly paper and
electronic copies of this thesis document in whole or in part.

Signature of Author..
Department of Architecture

August 13, 2001

Certified by.......- --- ---
William J. Mitchell

Professor of Architecture and Media Arts and Science
Dean, School of Architecture and Planning

A , /k AThesis Supervisor

Accepted by...

MASSACHUSETTS INgTITUTE
OF TECHNOLOGY

OCT 1 0 2001

LIBRARIES

-.-- V I

Stanford Anderson
Chairman, Committee on Graduate Students

Head, Department of Architecture

ROT

2

Dissertation Committee

Terry Knight
Associate Professor of Design and Computation

William J. Mitchell
Professor of Architecture and Media Arts and Science

George Stiny
Professor of Design and Computation

Patrick Winston
Ford Professor of Artificial Intelligence and Computer Science

4

CUSTOMIZING MASS HOUSING:

A DISCURSIVE GRAMMAR FOR SIZA'S MALAGUEIRA HOUSES

by

Jos6 Pinto Duarte

Submitted to the Department of Architecture
on August 13, 2001 in partial fulfillment of the

requirements for the Degree of Doctor of Philosophy
in Architecture: Design and Computation

ABSTRACT

This thesis proposes a process of providing mass-customized housing based on computer-
aided design and production systems. It focuses on the design part, which mainly consists of
an interactive system for the generation of design solutions based on a mathematical model
called discursive grammar. A discursive grammar includes a shape grammar, a description
grammar, and a set of heuristics. The shape grammar provides the rules of formal
composition, whereas the description grammar describes the design from other relevant
viewpoints. The set of heuristics is used to guide the generation of designs by comparing the
description of the evolving design with the description of the desired house. The generation
of a design proceeds first by producing a design brief from the user-prompted requirements
and then by finding a solution that satisfies this brief. Search is largely deterministic, which
decreases the amount of time required to find a solution, thereby making it reasonable to
develop Web-based implementations. The proposed model enables an enduring designer's
dream, that of the mass customization of housing.

The model is illustrated with a case study that includes a shape grammar developed for the
houses designed by the architect Alvaro Siza at Malagueira, a description grammar based on
the Portuguese housing regulations, and a set of heuristics inferred after a set of
experiments. In these experiments, designers were asked to generate houses based on the
Malagueira grammar for specific clients. It is argued that this discursive grammar provides a
rigorous method for understanding and teaching Siza's design process and that similar
grammars could be developed for other styles. A Web page for explaining the grammar and
generating new designs on-line was developed as a prototype.

Thesis Supervisor: William J. Mitchell

Title: Professor of Media Arts and Science, Dean, School of Architecture and Planning

6

Acknowledgements

I am deeply thankful to my advisors Terry Knight, William J. Mitchell, George Stiny and
Patrick Winston for their support, guidance, and friendship. This thesis owes much to
Terry, Bill, and George's work on shape grammars. Patrick provided me with complementary
viewpoints from artificial intelligence.

Thank you Alvaro Siza for his support and enthusiasm and for giving me unrestricted access
to his archives.

Thank you Ant6nio Reis Cabrita and Joao Bento who gave me the conditions to develop part
of this research first at the Laborat6rio Nacional de Engenharia Civil (LNEC), and then at the
Instituto Superior Tecnico (1ST) in Lisbon. Joao also was helpful in guiding me throughout
my course of study. I thank Teresa Heitor for understanding my urge to finish my writing,
and for helping me to make a smooth transition to IST.

I thank William Porter and Edith Ackerman for providing me with the opportunity to undertake
and discuss part of the experiments described in Chapter 6 within the context of the MIT
Design Research Seminar. I also am thankful to Ryusuke Naka, from Miyagi University, for
creating the opportunity to develop the remaining experiments. Thank you also to the
students who volunteered to participate in both experiments.

I thank Joao Pedro for sharing his work on the Portuguese housing guidelines, used as a
basis for the development of the programming grammar described in Chapter 7. I also thank
the valuable support of Ana Runa, Filipe Santana, and Sara Eloy, who assisted in the
development of the Web site described in Chapter 8.

This work had the financial support of Fundago para A Cisncia e a Tecnologia, the Luso-
American Foundation, the Calouste Gulbenkian Foundation, Portugal; and the
Massachusetts Institute of Technolgy, U.S.A. It was partially developed within the scope of
the Praxis XXI project Praxis/2/2.1/CSH/844/95 with the institutional support of LNEC.

I want to thank my friends, Anne, Susan, Stephen, Paul, Birgul, Andrew, Joao, and Luisa for
contributing to make my stay at MIT so pleasant, and for many interesting discussions.

I dedicate this thesis to my parents and my wife.

8

Table of contents

1. Introduction .. 13
1.1 Preview: problem and solution ... 13
1.2 Areas of study ... 18

1.2.1 From perform ance criteria to a description gramm ar.. 18
1.2.2 From typology to shape grammar ... 19
1.2.3 From optim ization to determ inistic heuristic search .. 20
1.2.4 Discursive gram mar: sim ulating, generating, and "optim izing".................................. 25

1.3 From mass production to m ass custom ization .. 26
1.4 Siza's Malagueira... 28
1.5 Contributions .. 31
1.6 Organization of the thesis ... 33

References ... 34

2. Methodology .. 37
2.1 Concepts.. 37
2.2 Preparatory phase ... 41
2.3 Descriptive phase... 42
2.4 Analytic Phase ... 43
2.5 Synthetic Phase ... 44
2.6 Goal Phase .. 45
2.7 Discursive Phase ... 48
2.8 Im plementation Phase .. 49
2.9 Summary.. 49

References ... 50

3. Precedents... 51
3.1 Introduction .. 51
3.2 Performance criteria ... 51

3.2.1 Program m ing method... 53
3.2.2 Evaluation m ethod.. 58

3.3 Grammars .. 61
3.3.1 Shape gram mars... 61
3.3.2 Parametric shape gram mars.. 61
3.3.3 Shape gram mars: analytical and original .. 63
3.3.4 Com puter im plementation .. 64
3.3.5 Proposed gramm ar: analytical and original .. 65
3.3.6 Description gram mars ... 66
3.3.7 Parallel gram mars .. 66

3.4 Conclusion ... 67
References ... 67

4. Corpus-- 71
4.1 Introduction .. 71
4 .2 P la n ...----................... 7 1

4.2.1 Context ...---.... 71
4.2.2 The plan... 74
4.2.3 Housing tissue ... 85
4.2.4 Promotion .. 92
4.2.5 Construction phases.. 92

4.3 Housing types ...-----.. 95
4.3.1 Design schemes.. 95
4.3.2 Structural and building systems .. 132

4.4 Summary Sa........... ... 135
References .. 136

5. The Malagueira Shape Grammar ... 137
5.1 Introduction ds e tn rc........... tan .. 137
5.2 Algebras .. 137
5.3 Parallel grammars un tinaoran........ ... 139
5.4 Context bew eno........... ... 143
5.5 Composition: dissecting rectangles .. 144
5.6 Function of. esgnst.............. i ... 148

5.6.1 First floor functional organization148
5.6.2 Articulation between floors 152

5.7 r u cer ... 153
5.8 The universe of design solutions .. 154

5.8.1 Designing the grammar s 154
5.8.2 Estimating the number of solutions 156
References . D fneteeo.............. nd ... 167

5.9 Rules 3 e nee............. r ... 167
5.9.1 r ato of n ex i t shgnSg : n d e ia p................................ 167
5.9.2 Stage 1: Define the first floor ... 168
5.9.3 Stage 2: Define the second floor.. 175
5.9.4 Stage 3: Define the terrace ytic. tet..... 177

5.10 Derivation of an existing design .. 216
5.11 Summary .. 233

References .. 233

6. Experiments ... 235
6.1 Introduction .. 235
6.2 Experiment 1: existing design (analytic test)... 235

6.2.1 Goal 2:ra do.d sin.sy tt..................... e... 235
6.2.2 Subjects ... 236
6.2.3 Setting ... 236
6.2.4 Task... 236
6.2.5 Procedure 236
6.2.6 Results o an c nu........... s .. 237
6.2.7 Discussion and conclusions 237

6.3 Experiment 2: random design (synthetic test) ... 256
6.3.1 Goal ... 256
6.3.2 Subjects... 256
6.3.3 Setting.. 256
6.3.4 Task .s... 256
6.3.5 Procedure ... 257
6.3.6 Results.. 257
6.3.7 Discussion and conclusion ... 257

6.4 Experiment 3: goal-oriented design I (goal test) /. lb................. 268
6.4.1 Goal... 268
6.4.2 Subjects .. 268
6.4.3 Setting ... 269
6 .4 .4 T a sk ... 2 7 0
6.4.5 Procedure..270
6.4.6 Results.. 271
6.4.7 Discussion .. 281

6.5 Experiment 4: goal-oriented design 11 (goal test) / collaborative design................... 303
6.5.2 Subjects .. 304
6.5.3 Setting.. 304
6.5.4 Tasks ... 305

10

6.5.5 Procedure .. 307
6.5.6 Results... 308
6.5.7 Discussion ... 323

6.6 Summ ary.. 338
References ... 340

7. Discursive gram m ar.. 341
7.1 Introduction ... 341
7.2 Definitions ... 342

7.2.1 Technical definition .. 343
7.2.2 Operative definition ... 343
7.2.3 Mathematical definition 344

7.3 The PAHPA-Malagueira discursive gram mar .. 345
7.4 The PAHPA program m ing gram mar.. 347

7.4.1 Description (features): constraints, quality, and cost .. 348
7.4.2 User/program mer interface ... 353
7.4.3 Dependency among features .. 353
7.4.4 Rules ... 356

7.5 The revised Malagueira grammar.. 440
7.5.1 Algebras and parallel gram mars: viewpoints and features ... 441
7.5.2 Rule types .. 443
7.5.3 Rules .. 444

7.6 Summary.. 507
References ... 507

8. Im plementation .. 509
8.1 Introduction .. 509
8.2 The interpreter.. 509
8.2 The W eb site .. 514
8.4 The envisioned housing design framework ... 521
8.5 Sum mary.. 525

References ... 525

9. Conclusion ... 527
9.1 Sum mary.. 527
9.2 Contributions .. 528

9.2.1 Findings .. 528
9.2.2 Minor contributions .. 530
9.2.3 Major contributions .. 531

9.3 Future work .. 533
9.3.1 Im provements.. 533
9.3.2 Major steps .. 534

12

1. Introduction

1.1 Preview: problem and solution

The ultimate goal of this work is a computational framework for the design of mass-

customized houses that includes a design and a production system. The current focus

is on the development of the design system. The purpose of mass-customization is to

provide high-quality housing at an affordable cost. The definition of quality is threefold.

First, it implies the satisfaction of functional requirements defined by building regulations.

Second, it requires the satisfaction of aesthetic requirements established within a

particular design style. This style can be historical or based on the work of an existing

architect. Third, it aims at satisfying requirements, which can be functional, aesthetic, or

cost-based, and are specified by the client in addition to the other two. In summary,

quality is defined as the satisfaction of the user needs. A high degree of customization

leads to high user-satisfaction and prevents costs associated with post-construction

changes. Cost-control also is guaranteed with recourse to production techniques that

rely not on exhaustive repetition, as in traditional mass-production, but rather on

computer-aided manufacturing processes.

Traditionally, when a designer is faced with the design of a large development, the usual

solution is to design a limited number of housetypes and then to repeat them based on

market analysis. The reason for such a procedure is twofold. First, the designer is not

capable of designing each house individually due the large amount of information that

would be required to process. Second, traditional manufacturing techniques require

repetition to lower the costs using economies of scale. The envisaged process aims at

overcoming such limitations by using computer-aided design and manufacturing

processes. The idea is to give mass-produced houses some of the qualities associated

with individually designed homes. The use of such a process gives the average client

access to the work of highly skilled architects, thereby making architecture more

democratic. The biggest market is not the traditional custom home client, but the

majority of clients who do not use architects anyway.

The framework consists of computer-aided design and production systems (Fig. 1.1).

The design system includes an interactive program for generating housing solutions (A),

rapid prototyping and virtual reality techniques for visualizing these solutions (B), and

computer-aided production to materialize them (C). The user accesses the program on

the Web. The program guides the user through questions that an architect would

normally ask during an initial meeting, such as the family members' profile, their living

habits, the rooms they want, the cost that they can afford, and so o, to gather enough

site (1) and user data (2). When the interview is over, the program generates the design

brief or housing program (4), taking into account existing housing regulations (3). The

user can then make changes to the initial requirements and the program will update the

design brief (5). Once the brief is approved (6), the program generates a housing

solution that satisfies the requirements (8) within a given design language (7). The

solution takes the form of a 3D digital model. This model can be visualized on a flat

computer screen using simple 3D viewers, or taken into a sophisticated, virtual reality

environment (9) in which the user can walk-through the house (10). Alternatively, the

model can be used to produce a scaled physical model (12) using rapid prototyping

techniques (11). After assessment and visualization (13), the user might want to change

the initial requirements and proceed through another iteration of the design process (14).

Once a solution is accepted (15), an order can be automatically issued to the housing

factory. This order will include a detailed list of parts, and digital information to

manufacture the parts (17) using computer-aided manufacturing techniques (16). At the

end of the manufacturing process, these parts are transported to the site and assembled

(18). The house is finally ready to inhabit (19).

A Design

yes C Production

Factory Site

Manufacturing Parts Assembly House

16 17 18 19

Figure 1.1 - Diagram of the framework envisioned for the mass customization of housing

This work aims at the development of a mathematical model for the interactive program

just described. This program can be used by the designer or by the client, but in both

cases, it enhances the designer's creativity by rapidly providing alternative design

solutions. Such model needs to overcome three problems. These problems correspond

to the three different types of computer-based methods identified by Radford and Gero

(1988). First, it needs to provide a way of translating client data into design

requirements, and to verify whether a design satisfies these requirements -- the

simulation problem. In simulation, the computer manipulates a mathematical model that

describes the design to evaluate the performance of a given design configuration against

the design requirements. Second, it has to codify the rules of formal composition to

design a house in a given style -- the generation problem. In generation, the computer is

used to produce design configurations according to a set of rules. And third, it needs a

mechanism to translate the design requirements into a housing solution -- the

optimization problem. In optimization, the computer is used to generate design

configurations that meet a performance goal. The use of the term optimization to refer to

design is controversial, but it is possible to overcome the controversy, as it will be

explained in Section 1.2.3. The number of solutions that satisfy multiple requirements is

potentially very large. Thus, an important part of the model is a computational strategy

capable of searching a potentially large design space, and providing insight into function-

form relations for multi-criteria housing design. In the next section, we will see how

different areas of study are merged to overcome the simulation, generation, and

optimization problems and create a model with the desired features, called discursive

grammar.

The model is illustrated with a case study that includes a shape grammar developed for

the houses designed by the architect Alvaro Siza at Malagueira, a description grammar

based on the Portuguese housing guidelines, and a set of heuristics inferred after a set

of experiments. In these experiments, the designers were asked to generate houses

based on the Malagueira grammar for specific clients. One of the designs was placed

among Siza's designs and shown to Siza who did not distinguished it from his own

designs thereby validating the grammar. (Figure 1.2)

1*' floor

i errace

Figure 1.2 - The model for the design system of the framework proposed for customizing mass
housing is illustrated with a discursive grammar for Siza's Malagueira houses. A design by the

author of the grammar after its rules was shown to Siza amidst several of his own designs. Siza
did not distinguish the new design from his own. Do you? (See solution on page 19.)

1.2 Areas of study

Three areas of study -- performance criteria, typology, and optimization -- are brought

together in this work by a fourth one -- grammars, as shown in Figure 1.3 and explained

below.

Figure 1.3 - Merging multiple areas of study

1.2.1 From performance criteria to a description grammar

Performance criteria had its beginning in the 1960s with studies that tried to understand

how people used the dwelling space. These studies included anthropomorphic and

sociological analyses that were instrumental to identify the user needs and to codify

them into a coherent set of design requirements (Portas and Gomes 1964a, 1964b). A

practical result of these studies was the development of design guidelines that helped

the designer to establish the housing program, such as the IPHPE (MHOP e LNEC

M

1978), the RTHS (MES 1984), and the NTPEH (Duarte e Paiva 1994). Such studies

then led to the development of quality evaluation studies to determine whether existing

dwellings satisfied design requirements (Portas 1969, Cabrita 1987, Coelho 1993). The

outcome of these studies was the development of several quality evaluation methods to

measure the performance of dwellings and designs against requirements such as the

SEL (Aellen et al 1979) and QUALITEL (Association Qualitel 1989) methods. The field

of study concerned with the definition and evaluation of performance became known as

performance criteria. Recently, Pedro summarized the previous studies into a housing

programming and evaluation method adjusted to the contemporary Portuguese reality

(Pedro 2000). The current study encodes a modified version of this method into a

coherent set of rules forming a description grammar (Stiny 1981). This grammar has a

dual role. First, it transforms the user data into the set of design requirements that form

the design brief or housing program. The brief takes the form of a goal description.

Second, it provides a way of evaluating the evolving design by comparing its description

with the goal description. Therefore, the description grammar solves the simulation

problem, the first problem mentioned at the end of Section 1.1.

1.2.2 From typology to shape grammar

Typology2 also was a consequence of the 1960s effort to understand the use of space.

To study the variety of dwelling forms it was necessary a classification into categories.

This required the definition of classification criteria, then to group the dwellings into

categories with the same features according to such criteria, called typologies, and

1 Figure 1.2: the design by the author of the grammar is the second on the second row.

finally, to illustrate these groups with concrete examples, called types (Blachere 1972,

Vidler 1977, Habraken 1988). To define the classification criteria, however, was

problematic. First, it was necessary to define the viewpoint, which could be formal (e.g.

number of floors: single-floor), structural (e.g. building material: adobe), social (e.g. a

clear separation between the private and the public quarters), or stylistic (e.g. Art Deco).

Then, within each viewpoint, there could be different criteria (e.g. number of floors and

type of covering: "single-floor with roof"). The result was an extensive list of

descriptions, often contradictory, that made classification difficult and did not say how to

design new members of the typology. For this reason, the illustrative type was often

taken too literally, and used as a model. Shape grammars (Stiny and Gips 1972)

overcame these problems by merging the different viewpoints into a set of instructions

that specify how to generate new instances of the typology. Therefore, shape grammar

is the formalism used in the proposed design system for constructing new designs,

thereby solving the generation problem, the second problem mentioned at the end of

Section 1.1.

1.2.3 From optimization to deterministic heuristic search

Once, we have a goal description and a process to generate solutions, the problem

becomes one of finding the solution whose description most closely matches the goal.

This can be viewed as an optimization problem. Viewing design as optimization is

controversial (Radford and Gero 1988), but part of the controversy is because

optimization has two meanings. In the general meaning, it means to improve a solution

2 In the literature, the term typology has a double meaning. It might be used to refer to the
studies concerned with the classification of buildings into categories, or to refer to the categories
themselves.

to a problem. In the technical meaning, it refers to a set of techniques used in

operations research. Authors who think that optimization is not a good paradigm for

design usually indicate four difficulties. The first is the subjectivity of some criteria used

in the generation and evaluation of designs. An example of such criteria is the symbolic

value of buildings. The second is the difficulty to model aspects of design that are

difficult to abstract, such as the society's pressure. The third difficulty is that the design

problem is often ill-defined, that is, the user might not be completely aware of what the

needs are. The fourth difficulty is that the problem might be over-constrained, as there

might be conflicting requirements. The first two difficulties are common to the modeling

of complex problems in general. In these cases, the model is an abstraction and it can

be accepted as long as it proves useful. Therefore, there is no reason why design

problems should be treated differently. Once the model is developed and implemented,

it will be possible to test its usefulness. The ill-definition difficulty is overcome in the

proposed model by including rules to provide default values for data not supplied by the

user. Such values are based on the typological studies referred to in Section 1.2.2. The

user can then change these values, to increase customization. The over-constrained

problem is solved by including rules to deconstrain the problem. In practice, this

corresponds to finding the feasible solution that is closest to the goal. Similar

procedures are already used by existing optimization techniques. In conclusion, it is

possible to represent the design of customized housing as an optimization problem.

The problem, however, is complex. There are many tasks involved in the design of a

house (e.g. layout, openings), and there is a multitude of criteria to satisfy (e.g. space,

topology, comfort). Task complexity is tackled by decomposing the problem into smaller

problems, then concentrating on essential features of these sub-problems, and finally,

selecting an appropriate technique to solve each of them. For instance, there is a

separation between the generation of the layout, and the design of the opening system.

These procedures, known in Al as sub-goaling, abstraction, and means-end analysis,

mean that solution optimality cannot be guaranteed (Winston 1993). Even if the different

steps are optimal locally, there is no guarantee that their combination will be globally

optimal. Criteria complexity is tackled by representing the problem as an optimization

problem and then by turning the multicriteria problem into a single criterion one. There

are two basic forms of optimization methods: single criterion and multi-criterion. In

single-criterion, there is only one viewpoint that is being optimized, whereas in multi-

criteria there are several. The solution to a multi-criteria problem is a set of solutions

with performances such that no other solution exists that will yield an improvement in

one criterion without degrading at least one other criterion. These solutions are known

as Pareto optimal. In multicriteria, choice implies tradeoffs, that is the amount of quality

in one criterion that the user can give up in order to gain more of another. Such a choice

requires the user to rank or to assign weights to the criteria. Ranking is a special, less

specific case of weighting. There are three-basic types of approaches to solve multi-

criteria problems: non-preference methods, preference methods, and interactive

methods.

The preference approach requires the user to assign weights to each criterion a priori. It

solves the problem by turning it into a multicriteria problem whose fitness function is the

weighted sum of the fitness functions for the single criterion. The result is a solution that

represents the best compromise according to these weights. The non-preference

approach generates several of the Pareto solutions, enough to give an indication of the

tradeoffs involved. It works by varying the weights assigned to each criterion and

generating the corresponding solutions. Thus, in this approach the problem also is

transformed into a single criterion problem. Different non-preference methods differ in

the strategy used to vary the weights so that the set of generated solutions is

representative of the Pareto set.

The interactive approach combines the processing power of the computer with the

assessing abilities of the user, through interaction between the two. There are two kinds

of interactive methods: interactive search, and interactive choice. In interactive search,

the user sets the weights a priori, as in the preference method, and the computer

generates the corresponding solution. Then the user changes the weights and the

computer generates the new solution. The process is repeated until the user is satisfied

with a solution. In interactive choice, the computer generates a set of Pareto solutions,

as in the non-preference method, and then the user imposes restrictions on the

performances. Then computer generates a new set of Pareto solutions. The process is

repeated until choice is narrowed down to a single solution. The method used in the

proposed model is an interactive search method, mainly because the lesser burden on

the computer implementation was considered more appropriate, for a Web-based

implementation, in which response time is crucial. The drawback is the greater burden

on the user to articulate the preferences.

Once complexity is reduced, the problem becomes a simple search problem. Search is

an important topic in artificial intelligence (AI) that emerged with the first Al computer

programs in 1950s. There are two opposite approaches to Al, called weak and strong

Al. The first defends the possibility of developing general problem-solving programs,

whereas the second advocates the development of programs with intensive domain

knowledge. The first Al researchers believed in the weak approach, but a move towards

intensive knowledge-domain has characterized the field since then. Search is a very

general problem-solving technique that tends to be close to the knowledge-poor end of

the spectrum, but its exact position depends on the type of search method (Korf 1995).

There are different kinds of search, blind, heuristic, optimal, and stochastic search. Blind

search proceeds without any assessment of the intermediate states relatively to the

goal. They are knowledge-poor algorithms and their major drawback is the time that

they might take to find a solution, especially if the width and depth of the search tree are

very large, as in the design of a house. In heuristic search, a function is used to

estimate the value or distance of intermediate states relatively to the goal. The

conversion of the problem from multicriteria into single criterion yields a single heuristic

function that might be used in heuristic search. Thus, some domain knowledge is used

to decrease search time. The disadvantage of heuristic methods, however, is that

search might get stuck in a local maximum, if the search space contains peaks, ridges,

or plateaus. Optimal search algorithms take into account not only the distance to the

goal of a given intermediate state, but also the distance traversed so far. They are, thus,

able to find the best path to the goal. Stochastic algorithms try to avoid getting stuck in

local maxima by giving intermediate states with lower performances some probability of

being chosen for further development. The drawback is that such algorithms are non-

deterministic and might yield different results in different runs with the same criteria.

Therefore, they do not guarantee that a global maximum is found, and it might take a

long time before the algorithms converge to a solution.

On the opposite side of search methods are pure grammars. If there is enough

knowledge of the domain, it is possible to know exactly which rule to choose at each

step. This process is deterministic and fast. The problem, however, is that it might be

difficult to acquire such domain knowledge, without generating all the possible solutions.

Generating all the possible solutions might take too long or be unfeasible if their number

is very high, as in the Malagueira grammar, our case study. For this reason,

experiments with designers using the grammar were undertaken to find the heuristics

used to choose rules leading to good solutions. The experiments permitted to find some

of such heuristics, but these were not enough to develop a pure grammar. Therefore, it

was necessary to couple the grammar with a search mechanism.

In summary, a choice between developing a pure grammar or using search depends on

the number of solutions and it involves a tradeoff between the time required to acquire

enough domain knowledge to develop a pure grammar, and the time needed to find a

solution running a grammar with search.

1.2.4 Discursive grammar: simulating, generating, and "optimizing"

In Section 1.1, it was outlined three problems -- simulation, generation, and optimization

-- that needed to be solved in the development of a design system for customizing mass

housing, and in sections 1.2.1 through 1.2.3 it was shown how it could be effectively

done. The simulation and generating problems can be solved with the use of a

description grammar (Stiny, 1981) and a shape grammar (Stiny and Gips, 1972),

respectively. A grammar consists of a set of substitution rules that apply recursively to

an initial assertion to produce a final statement. In description grammars, the assertions

are symbolic descriptions, whereas in shape grammars, they consist of shape

descriptions. In addition, description grammars deal with semantics, and shape

grammars address form. The third constraint is satisfied with a set of heuristics.

Heuristics are used to choose a rule for application at each step of the design generation

or to constraint choice to a small number of rules. Other heuristics assess the designs

that would result from the application of each of the available rules, and then choose the

one that takes the evolving design closer to the goal description in the design brief. This

process is deterministic. At a micro-scale, a specific design context will lead to the

application of a specific rule; at a macro-scale, a given context will lead to a given

housing solution. I call this mathematical model a discursive grammar because it allows

the generation of formally and semantically correct designs. Each house is like a piece

of speech in the language that is appropriate for the context. In the following section, it

will be shown how the approach proposed in this study fits into the context of

approaches to mass housing.

1.3 From mass production to mass customization

Three great technological revolutions have changed the course of human history: the

agricultural, industrial, and computer revolutions. For Toffler (1984), these revolutions

are like waves of change that spread across space and time. The impacts of the first

two revolutions in architecture are well known, but the impact of the third one, which

started in the 1950s, is still being acknowledged. In fact, the impacts of these waves of

change seem to take some time to reach architecture, which consequently often lags

behind other fields.

The framework for the customization of mass housing proposed in this work represents

an effort to take advantage of the benefits brought by the computer revolution to solve

the problem of customizing mass housing. The design of mass housing has been an

important theme in architecture since industrial revolution in the 19th century caused a

rural exodus towards the cities. Not surprisingly, an important part of architectural

production in the 20th century was focused on this design problem and it is possible to

identify three different approaches.

In the first half of the century, designers attempted to solve the problem by introducing in

architecture a production process based on the assembly line. The assembly line was

initially developed for the automotive industry by Henry Ford, but soon became a

paradigm for the whole industry. It enforced the production of standard parts and

identical products by a single company. This approach was extensively used in the

reconstruction of Europe after World War 1I. In Eastern Europe, centralized

governments and egalitarian societies made it easier to introduce and accept until the

fall of the Berlin wall. In Western Europe, once the housing shortage caused by the war

was overcome, the implied degree of repetition became unacceptable by a society

increasingly focused on individual freedom and choice. Consequently, this approach

was progressively abandoned.

In the United States, market forces led to the development of a new paradigm for mass

housing in the 1960s, called the kit-of-parts. In the previous approach, there was no

interchangeability of parts. The new approach was an open process that required heavy

coordination to integrate standard parts from different companies. Production costs

were reduced because each company, being focused on the production of a single part,

could optimize the process. Nevertheless, difficulties in communication and in

guaranteeing perfect interchangeability of parts constituted barriers to integration and

cost-reduction.

None of the industrial approaches referred to above were able to solve the housing

problems, especially in those parts of the World with incipient degrees of

industrialization. Therefore, there was a progressive shift towards a new approach

concerned with the human and social aspects of housing and their impact on design.

Eventually, this approach became mainstream in the industrialized countries as well. In

Portugal, it found a favorable ground, leading to the development of the theoretical

studies mentioned in Section 1.2.1, and then to design proposals that attempted to put

them into practice. The Malagueira development by Alvaro Siza, mentioned in Section

1.4, and used as case study in this work, is an example of such proposals.

In the meanwhile, the development of the computer revolution has already prompted the

shift towards mass customization. In this new industrial model, the assembly line

creates thousands of variations of the same product, each one different. There is a shift

from the current focus of one-size fits all to a new focus of a customized product. This is

already happening in the computer and clothing industry. The housing industry has

been slow to adopt a similar model, although it has long been proposed (Duarte 1989,

1995). This work attempts to give a step towards that model.

1.4 Siza's Malagueira

Alvaro Siza (1933-) is one of the most influential contemporary architects. His work has

been the focus of numerous studies, but there has not been any analysis that tries to

understand in depth Siza's work at Malagueira (1977-). Perhaps no other work of Siza

is more conceptually meaningful in the context of contemporary architecture than the

Malagueira housing development. The neglect of this project is somewhat surprising if

one considers that an important part of architectural practice and theory in the 20th

century was concerned with the design of mass housing.

All the great masters of the 2 0 th century have addressed this design problem in their

work. To recall an important few one can mention Walter Gropius' housing development

at Torten (1926-1928), Le Corbusier's Domino Houses at Pessac (1926-1929), and

Frank Lloyd Wright's Usonian houses (1946-1954). What is common among these

projects is the desire to devise a scheme that could be used to generate affordable mass

housing, using industrialization as the means for lowering the costs. Gropius used

repetition at its extreme. He designed three housetypes for a total of 316 dwellings

(Bonelli et al 1983). Le Corbusier, despite the use of repetition, was concerned with

variation. He designed four types for a projected 200 dwellings, although only 51 were

built. His concern was essentially placed at the urban scale, as he did not foresee

variations within each type. Yet, "if we compare the various interiors evolved by the

occupants with Le Corbusier's original design it is immediately apparent that his

conception lent itself to subsequent modification." (Boudon, 1979) Wright was probably

the most concerned with adjusting the design to the households in line with his "concept

of houses being as different as their owners" (Sergeant, 1976) and this was clearly

expressed in the design of 47 different homes at Usonia.

Siza's Malagueira is placed at the core of this discussion about housing and it

represents a logical development of the previous approaches. This development has its

roots in the experiments undertaken in Portugal after the 1974 revolution under the

Ambulatory Support to Local Residents program3, known as SAAL. The program had as

3 Servigo Ambulat6rio de Apoio Local in Portuguese

one of its desired outcomes the direct participation of future dwellers in the design of

their homes. In the spirit of the program, designers were expected to work with the

future dwellers in order to produce customized dwellings. At Malagueira, as in many

other SAAL developments, cooperatives of future dwellers were responsible for

promoting the development. The designer was supposed to meet with an assembly of

cooperants to discuss housing types, and then with each individual household to

customize its house. Later, assemblies and individual meetings became less frequent

because they were time-consuming. A similar phenomenon happened at Malagueira.

Malagueira was planned as an extension of the city of Evora and it is a large

development that encompasses 1,200 dwellings. Although the first house was designed

in 1977 and built in 1978, design and construction still proceeds today. Siza devised a

scheme that allowed for the generation of different houses. In fact, over 35 different

layouts were designed, ranging from one bedroom to five bedroom houses. He used

this scheme to incorporate into the design process the users desire for a unique house.

The scheme was composed of a set of design rules that were used by Siza or his

collaborators to design customized houses. However, despite the potential of Siza's

design system, three limitations could be identified. First, it was difficult to convey the

rules to other designers because they were never laid down in an explicit way. Second,

there were obvious difficulties in representing the universe of solutions using traditional

design media and thus difficulties in conveying them to prospective dwellers. Third, the

system's potential to customize the dwellings was not fully used, despite the ability for

generating diverse designs.

This study is an attempt to overcome such limitations and it is based on three

arguments: (1) shape grammars can provide the technical apparatus to make Siza's

design rules at Malagueira explicit; (2) a computer program encoding the grammar

would allow one to use Siza's design system more effectively; and (3) shape grammars

and computer programs, coupled with rapid prototyping and virtual reality techniques,

can provide a digital framework for customizing the design of mass housing. With such

a framework, designers could work with dwellers in the design of their houses and

reestablish the dialogue envisaged by the SAAL program.

1.5 Contributions

The dissertation makes four major contributions:

1. The outline of a system for the mass customization of housinq. The provision of

housing still follows a process in which the prospective household has to choose a

house among pre-defined types. The opportunity for customization with such a

process is very little. The envisaged process attempts at taking advantage of new

technologies to improve the degree of customization. This system will include a

design system, which will be elaborated in the dissertation, and a production system,

which will be the subject of future research. The design system encompasses a

Web-based interactive system for the exploration of design solutions, and virtual

reality and rapid prototyping techniques for visualization purposes. The production

system will include computer aided manufacturing and assembly processes.

2. A mathematical model for the interactive design system. Traditional shape

grammars permit the random generation of design solutions within the languages

they codify. These designs are syntactically correct but there is no way to guarantee

that they match given requirements, that is, that they are semantically correct too.

Existing approaches to this problem propose the use of stochastic processes, which

use trial and error to guide the generation of designs towards the goal. Such

processes might take several hours before finding a solution and, therefore, they are

not suitable for web-based implementations intended for use by prospective clients.

The proposed model takes a deterministic approach as a way of reducing the

generation time. Such model is an extension of the grammar formalism and it

includes a shape grammar, a description grammar, and a set of heuristics that allows

the generation of a design solution that matches requirements given a priori. This

model is called a discursive grammar.

3. The prototype of a Web page for explaininq the grammar in a visually

understandable way. Traditional documents on shape grammars tend to be very

technical and mathematically oriented texts. Such features make it difficult for non-

technically oriented designers to use grammars in practice thereby preventing a

greater interest in the development of further research. An interactive Web page in

which the process of developing and using the grammar is described using

interactive gadgets is, therefore, proposed as a way to overcome such difficulties.

The Web page is a major part of the mass customization system mentioned above

and it includes a catalog of existing designs to be browsed by prospective clients, a

tool for teaching the designers how to design houses in the language defined by the

grammar and, ultimately, a mechanism for generating new houses on line.

4. A rigorous method for understanding and teaching Siza's style at Malagueira.

Traditional studies on the history of architecture tend to describe a particular style

without saying how to actually generate new designs in the style. The dissertation

uses as a case study the Malagueira houses designed by Alvaro Siza and a

grammar is proposed for this style. The study goes one step beyond previous

grammars as it uses the designer as a source of information and proposes a model

for the designer's decision-making process while designing. By describing how to

generate designs in this style with mathematical rigor, the study gives one step

towards the explanation of architectural qualities in a rigorous way. Similar methods

might be applied to other styles.

1.6 Organization of the thesis

The dissertation is organized into nine chapters, including this introductory chapter.

Chapter 2 presents the methodology used in the development of the discursive

grammar, which included the development of a shape grammar followed by a set of

experiments.

Chapter 3 describes precedent studies in performance criteria and grammars, explaining

how the proposed discursive grammar fits in the context.

Chapter 4 describes the corpus of Malagueira houses, the main source of information

utilized for developing the shape grammar, using photos, drawings, and digital models.

Chapter 5 presents the initial shape grammar developed for the Malagueira houses.

First, it explains the structure of the grammar, and then it explains the rules. The

generation of a house in the corpus is included to illustrate rule application.

Chapter 6 describes the set of four experiments undertaken to test the grammar. The

first experiment checked whether the grammar could account for a new house designed

by Siza after the grammar had been finished. The second experiment was the

generation of a random new house by the author of the grammar. The third and fourth

experiments consisted of the generation of new houses for specific clients by other

designers.

Chapter 7 introduces the discursive grammar. After describing its structure, including

the programming and the designing grammar, it explains how the rules are different from

the initial grammar, and how the different components interact to guide design

generation towards a solution that meets the goal.

Chapter 8 describes three steps towards the implementation of the proposed framework,

including a computer implementation of the discursive grammar, a Web site that permits

the generation of new designs on-line, and the combined use of rapid prototyping and

virtual reality to visualize such designs.

Chapter 9 summarizes the conclusions and outlines paths for future work.

References

AELLEN, Kurt; THOMAS, Keller; MEYER, Paul; WIRGAND, Jorgen - Systeme d'evaluation de
logements (SEL). Berne, Ed. Office F6d6ral du Logement, 1979.

ASSOCIATION QUALITEL - Guide Qualitel. Paris, Ed. Association Qualitel, 1989.

BLACHERE, Gerard. - Un langage pour la description (typologique) d'une habitation. Paris,
Cahiers du Centre Scientifique et Technique du Batiment, n.* 135,1972.

BONELLI, R., MENNA, F., MOLTKE, W. - Walter Gropius e I'habitat del Novecento. Effelle,
Roma, 1983.

BOUDON, P. - Lived-in Architecture: Le Corbusier's Pessac revisited. MIT Press, Cambridge,
Massachusetts, 1979.

CABRITA, A. R. - Boa Habitagdo: Do conhecimento a Gestdo da Qualidade. Lisboa, LNEC,
1987.

COELHO, A. B. - An~lise e Avaliagio da Qualidade Arquitect6nica Residencial. Volume I.
Lisboa, LNEC, 1993.

DUARTE, J. Pinto; PAIVA, J. Vasconcelos - Normas Tdcnicas para Projecto de Edificios de
Habitagdo. Lisboa, Ed. LNEC, 1994.

HABRAKEN, N. J. -Type as a Social Agreement. Asian Congress of Architects, Seoul, 1988.

KORF, Richard E. - Space-Efficient Algorithms, in ACM Computing Surveys, Vol. 27, No. 3
September 1995.

MINISTERIO DA HABITAQAO E OBRAS PUBLICAS e LABORATORIO NACIONAL DE
ENGENHARIA CIVIL (MHOP e LNEC) - Instrug6es para projectos de habitagso promovida
pelo estado. Lisboa, Ed. LNEC, 1978.

MINISTERIO DO EQUIPAMENTO SOCIAL (MES) - Recomendagdes Tecnicas para Habitagso
Social (Portaria n.* 580/83, de 17 de Maio). Lisboa, MES e LNEC, 1985.

PEDRO, J. Branco - Indicadores de Qualidade Arquitect6nica Habitacional. Dissertagio
apresentada em cumprimento das exigencias de provas de doutoramento na Faculdade de
Arquitectura da Universidade do Porto. Porto, Ed. FAUP, 2000.

PORTAS, Nuno, GOMES, Ruy - Estudo das fung6es e da exigsncia de dreas da habitagso -
Necessidades familiares e dreas da habitagso. Anslise de exig6ncias por fung6es da
habitagio. Volume /. Lisboa, Ed. LNEC, 1964a.

PORTAS, Nuno, GOMES, Ruy - Estudo das fungdes e da exigencia de Areas da habitagso -
Necessidades familiares e dreas da habitag~o. Aniise de exigsncias por fung~o da
habitagdo. Volume //. Lisboa, Ed. LNEC, 1964b.

PORTAS, Nuno - Fung6es e Exig~ncias de Areas de Habitagio. Colecgso Informagdo T6cnica
de Edificios, n0 4. Lisboa, Ed. LNEC, 1969.

RADFORD, A. and GERO, John - Design by Optimization in Architecture, Building, and
Construction, Van Nostrand Reinhold, New York, 1988.

SERGEANT, J. - Frank Lloyd Wright's Usonian Houses: the case for organic architecture.
Whitney Library of Design, New York, 1976.

STINY, G., GIPS, J. - Shape Grammars and the Generative Specification of painting and
Sculpture. In C V Freiman (ed) Information Processing 71, pages 1460-1465, Amsterdan,
North-Holland, 1972.

STINY G, 1981, "A note on the description of designs" Environment and Planning B: Planning
and Design 8 257-267.

TOFFLER, A. - A Terceira Vaga, Livros do Brasil, Lisboa e Rio de Janeiro, 1984.

VIDLER, Anthony - The Production of Types. Oppositions 8, 1977.

WINSTON, Patrick - Artificial Intelligence, Addison-Wesley, New York, 1993.

2. Methodology

2.1 Concepts

Stiny and Mitchell (1978) listed three tests to confirm if a grammar has any explanatory

or predictive value. First, it should reveal the common, underlying features of designs in

the corpus -- the descriptive test. Second, it should provide the criteria to determine

whether a building is a design in the language -- the analytic test. And third, it should

specify how to generate new designs in the language -- the synthetic test. Given the

goal of generating customized designs, we propose to apply an additional test to a

discursive grammar. This new test states that a discursive should possess the means to

generate designs that match given criteria. We call this test goal test. These four tests

were used to structure the methodology followed in the development of proposed

Malagueira grammar as shown in Table I and diagrammed in Figure 3.

The tests validate the grammar, but researchers have carried them out by inquiring its

ability to generate certain type of designs. Stiny and Mitchell initiated such a strategy

while demonstrating the descriptive value of their Palladian Grammar through the

generation of the plan for Villa Malcontenta, a design in the corpus. Koning and

Eizenberg (1981) continued this strategy by proposing three new houses after their

grammar for Frank Lloyd Wright's Prairie houses to show its syntactic correctness. In

our study, we extended the strategy by showing the generation of a house designed by

Siza after the grammar was developed, and by showing the generation of criteria-

matching designs. Thus, the tests can be more accurately reformulated as follows:

Descriptive test: can the grammar generate designs in the corpus?
Analytic test: can the grammar generate existing designs not in the original corpus?
Synthetic test: can the grammar generate new designs in the style?
Goal test: can the grammar generate designs that match criteria?

In addition to the generation of designs, performing the tests requires testers to

determine whether such designs are in accordance with the goals "in the corpus," "in the

style," and "match criteria" required by the tests. The ideal tester for the Malagueira

grammar would be Siza, the original author, and his clients. Unfortunately, although

Siza was very supportive, he was very busy and, therefore, it was necessary to limit the

use of his time. We overcame this constrain by submitting designs to Siza only when

they had been approved by other testers. The use of multiple testers also permitted to

crosscheck the grammar. These additional testers were for the Siza's collaborator (2nd

author), the author of the grammar (3rd author) and his collaborators (4 th authors), and

other authors non-familiar with the grammar (5th authors) in the descriptive, analytic, and

synthetic tests, and fictitious clients in the goal test.

The methodology comprised the following seven phases: preparatory, descriptive,

analytic, synthetic, goal, discursive, and implementing phases, which roughly correspond

to Chapters 3 through 8 of this document. With few exceptions, each phase was

targeted at the performance of the test with the same name, although it included the

performance of other tests, as well. There are explicit and implicit reasons to perform

several tests in each phase. The explicit reason was to subject the grammar to tighter

tests in subsequent phases to improve its accuracy. For instance, in the description

phase both Siza and the author of the grammar had confirmed that grammar revealed

the underlying common features of the designs in the corpus. Nevertheless, this did not

prove that it also succeeded in revealing such features to designers who did not have

previous knowledge of the Malagueira work. Thus, in the goal phase another descriptive

test was carried out with designers in such conditions. The explicit reason was that the

performance of some tests indirectly requires the performance of other tests. For

instance, to "generate a design in the style that matches given criteria" requires one to

check whether the grammar can generate a design at all (synthetic test,) whether the

design matches the criteria (goal test), and whether it is in the style (analytical test.)

The flow diagram of the proposed methodology is represented in Figure 3 and the

sequence of steps is diagrammed in Figure 4. Please compare both diagrams for further

information. A brief description of the procedures involved in each methodological

phase is provided below.

Figure 3 - Flow diagram of the proposed methodology

0. Preparatory Phase: learning 1. Descriptive Phase: inferring
(3 rd author)

2. Descriptive Phase: descriptive test
(tester: 3rd author)

3. Descriptive Phase: analytic test
(tester: 3r author)

4. Descriptive Phase: descriptive test
(tester: 1s' and 2"d authors)

6. Synthetic Phase: synthetic test
(tester: 3rd author)

7. Synthetic Phase: analytic test
(tester: 1" and 2"d authors)

8. Goal Phase: identifying
descriptions (3d author)

9. Goal Phase: describing (clients) 10. Goal Phase: descriptive test 11. Goal Phase: synthetic test
(tester: 4th authors) (tester: 4th authors)

Figure 4 - Sequence of steps in the methodology. For an accurate analysis, please match each individual
diagram with the diagram in Figure 3. Bold lines represent the steps followed in each phase.

12. Goal Phase: goal test 13. Goal Phase: analytic test 14. Goal Phase: analytic test
(4h author) (3"d author) (1" author)

Figure 4 (continued) - The flow of tests in the methodology. For an accurate analysis, please match each
individual diagram with the diagram in Figure 3. Bold lines represent the steps followed in each phase.

2.2 Preparatory phase

The preparatory phase was aimed at gaining a basic understanding of the fields of study

-- performance criteria, grammars, and optimization -- and the specific problem used as

a case study -- the Malagueira development. It consisted of a literature review, and the

gathering of information on Malagueira. The results of the literature review are

presented in Chapter 3. The sources of information included drawings, interviews with

the designers, and field trips to Malagueira. The drawings were collected from the

archives of Siza's main office in Porto and in the local office he established in Evora to

support the project and included drawings at 1/100, 1/50, and 1/20 and 1/1 scales. The

set of interviews included interviews with Siza and interviews with his main collaborator

in the Malagueira project, Nuno Lopes, who was in charge of the vora office. The

interviews were led in an informal way and permitted the gathering of information about

the history of the project and the process of designing the houses. The material

collected at Malagueira included slides from the interior and exterior of the houses, as

well as notes from conversations with local residents. This material was used to

complete the information provided by the drawings. For instance, the four and five

bedroom variations of one of the housetypes (Type D, please see Chapter 4) were not

found among the drawings collected but they were identified and visited in person.

Conversations with residents helped to understand the genesis of the urban

development and the houses. For instance, we learned that these four and five

bedroom variations resulted from additions to the original three-bedroom plan.

2.3 Descriptive phase

The descriptive phase was targeted at the development of a shape grammar for the

Malagueira houses. It included four steps: the analysis of the collected drawings, the

sketching of the grammar, the generation of an existing design, and new interviews with

the 1st and 2 nd authors (Siza and his collaborator.) This process corresponds to steps 1

through 4 of the diagram in Figure 4.

The first step required the analysis of the designs in the corpus to infer the shape

grammar rules. This analysis included functional, topological, and dimensional

analyses. These analyses revealed the formal structure behind the prototypical designs.

In the second step, the generations of the prototypical designs were reconstructed

following the rules inferred in the previous step. The goal was to highlight the

commonality of formal structure for the two designs, thereby assuring that the grammar

fulfilled the requirements of the descriptive test.

In the third step, the remaining designs in the corpus were considered one by one. Each

type another design was considered, an analytic test was implicitly performed. In an

analytical test, the rules of the grammar are applied in reverse order starting with the

final design and terminating with the initial shape. The goal is to decompose the design

and determine whether the grammar can account for its generation, thereby confirming it

as an instance of the style.

In the step 4, the last in the descriptive phase, we undertook an interview with Siza and

Nuno Lopes to perform a final descriptive test. The grammar was explained to the

designers while showing the rules being applied in the generation of the prototypical

designs. Then, they were asked whether the grammar succeeded in revealing the

underlying structure of the Malagueira houses.

The strategy followed in the analysis of the designs and in the sketching of the grammar

followed, to a certain extent, the process used by Siza at Malagueira, who after having

designed the first two housetypes -- a frontyard and a backyard house -- designed the

remaining as variations of the first. Similarly, the grammar was sketched after the

prototypical designs, and then successively refined to account for the generation of the

remaining designs.

2.4 Analytic Phase

The goal of the analytic phase was to perform a final analytic test to check whether the

grammar could account for the generation of a new patio house designed by Siza after

the grammar had been developed. As explained in the previous section, the rules of the

grammar were applied in reverse order to decompose the design into the initial shape.

The test was carried out with some limitations because the size and shape of the lot was

different from the standard Malagueira lot used in the other designs. The result showed

that the rules of the grammar could successfully decompose the new design, with the

exception of design details originated by such a difference (please see Section 7.1.) To

the extent of our knowledge, it was the first time that such a test was carried out. The

test can only be applied to a grammar for the work of a living architect and the other

grammar in these circumstances, the grammar for Glen Murcutt's country houses

(Hanson and Radford 1986) was tested in a different way. In this case, both the authors

of the grammar and the original author designed a house for the same client. The

former following the rules of their grammar, and the latter following his traditional design

process. At the end, both designs were compared. This test is a goal test similar to the

ones performed in the goal phase, as described further below.

2.5 Synthetic Phase

The synthetic phase was targeted at the generation of a new design in the Malagueira

style and it included a synthetic and an analytic test. The synthetic test checked the

capability of the grammar to generate a new design and the analytic test confirmed it as

an instance of the style. The descriptive phase had shown that recent designs were

variations from the prototypical designs obtained by different rule applications, like in the

rule for locating the staircase mentioned in Section 2.3. The same strategy was followed

in the generation of an entirely new design. Siza had designed only one backyard

housetype because there was no demand for such a type. The new design was a

backyard housetype, which differed from the one Siza had designed in the location of

the staircase (please see Section 6.2 for further detail.) The new design was shown to

Siza amidst several frontyard designs he had designed. The backyard house was

purposefully omitted. Interestingly enough, Siza did not distinguish the new design from

those that he had designed. Namely, he did not notice that the shown backyard design

was not his. At one point, he seemed confused because of the different location of the

staircase, but he acknowledged its validity, and dismissed his doubts. Not even when

the generation of the new design was shown in detail did he notice that it was not his

design, thereby confirming the design as an instance of the style, and validating the

grammar.

2.6 Goal Phase

In the previous phases, the focus was on the development and refinement of the

Malagueira shape grammar. With these goals in mind, descriptive, analytic and

synthetic tests were performed. These tests can be viewed as experiments in which the

author of the grammar (3rd author) was the sole subject and the original designers (1 S'

and 2nd authors) were the control group. The general goal was to check whether the 3rd

author by using the grammar could achieve a performance similar to the 1st and 2nd

authors. One of the aims of the goal phase was to continue refining the grammar by

testing its ability to convey the rules to designers who were less or non-familiar with the

design language (4th and 5t' authors.) Therefore, additional tests were performed with

such designers.

However, the focus in this phase shifted to the development of the description grammar.

Stiny mentioned two problems that one had to solve in undertaking such an enterprise.

(Stiny 1981) The first was fixing the contents of the description, that is, to decide which

features of the designs are considered relevant and then to describe them in an

appropriate way, through verbal or numerical descriptions. The second was to define

the description rules. Given that the ultimate goal is the generation of designs that

match descriptions, we have identified a third problem: how to arrive at a design given its

description. Solving these problems is crucial, as it will determine what questions to ask

the client and how to derive the design. We approached the three problems in four

different ways. First, we considered the categories included in Siza's documents.

Second, we came out with categories after our own description of the existing designs.

Third, we asked fictitious, prospective clients to describe the houses that they needed.

And fourth, we monitored designers in their attempt to generate designs that matched

descriptions. Together, these approaches led to the simulation of a goal test. The test

was simulated because the grammar did not include a mechanism to guide the

derivation of a design towards a specified goal. In fact, the idea behind the simulation

was to develop such a mechanism.

To simulate the test, two series of experiments were undertaken (Table 11.) In the first

series, all the subjects were asked to design a house for the same client and it included

two groups of subjects. The first included subjects who had collaborated in the

development of the grammar (4th authors) and who functioned as the control group. The

second group included designers who did not have previous knowledge of either Siza's

work at Malagueira or the grammar (5th authors.) The client was familiar with the cultural

context of the Malagueira houses. In the second series of experiments, none of the

experimental subjects was knowledgeable of the Malagueira work, and none of the

clients was familiar with its cultural context. This series included two sets of

experiments. In the first set, the subjects were not allowed to change the grammar,

whereas in the second set they were. Results showed that designers could use the

grammar to generate criteria-matching designs, and provided important clues on how to

incorporate such a mechanism into the grammar. Both the experimental setting and the

results are described in detail in Chapter 5. Each of the series of experiments iterated

through steps 8-14 of the diagram in Figure 4.

Table i - Experiments of the goal phase

Phase Series Set Subjects Client Steps
Goal 1"' 1St 4'" authors Familiar with 9-14

(control cultural
group) context

2na 5' authors Familiar 9-14

2n St 5'" authors Non-familiar 9-14
2nd 5'" authors Non-familiar 9-14

In step 8, the designs were analyzed to identify explicit and implicit descriptions. In step

9, clients were asked to describe the house that they needed. First, they were given a

Web-based catalog of Malagueira houses, and shown a few houses in detail to make

them aware of the functional and aesthetic possibilities provided by the style. Then, they

were asked to describe their needs. Their description was video-recorded and later

given to the experimental subjects. In step 10, the grammar was explained to the

experimental subjects by showing them the generation of some existing designs. Then,

they were asked to reconstitute the generation of other existing designs. Finally, they

were asked to comment on the ability of the grammar to describe the style (descriptive

test.) In step 11, each subject was given the video with the client interview and then

asked to generate a house for the client out of the grammar rules. At the end, they were

asked to assess the capability of the grammar in specifying how to generate a

Malagueira house (synthetic test.) In step 12, the houses were shown to the clients who

were asked whether the design satisfied the needs described at the outset (goal test.).

In step 13, the author of the grammar certified the designs' compliance with the style

(analytic test.) Steps 11 and 12 were repeated until the goal and the analytic tests were

successful. Finally, in step 14, all the designs were shown to Siza who was asked

whether he considered them Malagueira designs, for a final analytic test.

2.7 Discursive Phase

The goal of the discursive phase was to develop the description grammar and to

incorporate into the shape grammar the mechanism that permitted the generation of

criteria-matching designs, thereby obtaining the discursive grammar. The experimental

results of the goal phase permitted the identification of relevant descriptions and

heuristics used by designers in their efforts to generate designs that matched criteria.

These results, however, were not sufficient and other descriptions were introduced after

studies on performance criteria. Once the problem of which categories to include was

solved, the next step was the development of the description rules by constructing the

descriptions of the left and right sides of the rules. The next step was to perform a

descriptive test consisting in the generation of the description, followed by the generation

of the corresponding existing design. This test showed that a discursive grammar

constituted a valid model. Fine-tuning the grammar will require the performance of

synthetic, goal, and analytic tests. Given the complexity of the descriptions, it is

recommended to do this after a computer implementation is completed. In this

circumstances, the tests will require: (1) the automatic generation of new designs to

satisfy the needs of clients; (2) to ask the clients if the designs matched their needs, and

(3) to ask the original designer if the designs were in the style.

2.8 Implementation Phase

The implementation phase was aimed at the development of the interpreter for the

Malagueira discursive grammar. An interpreter is a computer program that implements

the rules of the grammar and, therefore, is capable of generating designs in the

language. Chronologically, this phase was parallel to the discursive phase so that the

structure and contents of the descriptions in the grammar could be developed in a way

that would make its computer implementation easier.

2.9 Summary

In the previous sections, we described the methodology followed in the development of

the Malagueira grammar and interpreter. This methodology was structured upon three

tests proposed by Stiny and Mitchell (descriptive, analytic, synthetic tests) and a fourth

tests developed in this study (goal test.) The methodology comprises six phases,

excluding an initial, preparatory phase. These phases can be grouped into two parts.

The first part is concerned with the shape grammar and it is steered towards the

development of the grammar (descriptive phase), and the refinement of its performance

(analytic and synthetic phases). The second part is mainly concerned with the

description grammar and it is directed towards the definition of the categories in the

description (goal phase), the development of the description grammar (discursive

phase), and the development of a computer interpreter. We propose this methodology

as general methodology for the development of discursive grammars.

References

STINY G - A note on the description of designs. Environment and Planning B: Planning and
Design 8 257-267, 1981.

STINY, G and MITCHELL, W J - The Palladian Grammar. Environment and Planning B, Vol. 5,
pages 5-18, 1978.

KONING, H, and EIZENBERG, Julie -The Language of the Prairie: Frank Lloyd Wright Prairie
Houses. Environment and Planning B, Vol. 8, pages 295-323, 1981.

HANSON, Neil, RADFORD, Anthony - On modeling the work of the architect Glen Murcutt.
Design Computing, Vol. 1, pages 189-203.

3. Precedents

3.1 Introduction

Related work can be divided into three categories: performance criteria, grammar, and

optimization studies. Performance criteria studies are concerned with the identification

of the requirements for the design of housing, and with the evaluation of both designs

and houses. Grammar studies focus on the development of shape and description rules

that encode languages of designs. Optimization is concerned with finding the best

solution for a stated problem. This chapter introduces additional background information

on performance criteria and shape grammar studies. For the purposes of this work,

optimization was sufficiently covered in the introductory chapter.

3.2 Performance criteria

Performance criteria studies started with studies aimed at understanding how people

used the dwelling space. These studies were important to identify the user needs and to

codify them into a coherent set of design requirements. Among such studies developed

for the Portuguese context is the Study of the Housing Functions and Area

Requirements (Portas and Gomes 1964a and b).

A practical result of these studies was the development of guidelines aimed at helping

the designer to establish the housing program. In Portugal, these guidelines were the

Design Guidelines for State Promoted Housing-IPHPE (MHOP and LNEC 1978), the

Technical Recommendations for Social Housing-RTHS (MES and LNEC 1985), and the

Technical Guidelines for the Design of Housing Buildings-NTPEH (Duarte and Paiva,

1994). These normative documents were sequentially in use at the time of Siza's work

at Malagueira, and therefore, were taken into consideration in his designs.

Design guidelines led to the development of quality evaluation studies to determine

whether designs and dwellings satisfied design requirements. The outcome of these

studies was the development of several quality evaluation methods to measure the

performance of designs and dwellings against such requirements, such as the Dwelling

Evaluation System-SEL (Aellen et al 1979), and the Qualitel Guide (Association Qualitel

1989).

Recently, Pedro updated and summarized previous studies into housing programming

and evaluation methods adjusted to the contemporary Portuguese reality called Housing

Program (Pedro 1999a and b) and Architectural Housing Quality Indicators (Pedro

2000). These documents are used as a basis for the development of the discursive

grammar proposed in this work for the following reasons. One the one hand, these

methods are in line with the documents that regulated the design of housing when Siza

designed the Malagueira houses, they are recommended by the two major Portuguese

institutes that regulate housing issues-the National Housing Institute' and the National

Laboratory for Civil Engineering 2, and they take into account the Portuguese

contemporary reality.

On the other, the goal of the discursive grammar is to generate not only the houses that

Siza has already designed, but also new houses in the style. Therefore, the use of such

I Instituto Nacional da Habitagdo (INH)
2 Laborat6rio Nacional de Engenharia Civil (LNEC)

two documents is likely compatible with Siza's rules, and it permits the generation of

new contemporary designs.

For a better understanding of the proposed discursive grammar, the programming and

evaluation methods developed by Pedro are summarized below.

3.2.1 Programming method

In the studies concerned with analysis of housing, the main motivation to define a

housing program is to make it possible to analyze and evaluate the dwellings by

verifying the extension to which the program is satisfied. Another motivation is to use

the program to define the requirements that will lead to the satisfaction of a high number

of users. This second motivation is important because in traditional mass housing

provision processes, the designer conceives the houses for anonymous users, whose

individual expectations are unknown. The idea is to come up with models of dwellings

that satisfy typical programs, which are then used as references by the designer in the

design process, or by the analyst in the evaluation process.

The definition of a housing program represents the first step in the design process, in

which the problem data and the requirements to be satisfied by the solution are

identified. Pedro considers that a housing program consists of three parts: the program

data, the quality requirements, and the reference models. The program data classify the

dwelling functions and rooms, characterize the users, and identify the most common

dwelling types. The quality requirements define the level of performances of the

dwelling rooms that satisfies the user needs. The reference models are sample

solutions for housing programs. The goal of the discursive grammar is to avoid the use

of reference models by encoding the rules for generating specific solutions for given

problems. In the application of his method, Pedro considers the existence of four

physical levels: spaces and rooms, dwelling, building, and neighborhood. However,

given the scope of the discursive grammar, only the first two are considered in the

present work. A brief explanation of the concepts of program data, and quality

requirements at the spaces and dwelling levels is provided below.

Program data

The program data includes the identification of the spaces and rooms that form a

dwelling (e.g. kitchen, double bedroom, etc.) and the identification of functions (e.g.

washing clothes) and activities (e.g. hand and mechanic washing) that the dwelling will

shelter. It also includes the assignment of functions and activities to spaces and rooms

(e.g. washing clothes in the kitchen, bathroom, or laundry), the characterization of the

schedule of the different activities in the spaces (e.g. washing clothes is done weekly,

during the day, and lasts for several hours), and the characterization of the different

dwellers in terms of age and relationship to the household (e.g. washing clothes is done

by individual household members who are older than 14 years, or by an employee).

Design or quality requirements

The design requirements define the performance level of the rooms and construction

units to ensure the satisfaction of the user needs. The formulation of requirements

defines the required performance quality, but it does not provide solutions. Performance

quality is defined in terms of levels. A quality level is a set of requirements that define a

degree of user requirements satisfaction. There are three quality levels: minimum,

medium, and maximum (or high). The minimum level is defined by a set of requirements

that satisfy the elemental necessities of daily life at a level of performance that does not

constrain the household's way of living in any significant way. The medium level is

defined by a set of requirements that supports daily life better than the minimum level

requirements by taking into consideration different ways of living and the expectable

evolution of household needs. The maximum level is the one, beyond which, the

performance of the dwelling does not improve significantly and some investment

problems might indeed arise.

Table 3.1 - Tree of qualities applicable to the dwelling level.

Security

Qualities

21 acoustic

Elemental Qualities

27 acoustic 100

visual 45 solar orientation 31
natural lighting 26
shading 10
views/hurdles 20
views/monitoring 13

100

air flow 28 air flow 100

11 use

100

48 use 100
fire 26 fire 100
intrusion 26 intrusion 100

100

Spatial adequacy 30 capacity 32 type and number of rooms 42
equipment 28
furnishable wall extension 30

100

spaciousness 43 area 49
useful dimension (w, 1) 33
hei ht 19

100

functionality 25 functionality 100
100

Spatial articulation 22 privacy 59 internal 44
external 56

100

accessibility 41 among rooms 50
100 more than one floor 28

handicapped 22
100

Personalization 16 adaptability 37 adaptability (among rooms) 25
100

aDropriation

I expandability (perimeter) 75

63 appropriation 100
100

Quality Groups of
qualities

Comfort

COMFORT

Acoustic comfort: The dwelling must provide an adequate level of acoustic insulation among its rooms and
between these and the surroundings. Ex.: The sleeping and the living zones are separated by a door or
staircase. Nominal

Solar orientation: The dwelling must provide direct sunlight of its rooms during different periods of the day,
and it should provide rooms with an adequate solar orientation for the functions that they host. Ex.: The
solar orientation of a bedroom is optimal between east and southwest.

Natural lighting: The dwelling must provide rooms with an adequate solar orientation for the functions that
they host. Ex.: the ration between the area of a room's windows and its area is between 5 and 22%.

Shading: The dwellings must have openings with devices that permit their total or partial shading. Ex.: The
bedrooms have shading devices that enable total darkness.

Views: The dwelling must provide an adequate visual contact with the exterior through a vision field free of
obstacles, and through the size and details of windows. Ex.: The ration between the area of a room's
windows and its area is between 5 and 22%.

Visual monitoring: The dwelling must allow the user to monitor activities taking place in the adjacent
external spaces, and views over pleasant scenes. Ex.: The openings have views over children's leisure
places.

Air quality: The dwellings must provide for ventilation that allows air renewal, pollution substances removal,
enough air for combustion equipment to work, and the extraction of smoke and gases that these produce.
Ex.: There exist two facades on opposite sides that permit cross-ventilation.

SECURITY

Use security: The dwelling must protect the dwellers from aggressive agents, circulation accidents (hits or
falls), and falls from elevated places, during the normal use of its spaces and equipment. Ex.: The stove is
not close to an operable window.

Fire security: The dwelling must minimize the risk of fire initiation and propagation, facilitate user-
evacuation, rescue and fire-fighting operations, and protect users from smoke and high temperatures. Ex.:
The inhabited rooms have access to the exterior through one or more circulation spaces separated from
other rooms, alternative, or emergency exits.

Intrusion security: The dwellings must ensure the protection of users and their property from the intrusion
of people, animals, and objects. Ex.: One can clearly see the space adjacent to the entrance door.

SPATIAL ADEQUACY

Type and number of rooms: The dwelling must have rooms that enable their adequate use by the number
of its users. Ex.: The dwelling has two living-rooms.

Equipment: The dwelling must have equipment installed during construction that enables its adequate use
by the number of its users.
Ex.: The extension of the kitchen's counter of a two-bedroom dwelling is between 2.5 and 3.4m.

Figure 3.1 - The qualities considered in Pedro's programming method,

SPATIAL ADEQUACY (continued)

Furnishable wall extension: The dwelling must have walls with extensions that enable the placement of
furniture adequate to the number of its users. Ex.: The extension of bedroom furnishable walls of a two-
bedroom dwelling is between 18 and 26m.

Useful area: The dwelling must contain rooms with areas that can accommodate the equipment, furniture,
and circulation space required for their adequate use by the number of its users. Ex.: The area of bedroom
area of a two-bedroom dwelling is between 19 and 30m2.

Height: The dwelling must contain rooms with a height that is adequate to their use for housing.
Ex.: The height of inhabitable rooms is between 2.3 and 2.70m.

Functionality: The dwelling must provide adequate conditions for users to perform the dwelling functions.
Ex.: It must possible in all the bedrooms to place the beds away from lateral objects, with the top against the
wall, and with a distance between the bottom and the opposite wall no smaller than 0.5m.

SPATIAL ARTICULATION

External privacy: The dwelling must permit privacy at the personal and the household level through the
way it relates to the exterior.
Ex.: There are no spaces adjacent to the dwelling with direct views towards the sleeping, living, or water
closet zones.

Internal privacy: The dwelling must permit privacy at the personal and the household level through the way
the rooms are related to each other.
Ex.: The kitchen and the living room have access to a water closet through circulation spaces separated
from the sleeping zone.

Accessibility among rooms: The dwelling must provide users with easy physical links among rooms
strongly related. Ex.: The average extension of the path between the bedrooms and the corresponding
water closet should be between lower than 12.5m.

Accessibility between rooms on more than one floor: The dwelling must provide users with easy
physical links among rooms strongly related. Ex.: There is at least a bedroom at the entrance level.

Handicapped users accessibility: The dwellings must permit the use of its rooms by handicapped users.
Ex.: The useful dimension of the kitchen is between 1 and 1.50m.

PERSONALIZATION

Appropriation: The dwelling must allow users to make changes to the dwelling to personalize it. Ex.: there
are spaces in which the user can have plants.

Expandability: The dwelling must permit changes to its perimeter to adapt it to the user's life style.
Ex.: the dwelling is expandable.

Adaptability among rooms: The dwelling must permit changes to the relations among rooms to adapt it to
the user's life style. Ex.: The kitchen and the living can be merged/separated through a mobile device.

Figure 3.1 (continued) - The qualities considered in Pedro's programming method,

The design requirements are a list of qualities that need to be satisfied. The main

qualities are comfort, security, spatial adequacy, spatial articulation, personalization,

aesthetics, and cost. Each of these main qualities in turn includes several qualities. For

instance, comfort includes acoustic and visual comforts. These qualities also include

elemental qualities. For instance, visual comfort includes solar orientation, natural

lighting, shading, and views. The tree of qualities is shown in Table 3.1 and the

definitions are presented in Figure 3.1.

3.2.2 Evaluation method

The goal of the evaluation method is to support the decision-making process. The

evaluation method measures the satisfaction of design requirements by a housing

solution. Given the complexity of such a solution, to proceed with evaluation it is

necessary 1) to decompose the general goal into subgoals, 2) to establish the degree of

importance of each subgoal, 3) to measure the satisfaction of each subgoal, and 4) to

calculate the final result. The housing evaluation method is a multi-criteria method, in

which, the tree of qualities becomes a tree of viewpoints. This tree includes main

viewpoints as its branches (groups of requirements or qualities), and elemental

viewpoints as its leaves (basic requirements or qualities). The tree was defined taking

into account the following criteria: 1) to include all the elemental viewpoints considered

relevant; 2) to include only commensurable viewpoints; 3) to ensure that each main

viewpoint does not include too many sub-viewpoints; and 4) to ensure that the depth of

the tree is as small as possible.

Table 3.2 - From groups of qualities and qualities to evaluation criteria and requirements

Abstract concept Concrete example Definition
1 Physical level Dwelling
2 Groups of qualities Environmental comfort
3 Quality Acoustic comfort The dwelling should be conceived as to ensure

an adequate acoustic insulation among the
different rooms of the dwelling and between the
dwelling and its surroundings

4 Quality indicators Acoustic comfort among rooms
5 Evaluation criterion Separation of functional zones
6 List of requirements 1) There should be a separation by door or

staircase between the sleeping and the service
and living zones;
2) The separation between the sleeping and
the service and living areas should be
increased by introducing closets or
intermediate rooms with functions that are not
sensitive to noise, or by reducing the contact
surface among such areas.

The elemental viewpoints are quantifiable through the use of descriptors. A descriptor is

a set of values that permits to quantify in a numerical scale the performance of the

design from an elemental viewpoint. Evaluation criteria are the means through which

one can relate a feature of the design from an elemental viewpoint to a value on the

scale of the descriptor. A list of requirements consists of a sequence of requirements

that once satisfied lead to values on the descriptor scale. (Table 3.2) A Transformation

function relates the satisfaction of viewpoints to the descriptor scale. (Figure 3.2)

Evaluation scale
21

18

15

12

9

Transformation
function

0 Min imum(1) Medium (2) Maximum (3) Descriptor scale

Figure 3.2 - Example of transformation function articulating a descriptor and an evaluation scale.

Each of the viewpoints is assigned a weighing factor that expresses its importance for

the designer or the evaluator. To define the weighing factors, a method called swing

weights is used. This method comprises three steps: 1) ordering of the viewpoints,

considering their relative importance; 2) assignment of the value 100% to the most

important viewpoint, followed by the assignment of values to the remaining ones by

comparing their importance with that of the most important one (for instance, 90%, 80%

etc.); and 3) standardization of the weights onto a scale that adds up to 100. The result

of such a process also is illustrated by the weights in Table 3.1.

After evaluating the design from the different elemental viewpoints, one can obtain a

summarized result for the corresponding main viewpoint by calculating the weighted

average of the performance of the design from the different elemental viewpoints:

Vsvpi - Value of the design solution performance from
I (Vsvpi x Psvpi) sub-viewpoint i

Vvp = Psvpi - Ponderation factor of sub-viewpoint i
Z Psvpi Vvp - Value of the design solution performance from a

given viewpoint

The evaluation method is subjective because only some viewpoints are selected, and

because the weighing factors are determined by the evaluator. The set of viewpoints

were chosen according to the following criteria: to have a significant impact on

architectural housing quality, to be relevant for the evaluation context defined, to be

likely satisfied by current dwellings, and to be amenable to an objective evaluation.

Similar criteria were used in the selection of the qualities included in the discursive

grammar, which do not exactly match those in Table 3.1. The subjectivity problem was

not an issue because choosing weights is part of the exploration of solutions, as it will be

shown in Chapter 7. The discursive grammar adapts the housing programming and

evaluation methods just described.

3.3 Grammars

Grammatical design studies had their beginning in a seminal paper by Stiny and Gips

(1972), in which they laid the foundation of what was to become the most important

algorithmic approach to design. Since their invention, the field grew to encompass a

number of technical devices and research issues. Those that are relevant to the current

work are briefly presented below.

3.3.1 Shape grammars

A shape grammar specifies how designs can be generated from an initial shape through

the recursive application of shape rules. Shape grammars can be divided into two

categories, depending on whether they support, or not, shape emergence. Emergence

is the ability to recognize shapes that were not predefined but emerge in the

computation. The grammar presented in this work does not support shape emergence it

is therefore, a set grammar.

3.3.2 Parametric shape grammars

A parametric shape grammar is a shape grammar in which rules are parameterized so

that each rule represents a set of rules. The grammar proposed in this work is a

parametric grammar. A parametric shape grammar can be described by an ordered

sequence of five elements, which is called a five-tuple. As a way of illustration, consider

the grammar defined by the five-tuple (S, L, T, G, I). S is a set of parametric shape rules

of the form A --> B that specifies that whenever a shape A is found in the design, it can

be substituted by a shape B. In our illustrative grammar, this set is composed of two

parametric rules R1 and R2 (Figure 3.3). L is a set of labels that are used to control

computations. T is the set of similarity transformations (rotation, translation, scaling,

reflection or any composition of these) under which rules apply. G is a set of functions

that assigns values to parameters in rules, thereby defining specific rules. Both the

similarity transformation and the assignment function determine the conditions under

which the left-hand side of rules can be matched to a shape in the design during rule

application. Finally, I is the initial shape to which the first rule applies to start a

computation. Other rules then apply recursively to continue the derivation of a design

within the language defined by the grammar. (Figure 3.4)

The shape grammar formalism can be summarized in the equation: Ca+ = [CO - t(g(A))] +

t(g(B)), n > 0, in which Cn is the shape in the design at step n. The equation states that

for a rule to apply, A, the shape in the left-hand side of the rule, must be a part of C

under some assignment of values and transformation, in which case it is deleted and

substituted by B, the shape on the right-hand side. For a detailed description of shape

grammars and parametric shape grammars see Stiny (1980).

Figure 3.3 - A simple parametric shape grammar consisting of two rules. R1 (left) dissects a
rectangle; and R2 (right) translates a rectabgle.

R1 R2 R1

R1 R1 R1

R2 R1

Figure 3.4 - Derivation of a design in the language defined by rules R1 and R2.

3.3.3 Shape grammars: analytical and original

Shape grammar studies can be grouped into two different categories: analytical and

original. Analytical grammars have been developed to describe and analyze historical

styles or languages of designs by architects no longer living. In fact, after the first

grammar was developed to explain a corpus of architectural artifacts, the one for

Palladian villas (Stiny and Mitchell, 1978), others have been developed with the same

purpose over the past twenty years. Among them are Wright's Prairie Houses (Koning

and Eizenberg 1981), Buffalo bungalows (Downing and Flemming 1981), Japanese

tearooms (Knight 1981), Queen Anne houses (Flemming 1987), Wren's city churches

(Buelinckx 1993), and Taiwanese vernacular dwellings (Chiou and Krishnamurti 1995),

to name an important few. Analytical studies use a set of existing designs to represent

the language-the corpus-and to infer the rules of the grammar. The grammar is, then,

tested by using the rules to generate designs in the corpus, as well as new designs in

the language.

Original grammars are concerned with the creation of new and original styles of designs

"from scratch." The use of grammars for creative design has not been explored as

deeply as the use of grammars for analytical studies. Although implicit in Stiny and Gips

(1972), such use of grammars was only explicitly addressed in Stiny (1980) where he

proposes a programme for developing new grammars that is illustrated using Frederick

Froebel's kindergarten method of education. Stiny's programme was implemented by

Knight who introduced grammars in the design studio. From this experience, Knight

highlighted some of the difficulties in using grammars for creative design, which are

connected to the "translation of abstract, experimental forms into architectural designs

that fit particular design contexts or programmes" (Knight, 1992). Solving this difficulty is

central to the current work, which is focused on the design of goal-matching designs.

3.3.4 Computer implementation

Two approaches have been proposed to solve the goal-matching difficulty. The first is to

predict what rules will do so that a designer can decide which rules to apply to obtain

designs with specific properties. (Knight 1999, 2000) The second approach is to use

computer implementations of shape grammars to rapidly generate the results of rules,

allowing for a faster search through the space of design possibilities. Such an

alternative leads to two paths. The first uses the computer to generate designs, but

requires the designer to assess the generated designs; in short, the computer is used

only to accelerate and facilitate the derivation of designs (Tapia 1996; Heisserman 1991;

Piazzalunga and Fitzhorn 1998; Wang and Duarte 2000). The second approach requires

the computer to perform assessment in addition to generation (Cagan and Mitchell 1993;

Shea and Cagan 1996, 1998). In this approach, the computer is explicitly given criteria

for a suitable design, which it uses to control generation and traverse the space of

design solutions in search of a design that matches the criteria. The search processes

that have been proposed so far are stochastic. The process proposed in this work is

heuristic and, to a considerable extent, deterministic.

3.3.5 Proposed grammar: analytical and original

The grammar for Siza's houses at Malagueira is in the footsteps of the analytical studies

mentioned above. Nevertheless, it is a grammar developed for an evolving project by a

living architect. To the extent of author's knowledge, there has been only one other

grammar of this kind: the one on the work of the architect Glen Murcutt (Hanson and

Radford, 1986). However, unlike the Murcutt grammar, the Malagueira grammar was

developed with Siza's support, and therefore, it can be seen as a natural extension of

Siza's work at Malagueira. The impact of such a novelty is twofold. First, it is possible

to use the architect and the dwellers in addition to existing designs as sources of

information to derive the rules of the grammar. Second, it is possible to use the

grammar to generate and build new houses in the language. Therefore, the grammar is

more than a mere analytical grammar aimed at describing a family of designs. But it is

not a full grammar developed from scratch to generate entirely new designs. It is

reasonable to consider that it spans between analytical and original grammars.

3.3.6 Description grammars

The concept of description function was developed by Stiny (1981) to account for

features of designs not covered by shape grammars. A shape grammar specifies how

designs can be generated. A description function describes the design in terms of other

features considered relevant according to some criteria of interest. The relation between

the shape grammars and description grammars is such that for each shape rule there is

one or more corresponding description rules, plus an additional starting description

corresponding to the initial shape. As the grammar rules are applied to the evolving

design, the corresponding description rules are applied to the evolving description.

Thus, as the generation of the design evolves, the description of the design is

constructed. Mitchell (1989) suggested a similar approach by proposing the use of first

order logic to describe and evaluate designs.

3.3.7 Parallel grammars

Parallel grammars separate different representations or aspects of designs into different

computations that interact with each other. This separation facilitates the manipulation

of complex design problems, by breaking them into smaller ones. The representations

can be visual (elevation, plan, etc.) or symbolic (thermal performance, number of

bedrooms, etc.). The joint use of a shape grammar and a description grammar is an

example of a parallel grammar. The use of parallel grammars permits to address and

solve different aspects separately, for instance, the generation of floors with different

programs. In this work, description grammars are used as a way of generating multiple

representations of designs, but also, as a way of dealing with the interdependency of

design parameters. For more information on parallel grammars see Stiny (1992).

3.4 Conclusion

Performance criteria studies have codified the programming and evaluation of housing.

The discursive grammar proposed in this work adapts the most recent Portuguese

housing programming and evaluation methods because it its compatible with Siza's

Malagueira design rules, while permitting the generation of new designs that are

adjusted to the current reality. Design grammars have been developed as a way of

capturing the algorithmic nature of design. The discursive grammar proposed in this

work draws on this formalism by proposing a grammar to capture both such housing

methods and Siza's Malagueira design rules and extends it by proposing a heuristic

method to search for criteria-matching designs. The discursive grammar is a parametric

set grammar that uses parallel shapes and descriptions, and is amenable to computer

implementation.

References

ASSOCIATION QUALITEL - Guide Qualitel. Paris, Ed. Association Qualitel, 1989.

AELLEN, Kurt; THOMAS, Keller; MEYER, Paul; WIRGAND, JOrgen - Systeme d'evaluation de
logements (SEL). Berne, Ed. Office Federal du Logement, 1979.

BUELINCKX H, 1993, "Wren language of City church designs - a formal generative classification"
Environment and Planning B: Planning and Design 20 645-676.

CAGAN, Jon, and William J. MITCHELL, "Optimally Directed Shape Generation by Shape
Annealing," Environment and Planning B: Planning and Design 20 (1993): 5-12.

CHIOU S-C, KRISHNAMURTI R, 1995, "The grammar of Taiwanese traditional vernacular
dwellings" Environment and Planning B: Planning and Design: Planning and Design 22 689-
720.

DOWNING F and FLEMMING U, 1981,"The bungalows of Buffalo" Environment and Planning B:
Planning and Design 8 269-293.

DUARTE, J. Pinto; PAIVA, J. Vasconcelos - Normas Tecnicas para Projecto de Edificios de
Habitagao. Lisboa, Ed. LNEC, 1994.

FLEMMING U, 1987, "More than the sum of parts: the grammar of Queen Anne houses"
Environment and Planning B: Planning and Design 14 323-350.

HANSON N L R and RADFORD A D, 1986, "On Modeling the Work of the Architect Glenn
Murcutt" Design Computing, 1, 189-203.

HEISSERMAN J A, 1991, Generative Geometric Design and Boundary Solid Grammars Ph.D.
Dissertation, Department of Architecture, Carnegie Mellon University, Pittsburgh.

KNIGHT T W, 1981, "The Forty-one Steps: the languages of Japanese tea-room designs"
Environment and Planning B: Planning and Design 8 97-114.

KNIGHT T W, 1992, "Designing with grammars" in Schmitt G N (ed) Computer-Aided
Architectural Design (Wiesbaden: Verlag Viewag) 33-48.

KNIGHT T W, 1989, "Color grammars: designing with lines and colors" Environment and
Planning B: Planning and Design 16 417-449.

KNIGHT T W, 1999a, "Shape grammars: six types," Environment and Planning B: Planning and
Design 26 15-31.

KNIGHT T W, 2000, "Shape grammars: five questions," Environment and Planning B: Planning
and Design.

KONING H and EIZENBERG J, 1981, "The language of the prairie: Frank Lloyd Wright's prairie
houses" Environment and Planning B: Planning and Design, 8 295-323.

MINISTERIO DA HABITAQAO E OBRAS PUBLICAS e LABORATORIO NACIONAL DE
ENGENHARIA CIVIL (MHOP e LNEC) - /nstrug6es para projectos de habitag~o promovida
pelo estado. Lisboa, Ed. LNEC, 1978.

MINISTERIO DO EQUIPAMENTO SOCIAL (MES) - Recomendagdes T6cnicas para Habitagso
Social (Portaria n.* 580/83, de 17 de Maio). Lisboa, MES e LNEC, 1985.

MITCHELL W J, 1989, The Logic of Architecture, (MIT Press, Cambridge, MA).

PEDRO, J. Branco - Programa Habitacional. Espagos e Compartimentos. ColecgAo Informagso
T6cnica e Arquitectura, n24, Lisboa, LNEC, 1999a.

PEDRO, J B - Programa Habitacional. Habitagio. Colecgso Informagdo Tecnica e Arquitectura,
n25, Lisboa, LNEC, 1999b.

PEDRO, J. B - Indicadores de Qualidade Arquitect6nica Habitacional. Dissertagso apresentada
em cumprimento das exigencias de provas de doutoramento na Faculdade de Arquitectura
da Universidade do Porto. Porto, Ed. FAUP, 2000.

PIAZZALUNGA U, FITZHORN P 1, 1998 "Note on a three-dimensional shape grammar
interpreter" Environment and Planning B: Planning and Design 2511-33.

PORTAS, Nuno and GOMES, Ruy - Estudo das fungdes e da exigsncia de dreas da habitagso -
Necessidades familiares e dreas da habitagdo. Andlise de exigsncias por fungdes da
habitagso. Volume /. Lisboa, Ed. LNEC, 1964a.

PORTAS, Nuno and GOMES, Ruy - Estudo das fung6es e da exig6ncia de dreas da habitagso -
Necessidades familiares e dreas da habitagso. An-lise de exigsncias por fung~o da
habitagso. Volume /I. Lisboa, Ed. LNEC, 1964b.

SHEA K and CAGAN J, 1996, "Innovative Dome Design: Applying Geodesic Patterns with Shape
Annealing", Artificial Intelligence for Engineering Design Analysis, and Manufacturing

SHEA K and CAGAN J, 1998, "Generating structural essays from languages of discrete
structures" in Artificial Intelligence in Design '98 Ed J S Gero, F Sudweeks (Kluwer Academic
Publishers, Dordrecht) 365-384.

STINY G, and GIPS J, 1972, "Shape Grammars and the Generative Specification of Painting and
Sculpture" in C V Freiman (ed) Information Processing 71 (Amsterdam: North-Holland) 1460-
1465.

STINY G, 1980a, "Introduction to shape and shape grammars" Environment and Planning B:
Planning and Design 7 343-351.

STINY G, 1981, "A note on the description of designs" Environment and Planning B: Planning
and Design 8 257-267.

STINY G, 1992, "Weights" Environment and Planning B: Planning and Design 19 413-430.

STINY G, Mitchell W J, 1978a, "The Palladian Grammar" Environment and Planning B: Planning
and Design 5 5-18.

TAPIA M A, 1996, From Shape to Style Shape Grammars: Issues in Representation and
Computation, Presentation and Selection, Ph.D. Dissertation, Department of Computer
Science,University of Toronto, Toronto 1996.

WANG Y, DUARTE J P, (forthcoming) "Automatic fabrication and generation of designs" in T
Kvan (ed) Automation in Construction, Special issue on Rapid Prototyping, Elsevier.

70

4. Corpus

4.1 Introduction

This chapter describes the Malagueira development, namely the corpus of houses used

in the development of the shape grammar. Although this work is focused on the

development of a grammar for generating Malagueira houses, we also include a brief

description of the Malagueira plan. By doing this, we hope to hint that Siza followed

systemic approaches to both problems, that these approaches share similarities and,

therefore, that it would be possible to enlarge the current grammar to encode the rules of

the plan. With this in mind, the description below highlights the design principles

followed by Siza in the designs of the plan and the houses.

4.2 Plan

4.2.1 Context

The Malagueira Plan was commissioned to Siza by the Evora Town Hall in 1977 to

substitute a former plan developed by DGSU (DirecgAo Geral da Sistematizagso

Urbanistica - National Commission for the Urban Systematization) in 1975 (Figure 4.1)

for a zone which had been classified as Priority Expansion Zone in 1974. The 27

hectares addressed in the Malagueira plan are only part of the area addressed in the

DGSU plan mainly because part of this plan had already been implemented. Thus, the

DGSU plan considered the settlement of 12,000 people, whereas the Malagueira plan

foresaw the settlement of only 4,120 people with the construction of 1,200 houses. The

DGSU plan, in line with the Athens Chart, used functional zoning to create sectors with

multifamily housing, and sectors with single-family homes. Siza had to respect the

urban indexes of this plan but avoided functional zoning. The DGSU plan had started to

be implemented by a developer from Lisbon. The Malagueira plan foresaw a different

type of development strongly based on user-participation. Siza resumed a process that

had started within the SAAL Program with a group of one hundred families, which had

been jeopardized when SAAL was cancelled by the central government. The

differences between the two plans mirrored the political conflict between the central and

the local governments, which belonged to different sides of the political spectrum, and

are a consequence of the power struggle that followed the Portuguese revolution in

1974.

Figure 4.1 - The Evora West Expansion Plan developed by DGSU (Siza's archive)

Evora is a 50,000 people town (35,000 in 1977) located 140km to the west of Lisbon,

and it is the most important city of the Alentejo region. Alentejo is a flat, agricultural, and

scarcely populated region in the South of Portugal. The climate is characterized by a hot

and dry summer (up to 42*c in August.) The city, founded by the Romans on the top of

a hill, has a labyrinthine urban grid and its architectural richness led to its classification

as World Heritage by UNESCO in 1986. The Malagueira neighborhood is located to the

west of the city, on the site of former farms Malagueira and Malagueirinha, which were

expropriated in 1974. When Siza started his work, the site was surrounded by a private

development of middle-class single-family homes, by a development of prefab houses

built for Colonial War veterans, by a social housing development financed by the

National Housing Development Fund (FFH) and by three illegal developments

(Fontanas, Nossa Senhora da Gl6ria, and Santa Maria.) It was delimited by the national

road to Lisbon at the south, and by a local road at the north. On the site, there were only

agricultural fields, and rural pathways. (Figure 4.2)

1 - Nossa Senhora da Gl6ria; 2 - Santa Maria; 3 - Fontanas; 4 - Cruz da Picada, FFH; 5 - Portas
D'Alconchel; 6 - Vista Alegre; 7 - Malagueira farm; 8 - Malagueirinha farm; 9 - Senhora de Aires farm; 10 -
Swimming pool; 11 - Escurinho forest; 12 - Salesianos street; 13 - Windmills; 14 - Water well; 15 - Alberca;
16 - the Turgela creek

Figure 4.2 - Plan of Malagueira before development (Molteni 1997)

4.2.2 The plan

Two basic principles were at the base of the development of the plan. The first principle

was the use of local references as a basis to create an enduring structure:

"Estates limits, small pathways, trees, some rocks, served as a reference to our
intervention... [It] departed from the idea recorded in our first visit because I think that the
idea is on the site, more than in anyone's head, for those who care to see."

(Siza, quoted in L' Architecture d'Aujoud'hui 1980)

The second principle was an understanding of the city as an organism that grows

supported on that structure:

"What is interesting to me in the construction of a city is its capacity of transformation
which, to a certain extent, is similar to the growth of a human being. It is born with certain
characteristics and a degree of autonomy, a basic structure that can integrate or oppose
itself to the changes of life."

(Siza, quoted in L' Architecture d' Aujourd' hui 1991)

The plan consisted of a low-rise, dense and continuous residential tissue formed by

single-family homes, which permitted to create large green areas, while respecting the

urban indexes of the DGSU plan. In addition, it made possible a strong integration with

the public buildings, the historic city, the illegal settlements, and the landscape.

Compositionally, the plan is based on a series of functional elements, such as the illegal

settlements, two axes, a service duct, three housing sectors, garages, public facilities,

and green areas. (Figure 4.3)

The illegal settlements (Figure 4.4a) serve as a reference for the scale, urban pattern,

and building types of the residential tissue. The two axes constitute the main ordering

elements of the development. (Fig. 4.4b) The first is an East-west axis that continues

the preexisting Salesianos Street, and the second is a North-south axis based on a

previous rural pathway that was transformed into a road up to the east-west axis and,

then, kept as a pedestrian walkway through the Malagueira farm.

The service duct, a tree-like structure that adjusts itself to the topography, constitutes the

backbone of the development. (Figure 4.4c) The duct was inspired in the aqueduct that

crosses Evora originating a peculiar morphological system recreated by Siza at

Malagueira. It concentrates all the urban infrastructures (water distribution, electricity,

gas, telephone, and a collective TV antenna).

Three main sectors (Figure 4.4d) form the residential tissue. The first sector, at the

southwest, extends the spatial pattern of the Santa Maria illegal settlement. The second

sector, at the north, was structured upon a diagonal ridge first used as a rural pathway

leading to Malagueirinha, and then converted into a shopping arcade. The third sector,

to the west, articulates the Fontanas illegal settlement and follows the topography.

M.,

Figure 4.3 - The Malagueira plan.

i '1
0

'I
V

I

'C
3~

~*v

'U

4

it

(a) Preexisting housing

(c) Service duct

*1
'3

~1

U"

(b) Compositional axes

(d) Housing

Figure 4.4 - Functional elements of the Malagueira plan.

iJI'

(f) Commerce (e) Garages

(g) Public facilities (h) Green areas

Figure 4.4 (continued) - Functional elements of the Malagueira plan.

j~.

i Ill

'AVg

U4

The remaining buildings are either in continuity or in contrast with the residential tissue.

The shops (Figure 4.4e) are distributed along the service duct, and located on the

extremes of the housing blocks. The garages (Figure 4.4f) are segregated from the

houses and constitute lineal, compact volumes that differ from the cubist massing of the

houses. The public facilities (Figure 4.4g) stand out due to their forms, without

disrupting the residential tissue. A dome whose location was determined by the

dominating views over the city and the area is the civic and physical center of the

neighborhood. The physical center of the neighborhood is a dome designed to be a

civic center. The remaining public facilities include buildings designed by Siza (apart-

hotel, language institute, religious center, restaurant, open-air auditorium, and the

headquarters of the Boa-vontade cooperative,) buildings designed by Siza's collaborator,

Nuno Lopes (orchestra, and the headquarters of the Geraldo-sem-pavor cooperative,)

and buildings designed by other authors (post office and supermarket.) Other elements

designed by Siza punctuate the urban landscape (bridges, gardens, fountains,

stairways, dwells, and benches.)

The high-density of the residential tissue permitted to free large green areas (Figure

4.4h) which articulate the different orientations of the residential sectors, and establish

continuity with the rural landscape. The streets are delimited by the continuous surface

of the house facades and they are free from the elements that usually obstruct city

streets (hoses, sidewalks, stands, etc.) Sheltered from the hot summer light, they are

mainly conceived as pedestrian streets, constituting a place to socialize in accordance

with the local lifestyle. The design of the street pattern also followed functional

constraints:

"The transversal orientation of the streets follows a logic dictated by the water draining
problem. There are no pipes, but all the streets follow natural slopes so as to drain the
water to a local creek and then to the dam that forms an artificial pond."

(Siza, quoted in L'Architecture d'Aujourd'hui, 1991)

The variety and unity of the urban landscape is documented in Figures 4.6-19. The

spots from which the photos were taken are shown in Figure 4.5.

4.19

.6U"4

6

Figure 4.5 - Viewpoints of the photos in Figures 4.6 - 4.19.

II 1

Q 1I,1

O.-VO-0 -N
%o,

Raj
Is

18

Figure 4.6 - Aerial view of the whole development

Figure 4.7 - Aerial view showing courtyard houses in the foreground.

Figure 4.8 - Central green area and northern
shopping gallery.

Figure 4.9 - Central green area and southern
shopping gallery.

Figure 4.10 - Public housing. Figure 4.11 - Public housing and the service
duct.

Figure 4.12 - Cooperative housing.

Figure 4.14 - The service duct passing over a Figure 4.15 - The service duct passing over a
pedestrian street. pedestrian walkway.

Figure 4.13 - Private housing.

Figure 4.16 - Cooperative housing. Figure 4.17 - Public housing.

Figure 4.18 - Back alley. Figure 4.19 - Private garages bordering the
residential area.

4.2.3 Housing tissue

The housing tissue's structure and growth is supported on the tree of infrastructures

formed by the service duct. The main service duct branches off to create secondary

ducts. From both sides of these ducts grow load-bearing walls, forming linear grids of 8

by 12 m lots that constitute the city blocks. Parallel, 6m wide streets separate the blocks

with varying length depending on the roads, preexisting elements, or public buildings.

The houses can be built independently and expanded to adjust themselves to the needs

of their users, permitting the housing tissue to grow by expanding the block or the

houses, as documented in Figure 4.20.

Although the lots have the same size in most cases, the housing tissue is formed by a

patchwork of different houses. Siza devised a series of housetypes, each of which can

have different variations ranging from one up to five bedrooms. These variations can be

combined to form varied housing blocks, as illustrated in Figures 4.21-24 for two

hypothetical blocks based on Siza's sketches. The variety of the housing tissue in terms

of types and variations is represented in Figures 4.25 and 4.26. Such a variety is lower

than the one that could be potentially achieved because there was little mixing of types

in the same blocks. The decrease in variety was necessary to control complexity with

the available design, promoting, and construction means. Siza designed types as time

went by for specific promoters who were in charge of building a group of adjacent lots,

as explained over the next sections.

(a) (b)

(c) (d)

(e) (f)

Figure 4.20 - Supported on the tree-like structure of the service duct, the urban tissue can grow
first by expanding the block (a-d) and then by expanding the houses (d-f.)

Figure 4.21 - Configuration of a hypothetical city block, in a certain moment in time: plan and
elevations.

Figure 4.22 - Configuration of a hypothetical city block, in a certain moment in time: aerial view.

Figure 4.23 - Configuration of a hypothetical
city block, in a certain moment in time: terrace

view.

Figure 4.24 - Configuration of a hypothetical
city block, in a certain moment in time: street

view.

UA.

mam

= Ab (8 x 12m) 1977
- Ac (8 x 12m) 1980
m Bb (8 x 12m) 1978
- Ca (8 x 12m) 1985
- Cb (8 x 12m) 198(?)
= D (8 x 12m) 1988
v E (8 x 12m) 1984

Customized - Siza's office (8 x 12m)
- Customized - Other offices (8 x 12m)
-X (7 x 12m) 1988
-Y (6 x 12m) 1993
- Z (8,5 x 22,3m) 1994
-W (6 x 15m) 1995

Figure 4.25 - The breakdown of the housing tissue into types. (Please, see Section 4.3 for
detailed descriptions of the Malagueira types.)

%i -

*r

- T5 and T5+

Figure 4.26 - The breakdown of the housing tissue into variations. (Please, see Section 4.3 for
detailed descriptions of the Malagueira types variations.)

0000-0

= Cooperative Boa Vontade - 1st phase (1978)
= Cooperative Boa Vontade - 2nd phase (1985)
= Cooperative Boa Vontade - 3rd phase (1988)
- Cooperative Giraldo - 1st phase (1979)
- Cooperative Giraldo - 2nd phase (1980/86)
- Cooperative Giraldo - other phases (1987/98)
= Public - FFH I IGAPHE - 1st phase (1980)
- Public - FFH / IGAPHE - 2nd phase (1981)
= Private (1978/1998)

Figure 4.23 - Breakdown of the housing tissue into promotion schemes.

:N4t * Azzz

70 71

4.2.4 Promotion

The variety of the housing tissue at the physical level is mirrored in the kinds of

promotion that were used to build Malagueira. (Figure 4.27) Siza started to develop the

plan with a commission of one hundred future inhabitants (Associagso de Vizinhos Sao

Sebastido) which had been constituted in the spirit of the SAAL program (1974-1976.)

These people were supposed to build their houses by self-construction.' In addition, the

initial plan considered the following types of promotion: 407 dwellings by cooperatives,

300 by the public institute (FFH,) 300 by private companies, and 93 by development

contracts.2 (Siza, 1979) The cooperatives were, by far, the most successful group and,

the final breakdown was as follows: 60% cooperatives, 33% public, and 7% private.

(Molteni, 1997)

4.2.5 Construction phases

The strategy followed in the construction was to split the development into sectors,

assign them to different promoters, and then proceed through phases. The pace of

construction, reconstructed after the analysis of aerial photographs, is depicted in Figure

4.28. A close comparison of this figure with Figures 4.25-27 permits the identification of

the housetypes and the promoters involved in each phase, as described in following. In

1978, the Boa Vontade cooperative constructed the northern part of the south sector and

a small block near the Santa Maria illegal development (1 s phase.) In 1979, the Giraldo

cooperative built the middle part of the south sector (1 st phase.) And in 1980, the FFH

built in the north and west sectors (1st phase.) The houses in these first phases were

type Ab houses, except for a few type B houses. Still in 1980, the Giraldo cooperative

built the first type C houses in the south sector (2nd phase,) and in the following year, the

1 This commission later became the Geraldo-sem-pavor cooperative.

4II

--- 1~~U1

A ->

\L

19780 1979

Figure 4.28 - Housing construction phases.

2 The urban development contract was an agreement that allowed the town hall to promote the development
of housing with central government funds.

U ~

IE

1988

I I
1998

Figure 4.28 (continued) - Housing construction phases.

M~ --l

*a

"14Uh

1985

1996

III

FFH built type Ac houses in the west and south sectors (2nd phase.) In 1982-1985, the

Boa Vontade cooperative built the remaining type C houses in the south and north

sectors (2nd phase,) and the first type D houses in the south sector in 1986-1988 (3rd

phase.) In 1989-1996, the Giraldo cooperative built other type D houses in the west and

north sectors (3 rd phase.) Since then, both cooperatives have built in a much smaller

scale, other types designed by Siza. In the meanwhile, the construction of houses by

private promoters in the north sector has occurred since 1978. In 2000, the

development was near completion as only type Z houses and a few of the private

houses, as well as some shops, the dome, the language institute, and the apart-hotel

remained unbuilt.

Figure 4.29 - Illegal housing at Malagueira. Figure 4.30 - Vernacular housing of Alentejo.

4.3 Housing types

4.3.1 Design schemes

Several authors have pointed out that Siza looked at the housing types of the illegal

developments (Figure 4.29) and the vernacular types of Alentejo (Figure 4.30) in the

design of the Malagueira houses. (Testa, 1984; Fleck, 1992; Molteni, 1997) Siza

explains that this influence was appropriate because such types are the result of a long

evolution process of adjustment to the environment. The influence is both formal and

functional. The domestic space is organized into small interior rooms around a large

patio, denoting a lifestyle centered in the outside. Small openings and whitewashed

surfaces protect from the strong sunlight, and big chimneys create a powerful plastic

effect. However, Siza interpreted the illegal and vernacular types to create a set of rules

that permitted to adjust the designs to the needs of modern life and to different lifestyles.

We have classified the variety of designs into schemes, general types, types, subtypes,

and variations, depending on the degree of generality. Scheme is the most general

category, and general type, type, subtype, and variation are increasingly more specific.

Siza developed five basic housing schemes. The first scheme was devised as earlier as

1977, and it includes several housetypes designed since then. It accounts for the

majority of houses built at Malagueira and it is the basic construction unit of the urban

tissue. The remaining schemes (Figures 4.31-34) can be considered special cases.

They were designed much later, they include a single housetype each, and few houses

were built. We named them as X, Y, Z, and W, and they were designed respectively in

1988, 1993, 1994, and 1998. Preliminary analysis revealed important differences in the

layout between the first and the latter schemes, such as the lot size, the formal structure,

and the functional organization. The size of the lot in the first scheme is 8 x 12 m,

whereas in the latter schemes it is 7 x 12, 6 x 12, 8.5 x 22.30; and 6 x 15 m,

respectively. Consequently, the houses were placed transversally on the wider lot of the

first scheme, and longitudinally on the others. Then, in the first scheme the patio

determines the functional organization -- the "L shape of the house surrounds the patio,

whereas in the latter schemes, it is either absent, smaller, or it seems to be less

determinant -- the patio is simply added to the house. Because the first scheme

accounts for the majority of the Malagueira houses, and because there are significant

differences in the layout relatively to the latter schemes, the shape grammar was

developed taking into account only the first scheme. We believe, nevertheless, that it is

possible to extend the shape grammar to incorporate the latter schemes.

In the first scheme, the houses are expandable and can have up to two floors and five

bedrooms. The ground floor remains constant within each type, and it has a patio

around which three functional zones, living, sleeping, and services are laid out to form

an "L" shape. The patio increases the available lighting surface and secures a certain

degree of comfort due to the microclimate created by walls, trees, and pergolas. The

inner distribution of rooms is rationalized in response to circulation and lighting

demands. The bathrooms are overlaid on the top of each other to facilitate water

distribution and drainage. The openings, especially those facing the street, are placed

regularly on the facades. The richness of street facades is due to adjustments prompted

by the topography, or to different configurations of the houses.

be be be be

pa pa

ki i i ki

Floor 2

pa
1i ga ga ga

ki be be be

Floor 1

0 2m

Figure 4.31 - Type X, 1988. (Not considered in the corpus.)

F-

] En

0 2 4m

Figure 4.32 - Type Y, 1994. (Not considered in the corpus.)

Site Physical model

Floor 2 Floor 1

0 2 4m

Figure 4.33 - Type Z, 1994. (Not considered in the corpus.)

100

Floor 2 Floor 1

0 2 4m

Figure 4.34 - Type W, 1997. (Not considered in the corpus.)

101

Three sources of information (drawings, field trips, and interviews) led to the

identification of 35 different houses designed according to this scheme, which are listed

in Table 4.1. These 35 designs constituted the corpus for the grammar. The corpus is

not comprehensive, but almost; that is, it does not include all the houses designed by

Siza or Nuno Lopes within the scheme, but it includes all the different housetypes. The

houses that were left out have the same functional organization as those that were

included and deviate in small changes of the layout, prompted by specific user needs.

The included houses, shown (Figures 4.35 and 4.36) were designed between August

1977 and July 1976. Among them are Siza's personal house designed in 1984 and two

other customized houses designed by Nuno Lopes in 1980 and 1996.

Table 4.1 - Houses designed by Siza and Lopes according to the 1st Malagueira scheme

Family Type Subtype Variation Number Date (1) Scale Designer
Front A Aal t1, 2, 3, 4,5 1-5 Aug 77 1/100 Siza
Yard Aa2 11, 2, 3, 4,5 (2) Nov 77 1/100 Siza

Ab1 13 6 Jan 78 1/100 Siza
Ab2 t2, 3, 4, 5 7-10 May 78 1/100,1/50, 1/20 Siza
Ac t2, 3, 4, 5 11-14 Jan 80 1/100,1/50 Siza
Ad t4 16 Jan 96 1/100 Lopes
Ae t4 15 Jul 80 1/100 Lopes

C Ca t2, 3, 4, 5 17-20 Jan 85 1/100,1/50 Siza
Cb 11, t3 21-22 (3) 1/100 Siza

D Da t2, 3, 4a, 4b, 5 (4) 23-26 Dec 88 1/100 Siza
Db t2, 3 27-28 May 95 1/100 Siza

E Siza house t2 29 Jan 84 1/100 Siza
Siza house t2 Mar 84 1/100,1/50 Siza
(final)

Back B Bal 11, 2, 3,4 ,5 30-34 Aug 77 1/100 Siza
yard Ba2 11, 2, 3, 4,5 (2) Nov 77 1/100 Siza

Bb t2, 3, 4, 5 35 Feb78 1/100, 1/50, 1/20 Siza

Notes
(1) The dates are those of the earlier drawings found.
(2) Types Aa2 and Ba2 were not counting towards the total number of types because the only

difference from types Aal and Bal is an additional window.
(3) It is not certain that type Cb was built because only sketches were found.
(4) Variations Da t4a, Da t4b, and Da t5 were identified during fieldtrips and documented with

slides and sketches.

102

Figure 4.35 - Main types and variations considered in the corpus.

103

T3 a T5 T3 a T5T3 a T5 T2 T3 a T5

= Bedrooms
= Bathroom
= Living room
= Pantry
= Kitchen
= Transitional room
= Laundry

Circulation
Yard

Figure 4.36 - First floor functional organization of the main types and variations in the corpus.

The corpus of houses can be classified into two general types, depending on whether

the yard is at the front, as in most cases, or at the back. The smaller number of

backyard houses was simply the result of the lack of demand. The corpus can be further

subdivided into five basic types: here called A, B, C, D, and E.3 Types A and B were the

first types to be designed and were named as such by Siza. Type B is the only backyard

type. Types A, C, D, and E all have a front patio and differ from each other by the

combined effect of the location of the four basic functional zones within the layout, and

the location of the staircase within one of the interior zones. In types A and D the

staircase is placed against the wall between the living room and the adjacent space, a

bedroom in type A, and the kitchen in type D. In types C and E, the stairs are against

the back wall, and they differ from each other in the location of the kitchen, which is at

the front of the lot in type C and at the back in type E.

3 Some authors prefer to refer to types C, D, and E, as variations of type A. The term type in their
terminology means general type in the terminology followed in this work.

105

All these basic types, except for E, include subtypes that differ from one another in

details of the layout. Such differences are due to different divisions of the functional

zones into specialized rooms, and are denoted in the name by a lowercase letter placed

after the letter that identifies the type. For instance, type A has four subtypes, named

Aa, Ab, Ac, and Ad. The first subtype, Aa, corresponds to the preliminary study of Ab

(as Ba is the preliminary study of Bb), and was never built. Ab differs from Ac in the

laundry location within the service area. Finally, Ad, a customized subtype designed by

Lopes differs from Ab in the placement of the walls that divide the service area. The list

of all the functional zones and rooms in the Malagueira houses are listed in Table 4.2,

which also includes the abbreviations that identify them in Figures 4.37-42.

Table 4.2 - List of rooms found in the corpus houses in the corpus

Floor Symbol Functional Zone |S mbol Rooms
1s floor pa Patio

li Living zone Ir Living-room
cl Closet

se Service zone ki Kitchen
la Laundry
pa Pantry
ts Transitional space

sl Sleeping zone be Bedroom
ba Bathroom
ci Circulation
st Stairs (1)
co Corridor to backyard (2)

2"a floor be Bedroom
ba Bathroom
cl Closet
ci Circulation
st Stairs
te Terrace

Notes:
(1) The stairs can be included in any of the interior zones
(2) The corridor to the backyard does not belong to any of the zones

106

The majority of subtypes have several variations, each with a specific number of

bedrooms ranging from one to five. Each variation is expandable as it can evolve from a

single up to five bedrooms. Such variations are named tn, where n indicates the number

of bedrooms. No t1 were built due to a lack of demand, and t1 designs only appear in

preliminary designs of subtypes Aa, Ba, and Cb. Nevertheless, it would be

straightforward to derive t1 variations for the remaining subtypes, by eliminating one

bedroom from the respective t2 variations. All the remaining subtypes, except E, have t2

through t5 variations. Type E only has a t2 variation, the one that Siza designed for

himself, but it would be possible to design the remaining variations by adding more

bedrooms.

Figures 4.37-42 show the plans of houses in the corpus, Figures 4.43-51 show the

corresponding photos, and Figures 4.52-61 the 3D digital models. The general design

principles of the scheme considered in the corpus are summarized in Table 4.3. This

table was part of the building regulations of the Malagueira plan that existed in the town

hall, which also included the projects of the housing types. They were to be followed by

all the promoters that intended to participate in the development. The private promoters

had the possibility of choosing from the available types, fully respecting the designs, or

to ask a designer to adjust or to design a new house, following the design principles set

by Siza. Some gave the commission to Siza, others preferred Nuno Lopes, and others

recurred to other designers. In summary, Siza laid out a design game, based on a set of

rules, that permitted to adjust the design of the houses to different site, promotion and

user constraints.

107

Type Aa 1977

Floor 1

Floor 2

Type Ab 1978

Floor 1

Floor 2

fau

be y ki y ki y kl

bbe

be be

be
FH El Hl HlrIh 1

Figure 4.37 - Plans, sections, and elevation of types Aa, and Ab (Siza.)

108

E E
E- T E T L] E-

-F7

LT

Type Ac 1980

_J L~lj

Floor 1

Floor 2

TI

Custumized TA (no date)

Floor 1

Floor 2

T2 T3 T4 T5

Type Ad 1996 (Morais House)

I
T3 T4

Figure 4.38 - Plans, sections, and elevation of types Ac (Siza,) and Ad and Ae (Lopes.)

109

-1 El

F1 I P I O

L I
El

Type Ba 1977

Floor 1 ill
be1I

WIy
b. R

Floor 2

n

T1 T2 T3 T4 T5

Type Bb 1978

Floor 1

Floor 2

DL L D0 D n0 D L0D
T2 T3 T4 T5

Figure 4.39 - Plans, sections, and elevation of types Ba and Bb (Siza.)

110

Ebe y i be Rii
b

Floor 2

0 D O 0 I 0

T1 T2 T3 T4 T5

Type Cb

[] I

9

T3

Figure 4.40 - Plans, sections, and elevation of types Ca and Cb (Siza.)

111

Type Ca 1985

Floor 1

Floor 1

Floor 2

T1

O 1L

Type Da 1988

Floor 1

FLW

Floor 2

0 E0 E0 0

T1 T2 T3 T4 a

Type Db 1995

Floor 1

LW
Floor 2

T2 T3

l

LI

T4 b

Figure 4.41 - Plans, sections, and elevation of types Da and Db (Siza.)

112

1: ElO Ol

Type E 1984 (AlvaroSiza House)

Floor 1 7
Floor 2

F- 0p

T1 T2 T3 T4 T5

Figure 4.42 - Plans, sections, and elevation of type E (Siza's own house.)

113

Housetype Ab - 1978 Malagueira - Alvaro Siza Vieira

Figure 4.52 - Digital model of Subtype Ab (Siza.)

114

Housetype Ac - 1980 Malagueira - Alvaro Siza Vieira

Figure 4.53 - Digital model of Subtype Ac (Siza.)

115

Housetype Ad - 1996 Malagueira - Alvaro Siza Vieira

T2

ist floor 2nd floor Terrace

T3

1 St floor 2nd floor Terrace

T5

1 st floor 2nd floor Terrace

Figure 4.54 - Digital model of Subtype Ad (Lopes.)

116

Housetype Ae - 1980 Malagueira - Alvaro Siza Vieira

T2

1st floor 2nd floor Terrace

T4

1 st floor 2nd floor Terrace

Figure 4.55 - Digital model of Subtype Ae (Lopes.)

117

Housetype Bb - 1978 Malagueira - Alvaro Siza Vieira

Figure 4.56 - Digital model of Subtype Bb (Siza.)

118

Housetype Ca - 1985 Malagueira - Alvaro Siza Vieira

Figure 4.57 - Digital model of Subtype Ca (Siza.)

119

Housetype Cb - 198(?) Malagueira - Alvaro Siza Vieira

T2

1 st floor 2nd floor Terrace

T4

ist floor 2nd floor Terrace

Figure 4.58 - Digital model of Subtype Cb (Siza.)

120

Housetype Da - 1988 Malagueira - Alvaro Siza Vieira

Figure 4.59 - Digital model of Subtype Da (Siza.)

Housetype Db - 1988 Malagueira - Alvaro Siza Vieira

T2

1st floor 2nd floor Terrace

T3

1 st floor 2nd floor Terrace

Figure 4.60 - Digital model of Subtype Db (Siza.)

122

Housetype E - 1984 Malagueira - Alvaro Siza Vieira

T3

1 st floor 2nd floor Terrace

T4

1st floor 2nd floor Terrace

Figure 4.52 - Digital model of Type E (Siza's own house.)

123

I

t2 t3

t4 t5

Figure 4.43 - Subtype Ab, 1978.

124

t2 t3

t4 t5

Figure 4.44 - Subtype Ac, 1980.

125

soutn North

Figure 4.45 - Subtype Ad, 1996 (Nuno Lopes.)

Nortnwest

Figure 4.46 - Subtype Ae, 1980 (customized house by Nuno Lopes.)

126

None was built.

t2 t3

t4 t5

Figure 4.47 - Subtype Bb, 1978.

t2 t3

t4 tb

Figure 4.48 - Subtype Ca, 1985.

128

t2 t3

t4 t5

Figure 4.49 - Subtype Da, 1988.

129

t3 t4

Figure 4.50 - Subtype Db, 1995.

Front tagade Back fagade

Figure 4.51 - Type E, 1984 (Siza's own customized house.)

130

Table 4.3 - Malagueira Building Regulations

Housetype Lot area and Alignments and Alignments and Maximum Street Maximum Openings: Recommenda-
dimensions mandatory mandatory number of elevation: volume maximum tions

free-space free-space floors maximum dimension
1"s floor 2nd floor surface area, (only second

number of floor's street
openings, and elevation)
wall height

Frontyard 0 = floor 1 level 0= floor level Check the
E Town Hall's

E project-types
EE

96 m2 E Enclosing walls
- and chimneys

c go '-should be
6__i_____ studied in

8m 4 m 4m -10 collaboration
floor 1 -2 open with the Town
floor 2 - 1 open E Hall

Backyard 0= floor 1 level
4.7 m

0 The yard
should be

~1-l'" gardened or
96 m2 E covered by an

0m ivy lattice

8 M -10

floor 1 - 3 open
floor 2 - 1 open

Specifications a) One or two-storey houses
b) Annexes, store-rooms, and garages are not allowed
c) Respect for the National and the Municipal building regulations
d) First and second floor levels should be requested in the Town Hall
e) Use a Town Hall's expandable project-type or a project that respects these regulations (subject to approval by town hall)
f) Individual or collective garages available, according to Town Hall plan and regulations
g) Use service gallery and its walls
h) External whitewashed walls, terraces, wooden or colored aluminum mullions are mandatory
i) Overhangs or cantilevered volumes are not allowed
j) Number and dimensions of openings are constrained. Mortar frames with a maximum overhang of 1 cm and 20 cm wide, painted in the

___________traditional colors (gray, yellow, green, blue, and rose) are allowed

4.3.2 Structural and building systems

When the Malagueira project was initiated, undertaking a development with such a

dimension in Evora was problematic because there was no local building company with

the required financial and technical means. (Molteni, 1997) In addition, it was important

to choose local techniques and materials and to create local jobs to maintain the desired

independence from the central government. Therefore, in 1977 when Siza started his

work with the first group of future inhabitants, self-construction was sought. The original

structural system used in the Malagueira houses consisted of load-bearing walls and

pre-stressed concrete beams, with both the walls and the pavement inf ill material made

of concrete blocks. A slab or a wall of reinforced concrete poured on site was

occasionally used for adjusting this system. The building system was devised to allow

construction to proceed incrementally, in small units. As time went by, the economic

situation improved and the power struggle with the central government faded away.

Then market pressures led the cooperatives and other housing promoters to hire

contractors, and by the end of 1980s, a structural frame of reinforced concrete poured

on site with inf ill brick walls, started to be used as well. This shift in structural system,

however, did not greatly affect the design, as pillars and beams were designed to be

completely incorporated into the walls and pavements.

The choice of structural system impacted the design in three ways. First, as the

maximum that beams could span was 5 meters, the lot was divided into four by load-

bearing walls. Such a division had a correspondence with the functional division of the

home into four distinct zones: yard, living, sleeping, and service. (Figure 4.62) The

maximum span, in turn, determined the thickness of the floor slab.

132

Functional organization Division into functional zones Main load bearing walls

Figure 4.62 - Correspondence between functional organization and structural system (Ab.)

Second, blocks of decreasing thickness, 0.20, 0.10, and 0.075 m were used selectively

to create a hierarchy of walls. (Figure 4.63) The thicker blocks were used for load-

bearing walls or external walls. The middle blocks were used for the walls that enclosed

the lot. Finally, the thinner blocks were used for partition walls.

Main Load-bearing walls (0.20m) Secondary load-bearing wall Exterior wall (0.20m)
(0.20m)

Secondary exterior walls (0.20m) Enclosing walls (0.1Om) Partition walls (0.075m)

Figure 4.63 - Hierarchy of walls (subtype Ab.)

133

Third, the height of the blocks (0.20 m) determined the floor height, according to the

following equation: hf = hi + n x hb+ h;, in which hi is the height of the grounding beam

above the floor level, hb is the height of concrete blocks, hi is the height of the mortar

joints between blocks, and n is the number of rows that form the wall. As the

Portuguese regulations determine 2.40 m to be the minimum floor height, this value is

the lower-bound value for the parameter. As shown in Table 4.4, the specific sectional

dimensions varied from house to house due to variations on the dimensions of the

specific blocks used. The choice of blocks, the number rows in the wall, and the height

of the mortar joint were constrained by adjustments to topographic conditions and the

need to maintain a certain rhythm on the street facade. To simplify the grammar, such a

dependency of parameters was disregarded and the standard dimensions shown in

Figure 4.64 were adopted. The floor height and slab thickness imposed constraints on

the stair design, as it will be explain in Chapter 7. The length of the blocks did not

constrain the dimensioning of rooms in a similar way because it is easy to break the

blocks to diminish its length, whereas it is rather difficult to decrease its height.

0.30

090

5.40

- 0

2.40

2.70

0.30

2.40

-0.10 .
-0.20

Figure 4.64 - Standard sectional dimensions

134

Table 4.4 - Variation of height parameter values from type to type

Subtype Aa Aa Ab Ac Ba Bb Ca Cb Da Db E min max
Aug Nov

U house 6.05 5.40 6.28 6.64 5.40 6.28 6.24 6.15 6.16 6.30 6.60 5.40 6.60
hte 0.65 0.00 0.91 0.84 0.00 0.91 0.91 0.90 0.88 0.90 1.10 0.84 1.10
U terrace 2.70 2.70 2.65 2.90 2.70 2.65 2.64 2.60 2.64 2.70 2.64 2.64 2.90
h,3 0.20 0.20 0.18 0.25 0.30 0.18 0.20 0.20 0.20 0.30 0.20 0.18 0.30
hf2 2.50 2.50 2.47 2.65 2.40 2.47 2.44 2.40 2.44 2.40 2.44 2.40 2.65
U 2" fl. 2.70 2.70 2.72 2.80 2.70 2.72 2.69 2.65 2.64 2.64 2.86 2.64 2.86
ha 0.30 0.30 0.25 0.25 0.30 0.25 0.25 0.25 0.20 0.30 0.20 0.20 0.30
hf1 2.40 2.40 2.47 2.65 2.40 2.47 2.44 2.40 2.44 2.40 2.66 2.44 2.66
4 1" fl. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
U patio (-) 0.20 0.20 0.05 0.05 0.05 0.05 0.07 0.07 0.10 0.10 0.10 0.05 0.10
U street (-) 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.22 0.20 0.20 0.22

4.4 Summary

Siza followed a systemic approach to both the design of the plan and the design of the

houses. This approach can be summarized as the use of existing references as a basis

to create an enduring structure that supports growth based on a set of rules. Structure is

understood both as a physical artifact and a compositional framework. In the plan such

references were illegal developments, pathways, and an aqueduct. The backbone of the

structure was a service duct that branched off to create a grid of lots, adjusted to the

topography. This lot formed a self-supported basic unit that allowed houses to be built

independently. In the design of the houses, the references were traditional and illegal

housetypes that were interpreted and transformed to create housetypes for

contemporary lifestyles. These types provided a structure that allowed different houses

to be built and expanded to adjust themselves to the needs of their inhabitants. The

housetypes are encoded by a set of rules for formal and functional composition, which

are explained over the next chapters using a shape grammar and a descriptive

grammar, respectively.

135

References

Ensemble d'habitations Quinta da Malagueira, Evora, 1977, LArchitecture d'Aujourd' hui n. 211,
1980, pp. 60-65.

Molteni, Enrico. "Alvaro Siza, barrio de la Malagueira, Evora" Edicions UPC, Universitat
Polit6cnica de Catalunya, 1997.

Siza, Alvaro, Notas sobre o trabalho em $vora, Arquitectura, n.132, Lisboa, 1979, pp-36.

Testa, Peter "The Architecture of Alvaro Siza," S.M.Arch.S. Thesis, Massachusetts Institute of
Technology, Cambridge, 1984.

Fleck, Brigitte, "Alvaro Siza," Birkhauser, Basel, 1992.

136

5. The Malagueira Shape Grammar

5.1 Introduction

This chapter presents the initial shape grammar developed for Siza's Malagueira

houses. The grammar is based on the corpus of thirty-five houses designed between

1977 and 1996 described in the previous chapter. The grammar shows that the

generation of houses is defined by the recursive dissection of rectangles, locating four

different functional zones (patio, living, services, and sleeping) and the key placement of

the staircase. The generation of one prototypical design, the 1978 housetype A, is

described based on the grammar.

5.2 Algebras

Shapes, labels, and weights can be combined to form shape grammars that encode

specific languages of designs. Moreover, these grammars can combine several of these

components to form different, but useful, ways of seeing and describing designs. For

instance, one can define different grammars to generate plans, elevations, and

axonometrics. The type and number of descriptions or viewpoints depend on the kinds

of designs captured by the grammar, the purpose one has in developing it, and the level

of detail desired. In the Malagueira grammar, the descriptions considered were the ones

shown in Figure 5.1, namely, axonometrics of the envelope and the spaces, first,

second, and terrace floors plans, and front elevation. The level of detail considered was

137

View
Envelope
(walls)

Spaces
(rooms)

1st floor
plan

Algebra
U33

W33

U12Vo2

2nd floor
plan

Terrace
plan

Front
elevation

T--
C1 ba

be
b.

18

ya

Figure 5.1 - Viewpoints and algebras considered in the Malagueira shape grammar.

138

the one that corresponds to 1/100 scale drawings. These viewpoints were chosen

because they were used in Siza's office at the preliminary design stage.

5.3 Parallel grammars

The Malagueira grammar is a parametric shape grammar defined in the cartesian

product of the algebras represented by the following matrix:

< U33 V>03>
< W33 V03>
< U12V02>
< U12 V02>
< U12 V02>
< U12Vo2> .

Both the envelope and the spaces axonometrics (rows 1-2, respectively) were defined in

the cartesian product of the algebras W33 and Vo3. Labeled dots indicating the origin of

the referential system in which designs are described and the insertion points of shapes

in W33 are the elements in the algebra V03. (To simplify graphic representation, these

labeled dots were omitted in the derivation of an existing design shown further below.

(Figure 5.1) As the grammar was defined, the floor plans, and the elevations control the

generation of designs. The axonometrics are only used for visualization purposes as a

way of facilitating visual understanding. The three floor plans and the elevation (rows 3-

6) were defined in the cartesian product of the algebras U12 and Vo2. Together, they

provide two-dimensional representations of the three-dimensional shapes of Malagueira

house designs.

In the product of algebras considered, a rule has the format

139

< SA LA > < SB LA >
<SALA> <SBLA>
< SALA> < SBLB >
< SA LA > < SB LB >
< SA LA > < SB LB >
<SALA> < SB LB> >

meaning that if certain shapes A are found in each description, these shapes are

replaced by shapes B. Nevertheless, only severely constrained rules require the

existence of certain shapes in all the descriptions for the rule to be applied. The

application of most rules only requires the presence of certain shapes in some of the

descriptions and it only affects some of them as well. Consider, for instance, a rule to

pierce an opening in the front elevation of the first floor has the following matrix format:

< SA LA > < SB LB >
<So L0 > <So L>
< SA LA> < SB-B >
<SA LA> <SB LB>
<So L0 > <So L0 >
<SALA> <SBLB>

where So LO are empty empty labeled shapes.

In the Malagueira grammar, the plan of the first floor drives the generation of designs in

the grammar. The layout of upper floors is, to a considerable extent, constrained by

decisions made on the first floor, due to structural constraints. The elevations also are

determined by the layout of the floors. Decisions about the elevations never imply

changes in the layouts. This dependency is encoded into the grammar through the use

of sequential, parallel grammars, one for each floor and the elevation, as diagrammed in

Figure 5.2.

140

Gram Stages
-mar 1: define first floor 2: define second floor 3: terrace

Z-E -11110
Legend: F1 - first floor; F2 - 2nd floor; F3 - terrace; E - elevation; S - Start; Z - Locate functional
zones; C - Define circulation scheme; R - Divide zones into rooms; D - Introduce details; 0 -
Introduce openings; T - Terminate.

Figure 5.2 - Use of sequential, parallel grammars in the derivation of a Malagueira house. Dark
shaded areas identify the currently active grammars (viewpoint,) light shaded areas identify

passive grammars, and non-shades areas identify non-active grammars. Letter symbols identify
steps of the derivation, and arrow symbols identify the placement of labels in the passive

grammar viewpoint to be recalled later in the derivation.

The derivation of a design in the grammar goes through three successive stages:

defining the first floor (F1), defining the second floor (F2), and defining the terrace (F3).

While the generation of the first floor proceeds, labels are placed on the second floor

and on the elevation (E). When the generation of the first floor finishes, a state label

changes thereby activating the generation of the second floor, which proceeds using the

previously placed labels as beacons. The articulation between the generation of the

second floor and the terrace works in a similar fashion.

Each of these stages, in turn, includes several steps as listed in Figure 5.3. For

instance, the stages of the first floor are locating functional zones, locating staircase,

dividing functional zones (into rooms), introducing details (fireplaces, chimneys, etc.),

and introducing openings. The separation into steps is merely analytical, as there are no

state labels like those used to take the derivation from on stage to another.

141

Stage 0: F - introduce initial shape

Stage 1: F1 - define 1st floor
Step 1.1: E -start

introduce slab
enclose floor
adjust wall thickness

Step 1.2: L - locate functional zones
locate patio
locate external corridor
locate living-room
locate sleeping area
locate service area

Sep 1.3: C - define circulation scheme
locate main entrance
locate staircase

Step 1.4: D - divide zones into rooms
divide yard
divide service zone
divide living zone
divide sleeping zone
extend rooms
assign rooms
connect rooms
permute rooms

Step 1.5: A - introduce details
introduce chimneys
adjust wall thickness
adjust the patio wall height
pierce patio
detail stairs

Step 1.6: 0 - pierce openings
pierce exterior openings
pierce interior openings
introduce openings

Step 1.7: R - terminate
erase labels and changing state

Stage 2: F2 - define 2nd floor
Step 2.1: E - start

introduce slab
enclose floor
adjust wall thickness

Step 2.2: L - replicate 1s' floor's divisions:
into inside and outside zones
into functional zones
into rooms

Step 2.3: C - define circulation scheme
extending staircase
defining circulation

Step 2.4: D - define rooms
divide zones into rooms
assign rooms
connect rooms
(locate closets)

Step 2.5: A - introduce details
extend chimney
adjust patio wall height
pierce patio

Step 2.6: 0 - pierce openings
pierce exterior openings
pierce interior openings
introduce openings

Step 2.7: R - terminate
erase labels and changing state

Stage 3: F3 - define terrace
Step 3.1: E - start

introduce slab
enclose floor
adjust wall thickness

Step 3.2: L - replicate 1st floor's divisions:
into inside and outside zones
into functional zones

Step 3.3: C - introduce details
extend chimney
adjust the patio wall height
pierce patio

Step 3.4: R - terminate
erase labels

Figure 5.3 - Stages, steps, and operations in the derivation of Malagueira houses

142

5.4 Context

In the grammar proposed for Siza's Malagueira houses, the initial shape is a rectangle

with a label "Lot" representing the lot. The Malagueira housing plots are clustered

together to form housing blocks. In most cases, these blocks are rectangular, but they

might take other forms to adapt to the shape of curvilinear roads (please, see Chapter

4.) As a result, if the typical Malagueira lot has the front side facing the street and the

remaining sides surrounded by houses, in other lots the remaining sides might be

bordered by streets, within certain limitations. For instance the house cannot be

bordered by streets on all the sides as detached houses are not permitted. The type of

surroundings define the urban context of the lot and, taking into account the limitations

mentioned above, there is a total of four possible contexts, with different symmetry

properties. (Figure 5.4) The context impacts the functional organization of the house by

restricting the number of elevations that can have openings, as shown in Figure 5.5 for

types Ac and Ae.

fh s h

h hh

S

a. Street only at the front - typical lot b. Street at the front and on the side
(Longitudinal symmetry) (No-symmetry)

S S

c. Street at the front and back d. Street at the front and back, and on the side
(Longitudinal and transversal symmetry) (Transversal symmetry)

Figure 5.4 - Urban context of Malagueira lots.

143

Ac Ad

Figure 5.5 - The urban context impacts the functional organization: context a required a long
circulation bordering the outer wall in subtype Ac, whereas context b permitted a short circulation

bordering the patio wall in subtype Ad.

5.5 Composition: dissecting rectangles

The compositional strategy of a Malagueira house is based on rules for manipulating

rectangles representing rooms. These rules include rules for dissecting, connecting, and

extending rectangles, as well as rules for assigning and changing the functions

associated with them. Dissection is the primary compositional principle. Figure 5.6

shows some of such rules and their extension in a simplified representation so that we

can focus on the overall strategy captured by the grammar. In this simplification, lines

represent walls, and rules are shown simply in 2D.

144

The labels "fn" denote the functions of the rooms that the rectangles and other shapes

represent. The dot * is a label that identifies the last line placed and indicates on which

side the next dissection may occur: on both sides (Rule A) or on only one side (Rule B).

In rules A and B, dissections are perpendicular to the bigger side of the rectangle and to

the previous dissection, whereas in Rule C it is perpendicular to the smallest one and

parallel to the previous dissection. Rule D deletes the label o, preventing further

dissections. Rule E concatenates two adjacent rectangles to form a larger room. Rule

F, extends a room at the expense of an adjacent one. Rule G assigns a function to a

room. Finally, Rule H permutes the function of two adjacent rooms.

In addition to rectangular dissections, the prototypical Malagueira designs included

diagonal dissections, although with certain limitations. Rules I and J dissect a rectangle

by tracing lines that establish 30 and 60 angles with its longer and smaller edges,

respectively. The result of such dissections are right triangles and trapezoidal shapes.

To deal with these shapes other rules are required in the grammar. Rule K dissects a

triangle, in the case shown by tracing a line perpendicular to its longer side. Rule L

dissects a trapezoid in a similar manner. None of these shape can be dissected by

diagonal lines, thus preventing further deviation from rectangular shapes. Rules M and

N concatenate a rectangle with an adjacent triangle and trapezoid, respectively. The

use of non-perpendicular dissections was limited to the two prototypical designs because

dwellers did not like non-rectangular rooms, and so, Siza avoided them in subsequent

designs. These rules are used to derive the basic functional organization of the floor

plan, as shown in Figure 5.7 for the first floor of subtypes Ab and Bb, the two prototypical

designs.

145

f 1f1

f 2 f 2

Rule A Rule B

f f 1 'f2

Rule C Rule D

f f 2

Rule E Rule F

f f f1I f2 2 f1i
Rule G Rule H

f 2
ff 2

Rule I Rule J

IBf 2 f 2\

f f 1 f1

Rule K Rule L

f1 f1
f 1 -N f1

Rule M Rule N

Figure 5.6 - Subset of simplified Malagueira houses compositional rules: rules for perpendicular
dissection (A, B, and C), connection (E), and extension (F) of rectangles; rules are for deleting a

marker (D), assigning a function (G), and permuting functions (H); and rules are for diagonal
dissection of rectangles (I and J), perpendicular dissection of triangles and trapezoids (K and L),

and for concatenating rectangles with triangles and trapezoids (M and N).

146

Subtype Ab

A

st ba

i be

III B
se eya B

St ba

I- be

ts Ia la

[U1.BSt ba

\i

be

tya
ya

ki

Subtype Bb

se [- i se - 1 y-i se I -

Ci li li ci
C B B

co b Jco be ba '61cO
St St St

7 se s
ya s s ya ya

se ts oll

i pa lici a li Ci4, B , B ,s J
Co * co be ba C o

St be ba st St

s _se T se se se se
I- lyaI - lyaI ya ya ya ya

t .- la t -lts s ats la ts la .. ts laI
a lii a lCi a liCi a li Ci a li Ci a li Cio

K D* N* M E*
bebae co beba co bebast co be ba st co be ast co bebast

St St

Figure 5.7 - Derivation of the 1st floor functional organization of subtypes Ab and Bb. Key: I - lot, i
- inside zone, o - outside zone, li - living zone, si - sleeping zone, se - service zone, ya - yard
zone, be - bedroom, ba - bathroom, ki - kitchen, ts - transitional space (dining), la - laundry, pa

- pantry, ci - circulation, st -stairs. The asterisk means that a rule was applied several times.

147

S Control Conditions,
f b f b on dimensioning:

f i fi '2 I <
Imn< 12

2 wm> w > Wx
f t = 0.20 m

on function:
fr fr 12 f,=o -> t'1=of f f t f2 = 0 2=o -

If = o A f1+ o -> f'1 i'
f=o A f2#o -> '2=i'
f = i -> f'1= i A f'2= i

L R9: <F1; fb, fr, ff, li; o; Z > - <F1; fb, fr, ff, fl; ya, sl; Z-{ya, sl} > ya, sl e Z = {zones required)

Figure 5.8 - Rule for dissecting the outside zone into yard and sleeping zones shown in the
cartesian product of algebras U13 and V03. The x thin lines are visual aids to point out the location

of the labels. Dashed lines represent hidden lines.

5.6 Function

5.6.1 First floor functional organization

As a way of facilitating the spatial and the mathematical understanding of the grammar

rules, a detailed rule is shown in Figure 5.8, in which the plans are integrated into a

single axonometric view in the cartesian product of the algebras U13 and V03. The

parametric rule shown is 'Rule 9: dissecting the outside zone into yard and sleeping

zones.' As all the rules in the grammar, it has a shape part (S), a label part (L), and a

set of control conditions on functional and dimensional aspects. As said previously, the

shape part is used to specify the compositional strategy. In Rule 9, the shape part is

generic as it is shared by several dissecting rules.

The label part is mainly used to deal with the contextual requirements and the functional

strategy involved in the generation of Malagueira houses. The generic format of the

label part of a dissecting rule has the form Ri: < Fn; fb, fr, ff, fi; f; Z > -> < Fn; fb, fr, ff, fi; f1,

148

f2; Z - {f 1, f2} >. In this expression, Ri is the rule number, such as R9 for Rule 9. The

label Fn, n e {1, 2, 3}, indicates the stage of the derivation to which the rule applies. In

Rule 9, n = 1 - 1st Floor, which means that the rule only applies to the generation of the

first floor. The labels fb, fr, ff, and fi identify the functions associated with adjacent

rectangles at the back, right, front, and left side of the rectangle currently considered for

dissection.

These labels, coupled with conditional statements are used to express adjacency

requirements, thus determining the topology. In Rule 9, f, = Ii - living room, which

restricts rule application to finding in the evolving design a rectangle adjacent to the

living room. The label f identifies the function currently associated with the rectangle

being dissected (in R9, f = o - outside zone), whereas labels f1, and f2 identify the

function of the resulting rectangles (in R9, f1 = ya - yard zone, f2 = sI - sleeping zone).

Together with conditional statements these labels specify the type of possible functional

dissections (in R9, ya, sl e Z - the set of required zones). Each time a dissecting rule is

to be applied, the zones allocated by the rule are retrieved from the set of required

zones. Once the rule is applied and the zones are created, they are deleted from this

set (in R9, Z - {ya, sl}), preventing further allocations in subsequent steps of the

generation.

Other control conditions specify dimensional constraints (e.g. wm < ws1 < wx, lm < 1, Im <

12). Namely, they assure that the dimensions of the zone to be dissected are such that

they permit the allocation of the intended zones. In other words, allocation takes place

only when the dimensions of the new zones can be within a certain range. This range

was established after dimensional analysis of the existing designs and it is shown in

149

Table 5.1. The result of allocating functional zones is a basic pattern of the 1st floor

layout.

The allocation of rooms within zones, including the allocation of the staircase, proceeds

in a similar fashion. The rooms in the set of required rooms are specified before the

generation starts and form the housing program. Computation terminates when all the

rooms are allocated and the functional organisation is defined. The range of dimensions

for rooms follows existing regulations as the analysis of drawings showed that Siza

respected the regulations, without further constraints.

Table 5.1 - Range of variation of the dimensions of the functional zones

Minimum Values
Zone Corridor Yard Services Zone Living Zone Sleeping Zone

Dimensions Wm Wm Im am Wm Im am Wm Im am Wm Im am
(m) (m) (m) (m2) (m) (m) (m2) (m) (m) (m2) (m) (m) (m2)

T1 1.10 5,01 6,68 33,44 2,59 6,68 17,29 3,80 4,80 18,24 2,80 4,80 15,68
T2 1.10 3,70 5,80 21,46 2,80 4,80 13,44 4,50 4,80 21,60 2,80 5,60 15,68
T3 1.10 3,70 4,80 21,00 2,59 4,80 12,48 3,20 4,80 18,24 2,70 4,80 15,68
T4 1.10 3,70 4,80 21,00 2,60 4,80 12,48 3,20 4,80 18,24 2,70 4,80 15,68
T5 1.10 3,70 4,80 21,00 2,60 4,80 12,48 3,20 4,80 18,24 2,80 4,80 15,68

Maximum Values
Zone Corridor Yard Services Zone Living Zone Sleeping Zone
Dim. Wm Wx 1. ax Wx Ix ax Wx Ix ax Wx ix ax

(M) (M) (M) (m2) (M) (M) (m2) (M) (M) (m2) (m) (m) (m2)

T1 -- 5,80 7,60 44,08 2,59 6,68 17,29 4,70 5,60 26,32 3,80 5,60 18,24
T2 -- 6,70 7,80 52,26 3,10 4,80 14,88 4,80 5,80 27,26 2,90 5,80 16,82
T3 -- 5,01 6,70 33,44 3,90 6,68 25,37 4,70 6,50 27,26 3,80 6,70 22,10
T4 -- 4,90 6,70 32,83 3,90 6,68 25,37 4,70 6,50 27,26 3,80 6,70 22,10
T5 - 4,80 6,68 25,37 3,90 6,68 25,37 4,70 6,50 27,26 3,80 6,50 22,10

150

DEFINE 1st FLOOR

LOCATE FUNCTIONAL ZONES

Locate outside [inside zones

Locate passage

Locate living / sleeping zones

Locate remaining zones
Basic pattem defined

LOCATE STAIRCASE
Type defined

DIVIDE FUNCTIONAL ZONES

Divide service zoneo
Subtype defined

Divide remaining zones
Basic layout defined
(functional organization)

I -

A: C

iJ~b
F- 1

D A,D (t2) E

I .II EE
Aa Ab' Ad: Ac:

NEW B

Maw

Figure 5.9 - Partial tree diagram showing the derivation of basic patterns, types, subtypes, and
layouts by applying rules for locating functional zones, locating staircase, and dividing zones into

rooms. The application of rules to introduce details and openings is not shown. The basic
patterns are reduced to topological patterns just to highlight the commonalities among types. The

diagram includes designs in the corpus and a new design presented in the next chapter.

151

B (t1)

I

The steps involved in the definition of the first floor's functional organisation are

diagrammed in Figure 5.9. The diagram takes the form of a tree where nodes represent

the state of the design and arcs represent the application of rules. The tree illustrates

how the application of rules to allocate functional zones, generates the five basic

topological patterns (see Section 5.8) behind the houses in the corpus. It also shows

how the different types in the corpus derive from these patterns by a different application

of the rule to locate the staircase. Finally, it shows that subtypes differ from one another

in small variations of the layout caused by different applications of the rules for dividing

zones.

5.6.2 Articulation between floors

Because the structural system used is a load-bearing wall system, the generation of the

first floor largely determines the generation of the second floor. While the generation of

the first floor proceeds, labels are placed on the second floor and on the elevation.

When the generation of the first floor finishes, the generation of the second floor starts

using these labels as beacons. Consider the rule in Figure 5.8. Label Q'2 is placed on

the second floor to indicate where the dissection took place. The exponent ' indicates

that it is a second level dissection. (The first level dissection is that of the lot into outside

and inside zones.) The index 2 refers to the floor. Labels f1 and f2 determine the kind of

the zones that can be created on the second floor, in terms of indoor or outdoor,

depending on the kind of dissected zone. If the dissected zone is an outside zone, as in

Figure 5, two things can happen. If the resulting zone is a yard zone, then the label is o,

meaning that the zone above will become an outside zone. If the resulting the zone is a

zone other than the yard zone, then it is i'. Finally, if the dissected zone is an inside

zone, then the label is i. Other circumstances will determine to which kind of rooms will i

152

and i' zones give origin (terraces or indoor rooms). In the case of the rule for dissecting

the outside zone into yard and sleeping zones shown in Figure 5, f'1 = o and f2 = i'.

5.7 Structure

As described in Section 4.3.2, the structural system of Malagueira houses is based on

load-bearing walls. Recall that this system impacts the design by constraining the

thickness and height of walls, the span between load-bearing walls, and the need for

load-bearing walls on upper floors to be aligned with walls on lower floors. Such

structural constraints are encoded into the grammar in a number of different ways.

Constraints on thickness and span are encoded into dissecting rules by placing

conditions on the thickness and location of dissecting walls. Consider, for instance, Rule

R9 in Figure 5.8, which divides the inside or outside zones into functional zones.

Because at this step in the derivation the dissecting wall is a load-bearing wall, it

requires its thickness to be 0.20 m, and it limits its location so that a 6.0 m maximum

span is respected. Constraints on wall alignment are encoded into dissecting rules by

requiring dissections on upper floors to be aligned with dissections on lower floors

through the placement of appropriate labels as described in the previous section. The

influence of the span between load-bearing walls on the thickness of the slab they

support is encoded by using the span value to retrieve the required thickness from a

table when placing the slab, later in the derivation. Constraints on wall height are

encoded simply by choosing a standard value that is a multiple of the concrete block's

height and higher then the minimum floor height. Other structural constraints operate on

rules for concatenating adjacent rooms and on rules for piercing openings to prevent the

deletion of large extensions of load-bearing walls.

153

5.8 The universe of design solutions

Determining the universe of solutions is crucial to determine how useful it is to invest

time and other resources in the development of a grammar and an interpreter, and to

choose an appropriate control mechanism to search for a solution that matches given

requirements. As we shall see, the universe of solutions of the Malagueira grammar is

large enough to make the development of the grammar and the interpreter worthwile.

The identification of the universe of solutions, however, presents two difficulties. One is

related to the design of the grammar itself, and the other is the difficulty in counting the

number of solutions, as discussed below.

5.8.1 Designing the grammar

Designing the grammar poses a paradox. On the one hand, one needs a grammar that

generates a large set of design solutions to increase the potential of generating

customized designs. On the other hand, one wants to make sure that the grammar only

generates designs in the Malagueira style and that a solution can be found in practical

time. The analysis of Siza's designs provided some clues on how to solve the paradox.

Consider the derivations of the two prototypical designs in Figure 5.7. The generation of

the first floor of Type Ab reveals an obsessive, recursive use of dissections

perpendicular to the last dissecting lines (Rules A and B). In Type Bb, the use of rules is

slightly more relaxed as it also uses dissections that are not perpendicular to the

previous level dissection. The generation of the second floors and the layouts of the

remaining types shows an increasingly relaxed use of dissections, with an alternation of

different rules. This supports the idea of Type Ab as a canonical type that established

the basic rules of the grammar. The need to generate new, diverse houses then caused

154

the breaking of this initial canon in order to enlarge the universe of designs that the

grammar could generate. This procedure provided a basis to develop the set of rules of

the proposed grammar. In fact, the main goal behind the development of the grammar

was to provide a coherent but large set of designs to enable customization within the

grammar.

Three steps were then followed in the design of the grammar. The first step was to

develop the exhaustive set of rules that could be derived from the compositional

principles of dissecting and concatenating rectangles. This principle was followed, for

instance, in the rules for perpendicular dissections by eliminating the marker ., in the

rules for diagonal dissections by including all the dissections that did not involve

dissecting diagonally to another diagonal dissection (Rules 42-47), and in the rules for

concatenating rectangles by adopting of a very general rule for concatenating spaces

(Rule 9).

The second step was to limit such an exhaustive set of rules whenever it seemed that it

would oppose Siza's compositional rules. This principle was followed, for instance, in

the restriction of dissections perpendicular to the smaller edges to those few cases found

in the corpus, such as the dissection of the patio and the living zones. Another example

was the limitation of possible divisions of the lot into functional zones as to respect what

seemed to be the functional organization intended by Siza. Thus, in the set of rules

proposed at this stage, it is the functional meaning assigned to shapes and restrictions

on the dimensions of the spaces they represent that mostly determine how shapes can

be dissect and concatenated.

155

Following these steps requires one to answer questions such as, did Siza intentionally

excluded a certain rule? Would he consider using it had he reached the number of

different houses that included rules could generate? Answering these questions implies

a subjective judgement, and to overcome this problem a third step was taken. This third

step was to generate new designs with a closed set of rules and then ask Siza whether

he considered them to be in the grammar as described in Chapter 6. A set of rules is

closed if it is possible to generate complete designs within the set. These three steps

roughly are part of the methodology described in Chapter 2 based on the undertaking of

the descriptive, analytic, synthetic, and goal tests.

5.8.2 Estimating the number of solutions

An exact counting of the universe of solutions is difficult to perform, but it is possible to

obtain a good idea of its size by estimating the upper and lower bounds of the interval

that corresponds to steps one and two mentioned above, at each step in the derivation

of designs.

The Malagueira plan defines a grid of 8 x 12 m lots, which means that each plot is

bordered by other 8 lots. (Figure 5.1Oa) The front three lots are always occupied by a

street. The other five neighboring lots can be potentially occupied by a house or a

street, which yields a total of 32 (25) context patterns (CP). (Figure 5.10b) The

application of urban planning rules, however, restricts the number of such patterns to the

14 patterns bordered by black lines. By considering that the corner lots have no impact

on the functional organization of the central lot, and by eliminating symmetrical patterns,

the number of context patterns is reduced to 4. (Figure 5.1Oc)

156

a

Ii 'Eq1 il
I 1Ih~ E E I-

b

nrF
C

Figure 5.10 - Context patterns. The Malagueira plan is based on a 8 x 12 m grid (a). There are 32
possible context patterns that can be derived from a broad interpretation of Siza's rules (b). Of

these, only the 14 patterns bordered by black lines are in accordance with a strict interpretation of
such rules (b). By disregarding the corner lots and by eliminating symmetrical patterns, such

patterns can be reduced to 4 patterns (c), which correspond to the contexts shown in Figure 5.4.

157

1 2 3 4 5 6 7 8

S S S S S s s S

Figure 5.11 - The 8 geometric patterns that can be derived from Siza's dissecting rules. Bold
patterns correspond to houses designed by Siza.

The application of rules to allocate functional zones potentially defines 8 basic

subdivisions of a lot into 4 zones. (Figure 5.11) For each of these geometric patterns

(GP) there are 24 topological patterns (TP) that can be obtained by assigning functions

to each zone (= 4 x 3 x 2 x 1). The term topology is here used to refer to the articulation

of functional spaces. This means that there are 192 topological patterns. (Figure 5.12)

Some of these patterns are symmetrical, but if the urban context is not, they originate

different solutions (see Section 4.4), in which case we should count with symmetrical

patterns. Otherwise, if the urban context has longitudinal symmetry, the number of

patterns that originate different solutions is 144; if the urban context has transversal

symmetry, this number is 96; and if possesses both symmetries, it is 52. Therefore, the

upper bound of the interval of solutions at this level is 484 (= 192 + 144 + 96 + 52).

Nevertheless, in the strictest interpretation of Siza's rules, only the shaded patterns in

Figure 5.12 are in the grammar. The remaining patterns are ruled out either due to

compositional or functional reasons. Patterns are ruled out for compositional reasons if

they require the dissection of a rectangular zone by tracing a wall perpendicular to its

smaller edge. Patterns in such case are those that result from geometric patterns 3

through 7, in which the patio has direct access from the street, and so there is no

corridor to shorten the rectangle. Patterns are ruled out for functional aspects because

they require the patio, the service, or the living zones to be located on the second floor;

158

because the patio is in the middle; because the patio's proportions do not comply with

building regulations set in Table 4.3; or because they imply the dissection of the outside

zone into living and patio zones. None of these situations is present in Siza's designs.

Therefore, the lower bound of the universe of solutions is 108 (= 28 + 22 + 10 + 48).

T. s, s a s s s S e

S S S S S S S S- 5U.IhLE IIEFI
S S S S S S S S S S

1.1-1.24 2.1-2.24

S S S S S S

S S S S S S S S S

S S 5s s S S S S S

3.1-3.24 4.1-4.24

Figure 5.12 - The 192 topological patterns that can be derived from the 8 geometric patterns in
Figure 5.10, following a broad interpretation of Siza's design rules. Pattern bordered by black
lines correspond to houses designed by Siza. Shaded patterns are patterns considered in the

grammar.

159

iS
Eu

8~

U.

6.1 -6.24

8.1 - 8.24

5.1 -5.24

7.1 -7.24

Figure 5.12 (continued) - The 192 topological patterns that can be derived from the 8 geometric
patterns in Figure 5.10, following a broad interpretation of Siza's design rules. Patterns bordered
by black lines correspond to houses designed by Siza. Shaded patterns are patterns considered

in the grammar.

160

Consider now patterns with the staircase included. Figure 5.13 and 5.14 shows all the

possible stair pattems (ST) for a location of the staircase in one of the functional zones

(living in the case shown,) considering variables such as type of dissection that yielded

the zone, the location and orientation within the zone, and the type of staircase. There

are 12 possible ways of locating an L-shaped staircase in a rectangular zone, being 8 on

the side wall and 4 in the middle. In addition, there are 24 possible ways of locating an

U-shaped staircase. Therefore, there are 36 possibilities for each topological pattern,

which yields a total on the order of about stair patterns (CP x GP x TP x FZ x ST). An the

strictest interpretation of Siza's rules the number is considerably slower. The staircase

is always placed on the side wall of the functional zone, and never in the middle. An L-

shaped staircase is always located in the living zone and in such a way as to minimize

circulation. In addition, a U-shaped staircase is always located in the sleeping or service

zones, and placed transversally. With these constraints the number possibilities is

considerably reduced. There are 4 possible ways of locating L-shaped staircases in the

living zone, and 8 possible ways of locating U-shaped staircases in the service and

sleeping zones. The total number of stair patterns is, thus, 7680.

If the division of zones into rooms is also considered, the space of design solutions of

Siza's design system for Malagueira becomes even larger. Consider, for instance,

dissections perpendicular to the last dissection. The living and patio zones can be

dissected into one (assignment), two, or three rooms and that the sleeping and service

zones can be dissected into two up to five rooms. Then, the universe of solutions upper

bound rapidly raises to about 20,250,000 (=3 x 3 x 5 x 5 x 90,000).

161

2 3 4 5 6

Figure 5.13 - Stair patterns with the staircase located on the side of a functional zone (the living
in the case shown.) Rows 1-4: location in a "vertical" zone; rows 5-8: location in a "horizontal"
zone. Columns 1-4: I and L-shaped staircase; columns 5-8: U-shaped staircase. Stairs are

shown in yellow. The black arrow indicates the location of the starting step. Patterns bordered
by black lines correspond to houses designed by Siza. Shaded patterns are patterns

considered in the grammar.

162

7 8

1 2 3 4

2

3

4

7 - -

8 Mm
Figure 5.14 - Stair patterns with the staircase located in the middle of a functional zone

(the living in the case shown.) Rows 1-4: location in a "vertical" zone; rows 5-8:
location in a "horizontal" zone. Columns 1-2: I and L-shaped staircase; columns 3-4:

U-shaped staircase. Stairs are shown in yellow. The black arrow indicates the location
of the starting step. None of these houses in the corpus fall into this category and none

is considered in the proposed grammar.

163

In the discussion above, the dimensioning of zones was not taken into account. For

each topological pattern there are, in fact, many distinct dimensioned patterns that can

be generated after two dimensioning operations, as shown for the houses in the corpus.

(Figure 5.15) First, there are two possible ways of positioning the line that dissects the

lot into inside and outside zones, 6.00 and 7.00 m away from the front of the lot

(Figure5.16), which automatically doubles the number of solutions. Then, consider the

walls that divide the inside and outside zones into functional zones. Just for the sake of

estimating the universe of design solutions, accept that such wall can be placed at 0.05

m intervals (Siza did not use such a restriction.) (Figure 5.17) The number of

dimensioned patterns varies wildly, depending on the geometric pattern.

For each topological pattern derived from geometric pattern 3, there are 4 + 24

dimensional patterns. On the other extreme, for each topological pattern derived from

geometric pattern 8 there are 2 x 642 dimensional patterns. The upper bound of the

universe of solutions is, thus, on the order of billions (CP x GP x TP x FZ x SP x 2 x 64x

64). But, then, we would have to consider the possibility of using rules for diagonal

dissections, rules for concatenating spaces, let alone the rules for detailing the spaces,

and the rules for the openings.

The separation between geometric, topological and dimensional patterns is merely

analytical, as the rules of the grammar do not make such a distinction. Previous

approaches to layout generation did propose first, to generate a valid topological

solution, and then to dimension it. See, for instance, Mitchell, Steadman and Ligget

(1976). We decided not to proceed this way because this was not Siza's procedure.

Thus, the combination of geometric, dimensional and topological constraints in the same

rule reflects Siza's way of designing.

164

D (t2) E (t2)

A (t2, t3, t4, t5) Ca (t2, t3, t4, t5) Cb (t1, t2) D (t3, t4) B (t2, t3, t4, t5)

Figure 5.15 - Dimensional patterns of houses in the corpus. Pattern Ba, which corresponds to
the preliminary study of subtype Bb, was not included in the grammar because the design was

not settled yet (division into four zones not respected.)

6.00
7.00

Figure 5.16 - The two possible ways of positioning the
outside zones.

line that dissects the lot into inside and

Figure 5.17 - Possible positions of the walls that divide the inside and outside zone into
functional zones, considering existing regulations that requires rooms to be at least 2.20m wide.

Numbers in italics represent the number of positions.

165

A (t1, t2) Ba (t1, t2)

Lot

I MI
Contextual pattern

Geometric pattern 1 2 3 4 5 6

Topological pattern 1 2 ... 24

Stair pattern 1 2 ... 36

Basic layout 1 2 ... 3x3x5x5

Dimensioned layout 1 2 ... 2 x 64 x 64

Figure 5.18 - Tree representing the universe of Malagueira solutions.

In summary, the universe of possible solution is potentially enormous, even at its lower

bound. Such a universe is represented in Figure 5.18 in the form of a search tree. Note

how the branching factor leads to the exponential growth of solutions as the tree moves

in depth. This will require the use of an appropriate search method to overcome this

feature.

166

5.9 Rules

The description of the different stages and rules is provided below in greater detail. To

simplify the representation of rules included in the next section, all the shapes in

axonometric descriptions and empty labeled shapes in the remaining descriptions are

not represented.

5.9.1 Stage 0: Introduce initial shape

The derivation starts with the introduction of an initial, rectangular shape representing

the lot. The width and the length of the Malagueira lots considered in the grammar are

constant and equal to 8.0 m and 12.0 m, respectively. Such dimensions are close to

those found in a pre-existing nearby settlement (Testa, 1984) but they clearly fit the

courtyard typology of the houses as they permit flexibility of configuration without

wasting area, an important concern in the design of social housing. The length is such

that it allows a respect for the 450 rule that regulates the distance between walls of

confronting buildings in the Portuguese building code RGEU1. The width, in its turn,

permits a maximum of three rooms facing the street or an eventual backyard, given the

minimum width (2.20 m) that each room is required to have according to the same code.

Such a configuration permits the design of layouts with five bedrooms as required in the

larger houses.

A single rule, Rule 0, applies at this stage. This rule introduces the initial shape and

adds a set of labels. The labels s and h around the edges of the lot that tell whether

they border a street or a house, respectively. One of the smaller sides always faces a

1 RGEU: Regulamento Geral das Edificag5es Urbanas (General Regulations for Urban Buildings)

167

street and at least one of the larger sides borders a house. These labeling constraints

express the fact that at Malagueira the lots are always perpendicular to a street and that

there are no blocks made of one or two lots. The labels Q1 specify that there are only

two ways in which a lot can be split into two halves in a subsequent step of the

computation to allocate the patio and the house. Finally, F is a state label placed at the

origin that indicates when the computation can proceed on to the next stage.

5.9.2 Stage 1: Define the first floor

The definition of the first floor plan goes through six different steps: start (S), locate

functional zones (Z), defining circulation scheme (C), dividing zones into rooms (R),

introduce details (D), introduce openings (0), and terminate. Such a division into steps

is merely descriptive, to make the grammar easier to explain and understand, as there

are no state labels taking the generation of a design from step to step.

Step 1.1: Start

Rules 1 through 4 apply at this stage. Rule 1 introduces the slab, a 0.20 m thick box that

corresponds to the standard difference in level between the ground floor and the street .

The adjustments to variations in topography is obtained by stacking steps on the street,

at the entrance of the lot, which is a common procedure in the local vernacular

architecture. Rule 2 creates the walls that enclose the floor. Rules 3 and 4 add to

increase their thickness to 0.20 m when the wall borders the street.

Step 1.2: Locate functional zones

Rules 5 and 6 decides whether the outside zone (identified by label o) is going to be

located at the front or at the back of the lot, thereby deciding to which of the two major

168

families of housetypes the house belongs. Label Q1, inherited from Rule 1, determines

the location of the dissecting wall, load-bearing wall. There are two possible location:

6.0 m (Rule 5) and 7.0 m (Rule 6) away from the front border of the lot. Label Q2 marks

where the dissection was done so that this information can be used in the derivation of

the second floor. Rule 7 then applies to link an eventual backyard to the street by

creating a corridor (co), which is a stand-alone space that does not belong to any of the

zones. The width of this corridor is 1.10 m, which is the minimum allowed by

regulations.

Rules 8 and 9 apply to locate the living zone (li) by dissecting the inside zone into living

zone and sleeping (sl) or into living zone and service zone (se). Rules 10 and 11 locate

the remaining zone by dissecting the outside zone, thereby determining the definite

location of the yard (y). Rule 12 determines that there will be no further dissection of the

outside zone, which then becomes the yard, by changing the label o into y. This rule is

optional and can only be applied if the number of bedrooms of the house to generate is

two (tn = t2). The location of the dissecting wall is determined by structural and functional

constraints. Structural restrictions limit the maximum span to 6.0 m. Functional

constraints require the zone to have certain dimensions (width, length, and area) so that

it can be subdivided into correctly dimensioned component rooms. The criteria used to

obtain values for such dimensions resulted from the dimensional analysis of zones in the

houses included in the corpus. Label Q'2 marks where the zone was actually dissected

so that this information can be used in the derivation of the second floor. The symbol Z

represents the set of required zones. Each time a rule is applied, the allocated zones

are subtracted to this list.

169

Step 1.3: Define circulation scheme

After allocating the functional zones within the lot, the next step defines the basic

circulation scheme of the dwelling. Two sets of rules apply at this stage. The first set

includes Rule 13 and Rule 14, which locate the main entrance to the house from the

yard, near the wall that separates the living from the adjacent zone. They differ on the

placement of label e, which establishes the circulation axis; in Rule 13, this axis is

perpendicular to the yard, whereas in Rule 14 it is parallel. The other set of rules

includes rules 15 through 18. Each of these rules places the staircase in a way that it

overlaps label e. Such a restriction prevents the staircase from being located at the

corner opposite to the entrance, which would not be a very good location, circulation

wise. Rules 15 and 16 place an L- or an I-shaped staircase in the living zone, whereas

Rules 17 and 18 place a U-shaped staircase in the service or in the sleeping zones. It is

debatable whether these staircases could be arbitrarily placed in any of the zones. The

linear and L-shaped staircases, however, seem to have a formal, almost decorative

function that are appropriate for the living but not for the other zones. Such an

interpretation is supported by the fact that they are open staircases. The U-shaped one,

on the other hand, is a fully enclosed staircase that does not jeopardize either the

privacy or the functionality required for the sleeping and service zones, respectively.

All of the staircases have always fourteen steps; the treads are 0.25 m deep, whereas

the risers height depends on the floor height. Twelve of these steps constitute the body

of the stairs, which is bounded by runaways on each side that form the remaining two-

steps. If the living zone is not large enough, the linear staircase takes the form of an L-

shape (Rule 15), or invades to the neighboring zone (Rule 16). The minimum length of

the long tail of the L-shaped staircase is restricted to ten steps in order to guarantee that

170

a person does not hit the ceiling when climbing the stairs. This restriction is imposed by

structural constraints that require the stairwell to be a rectangle so that the ceiling's pre-

stressed concrete beams can run parallel to the stairs without interruption. All the rules

for placing the staircase adjust the dimension of the zone in which the staircase is

placed in order to comply with the rule for stair design just described.

Step 1.4: Divide zones into rooms

Computation at this stage is either based on the recursive dissection of zones to create

rooms or on the connection of rooms that are functionally related to form larger rooms

across the previously defined zones. The full set of rooms that can be included in the

program of a Malagueira house are those already shown in Table 4.2. Some of these

rooms appear in all the houses in the corpus, whereas others only appear in some. The

break down of rooms into obligatory and optional sets that results from such a distinction

is shown in Table 5.3 for each functional zone. It is acceptable to consider that the

composition of these sets for a particular house would depend on the desired program.

These sets are then used to control the derivation in order to guarantee that a house that

fits a given program will be generated. R' is the set of obligatory rooms and R" is the set

of optional rooms. The computation starts with R', the set of obligatory rooms, including

all the desired rooms. Each time a dissecting rule is applied, it creates a new room out a

functional zone and it removes this room from the set of obligatory rooms for the zone.

The computation stops when this set becomes empty or can continue until the set of

optional rooms becomes empty too. The exact point of each dissection is informed by

the values that width, length, and area can take for the room being allocated. The upper

and lower limits of the range of values that these parameters can take were obtained

after an analysis of the corpus' houses and respect the values prescribed by regulations.

There are five groups of rules that can be applied at this stage: dividing, extending,

assigning, connecting and permuting rules. Dividing rules (19-32) divide a functional

zone into rooms. Of these rules, only the rules to divide the living and the patio zones to

create a circulation area consist of dissections perpendicular to the smaller edges of the

rectangular rooms. All the remaining rules make dissections perpendicular to the larger

edges. Extending rules (33-47) divide a zone to extend an adjacent zone. Some of

these rules perform regular, perpendicular dissections whereas others (Rules 40-47) do

300 and 600 dissections. Rules 40 and 41 only apply to the living room to extend the

service zone. Rules 42 through 47 perform perpendicular dissections on triangular and

trapezoidal rooms created by non-perpendicular dissections. Assigning rules (48-57)

are used to create the last required room, or an optional room, out of the space that

remains after recursive application of dissecting rules. The rule that makes the yard out

of the yard zone has the additional feature of lowering the level of the ground.

Application of these rules prevents further application of the dissecting rules. Rule 55 is

a dissecting rule that turns the space beneath the staircase into a closet. Rule 59

connects any two rooms of any shape that share, at least, a 1.20 m wall provided that

they have the same function or different but related functions. Rule 60 adds an external

cubic laundry to a concave corner of the yard that is adjacent to the service zone. Rule

61 is a special rule that applies to the design if the generated house is a two-bedroom

house. This rule turns the kitchen into a bedroom and the transition space into the

kitchen, thereby avoiding the need of a second floor.

172

Table 5.3 - Obligatory and optional sets of rooms by zone

Set of possible rooms:

Set of required rooms:

Set of optional rooms:

Set of rooms in the yard zone:

Set of rooms in the living zone:

Set of rooms in the service zone:

Set of rooms in the sleeping zone

(first floor) :

Set of rooms in the sleeping zone:

(second floor)

R = R' u R"

R R'ly u R'i u R'se u R' 1

R" =R"iu R"seU R"si

Ry= R'y= {y} u R"y = 0

R= R'n = {li} u R"i = (cI)

R. = R'.. = (ki} u R",, = {ts, la, pa)

t= t2 -> Raii = R'sii ={be1 , be2, ba) u R". 12 = {cl} v R'.1 = 0

t, t2 = R = R',, = {be1 , ba} u R"812 = {cl}

t= t1 -> R Si = 0

t, t2 => R si = 0 v R = R',11 {be1 , be2, ba) u R", 12 = {cl}

tn = ta = R s = R'.1 = {be2, be3, ba} u R"s12 = {cl}

t= t4 = R ,i = R',il = {be2, be3, be4, ba} u R", 12 = {cl}

tn t5 = R sl1 = R'.1 = {be2, be3, be4, be5, ba) u R" 12 = {cl}

Step 1.5: Introduce details

This step takes care of detailing the design of the floor plan. Four sets of rules apply at

this stage. The first set (Rules 62-67) creates chimneys. All of these rules can be

applied to the kitchen whereas only rules 64 through 67 can be used for the living-room.

The next set of rules (Rules 68-73) make adjustments on the thickness of the walls

depending on their location. Rules 68 through 72 increase the thickness of exterior walls

towards the outside from 0.075 m to 0.20 m. Rule 73 decreases the thickness of interior

walls from 0.20 m down to 0.075 m, if the span is smaller than 2.00m. Rule 68 is a

special rule that increases the wall between living room and the patio to accommodate

window shutters when these are opened. The third set of rules (Rules 74-76) includes

rules to complete the design of the stairs. Finally, Rules 77 and 78 decrease the height

173

of the patio's walls down to 1.50 m. Rule 78 decreases the height of these walls evenly

when the patio borders streets on both sides. Rule 77 decreases the height of the wall

between the patio and the street without decreasing the height of the wall between the

patio and the neighboring lot.

Step 1.6: Introduce openings

The rules that apply at this step of the derivation pierce openings on the walls and

introduce mullions in the openings. There are rules for piercing the exterior openings

(Rules 79-93) and rules for piercing the interior openings (Rules 94-99.) Rules 79 and

80 are the most important rule for placing exterior openings as it encodes the basic

strategy used by Siza for the design of the front elevation. In the front yard houses, the

strategy is as follows: each floor has two windows placed symmetrically in relation to

each other, and the windows on the second floor are aligned with the windows on the

first floor. Such a strategy holds even when the front wall on the second floor is on a

different plane as the one on the first floor, which suggests that Siza thought of the

design the facades on the two dimensional plane of the drawing board. A logical

procedure as the houses are perfectly aligned facing each other on the street and so the

view of one house from the other is very close to its two dimensional representation.

Rules 79 and 80 thus places two labeled axes e1 on the first floor and two labeled axes

e2 on to the second floor which are the labels that permit the application of Rules 81 and

82. The remaining rules specify how openings can be pierced in the front elevation in

contexts other than the one specified by the previous rules or on other elevations. The

placement of openings on the front elevation of backyard houses does not follow the

same strategy used in front yard houses as the lateral corridor accessing the yard

makes it impossible to design a symmetrical fagade. The strategy in this case is to use

174

the remaining rules and accept asymmetry. In these rules, if the opening is pierced on

the front wall, it is shown both on the plan, and on the elevation, whereas if it placed on

another wall, it is only shown on the plan. Rules 82 through 85 erase openings on the

front elevation that are not placed on the front facade, if they are hidden by the patio

wall.

After piercing the openings, the derivation of the elevation proceeds with the definition of

the mullions' geometry (Rules 100-107). Interestingly enough, the design of this

geometry follows the same compositional rule of perpendicular rectangular dissections

used in the design of the layout.

Step 1.7: Terminate

The last step in the derivation of the first floor includes rules that delete unnecessary

labels (Rule 108) and change the state label from F1 to F2 (Rule 104). The derivation

then proceeds on to the second floor.

5.9.3 Stage 2: Define the second floor

The second floor's derivation goes, to a certain extent, through the same steps of the

first floor's derivation. The rules are also very similar and so they will not be described in

detail. Instead, the differences between the derivations of both floors will be highlighted.

When the actual derivation of the second floor starts, it has already inherited a series of

labels from the derivation of the first floor. Such labels carry information that will be used

to make new dissections, extend the staircase and the chimneys, and to place the

openings.

175

The first step of the derivation introduces the slab (Rule 110) and the enclosing walls

(Rule 2), and adjust the wall thickness (Rules 111-113.)

The next step replicates the dissections of the first floor, using the existing labels as

markers. If the first floor's first dissection was done 6.0 m away from the front of the lot,

the corresponding dissection of the second floor can be done at the same place (Rule

114) or 1.0 m meter backwards (Rule 115), so that a verandah zone will be created as a

result. The next dissections replicate exactly the first floor's division into functional

zones (Rule 116). The following dissections, however, might (Rule 117), or might not

(Rule 118) replicate the first floor's dissections, depending whether the number of

required bedrooms is equal or bigger than two.

The next step of the derivation extends the staircase (Rule 119-120) and defines the

basic circulation scheme by creating a corridor perpendicular (Rules 121 and 124) or

parallel (Rules 122 and 123) to the staircase. The choice between these two options

depends whether the lot borders a street or a house on the side where the corridor will

be placed, as it constrains the location of windows in the room that is adjacent to the

staircase.

The next step divides the remaining space into rooms or assigns a bedroom or a terrace

to a room that resulted from the replication of first floor's dissections (Rules 125-136).

There are some constraints to such operations: the rooms above the inside zone defined

by the first dissection cannot become terraces and the remaining rooms can only

become terraces if the layout has the required number of bedrooms. Other rules that

176

can be applied at this step to create corridors, bathrooms, or extend an existing bedroom

by dissecting another room or the end of a corridor.

Finally, the last three steps of the derivation introduce the details (Rules 137-146),

introduce the openings, and erase unnecessary labels (Rules 147). The last rule (Rule

148) changes the state label.

5.9.4 Stage 3: Define the terrace

The stage has fewer steps than the previous two. The first introduces the slab and

encloses the terrace (Rules 149 and 2). The second replicates the division of the lot into

inside and outside zones (Rule 150) and then into functional zones (Rule 151). The third

extends the chimneys (Rules 154-159) and erases the walls around the patio (Rule 160).

The fourth and last step erases the unnecessary labels (Rules 161) and applies the

termination rule (Rule 162) that ends the derivation.

177

Stage 0: Introduce initial shape and grammar labels
Rule 0: Introduce initial shape

f b

fi

(7,0,0)
1------- ------------ --

) 1- ------------ ------------
(6,0,0) Lot

(,0,0)
FO -

w

On dimension:
w = 8.00 m
I = 12.00 m

On function:
fb, fr, fi E {s, h}
fr = h v fi= h

Stage 1: Define first floor
Step 1.1: Start
Rule 1: Introduce slab

fb

fi

Lot

FO

fb

fi

Lot

F1
S

f b

f

Lot

F1 =hs 1 hs1 = 0-20 m (Table 4.4)

Figure 5.19 - Shape grammar rules

178

S L

Rule 2: Introduce enclosing walls

Fn "

Fn '

Rule 3: Adjust front and

ti-

Fn

Fn hf1

back wall thickness

- * It- I

Rule 4: Adjust left and right wall thickness

U
t2 fxtI fx

On dimension:
hmin < hf1 < hmax (Table 4.4)
t = 0.1 M

On function:
ne {1, 2}

On dimension:
t1 = 0.10 m -> t2 = 0.20 m

On function
p(s) e {ff, fb}

On dimension:
t1 = 0.10 m => t2 = 0.20 m

On function:
p(fx) e {ff, fb}

Figure 5.19 (continued) - Shape grammar rules

179

>S

I , -I I

Step 1.2: Locate functional zones
Rule 5: Locate patio

f b

fi

01-----------------
01 --------- 0--

L

F1

fi

f f r

f2

fi

On dimension:
t=0.20m

On function:
f1, f2 E { i, o } A f1 # f2
f1= f'1 , f2= f'2

ff

f2

02- --------

fi

f2 >R4: < f1, ft, fr, S, fl, L: f1,

Rule 6: Locate patio
f b

01- ---------- ------
Lot

F1

fi

On dimension:
t = 0.20 m

f2

t On function:
f1, f2 E { i, o}A f1 # f2
f1= f'1 , f2= f'2

f i

f2

02

i

R4: < f51, f(, fnrt sd f S, L: fg1m, f2 >

Figure 5.19 (continued) - Shape grammar rules

180

Rules 7-11: Locate functio

fb

f b

f f

nal zones

f b

fI ,

f2

fi

w S

f b

f.

e'2

On dimension:
Im< 1

Im < 12
wm> w > wx
t = 0.20 m

On function:
f1= o => f'1= o
f2 = o > f'2= 0
f = o A f1 o -> f'1= i'

f=i = f'+ -i f'2= i

Rule 7: Locate backyard corridor
R7: <F1, fb, 0, ff, S, i; i, co>

Rule 8: Locate living and service zones
R8: <F1, fb, fr, ff, fl, i; li, se; Z-{li, se}>

Rule 9: Locate living and sleeping zones
R9: <F1, fb, fr, ff, fl, i; li, sI; Z-{li, sl}>

Rule 10: Locate patio and service zones
R10: <F1, fb, fr, ff, li, o; y, se; Z-{ya, se}>

Rule 11: Locate patio and sleeping zones
R1 1: <F1, fb, fr, ff, li, o; y, sI; Z-{ya, sl}>

ff, fb * S A co e Z

li, se e Z

Xf w co; li, sI e Z

se e Z

si e Z

Rule 12: No dissection: outside zone becomes patio zone
o-> y

R12: < F1, ft, frr fl, fl, 0: Y >, tn = t2

Figure 5.19 (continued) - Shape grammar rules

Step 1.3: Define circulation
Rule 13: Locate main entrance

On function:
- f = li
f fb = Y

Rule 14: Locate main entrance

On function:
f =li

fr
fb = Y

Rule 15: Locate staircase in the living zone

f b

fi e f r

w

14
f b 1

12

Wi f f t W2

On dimension:
Wmin < W
11> w

12 =0.25n , n e N
2.50 12 3.00 m
13= W
14= 3.00 m - 12
t =0.075 m

On function:
fr# 0

R15: <F 1, fb, Xr, Xf X,, i; i, st>

Figure 5.19 (continued) - Shape grammar rules

182

Z Z

ZT Z

...........

Rule 16: Locate staircase in the living zone

f b

-- ---

w

R16: <F1, fb, fr, ff, fe,, Ii; Ii, st>

f r

w2

Wi f~ t W2

On dimension:
Wmin < W
l w
12= 3.00 m
13= W
t = 0.075 m

On function:
fr# 0

zz

z zZi iz

e f b
-- ----- - - - - - - - ---- --

',

w ,

On dimension:
Wmin < W

11> w
12 = 1.50 m
13 W
t = 0.20 m

I II I i

W1 t W2 t W2

ft

z z

z z

Rule 17: Locate staircase in the sleeping zone
R17: < F1, fb, fr, ff, fi,, li; li, st >
Rule 18: Locate staircase in the service zone
R18: < F1, fb, fr, ff, fi, si; sl, St >

fb = li

fb = li

Figure 5.19 (continued) - Shape grammar rules

183

Step 1.4: Dividing zones into rooms

P

fi f 2

W1 fb t W2

On dimension:
f , Wmin< W1

Wmin > W1
t =0.075 m
p = 1.00 m

Q"2

19: Dissecting patio zone into patio and circulation
< F1, fb, li, ff, fl, y; y, ci >
20: Dissecting living zone into living and circulation
< F1, fb, fr, ff, fi, li; li, ci>

On dimension:
min < 11 < Imax
min < 12 < Imax
Wmin> W > Wmax
t = 0.10 m

w Ib

Q"2

Figure 5.19 (continued) - Shape grammar rules

184

sw

Rule
R1 9:
Rule
R20:

f b

w s

_ -> ,

Rules 21-25: Dividing service zone
R21: <F1, fb, fr, ff, fi, se; se, ki>
R22: <F1, fb, fr, ff, fi, se; se, ts>
R23: <F1, fb, fr, ff, fl, se; se, pa>
R24: <F1, fb, fr, ff, fi, se; Se, la>
R25: <F1, fb, fr, ff, fl, se; se, ci>

Rules 26-28: Dividing sleeping zone
R26: <F1, fb, fr, ff, fi, sl; sl, be>
R27: < F1, fb, fr, ff, fi, sl; si, ba >
R28: < F1, fb, fr, ff, fi, sl; sI, ci >

Rules 29-32: Dividing circulation
R29: < F1, li, be, ff, fl, st; st, ci >
R30: < F1, fb, fr, ff, fi, ci; ci, be >

R31: < F1, fb, fr, ff, fl, ci; ci, ba >

R32: < F1, fb, fr, ff, fi, ci; ci, y >

Rules 33-38: Dissecting nearby zones
R33: < F1, fb, fr, ff, fi, se; se, y >

R34: < F1, fb, fr, ff, fi, sI; sI, y >

R35: < F1, fb, fr, ff, fi, li; li, y >

R36: < F1, fb, fr, ff, fi, se; se, li >
R38: < F1, fb, fr, ff, fi, y; y, se >

R39: < F1, fb, fr, ff, fi, li; li, se >

3 fn : fn = li, f e {fr, fl}

3 fn : fn = ci, f n e {fr, ff, fi}
V fn : fa w ci

P2 = 0
fb e {h, S} A 3 f% : fr = be, fr e {fr, ff, f }
P1 1.0 m
fn E {h, S} A fr, fi# St
P1 1.0 m
fn e {h,s}Afr=y

p1 1.0 m
3 fn : fn= Y, fn E {fb, fr, fi}
P1 i 1.0 m
3 fn : fn= y, fn e {fb, fr, fl}
P1 i 1.0 m
3 f : f n= y, fn e {fb, fr, f1}
3 fn : fn= li, fn e {f, fr, fi}, li E li, Ir)
3 fn : fn = se,
fn E {fb, fr, f1}, se e {se, ki, ts},
3 fn : fn= li,
fn e {fb, fr, fl}, se e {se, ki, ts}

Rules 40-47: Dissect living or service zone or rooms with a diagonal wall
t f b

Wi W2

a 1 2

On dimension:
/ a e {300, 600}
t = 0.10 m

On function:
f = li

R40: < F1, fb, fr, ff, f, li; li, pa >

Figure 5.19 (continued) - Shape grammar rules

185

W f b

t f b
w 1 W 2

' .

On dimension:
Z a e {n x 300}, n e N
t = 0.10 m

On function:
f = li

R41: < F1, fb, fr, ff, fi, li; li, tS >

On dimension:
Z a e {n x 300}, n e N

I ItI I
W I t f W2

On function:
f = li =>
((f1 = li => f2 E { pa, la, tS, Cl }) A
(f2 = li ~> f1 E (pa, la, ts, ci }})

f i=> f, f1, f2 E { pa, la, ts, cI)

R42: < F1, f; f1, f2 >

On dimension:
Z a e {n x 300}, n e N

On function:
f = li =>

ki ((f1 = i => f2 E
(f2 = i => f1 E

w1 t w2

(pa, la, tS, Ci }) A
{ pa, la, ts, ci }))

f + li -:> f, f1, f2 E { pa, la, ts, ci)

R43: < F1, f; f1, f2 >

Figure 5.19 (continued) - Shape grammar rules

186

w fb
I _1J

f b

0 k

wa

W f

w

|i

w

On dimension:
Z a e {n x 300}, n e N

a

fI

f 2

wI f t W2

On function:
f = li ->
((f1 = li => f2 E
(f2 = Ii => f1 E

{ pa, la, tS, C }) A
(pa, la, ts, cl }))

f # li = f, f1, f2 E { pa, la, Is, ci)

R44: < F1, f; f1, f2 >

I f
wI t w2

On dimension:
/ a e {n x 300), n e N

On function:
f = li A p = 0 =>
(f1 = li A f2 E (pa, la, ts, cl })
f = li A p # 0 ->
f1, f2 E (pa, la, ts, cl }
f # |i => f, f1, f2 E (pa, la, ts, ci)

R45: < F1, f; f1 , f2 >

On dimension:
/ a e {n x 30}, n e N

On function:
f = li => (f1 = li A { pa, la, ts, ci })
f # li -> f, f1, f2 E { pa, la, ts, cl }

w f

R46: < F1, f; f1, f2 >

Figure 5.19 (continued) - Shape grammar rules

187

w f

w

On dimension:
/ a e {n x 300}, n e N

On function:
f = Ii A p =0

(f1 = li => f2 E { pa, la, ts, cl })
f # li => f, f1, f2 E { pa, la, ts, cl }

w

R47: < F1, f; f1, f2 >

Rules 48-57: Terminate division of zones
f b

f1

Rule 48: Terminate division of the yard zone
R48: < F1, fb, fr, ff, fi, y; ya >

Rule 49: Terminate division of the living zone
R49: < F1, fb, fr, ff, fl, li; Ir >

Rules 50-53: Terminate division of the service zone
R50: < F1, fb, fr, ff, fl, se; ki >
R51: < F1, fb, fr, ff, fi, se; ts >
R52: < F1, fb, fr, ff, fl, se; pa >

R53: < F1, fb, fr, ff, fi, se; la >

R54: < F1, fb, fr, ff, fl, se; y >

Rules 55-56: Terminate division of the sleeping zone
R55: < F1, fb, fr, ff, fl, sl; ba >
R56: < F1, fb, fr, ff, fl, sl; cl >
R57: < F1, fb, fr, ff, fl, sl; y >

R's, = 0 A R's, = 0

R's. = 0
R'se = 0
R's.= 0

fbe {ki, li) -> ff {ki. li}
fr E (ki, li) -> fi { ki, ii)
R'se = 0

fb e {ki, li} -> ff e {ki. li}
frE (ki, li} => f, {ki, li)
R'se = 0
3fn: f% = y, n e {b,r,f,l}

R'si = 0
R'si = 0

R'si = 0

3fn: f, = y, n e {b,r,f,l}

Figure 5.19 (continued) - Shape grammar rules

188

w f t

Rule 58: Create closet under the staircase

z

CI
7

R58: < F1, fb, fr, ff, fl, st; st, cl >

Rule 59: Concatenate adjacent rooms

p p' p"* p
P I P

f 2 P

On dimension:
I = 1.75 m

On dimension:
p 0
p' 1.20m
p" 0

On function:
X=RvX=Q

F = F1
f1 = f2

f1 #f2 ->f1,f2 E Riv 3fn:fn=c ,
ie {y, li, se, sl}, n e {1, 2}

F = F2
f1 = f2

f1 # f2 => 3 In: fn = ci

Rule 60: Locate laundry

ts y
y

ts

la

Rule 61: Turn kitchen into bedroom and transitional space into kitchen
R61: < F1 , ki, ts; ts, ki > tn = t2

Figure 5.19 (continued) - Shape grammar rules

189

R59: < F1, fb, fr, ff, fi, st; st, cl >

Step IL:. Introduce details
Rules 62-67:

h ki

Introduce chimney

h ki

R62

On dimension:
t = 0.10 m
1.0 p 5 1.2 m

On function:
p(h) e { fl, fr }

p

h ki t

p

S

h

PF10
0

P

f

0

h

P

R63

On dimension:
t = 0.10 m
1.0 p 5 1.2 m

On function:
p(h) e { fi, fr }

R64
On dimension: p = 1.00 m
On function: f = ki v f = Ii

R65
On dimension: p = 1.20 m
On function: f = ki v f = li

R66
ba On dimension: p = 0.50 m

On function: f = ki v f = li

R67
On dimension: p = 0.70 m
On function: f = ki v f = Ii

Figure 5.19 (continued) - Shape grammar rules

190

h ki

h

fh
h

S

Rules 68-73: Adjust wall thickness

y

I

II
y f2

fI

tt
y f2

tE -:Tj

y

f1

f2 y

R68
t = 0.45 m

R69
t = 0.20 m

R70
t = 0.20 m

R71
t = 0.20 m

R72
t = 0.20 m

R73
t = 0.10 m
I < 2.00

Rule 74-76: Detail stairs

Li

t t
L-I

R74
On dimension:
t =0.25

R75
On dimension:
t = 0.25

R76

Figure 5.19 (continued) - Shape grammar rules

191

y f2

f1

y f2

f2 y

3

II

EE

Rules 77-78: Adjust the patio wall height

LK 1

S
S

Step 1.6: Introduce openings
Rule 79: Pierce front facade openings

*I

F2

ya

F1
W W

P P P P

S

'e2 e2

F2 I
h2

L

F

On dimension:
we { 1.05, 1.10}
h1 e {0.00, 0.20}
h2 E2.00, 2.07)

Figure 5.19 (continued) - Shape grammar rules

192

i I

Rule 80: Pierce front facade openings

f t ya

L - - L - J

:e1 gel

f t 'ya

F1 L '_ |'_
Fl PII LI

w. w

On dimension:
we { 1.05, 1.10}
h1 e {0.00, 0.20}
h2 E { 2.00, 2.07)
h3 e { 0.20, 0.35, 0.75 }
h4 e {2.00, 2.07}

'e2 *e2

-------------------- ---...
F2

Fl

Rule 81: Erase axis of symmetry

le1
-1

Rule 82: Pierce exterior opening on the axis of symmetry

p
f b I en

f I f t

h2
h1

Fn

On dimension:
w e {1.05, 1.10}
h1 e {0.00, 0.20}
h2 E { 2.00, 2.07)
h3 e { 0.20, 0.35, 0.75 }
h4 e { 2.00, 2.07 }

On function
Ff = { ya, te, s }
Fn E { 1, 2)

Figure 5.19 (continued) - Shape grammar rules

193

F2

Fl

Rule 83: Erase invisible part of patio opening

Ibm

f f

p
Ibm

ft

h[

Fn

Rule 84: Erase invisible patio opening

Ib

ff

S

p
fbm

ff

On dimension:
h = 1.50 m

On function
ff = { ya, te)
Fn e { 1, 2 }

On dimension:
h = hf,

On function
ff = { ya, te }
Fn e { 1, 2 }

Rule 85: Erase invisible patio opening

fb

ftf

S

p
f b

ft

S

Rule 86: Pierce an exterior opening in the middle of a

f b

p
f FrI

P p
ftf

On dimension:
h =h

On function
f = { ya, te }
Fn e { 1, 2 }

room's wall on the front facade
On dimension:
w E { 1.05, 1.10}
h1 e { 0.00, 0.20 }
h2 E {2.00, 2.07)
h3 E { 0.20, 0.35, 0.75 }
h4 e {2.00, 2.07}

h2
hl

Fn

On function
F = { ya, te, }
Pf) =ff

En c.{ 1, 2}

Figure 5.19 (continued) - Shape grammar rules

194

Rule 87: Pierce an exterior opening in the middle of a room's wall

fb

P P
ff

Rule 88: Pierce entrance door in the middle of the patio

li

P
li-

I E [fr flTi fr

P P

Rule 89: Pierce entrance door abutting the living-room 's wall

ff, e li, st, ci}

E

Rule 90: Pierce an exterior opening abutting a-room 's wall
w = { 0.7, 0.8, 0.9 }
ff E { s, ya, te }

w

Figure 5.19 (continued) - Shape grammar rules

195

I

Rule 91: Pierce exterior openings in a row on the patio's wall

W t W
_ _ _ _ | |

Rule 92: Pierce an exterior opening facing another in the interior

Rule 93: Pierce an exterior opening facing another in the exterior

ya
ya ya

Rule 94: Pierce an interior door next to a wall

Li

w

Figure 5.19 (continued) - Shape grammar rules

196

M

Rule 95: Pierce interior opening facing exterior opening

ya

Rule 96: Pierce interior opening in the middle of a wall

W

Rule 97: Pierce interior opening between kitchen and transitional space

s L is L

w1 w2
ki ki

Rule 98: Pierce interior opening on diagonal wall

ki4

Rule 99: Pierce interior opening on diagonal wall

Figure 5.19 (continued) - Shape grammar rules

197

Rules 100-107: Introduce exterior openings mullions

R100
On dimension:
we {0.90, 1.05, 1.10)
h e { 2.00, 2.07 }

h

h

]hi

w

w

R101
On dimension:
w e {1.05, 1.10)
h e {2.00, 2.07}

R102
On dimension:
w e { 1.05, 1.10)
h1 =h/2vh1 =w

R103
On dimension:
w e { 1.05, 1.10}
h1 = h / 2 v h1 = w

R1 04
On dimension:
w e {1.05, 1.10)
h1 = h / 2 v h1 = w

Figure 5.19 (continued) - Shape grammar rules

198

h

W

hEW
W

ft

f b

1-1

Stage 1.7: Terminate
Rule 108: Erase unnecessary labelled shape

0 ->

Rule 109: Change state

F1 " R'F1 = 0

F2

F1
R103:<Fl;F2>

Figure 5.19 (continued) - Shape grammar rules

199

f t

f b

................................

....................... I

6

R1 05
On dimension:
we { 1.05, 1.10}
h=w

R1 06
On dimension:
w e {1.05, 1.10}
h=w

R1 07
On dimension:
w e { 0.90, 1.05, 1.10}
On function
fbE { te, ya, s}
p (fb) * fb

Stage 2: Define second floor
Step 2.1: Start
Rule 110: Introduce slab

fb

f~ f r

Lot

F2
S

f b

ff

Lot

F2

On dimension:
fr = 0.20m (Table 4.4)

f b

f f,

Lot

F3

F2 hs 1F

(Rule 2 applies): Introduce enclosing walls

Rule 111: Adjust front and back wall thickness

t i - I I - > t2E 1 I On dimensioning:
t= 0.10 m => t2 = 0.20 m
t3E (0.0, 0.10}
p(s) e { h fb}
Fn : n e { 2, 3}

htn

Fn *I Fn

Figure 5.19 (continued) - Shape grammar rules

200

Rule 112: Adjust front and back wall thickness

ti~= I -i t2E' I On dimensioning:
t1 0.10 m => t2 = 0.20 m
t3 E {0.0, 0.10)
p(s) e {fY fr}
Fn : n e { 2, 3 }

hifn

Fn

U W

t3 aw

Rule 113: Adjust left and right wall thickness

[Li
ti t2

h fn

Fn

t3

On dimensioning:
= 0.10 m -> t2 = 0.20 m

t3 e {0.0, 0.10 }
p(s) e { fi, fr }
Fn : n e { 2, 3 }

Fn

Figure 5.19 (continued) - Shape grammar rules

201

Fn *

Step 2.2: Replicating first floor's division into functional zones
Rule 114: Replicating division into in- and outside zones First level dissection

fb fb

On dimension:
f. fr f. fr t=0.20

f2 f'2

02- ------ On function:
02- --- - - ------------ t f = f"9

L

fi f1

F2 F2

fb

fi fr

R114: < F2, s, L: f'1, f'2 >

Rule 115: Replicating division into
fb

f2
-- - - - - - - -- - -

------- ---- - - - - -

L

fi

f b

ff

f 2

*f" 1

in- and outside zones
fb

f 2

First level dissection

On dimension:
t = 0.20

On function:
fn = f'n = f"n

fb

f fr

R115: < F2, s, L: f'1, f'2 >

fb

fi efr
f" 2
f2

0 3 -- --------- --

..

Figure 5.19 (continued) - Shape grammar rules

202

Rule 116: Replicating division into functional zones
fb fb

f , tr f I f r

f2 f 2

Q'2- -----------------------
L

'
f i

F2 F2

ft ff

fb fb

f f r f , f r

f 2

Q'3 -----------------------

f I f
R 116: < F2, f'1, f'2: f"1, f"2 >

Rule 117: Replicating division into functional zones
fb fb

ft . fr f. - fr

f2 f 2

Q"2---------- ------ ------ t
L

fi f1

F2 F2
fr fr

Second level dissections

On dimension:
t = 0.20 m

On function:
f= o => f'n =Y A f"n = Y

fn= i >f'n =i A f"n =i

fn= i' => f'n =i' A f"n =i'

n E (1, 2

Third level dissections

On dimension:
t = 0.07 m

On function:
,= o => f' _ A f" = y

fn= i=> f'n =i A f"n =i

fn= i' > f'n =i' A f"n =i'

n E(1, 2)

f b f b

f, fr f fr

f 2
0-3-

ff r

f rf
r

R118: < F2 f'1, f'2: f"1, f"2 >

Figure 5.19 (continued) - Shape grammar rules

203

Rule 119: Erase marker to avoid replicating dissection of
fb fb

f I

O2T

f 2

f 1

R119: < F2, f1, f2: f >

Step 2.3: Define circulation

Rule 120: Extend I- or L-shaped staircase

f r

tw
r-n

*>

]|1

functional zones

On function:
fn* o , n e {1, 2}
tn t3

On dimension:
t = 0.075 m
w = 0.20 m
I = 0.25 m

z z

z z

R120: < F2, i: i, st >

Rule 121: Extend U-shaped staircase

t 1 t 2
m F1

f

R121: < F2, f: f, st >

fe {ii'}

On dimension:
t1, t2 = 0.20m

f e { i, i' }

Figure 5.19 (continued) - Shape grammar rules

204

Rule 122: Create circulation perpendicular to I- or L-shaped staircase

fb fb

On dimension:
t= 0.07 m

f' e fr > f' fr On function:

f e={ i, i'}
.* fi= h

C1

ff ff

R122: < F2, fb, fr, ff, fl, f: f, ci >

Rule 123: Create circulation parallel to I- or L-shaped staircase

fb fb On dimension:
t= 0.07 m
Wi Wmin

w2 =1.10 m
fi e fr) fi S S fr

f f Ci
On function:
f e { i, i' }

-- , fb fv ffvf e { s, y}
W1 t W2

ff

R123: < F2, fb, fr, ff, fi, f: f, ci >

Rule 124: Create circulation perpendicular to U-shaped staircase
fb fb

On dimension:
fi . fr tE fr t=0.07m

. W1 Wmin
C' w2 =1.10 m

ff ff

On function:
f e { i, i' }
fbv frv fi e { s, y}

R124: < F2, fb, fr, ff, fi, f: f, ci > f e { i, i' }, f1= s

Figure 5.19 (continued) - Shape grammar rules

205

Rule 125: Create circulation parallel to U-shaped staircase

ff

ff

fb

wi t W2

f I

ff0

f ci

On dimension:
t = 0.07 m
W1 Wmin
w2 =1.10 m

On function:
f e { i, i' }
fbV ffV fl e { s, y}

R124: < F2, fb, fr, ff, fl, f: f, ci >

Step 2.4: Define rooms
Rules 125-131: Divide zones into rooms

fb

W f

w ,f b

f2

-* p~-

fI

w fb

Rule 125: Dissect inside zone to create bedroom
R125: < F2, fb, fr, ff, fi, i; i, be >
Rule 126: Dissect inside zone to create bathroom
R126: < F2, fb, fr, ff, fi, i; i, ba >
Rule 127: Dissect bedroom to create circulation
R127: < F2, fb, fr, ff, fl, be; be, ci >
Rule 128: Dissect circulation to create bathroom
R128: < F2, fb, fr, ff, fi, ci; ci, ba >
Rule 129: Dissect bathroom to create circulation
R129: < F2, fb, fr, ff, fl, ba; ba, ci >
Rule 130: Dissect inside zone to create terrace
R130: < F2, fb, fr, ff, fi, i; i, te >
Rule 131: Dissect yard zone to create terrace
R131: < F2, fb, fr, ff, fi, y; y, te >

p 1.0 m
3 fb : fb { i, i' }, R'be 0

p 1.0 m
fbe { h, } A fr, w St A fi St

fb = ci A ff = be
p 1.0 m
fb e { h, S A fr + St A fi+ St

Figure 5.19 (continued) - Shape grammar rules

206

Rule 132: Expand bedroom to achieve natural light
fb fb

fi
f 2

-J

f 12
f,

w go h

P

f 12

p =1.0 m

fn, {h, y}
12 f12e { h, y}

t

11

w fb

Rules 133-136: Assign functions

Rule 133: Assigning the bedroom function to an interior room
R133: < F2, fb, fr, ff, f, i: be > f = i , R',w 0
Rule 134: Assigning the terrace function to an interior room that resulted from the dissection of
the outside zone
R134: < F2, fb, fr, ff, fl, i': te > f = i' , R'rI = 0
Rule 135: Assigning the patio function to an exterior room that resulted from the dissection of the
outside zone
R135: < F2, fb, fr, ff, f, o: y > f = o

(Rule 98 applies): Concatenate adjacent rooms

Figure 5.19 (continued) - Shape grammar rules

207

Step 2.5.- Introduce details
Rules 137-142: Extend chimneys

p

h ki t h ki

p

R1 37

S

p

h ki t

p

S

R1 38

h ki

p

h ki t

S

Figure 5.19 (continued) - Shape grammar rules

ki

h ki

p

t

p

208

h

f

h

f

P

h

h

0
I0

P

h

0

h

f

h

R1 39

R140

R1 41

R142

Figure 5.19 (continued) - Shape grammar rules

209

-4

-4

h

h

f

S

f

h

f

h

f

h

Rules 143-146: Adjust the patio wall height

- h .7

R143

h = 3.74 m

L

-h

R144

h = 3.74 m

R145

-4

R146

h

Stage 2.6: Introduce openings

(Rules 81-93 applies): Pierce exterior openings
(Rules 94-99 applies): Pierce interior openings
(Rules 100-107 applies): Introduce exterior openings mullions

Stage 2.7: Terminate

Rule 147: Erase unnecessary labelled shape

Figure 5.19 (continued) - Shape grammar rules

210

Rule 148: Change state

R'F1 = 0

F2 a

F3

F2

R148: <F1; F2>

Stage 3: Define terrace
Step 3.1: Start

Rule 149: Introduce slab
R'F2=0

fi

Lot

F3
S

F3

F3 6

F3 'hs1

(Rule 2 applies): Introduce enclosing walls
(Rules 3-4 apply): Adjust wall thickness

Figure 5.19 (continued) - Shape grammar rules

211

....................

................................

.....................

6 :

Step 3.2: Replicating second floor's division into functional zones
Rule 150: Replicating dissection into in- and outside z. First level dissection

On dimension:
T = 0.20

f2 f2

Q3 ---------.-------------- > t

L

ff1

F3 F3

R150: < F3, L, f1, f2: f'1, f'2>

Rule 151: Replicating division into functional zones

f2 f2

Q13- -------------------- t

fi fi

R151: <F3, f1, f2: te, te>

Rule 152: Erase marker to avoid replicating dissection

R152: < F3, f2, f3: f >

Rule 153: Pierce patio
R153: < Fn, y: ya >

f'n = fn , n e {1, 2}

Second level dissection

On dimension:
T = 0.20

On function:
fn = y -> f'n = y
fn = te => f'n = y
fn 0 {y, te} => f'n = te

n e {1, 2}

V fn = i -> fn= te

Fn e { 2, 3 }

Figure 5.19 (continued) - Shape grammar rules

212

f 2

------- ------------

f1

Q3 -

Step 3.3: Introduce details
Rules 154-159: Extend chimney

p

h ki t h

P

B ki

S

h ki

R1 54

ki

p

ki t

P

R1 55

t

S

Figure 5.19 (continued) - Shape grammar rules

213

h ki P

t

P

ki

R1 56h

f

P

h

f

h
0

P

h

f

S

f

h

f

P

h

f I

P

h
U0

h

f

P

R1 57

R158

f 0

f F ba

P

R159
-4

f

h

f

Figure 5.19 (continued) - Shape grammar rules

214

Rule 160: Adjust the height of the patio wall

Step 3.4: Terminate

Rule 161: Erase unnecessary labelled shape
e ->

Rule 162: Erase state labels

F3 e ->
F3 .

Figure 5.19 (continued) - Shape grammar rules

215

5.10 Derivation of an existing design

The generation of a subtype Ab, five-bedroom house is provided below (Figure 5.19.)

This house was selected because it corresponds to the first mature design produced in

the language, constituting the prototypical design for frontyard houses. The rules

applied during the derivation are shown below the arrows between design states.

216

1: Define 1st floor
1.1: Starting

h

- ---- --
Lot

-4 ------------------------ --

Lot

h

h

..

a

F1 '

1 Introduce initial shape 2 Introduce slab

F1 l

3 Enclose walls

F1 '

4 Adjust wall thickness

217

2

h

3

h h

-- I 4------------ - --- -- -- --

F1

h

h
h000

h

Figure 5.20 - Derivation of an existing design (Tabt5.

1.2: Locate functional zones

h

-- ---- 0 ------- - -- --

9

h h

h h

hQ'2

02

0

0

1.3: Define circulation

h h

h Q'2

h 0

0'2

0

S

--2 ----------

0

F1'' F1' 4

5 Locate in / out zones 6 Locate living/sleeping

Figure 5.20 (continued) - Derivation

F1' 4

7 Locate patio/service 8

of an existing design (Tabt5.)

F1

Locate entrance

218

1.4: Divide zones into rooms

h 0.2

0

Q2 --

0 ------- -*-*-----

0

02

0

F1

9 Locate staircase

h Q2

0

------ - - --- --

a
02

0

F1' 4

10 Locate kitchen

h Q'2

R e

' 0

02- - -- - - - - - - - - - -

Z Z

0

0

F1

11 Locate dining

h 0.2

-- ---- --- - - - - -- .. . -

R 00
R

02

O'2

F1 '

12 Adjust wall thickness

Figure 5.20 (continued) - Derivation of an existing design (Tabt5.)

219

h h h h

a z
h 0

h

02- -------------------------

2 -- -~~~~~~--~~- - ---------0 2

R 0

Lot

02

26 S
55

h h h

E

I S

F1

00

a z

h Q2

h h h

-- 02- ------------------------- :-

--- 02-- ---------- -------- 4----

R2*

Lot

_
02

0

h 02

R z

F---- ---- -- - -- -- h

F-----------Z ------

R

Lot

.. _ .. -- --------------
Q2

0

F1 l F1 ' F1 ''

13 Locate pantry 14 Create circulation 15 Locate bed / bath 16

Figure 5.20 (continued) - Derivation of an existing design (Tabt5.)

F1 '

Locate circulation

220

- -

F------------------------

F ----------.0 - 0-.---------

IR
Q'

Lot

L _ _ -- -----

0

02

0

60

1400$>

h Q2

.. 0-2
e z

*h

RLot

-- ---- -i - - - - - - -

R

60

h 02 h 02

z z z z

. . 00 . 0-2

0e-- - - - - -- Z- ------ 2 - -r----------- --------------

R R Lt
Lot Lot

......_ - -- ---- -- --- . - _ _-- -- - - - - - - - - - - - ---
Q2 Q2

0 0

z z

. .

Q2- ----------- - ---

R 0

R Lot

.. --02

0

F1 '1 F1 '' F1 '' F1 '

17 Locate closet 18 Pierce slab 19 Connect yard 20 Introduce laundry

Figure 5.20 (continued) - Derivation of an existing design (Tabt5.)

221

h,

I

1.5: Introduce details

h 02

z z

hz z h* h

02 ------------------------

R G

O'22
.--------.3-

0
0

h 02

z z

e S 02
h z hh h

* I

02- -4-- ----

R

* R *
Lot

.... .. _ _ _ .. _.--- - . _ -- --------------

h 02

z z

00-z z

e S

----------------- ------

R
* 0

Lot

_ _ _ ._. _ ..a

h 02

z z

z z
*

R.

Lot

.. _._ _.... _. . _.. . . _...
02

0

F1 41 F1 ' F1 ''

21 Connect laundry/dining 22 Connect dining/circulat. 23 Connect stairs / living 24

Figure 5.20 (continued) - Derivation of an existing design (Tabt5.)

222

F1 1

Detail stairs

*-2

1.6: Introduce openings

Fl

h 0'2

z z

02
h h

02----------- ----------

R
Q"2

h 0 2

z z

z z h

.82 .e2
--- ----------------- -

Lot

........---------- ---

Q'2

81 6
82
89 E
90
91

Fl a

h 0!2

z z

ze e

92 .2
02- ---- +-----------+-------

R
Q02

R
02___t.

------- ----- -- --- --

94 6
97

h 98 h

e
e be

-a

h

Fl

z z

r22 , .2020-

h h z z h

,2 .02
- 2 02 - - ---------------- -

02

R
Q2

RLot

L ----- --

a

Fl

25 Introduce chimney

F1 LFl

26 Pierce front fac. open. 27 Pierce ext. openings

Fl *

28 Pierce int. openings

Figure 5.20 (continued) - Derivation of an existing design (Tabt5.)

223

02-

1.7: Terminating

/

2: Define 2nd floor
2.1: Introduce slab

The 1st floor remains unchanged from now on

h 02

-- -- --- -- - ---

z z

z z

*

*2 02

R

Lot

02

h 4

108
109

h Q2

z z

z z

.2 ..2

02 h

"2e

F2 0'2

sR

F2 i

F1

29 Introduce mullions 30 Erase labels and 31
change state

Figure 5.20 (continued) - Derivation of

F2

Introduce slab 32 Enclose floor

an existing design (Tabt5.)

224

110 h 0-2 h 0-2

. z

2

h

2 ,02

QL

F2 02

I

h

h h

h
...

...

2.2: Replicate 1st floor divisions

h 02

Zz Z4
h

F2 0 2 2
02 - -- - - - - - - - - -

h24 ----- --

h...........

0h

03 - ---- --

h

z z

Z Z

2 ,2

z'ez

* I

------ -- ------

F2

33 Adjust wall thickness

F2

34 Replicate division into
in / out zones

F2

35 Replicate division into
sleep / living zones

F2

36 Replicate division into
service / yard zones

Figure 5.20 (continued) - Derivation of an existing design (Tabt5.)

225

h 0.3

0

0

03 -

0

Q'3
s..

2.3: Define circulation

h h
h Q 3 h 's

-.E --

0

0

F2

37 Replicate division into
bed / bathroom

03 -------------

F2 i

Replicate division int
kitchen/dining

119

h h

r2

IQ.I

h h

03 -------

Q"2

Lot

F2

39 Extendi

h 0'3 h 0'3

0"2 Q"2

h h h

--------------- 03 - - -----------

Q"2

L''

0'3 0'3

ng staircase

F2

40 Create circulation

Figure 5.20 (continued) - Derivation of an existing design (Tabt5.)

226

2.4 Define rooms

F2

h 03
hQ.3 1, Q'3

* - e

Q"2 .

!

-

0

F2

42 Create verandah

a

ec
h -

0 3 - - - - - - - - - - - -

0

0'3

F2

43 Expand room

133
133
133

h 127
127

Q"2 I

a'
hS.

h

0'3

Q"

F2

44 Assign rooms
Create circulation

Figure 5.20 (continued) - Derivation of an existing design (Tabt5.)

227

03 -V'-

Q'2 4

*o

...

F2

41 Create circulation

h

2.5: Add details

Q03

F2

h S

02
h h

03- --------------------------

Q2

0'3

F2

45 Connect circulation

h 'S h Q3h 03
--------- ----- -- ---- ---- ----

Q"2
h

L
Q'3
a

F2

46 Pierce slab

-- -- --- --- -- - ----- -- ----- - -----

h h

03 ------------------------

0"2 4

S

a3

F2

47 Extend chimney

-- ---------- - ---- -- -- ----- -------

002

h h

03 ------ -

S

F2

48 Adjust wall height

Figure 5.20 (continued) - Derivation of an existing design (Tabt5.)

228

2.6: Introduce openings

h g.3 h Q'S

90-2

h h

----------------------- s- ---------------

* e
Q--2 0

Q,3

81
81
90

03 -4

Q2

h

be

gto

bey

ta s

*I.

hh.3

------------------------ -

49 Adjust wall he

F2 F2

ight 50 Adjust wall length 51 Pierce exterior 52
openings

Figure 5.20 (continued) - Derivation of an existing design (Tabt5.)

Pierce interior openings

229

Lot

as

902

h I

Q3* --

Lo

S

0

--------- ~ -

2.7: Terminating
3: Define terrace
3.1: Introduce slab

2nd floor remains unchanged from now on

03-4 iV-

Q'3

53 Introduce openings 54 Erase labels and
change state

55 Introduce slab 56 Enclose floor

Figure 5.20 (continued) - Derivation of an existing design (Tabt5.)

230

142
Q"2

hh

Q"2 9

...- -
01'3

0 3 * - - - - - -- - - - -

0

0t2*

Lo

h '1

O'S

8

h

h M.3 h Q'3

Lot

3.2: Replicate 2nd floor divisions

14
154

57 Adjust wall thickness 58 Replicate division into
inside/outside zones

59 Replicate division into 60 Extend chimney
service/yard zones

Figure 5.20 (continued) - Derivation of an existing design (Tabt5.)

231

3.3: Introduce detail

h 0

F3

34: Terminating

I

4

61 Pierce slab 62 Adjust wall height 63 Erasing labels

Figure 5.20 (continued) - Derivation of an existing design (Tabt5.)

232

4
<,Ap

5.11 Summary

The use of simple compositional rules consisting of the dissection of rectangles

determines the style of the courtyard houses design by Alvaro Siza at Malagueira.

These rules are then coupled with a set of constraints that specify functional

requirements and limit the ways in which compositional rules can be applied. A shape

grammar encoding both sets of rules is presented and discussed. The grammar

accounts for the generation of the 35 houses considered in the corpus, thus fulfilling the

requirements of the analytic test. The next chapters will address the generation of

random new designs (synthetic test), and the generation of designs that match criteria

(goal test.)

References

MITCHELL W J, Steadman J P, Liggett R S, 1976, "Synthesis and optimisation of small
rectangular floor plans" Environment and Planning B 3 37-70

TESTA, Peter "The Architecture of Alvaro Siza." S.M.Arch.S. thesis, Massachusetts Institute of
Technology, Cambridge, Massachusetts, 1984.

233

234

6. Experiments

6.1 Introduction

This chapter presents a set of design experiments undertaken with two goals in mind.

The first goal was to generate new designs and to test the grammar by performing

analytical, synthetic, and goal tests, as described in Chapter 2. In Experiment 1, the

grammar rules presented in the previous chapter are applied to a new design not in the

original corpus to verify their capability to account for its generation (analytic test.)

Experiment 2 addressed the generation of a random new house (synthetic test.) In

Experiments 3 and 4, experimental subjects derived designs for given clients out of the

grammar rules (goal test.) The second goal was to find how designers used the

grammar to generate such designs by undertaking a protocol study of Experiment 3.

The results showed that, with minor changes, the grammar could successfully account

for the generation of such designs, but that some changes were required to improve its

capability to generate custom-tailored houses.

6.2 Experiment 1: existing design (analytic test)

6.2.1 Goal

The goal of this experiment was to check whether the grammar could account for the

generation of a patio house designed by Siza after the grammar had been developed.

235

6.2.2 Subjects

Siza, the original author of the Malagueira houses, the author of the grammar, and one

of the author's collaborators were the subjects of this experiment. The latter was an

architect who became acquainted with Siza's work at Malagueira and the grammar while

participating in the development of an interactive tool to teach the grammar. She had

the main role in the experiment, and so she is referred to as the main subject in the

discussion below.

6.2.3 Setting

No particular setting was used in the experiment.

6.2.4 Task

The experiment included two tasks. The first, assigned to Siza, was to design a new

Malagueira house. This task was implicit because Siza did not design the new house

on purpose for the experiment, which made it necessary to contextualize the results for

their appropriate analysis. The second task, assigned to the main subject, was to use

the grammar rules to reconstruct the generation of the new design, introducing new

rules, only when necessary.

6.2.5 Procedure

After becoming acquainted with grammar while participating in the development of the

tool mentioned above, the main subject built the 2D and the 3D models of the new

design to acquire a better understanding of the design. She then colored the layout,

using tones of the same color for related rooms until decomposing the design into

functional zones and then into the initial shape, following the procedure described in

Figure 2.5. Next, she sketched the derivation of the design in 2D using paper and

236

pencil. After corrections had been made by the author of the grammar, she modeled the

derivation in 3D using the computer.

6.2.6 Results

The location of the new design is shown in Figure 6.1. The photos and plans are shown

in Figure 6.2, and the 3D model is shown in Figure 6.3. The added rules are shown in

Figure 6.4, and the derivation of the design is shown in Figure 6.5. To facilitate visual

understanding, only the 3D part of the derivation is shown. Interested readers can

reconstruct the 2D derivation by applying rules in Figures 5.19 and 6.4.

6.2.7 Discussion and conclusions

The grammar can account for the most of the new design generation, despite the need

to introduce new rules to derive some features that are not present in the previous

Malagueira designs. These features are due to the non-standard land plot, and it can be

shown that the new rules adjust the design scheme of the standard houses to this plot.

The new design is, thus, a new housetype in the scheme, rather than a new scheme. It

was, therefore, named Type E, following the conventions introduced in Chapter 5. The

plots on which the three houses of this type were built had been initially destined for

commerce, and later changed to housing, at the request of one of the cooperatives

operating at Malagueira. This change in use explains the different lot shape. Unlike the

standard 8 x 12 m rectangular plot, the new plots are trapezoids with the same width but

longer.

The major differences of the new design relative to the previous designs are a big

portico in the patio, at the front of the house, and a row of outdoor service rooms --

pantry, laundry, and gas cabinet -- adjacent to the non-orthogonal side of the plot, facing

237

the street. Despite these differences, a careful analysis of the design reveals that the

layout is in the grammar. The dimensions of the house are exactly those that would

result from one of the two possible dissections of the standard plots into inside and

outside zones -- 6.0 m away from the back wall, as if the house had been placed against

the back of the plot. This dissection permitted the inside zone to be manipulated as in a

standard design. The resulting deeper outside zone, however, needed to be

manipulated differently, leading to the design of the portico and the outdoor service

rooms. The portico helps to protect the houses from the bright south sunlight. The

outdoor service rooms are allowed by the R.T.H.S., the Portuguese regulations for social

housing, although they are indoors in all the previous houses.

As a way of illustrating how the grammar can be enlarged to generate Type F, part of the

rules that need to be added to the grammar are shown in Figure 6.4. The shown rules

apply to the generation of the first floor functional organization. The addition of the

remaining rules is left to the reader. Rules NO through N6 are variations of rules R1 -R6,

adapted to the trapezoidal lot shape. Rule N1 introduces the initial shape representing

the lot. Rule N2 introduces the floor slab. Rule N2 encloses the floor with walls. Rules

N3 and N4 adjust the thickness of the enclosing walls when they are adjacent to the

street. Rules 5 and 6 divide the lot into inside and outside zones. Rules 7 through N13

apply to generate the portico and the storage spaces. Rule N7 creates a gallery by

dissecting the patio with a line perpendicular to its orthogonal sides, when the house

faces south and the patio is longer than 7.0 m. Rule N8 creates a service area next to

the street by dissecting the patio with a line parallel to its diagonal side, when the patio is

longer than 6.0 m. This rule creates a parallelogram, a shape that Siza avoided in the

previous designs because it lacked orthogonal sides. In fact, Siza had no choice. Had

he used a rule like Rule 47 to dissect the patio, he would have ended up with storage

238

rooms bigger than permitted by the R.T.H.S. Rule N9 creates an entrance hall on the

axis of symmetry of the street facade, by dissecting the outdoor service area with two

lines perpendicular to the street. Notice how Rule N9, in fact, prevents further

development of non-orthogonal shapes. Had Siza placed the portico by dissecting the

outdoor service area with lines parallel to the bigger sides of the plot, we would have

ended up with parallelogram shapes and rooms that had no orthogonal sides, which he

did not consider acceptable. By using lines perpendicular to the street he got rid of the

parallelogram created by rule N8, and created acceptable, trapezoidal shapes instead.

This rule is, thus, consistent with the previous set of rules. Rule N10 opens the gallery

to the yard, and places a column to support its covering. Rules Ni1-13 assigns

functions to rooms with trapezoidal shapes. Some of the new rules are created just by

changing the conditions under which previous rules apply. For instance, Rule N7 is

similar to Rule 47, except in the conditionals on function. Some other rules are entirely

new shape rules. For instance, Rules N8 introduces a new shape in the vocabulary, as

mentioned above.

The similar width of the plot and the fact that it resulted from a change in land use, might

partially explain why Siza's strategy was to adjust the standard design scheme to the

new plot, rather than to devise a new scheme, as he had done in other non-standard

plots. Nevertheless, our conversations with Siza also might have influenced his

strategy. Siza designed the new type after we had shown him the grammar and the

generation of a new type following the rules (see Section 6.3.) In this conversation, we

stressed how the staircase seemed to be key in the definition of the Malagueira types,

and how we had placed an I-shaped staircase in the living room to define the new

backyard type (the existing backyard type -- Type B -- had an U-shaped staircase.) Our

conversation might have increased his desire to devise a new housetype. As there were

239

no more standard plots available for housing, the modified plots represented an

opportunity for experimentation. Moreover, in the new type he placed an U-shaped

staircase in the service zone, which never happened in the previous frontyard types.

Therefore, the new design supports our previous assumptions regarding the placement

of staircases and their role in the definition of types, as shown by comparing the

derivation tree in Figure 6.6, which includes the new types, with the one in Figure 5.9,

which presents the previous types.

iil
fit

U

=3

4

Figure 6.1 - The location of type F houses on plots initially destined for commerce.

240

* ;I

Floor 1 Floor 2

0 2 4m

Figure 6.2 - Plans and photos of type F, the new design designed by Siza (1999) after the
grammar had been developed.

241

Housetype F - 1999 Malagueira - Alvaro Siza Vieira

T3

1 st floor 2nd floor Terrace

Figure 6.3 - Digital model of Type F, the new design designed by Siza after the grammar had
been developed.

242

Stage 0: Introduce initial shape and grammar labels
Rule NO: Introduce initial shape

S L 0

FO ' (0,0,0)

S

On dimension:
Z a e] 800, 900[

fr w = 8.00 m
I > 12.00 m
11 = 5.00 m
12= 6.00 m

On function:
fb, fr, fil E (s, h)
fr = h v f = h

Stage 1: Define first floor
Step 1.1: Start
Rule N1: Introduce slab

On dimension:
Z a e] 800, 900[

fi f r hs 1 = 0.20 m (Table 4.4)

Lot

F1
S

f b

f f r

Lot

S

hs 1

F1

Figure 6.4 - The set of rules introduced with the design of Type F, the new design designed by
Siza after the grammar had been developed. The new rules are mainly used to adjust the

standard design scheme encoded by the grammar to the non-standard land plot.

243

Rule N2: Introduce enclosing walls

On dimension:
Z a e] 800, 90[
hmin < hf1 < hmax (Table 4.4)
t=0.1 m

On function:
n e {1, 2}

FnI hf

Rule N3: Adjust front and back wall thickness

t I

S

Rule N4: Adjust left and

S

ti fx

St 2E

S

right wall thickness

-> S

L
t 2 f x

On dimension:
t1 = 0.10 m => t2 = 0.20 m

On function
p(s) e {ff, fb}

On dimension:
t1 = 0.10 m => t2 =0.20 m

On function:
p(fx) e {ff, fb}

Figure 6.4 (continued) - Part of the set of rules introduced with the design of Type F.

244

Fn -

Step 1.2: Locate functional zones
Rule N5: Locate patio

fb

R4: < f1, fi, fr, s, fl, L: f1, f2 >

Rule N6: Locate patio
fb

fb

f f r

f2

-t

fb

f f r

f2

it

On dimension:
t = 0.20 m

On function:
f1, f2 E { i, o } A f1 # f2
f1= f'1 , f2 = f'2

On dimension:
t = 0.20 m

On function:
f1, f2 E { i, o A f1 # f2
f1= f'1 , f2 = f'2

R4 < fi ft, fr, s, f, L: f1, f2 >

Figure 6.4 (continued) - Part of the set of rules introduced with the design of Type F.

245

Step 1.4: Divide functional zones into rooms
Rule N7: Dividing the yard to create a gallery

KI On dimension:
b ib ZaE] 800, 900[

t = 0.20 m
fk | > 7.0 m

12 f2 On function:
p (ff) = north

1 e f i

w w

RN7: < F1, y: y, ga >

Rule N8: Dividing the yard to create an outdoor service space

12[

fi

On dimension:
Z a e] 800, 900[
t = 0.20 m
12= 1.50 m

I |
w f

RN8: < F1, y: y, so >

Rule N9: Dividing the yard to create an outdoor service space

On dimension:
ki kfb Zae]800 ,90 0 [

* k2t 2
ki t =0.20 m

f2 k1 k2 = 2.0 m
fi f

ftf f 2 fr

RN9: <F1, so: ha, so, so>

Figure 6.4 - Part of the set of rules introduced with the design of Type F.

246

w f

k fb

Rule N10: Open the gallery to the patio

Sf 0 f

f t

I I |

w t w

RN10: <F1, y: y, ga>

Rule N11-13: Assign functions to outdoor service rooms

k
a

f

w 9

RN11: < F1,
RN12: <F1,
RN13: <F1,

-fI

On dimension:
Zae 800, 900[
Imin I Imax
Wmin W 5 Wmax

f r amin i a5 amax

w
f

la >
gs>
pa>

Figure 6.4 (continued) - Part of the set of rules introduced with the design of Type F.

247

Derivation of TF

Stage 1: Define 1st floor

Step 1.1: Start floor

Malagueira - Alvaro Siza Vieira

Step 1.2: Locate functional zones

1. Introduce initial shape 2. Introduce initial shape 3. Locate in-/outside
zones

4. Locate living/services
zones

Step 1.3: Define circul. Step 1.4: Divide zones into rooms

5. Locate staircase 6. Locate gallery 7. Create circulation 8. Locate yard/services

Figure 6.5 - Derivation of Type F, the new design designed by Siza after the grammar had been
developed.

248

9. Create entrance 10. Locate Gas/closet

Step 1.6: Add details

13. Connection
yard/gallery

14. Adjust wall thickness 15. Connect
living/circulation

16. Introduce chimney

Figure 6.5 (continued) - Derivation of Type F, the new design designed by Siza after the
grammar had been developed.

249

11. Assign laundry 12. Adjust floor

45

1.7: Create Openings

17. Detailing stairs 18. Assign pantry 19. Pierce external
openings

20. Pierce internal
openings

21. Introduce openings

Figure 6.5 (continued) - Derivation of Type F, the new design designed by Siza after the
grammar had been developed.

250

Stage 2: Define 2" floor

Step 2. 1: Start floor Step 2.2: Replicate 1st floor divisions

22. Introduce slab 23. Enclosing floor 24. Replicate division into
in-/outside zones

25. Replicate division into
living/services zones

Step 2.3: Define circul. 2.7: Define rooms

26. Extend staircase 27. Locate bathroom 28. Pierce slab 29. Create circulation

Figure 6.5 (continued) - Derivation of Type F, the new design designed by Siza after the
grammar had been developed.

30. Replicate division into
yard/gallery

Step 2.8: Add details

31. Replicate division into 32. Connect circulation
yard/services

33. Connect circulation

34. Adjust wall thickness 35. Pierce slab 36. Extend chimney 37. Adjust wall height
interior

Figure 6.5 (continued) - Derivation of Type F, the new design designed by Siza after the
grammar had been developed.

252

Step 2.9: Create Openings

38. Adjust wall
height/thickness exterior

39. Pierce external
openings

40. Pierce internal
openings

41. Introduce openings

42. "Stretch"

Figure 6.5 (continued) - Derivation of Type F, the new design designed by Siza after the
grammar had been developed.

253

lk
mv

Stage 3: Define terrace

Step 3.1: Start floor Step 3.2: Replicate 1st floor divisions

43. Introduce slab 44. Enclosing floor 45. Replicate division into 46. Replicate division into
in-/outside zones yard/gallery

Step 3.3: Add details

47. Extend chimney 48. Pierce slab 49. Adjust wall height

Figure 6.5 (continued) - Derivation of Type F, the new design designed by Siza after the
grammar had been developed.

254

50. "Stretch"

DEFINE 1st FLOOR

LOCATE FUNCTIONAL ZONES

Locate outside [inside zones

Locate passage

Locate living / sleeping zones

Locate remaining zones
Basic pattern defined

LOCATE STAIRCASE
Type defined

DIVIDE FUNCTIONAL ZONES

Divide service zonel
Subtype defined

Divide remaining zones
Basic layout defined
(functional organization)

li-i

I~

A C D A,D (t2)

.. Ad - Ac

- -

E F (new) NEW B B (d)

Figure 6.6 - Partial tree diagram showing the derivation of the new types presented in Sections 6.2
and 6.3.

255

111 in

6.3 Experiment 2: random design (synthetic test)

6.3.1 Goal

The goal was to verify the third criterion required for defining a successful grammar,

which specifies that "it should provide the compositional machinery needed to design

new buildings that are instances of the style" (Stiny and Mitchell, 1978) - the synthetic

test.

6.3.2 Subjects

Three subjects participated in the experiment: the author of the grammar, Siza, and and

Siza's collaborator Nuno Lopes.

6.3.3 Setting

There were two settings. The first, used by the author of the grammar in the generation

of the new design, included a chair, a table, paper, pencil, and a computer. The second,

used to show the new design to Siza and Lopes, included two chairs, a table, and a

computer to display the results.

6.3.4 Task

The experiment included two tasks. The first, assigned to the author of the grammar,

was to generate a new design out of the Malagueira grammar rules with no particular

program. The second, assigned to Siza and Nuno Lopes, was to verify whether the new

design was in the grammar.

256

6.3.5 Procedure

The procedure followed in this experiment was as follows. First, the experimental

subject sketched the derivation of the design in 2D using pencil to apply the rules by

hand on a paper with a drawn rectangle representing the 8 x 12 m Malagueira lot. This

rectangle had overlaid a metric grid to facilitate rule application and give a sense of

scale. Then, he modeled the derivation and the design in 3D using the computer. Next,

2D and 3D digital and physical models of the new design - a backyard type -- were

placed amidst original Malagueira designs and shown to Siza and Nuno Lopes

separately. The only backyard type designed by Siza was omitted to prevent him from

noticing that there was an additional backyard type.

6.3.6 Results

The plans and views of the new design are shown in Figure 6.7, the 3D model is shown

in Figure 6.8, and the derivation is shown in Figure 6.9. As in the previous section, the

derivation is shown only in 3D.

6.3.7 Discussion and conclusion

The new design is a backyard type. The decision to design a backyard type emerged

after a conversation with Siza during which he expressed regret for having designed only

one backyard type due to the lack of demand. Designing a backyard type represented a

challenge because it was easier to spot stylistic mistakes, as there was only such type.

On the other hand, if the experiment succeeded it would prove the validity of the

grammar with fewer doubts.

The analysis of the corpus to infer the grammar showed that the differences among

designs were due to different rule applications. It also showed that the key-difference

257

among housetypes was the placement of the staircase. Therefore, the new backyard

type was defined first by a different placement of the staircase, (see Figure 6.6) and then

by the using the existing set of rules to derive the remaining of the design. The backyard

type designed by Siza had an U-shaped staircase placed in the sleeping zone. In the

new type an I-shaped staircase was placed in the living zone.

When the new design was shown to Siza amidst other Malagueira designs, he did not

notice that it was not his own design. At some point, he seemed confused because he

did not remember such a placement of the staircase. But then, he acknowledged its

validity and dismissed his doubts, and validated the design. When he was told that it

was a his design he was truly surprised. Then, after careful analysis, he acknowledged

its validity again. A similar experiment was undertaken with Nuno Lopes with the same

result. The results of these experiments showed that the grammar did capture Siza's

design rules at Malagueira and cleared the way for the undertaking of more ambitious

experiments, explained, in the next sections.

258

New Design

Floor 1

Floor 2

SD DD TD

Figure 6.7 - Plans and views of the new Malagueira design designed by the author of the
grammar out of its rules, and which Siza considered stylistically correct.

259

Mill

19

Random Design - 1998 Malagueira - Alvaro Siza Vieira

Figure 6.8 - Digital model of the new Malagueira design designed by the author of the grammar
out of its rules in Experiment 2, and which Siza considered stylistically correct.

260

Derivation of New Design

Stage 1: Define 1st floor

Step 1.1: Start floor

Malagueira - Alvaro Siza Vieira

Step 1.2: Locate functional zones

1. Introduce initial shape

5. Locate sleeping/living
zones

2. Enclose floor

6. Locate service/yard
zones

3. Locate in-/outside
zones

Step 1.3: Define circul.

7. Locate staircase

4. Create passageway

Step 1.3: Define rooms

8. Locate
bedroom/bathroom

Figure 6.9 - Derivation of the new Malagueira design designed by the author of the grammar out
of its rules, and which Siza considered stylistically correct.

261

10. Locate Kitchen/laundry 11. Create circulation 12. Connect
living/circulation

Step 1.5: Adding details

13. Connect circulation 14. Connect
living/circulation

15. Connect corridor/yard 16. Detail stairs

Figure 6.9 - Derivation of the new Malagueira design designed by the author of the grammar out
of its rules, and which Siza considered stylistically correct.

262

9. Create circulation

Step 1.6: Create Openings

17. Introduce chimney 18. Low yard 19. Pierce external
openings

20. Pierce internal
openings

21. Introduce openings

Figure 6.9 - Derivation of the new Malagueira design designed by the author of the grammar out
of its rules, and which Siza considered stylistically correct.

263

Stage 2: Define 2"d floor

Step 2. 1: Start floor Step 2.2: Replicate 1st floor divisions

22. Introduce slab 23. Enclose floor 24. Replicate division into
inside zones

Step 2.3: Define circulation scheme

25. Replicate division into
living/sleeping zones

Step 2.4: Define rooms

26. Replicate division into
service/yard zones

27. Extend staircase 28. Define circulation
scheme

29. Connect circulation

Figure 6.9 (continued) - Derivation of the new Malagueira design designed by the author of the
grammar out of its rules, and which Siza considered stylistically correct.

264

30. Locate bathroom

Step 2.5: Adding details

34. Pierce slab 35. Extend chimney 36. Adjust wall height 37. Adjust wall height

Figure 6.9 (continued) - Derivation of the new Malagueira design designed by the author of the
grammar out of its rules, and which Siza considered stylistically correct.

265

31. Locate bedroom 32. Locate bedroom 33. Assign terrace

Step 2.6s: Create Openings

38. Pierce external
openings

39. Pierce internal
openings

40. Introduce openings

Stage 3: Define terrace
Step 3.1: Start floor Step 3.2: Replicate 1

floor divisions
Step 3.3: Define rooms

41. Introduce slab 42. Enclose floor 43. Replicate division into 44. Assign terrace
in-/outside zones

Figure 6.9 (continued) - Derivation of the new Malagueira design designed by the author of the
grammar out of its rules, and which Siza considered stylistically correct.

266

Step 3.4: Adding details

45. Extend chimney 46. Pierce slab 47. Adjust wall height 48. Adjust wall height

Figure 6.9 (continued) - Derivation of the new Malagueira design designed by the author of the
grammar out of its rules, and which Siza considered stylistically correct.

Figure 6.10 - Siza evaluating the new design by the author of the grammar, which he considered
to be stylistically correct.

267

6.4 Experiment 3: goal-oriented design I (goal test)

6.4.1 Goal

This experiment simulated the situation in which a client asks a designer to design a

Malagueira house, and the designer uses the grammar to generate a house in the style

that satisfies the requirements. The experiment had two goals. The first goal was to test

the ability of the grammar to generate criteria-matching designs, which corresponds to

the performance of a goal test as described in Chapter 2. However, it also has implicit

analytic, descriptive, and synthetic tests to determine, whether the designs are in the

language, whether the grammar encodes the rules of syntax of Malagueira houses, and

whether it conveys the rules to designers non-familiar with the design language. The

second goal was to find how designers use the grammar to arrive at a design solution.

Namely, it aimed at finding the criteria used to choose a particular rule at each step of

the derivation, how that assured that the generated house satisfied the requirements,

and how such knowledge could be embedded into the grammar. This was

accomplished by setting the experiment as a protocol study in the way defined by Akin

(1989). Therefore, emphasis was on the end product, as in the previous experiments,

but also on the process.

6.4.2 Subjects

There were four sets of subjects. The first set was a married couple with two kids who

performed the role of a client. The second set was composed of an architect and a

territorial engineer who assisted in the development of the grammar and the teaching

tool mentioned in Section 6.2. These two subjects functioned as the control group and

are referred to as subjects C1 and C2, respectively. The third set was formed by

graduate students in architecture who had no previous knowledge of grammars,

268

including the Malagueira one. These students were divided into groups of two, each

constituting a design team. These teams are referred to as subjects S1 through S5.

The fourth set included Siza, who assessed the results to determine if the houses were

in the Malagueira style.

6.4.3 Setting

Four settings were used in the experiment. (Figure 6.11) The first included two chairs, a

table, a computer, and a video recording camera. This setting was used to interview the

clients and to show the catalog of Malagueira houses to them. The second setting

included a computer and an LCD projector, and it was used to describe the Malagueira

grammar to the designers. The third setting included two chairs, a table, a video camera

and a video recorder, paper, pencil, a list of the rules, and a table summarizing the

dimensional requirements of Malagueira houses. It was used to videotape the designers

generating houses. The fourth setting used a chair and a computer, and served to show

the new designs to Siza.

a) Design subjects b) Siza

6.11 - Different subjects and the corresponding experimental settings.

269

6.4.4 Task

The experiment included four tasks. The clients were assigned two tasks, the first was

to describe the house that they needed, and the second was to comment on how each

of the houses satisfied their needs. The designers were in charge of generating a house

within the grammar that satisfied the client's requirements, as much as possible. Siza

was asked to verify whether the houses were syntactically correct.

6.4.5 Procedure

The clients were asked to describe their desired house in three steps. Firstly, they were

given complete freedom to describe their dream house. They had to talk about their

family and their needs, starting with the things that they consider priority. Secondly, they

were asked to consider cost issues, and set priorities. Thirdly, they were shown the

Malagueira development, and the catalog of Malagueira houses, using the Web-based

tool mentioned in Section 6.2, and asked to reframe their previous description to respect

constraints imposed by the Malagueira framework. At the end of this step, they had to

fill in a form with questions regarding their needs. This interview with the clients was

videotaped.

The design part of the experiment last two weeks and included four work sessions. In

the first week, the designers became familiar with the grammar through two lectures and

two papers, one on grammars in general, and the other on the Malagueira grammar.

They also were given the Web-based tool as a learning aid. In the second week, they

had to design the house. First, they were shown the tape with the interview and then

given the form that the clients had filled in. They were given two hours to sketch the

grammar using a pencil and a stack of millimetric paper with rectangles representing the

lot. They were asked to apply a rule on each rectangle and then to move on to the next

270

rectangle to continue with rule application. They were not allowed to use eraser to make

it easier to keep track of all the changes to the design. Each time they made a mistake

or wanted to backtrack, they had to restart the design on the next rectangle, from the

point to which they wanted to backtrack. They also were asked to explain aloud what

they were doing. While they designed, a camera recorded the graphic and verbal

protocols of the process. Later, they were asked to design 2D plans and to build a 3D

digital model of the house, and to look at the tape record of their design process and

reconstruct it in the form of a tree-diagram. They also were asked to comment the

diagram, explaining what they were trying to accomplish, why a particular rule had been

selected, or why they had backtracked.

In the last procedural step, 3D digital and physical models of the houses were shown to

Siza.

6.4.6 Results

A summary of the interview with the clients describing the requirements of their house is

presented in Figure 6.12. A video still showing the gathering of protocol material is

presented in Figure 6.13. A sample of the graphic protocol obtained at the end of one

work session is included in Figure 6.14. The plans and the 3D digital models of the new

designs are shown in Figure 6.15 and 6.16, respectively.

271

Ideal scenario (after being given complete freedom to describe their dream house):
A master bedroom for the couple with a private bathroom including a iacuzzi, and a shower.
I Five single bedrooms for the children, of which 3 have private bathrooms and 2 share
another bathroom with two washbasins. There should be closets in all the bedrooms. I A big
living room with a fireplace, communicating with the dining room and the studio through
sliding doors. I A big kitchen with a dining table or connected to the dining room. Its should
include a small pantry, and it should be connected to a small courtyard to dry clothes. This
courtyard should have no other access than through the kitchen. The kitchen should have a
big window or sliding doors. I An entrance hall connecting the kitchen, the living room, and
the dining room. I A big garden with a swimming pool. I A restroom to be used in
connection with the studio. I They have 2 children now but they want to have 5. They want all
the bedrooms built at the beginning.

Real scenario 1 (after being asked to consider cost issues):
A double bedroom and a single bedroom with a private bathroom each. I Four single
bedrooms sharing 2 bathrooms with a shower, a bathtub, and two washbasins each. I A
laundry next to the kitchen and connected to the courtyard.

Real scenario 2 (after being asked to relax a bit about cost issues):
Three bedrooms with a private bathroom each. I A big living room. I A dinning room.
A kitchen. I A small studio connected to the living room through sliding doors. I An
entrance hall connecting the kitchen, the living room, the dinning room, and a small
restroom. I The sleeping area should be separated from the living and service zones by a
corridor, or it should be on a separate floor. The studio should be on the ground floor. I They
are four people now, but possibly five in the future.

Malagueira scenario (after browsing through the Malagueira catalog and filling the form):
A backyard house with street at the front, right, and back. I Two floors. I Four bedrooms (on
the upper floor.) I No balconies (but will accept them if created). | A large living zone; a
medium sleeping zone; a medium service zone; a small yard zone. A laundry and a pantry
connected to the kitchen through a door. I A dining room connected to the kitchen through
window. I A master bedroom connected to a bathroom.

Figure 6.12 - Summary of the interview with the clients, during which three scenarios were
considered.

6.13 - Still of video protocol.

272

/

ill.

--- - - - - - - - 7 -

. -.. . .. - -n +- - - - --- -
_44. TT

__

f
L144 -

- 7: - - - - -

-7 1

- I1AN

iiI~i~tz~

-i

6.14 - Sample of graphic protocol.

273

W st - - - I .. .-

.......-* -I I . -I

ZI

L- UX,

yt1

T3 T4 T5

T3 T4

6.15 - Plans, sections and elevations of designs generated in Experiment 3.

274

Type C1.1

Floor 1 IE~1

Floor 2

0 2 4m

Type C1.2

Floor 1

Floor 2

0 2 4m

L U L U

d

I Mm__j7_7 7" |nI I 1 0 2 4m

Floor 2 Floor 1

C2

be y ki la

be be St di

Floor 2 Floor 1

0 2 4m

S1

6.15 (continued) - Plans, sections and elevations of designs generated in Experiment 3.

275

Floor 2

be

be

be be

Floor 2

Floor 1

Floor 1

DD0
0 2 4m

0 2 4m

6.15 (continued) - Plans, sections and elevations of designs generated in Experiment 3.

276

Floor 2 Floor 1

DE0
0 2 4m

Floor 2 Floor 1

0 2 4m

6.15 (continued) - Plans, sections and elevations of designs generated in Experiment 3.

277

New designs <. c.int. .iff,, nta Malagueira - Alvaro Siza Vieira

6.16 - Digital model of designs generated in Experiment 3.

278

New designs - t..,. Malagueira - Alvaro Siza Vieira

6.16 (continued) - Digital model of designs generated in Experiment 3.

279

New designs Malagueira - Alvaro Siza Vieira

6.16 (continued) - Digital model of designs generated in Experiment 3.

280

6.4.7 Discussion

The first step in the analysis of results is to determine whether the designs are in the

language. This can be done by asking Siza what he thinks, and by checking whether

the design subjects respected the grammar rules. Then, one of three situations is

possible. In the first situation, the designs respect both Siza's and the grammar rules, in

which case the designs are clearly in the language, and the grammar succeeds both in

capturing Siza's rules and in conveying them to designers. In the second situation, the

designs respect the grammar rules, but they fail to respect Siza's, meaning that the

grammar fails in capturing Siza's rules, let alone in conveying them to designers. In the

third situation, the designs do not respect either of the rules. This might signify that the

grammar captures Siza's rules, but that it fails to convey them to designers, or simply

that it fails to capture the rules. It is, then, important to ask the design subjects about

their difficulties in understanding the rules. In all the situations, it is necessary to

determine the extent to which the rules are respected or disrespected.

Analytic test: are the designs in the language?

The experimental results show that the designs are not completely in the language, but

that they capture the essential features. When Siza and Lopes saw the designs they

pointed out that they did not respect Siza's design rules in two aspects. The first aspect

was a disrespect of the patio dimensioning regulations ss(Table 4.3). To verify this

aspect, it is necessary to decide whether the designs are backyard or frontyard houses,

as the regulations vary according to the situation. The clients wanted a backyard house,

but the urban context, with streets on three sides, makes the designs ambiguous.

Considering them as frontyard, only design C2 respects such regulations on both floors

and only designs C1 and E3 respect them on the ground floor. Considering the designs

281

as backyard, only design E5 respects the regulations on the ground floor. In the

remaining designs, the patio is 0.5 m narrower than allowed by the regulations.

However, the grammar deviated from the regulations by allowing frontyard patios to be

less deeper on the second floor. This deviation existed because the grammar was

developed before we were told of the regulations, and consequently, we based the rules

on the observation of post-construction changes made by users in which the patios

became smaller, and on the observation that overhangs were never allowed in any case.

In these circumstances, all the houses are within the grammar. The rules could easily

be corrected to follow the building regulations, but we decided to leave them as they are.

The second aspect mentioned by Siza concerned the openings. According to Siza, the

openings in some designs did not respect his rules in terms of number, location, and

dimension. (Figure 6.17) A look at the rules of the grammar confirms Siza's opinion. A

possible explanation for this outcome might be the short time available for learning the

grammar, which might have been not enough to allow subjects to become familiar with

rules for design features perceived as secondary. Another explanation is that the rules

are difficult to understand by designers. We will come back to this issue further below.

6.17 - The design by subject S5 before and after the openings were corrected. The
drawings and models in Figures 6.15 and 6.16 show the corrected designs.

282

The analysis of the designs and the derivation processes revealed that some of the

designs did not respect the grammar rules in other aspects, as well. Figure 6.18 partially

diagrams the derivation of houses in this experiment. Recall that in the design of the

grammar, it was decided to limit design possibilities to those that corresponded to the

strictest interpretation of Siza's rules. For instance, only 32 out of 192 possible

topological patterns were considered. In this strictest interpretation, designs E2 and E5

do not respect the rules because the living zone is not diagonally opposite to the patio

zone. However, the design subjects considered this topological solution acceptable

because in the clients' view the patio did not need to be accessed from all the other

zones, and the internal distribution space was not the living room but an entrance hall,

unlike in Siza's designs. In addition, Siza accepted such solutions. Then, in designs E2

and E5, the staircase is located in the middle of the living zone, a situation that was

avoided in the strictest interpretation of Siza's rules followed in the design of the

grammar. The disrespect of this rule by the design subjects was conscious and fostered

by the need to satisfy the desire of the client to have an entrance hall. Siza's opinion

was that their decision was acceptable. Finally, design El also disrespected the

grammar by locating the dining room not adjacent to the kitchen. The reason for this

decision was also to satisfy the client's requirement to have an entrance hall connecting

the kitchen, the dinning room, and the living room. However, it was not possible to

satisfy this topological requirement, within the dimensional requirements set by the

client, and the spatial configurations permitted by the grammar. In conclusion, the

design subjects disrespected some of the rules to satisfy the clients' requirements, but

the solutions were considered acceptable by Siza. Therefore, it is possible to change

the grammar to match the universe of design solutions that corresponds to the broadest

interpretation of Siza's design rules.

283

DEFINE 1st FLOOR

LOCATE FUNCTIONAL ZONES
Locate outside /inside zones

Locate patio / service zones

Locate remaining zones
Basic pattern defined

LOCATE STAIRCASE
Type defined

DIMENSIONING

DIVIDE FUNCTIONAL ZONES
Basic layout defined
(functiqnal organization)

DEFINE 2nd FLOOR

F-,

C2 S3 S4 S2 S5

-11

S1 C1

fF

. -

I I I III

I I * I I

- - .I II1

6.18 - Partial tree diagram showing the derivation of the houses designed by the design
subjects in Experiment 3. (Compare with the one in Figure 5.9)

284

Descriptive test: does the grammar explain the common underlying features of designs?

In interviews undertaken at the end of the experiment, the design subjects mentioned

that there were too many rules and that the math and label parts of the rules were not

intuitively apprehended in the short time available. These comments suggest that the

grammar succeeded in encoding the rules, but it failed to convey them to designers in a

visually understandable way, even with the help of the teaching tool. This result

suggests that there is an important difference between developing a grammar to teach

human designers and developing a grammar to implement in the computer.

Nevertheless, the design subjects were impressed by how fast they were able to

generate a design solution, which is supported by the facts, as it only took them between

1 h 45 m and 2h m to sketch a complete solution. Their explanation was that the

grammar helped them through the decision-making process by providing a well-defined

framework within which to work. Therefore, one has to conclude that the grammar

succeeds in structuring the decision-making process so that designers understand how

Malagueira houses are generated.

Synthetic test: does the grammar tell how to generate new designs in the style?

Above we saw that the designs were, to a certain extent, in the language. Therefore, we

have to conclude that the grammar succeeds in specifying how to generate new designs

that are instances of the style.

285

Goal test: do the designs meet the given requirements?

The importance of the goal test was twofold: (a) if the designer succeeded in generated

a customized Malagueira house, to find out the criteria for choosing a particular rule at

each step of the derivation, and how that assured that the house matched the program;

and (2) if the designer failed, what changes were necessary to give the grammar such

an ability.

The first issue that immediately comes out of the experimental results is that the problem

defined by the clients' requirements in the ideal home scenario, is overconstrained. It is

overconstrained because it is impossible to satisfy such requirements within the

framework provided by the Malagueira grammar. For instance, the area requirements

that correspond to such an ideal home exceeds the area available in the 8 by 12 m

Malagueira plot. Therefore, none of the designs meets the goal in the ideal scenario.

For a similar reason, none of the designs meets the goal set in both real scenarios. On

the other hand, the designs satisfy all the requirements that the clients specified in the

Malagueira scenario, with the exception of including a fourth bedroom (designs S1 and

S3,) and having the laundry adjacent to the patio (designs C2, S1, S2, and S4.)

The second issue is the variety of design solutions, which shows the potential of the

grammar and Siza's design scheme. It also shows that there might exist different design

solutions that satisfy a given problem in general terms. Nevertheless, among the

different designs, some satisfy the requirements better than others.

286

First floor

C1 t4 C2 t4

S3 t3 S4 t3

S1 t3 S2 t4

S5 t4

Second floor

C1 t4 C2 t4 S1 t3 S2 t4

S3 t3 S4 t3 S5 t4

Figure 6.19 - The designs generated in Experiment 3 placed in their urban context. Black
rectangles represent houses, whereas gray rectangles represent streets.

287

Table 6.1 - Satisfaction of the clients' requirements by the designs

Rank Scenario Requirements Designs
I R M C1.1 C1.2 C2 S1 S2 S3 S4 S5

1 x x x Couple bedroom 1 1 1 1 1 1 1 1 1
2 x x x Bathroom 1 1 1 1 1 1 1 1 1
3 x x x Bedroom 1 next to bathroom 1 0.5 1 1 1 1 1 1 1
30 x Jacuzzi and shower 0 0 0 0 0 0 0 0
4 x xx Double bedroom 2 1 1 1 1 1 1 1 1
5 x x x Bathroom 2 1 1 1 1 1 1 1 1
21 x x Bedroom 2 next to bathroom 2 0 0 0 0 0 0 0 0
6 x x x Bedroom 3 1 1 1 1 1 1 1 1
22 X x Bathroom 3 0 0 0 0 0 0 0 0
23 x x I Bedroom 3 next to bathroom 3 0 0 0 0 0 0 0 0
7 x x x Bedroom 4 1 1 1 0 1 0 0 1
31 x Bathroom 4 0 0 0 0 0 0 0 0
32 x Bedroom 4 next to bathroom 4 0 0 0 0 0 0 0 0
33 x Bedroom 5 0 0 0 0 0 0 0 0
34 x Bathroom 5 0 0 0 0 0 0 0 0
35 x Bedroom 5 next to bathroom 5 0 0 0 0 0 0 0 0
36 x Bedroom 6 0 0 0 0 0 0 0 0
37 x Bathroom 6 0 0 0 0 0 0 0 0
38 x Bedroom 6 next to bathroom 6 0 0 0 0 0 0 0 0
8 x x x Big living zone 1 1 1 0.5 1 0.5 1 1
9 x Medium sleeping zone 1 1 1 0.5 1 0.5 1 1
10 x Medium service zone 1 1 1 0.5 0.5 0.5 1 1
11 x Small patio 0.5 0.5 0.5 1 1 0.5 1 1
12 x x x Living room 1 1 1 1 1 1 1 1
13 x x x Dining room 1 1 1 1 1 1 1 1
14 x x x Kitchen 1 1 1 1 1 1 1 1
39 x Kitchen with dining table 0 0 0 1 1 1 0 1
15 x x x Kitchen connected to dining 1 1 1 0.5 1 1 1 1
16 x x x Studio next to living 1 1 1 1 1 0 1 1
17 x x x Studio on 1st floor 1 1 1 1 1 0 1 1
24 x x Restroom 1 1 1 1 1 1 1 1
25 x x Entrance hall 1 1 0 1 0 1 1 1
26 x x Hall connected to living room 1 1 0 1 0 1 1 1
27 x x Hall connected to dining room 0.5 0.5 0 1 0 1 1 1
28 x x Hallconnectedtokitchen 0 0 0 1 0 1 0 0
29 x x Hall connected to restroom 1 1 0 1 0 1 0 0
18 x x x Sleeping separate from li. & se. 1 1 1 1 1 0 1 1
19 x X X Laundry nexttokitchen 1 1 1 1 1 1 1 1
40 x Laundry with patio 1 0 0 0 0 0 0 0
20 x x Laundrynexttopatio 1 1 0 0 0 1 0 1
41 x Biggarden 0 0 0 0 0 0 0 0
42 x Swimming pool 0 0 0 0 0 0 0 0
43 x Fireplace 0 0 0 0 0 0 0 0
Degree of satisfaction 77% 77% 68% 64% 68% 70% 71% 78%
Ranking of solutions 3 2 6 7 5 8 4 1

Note : The design requirements were ranked as follows. The requirements that existed in the
Malagueira scenario were ranked first. The requirements that existed in the real and Malagueira
scenarios were ranked second. The requirements that existed in all the scenarios were ranked
third. The requirements that existed in the real scenario were ranked fourth. Finally, the
requirements that only existed in the ideal scenario were ranked fifth. Within each category, the
requirements were ranked in chronological order of specification by the clients, except if they
specifically mentioned otherwise. The number 1 means that the design satisfies the requirement,

288

zero means that it does not, and 0.5 means that it design does not satisfy the requirement, but
almost. The degree of satisfaction of a design is the ratio between the score of the design and
the maximum possible score expressed in terms of percentage.

*S6rie1

C1I C1.2 C2 S1 S2 S3 S4 S5

Figure 6.20 - Satisfaction of the clients' requirements by the different designs

By ranking the design requirements specified by the clients in all the scenarios according

to their order of importance for the client, it is possible to rank the designs in terms of the

degree of satisfaction of such requirements. (The functional organization of the different

designs is shown in Figure 6.19, the satisfaction of the clients' requirements is shown in

Table 6.1 and in Figure 6.20.) Such ranking permits some other interesting

observations.

First, the degrees of satisfaction of the different designs are all fairly close. Namely, the

architect in the control group did not perform better than the remaining subjects who also

were architects. The designs of this control subject ranked 2nd, which indicates that her

previous knowledge of the Malagueira framework might have helped her, but not

289

significantly. Moreover, the design of the subject who was not an architect was not the

worst. Therefore, these results suggest that the grammar contributed to eliminate such

disadvantages and to level the results.

Second, the degrees of satisfaction are relatively high. With the few exceptions

mentioned above, the designs satisfy all the requirements specified by the clients in the

Malagueira scenario. They do not satisfy some of the requirements indicated in the real

and ideal scenarios because the problem was overconstrained (e.g. number of

bedrooms.) Therefore, the grammar constitutes a viable tool to rapidly generate

solutions that matches given criteria. On the other hand, some of the requirements were

not satisfied because the grammar rules did not allow it (e.g. they did not foresee an

entrance hall.) This means that it might be necessary to introduce some changes to the

grammar to increase the possibility of client satisfaction. Namely, these changes should

aim at allowing the generation of houses for programs that were not initially foreseen,

but that can be satisfied within the framework, anyway. This can be done by introducing

new rules into the grammar, but this requires one to anticipate such programs, which

might be difficult. A better way is to give the rules a degree of generality so that the

generation of spatial configurations is prompted by the housing program. For instance,

instead of having a specific rule that dissects a rectangle into kitchen and laundry, one

could have a general rule that dissects a rectangle into any two adjacent spaces.

The third observation is that some design subjects did better than others, despite the

degree of satisfaction are all high and close. Design S5 (78%) is the best, followed by

subject Cl's two designs (77%,) S3 and S4 (71%,) C2 and S2 (68%,) and S1 (64%).

This result also corresponds to the perception of the clients who, when asked which

house satisfied their requirements better, indicated designs S5 and C1.1. This means

290

that our ranking system captured, at least roughly, the priorities set by the clients.

Design S5 is better than C1.1 and C1.2 because it includes an entrance hall and a small

patio, which are not permitted by the grammar. Design S3 and S4 are worse because

they do not include a fourth bedroom, or consider its future allocation, despite the fact

that they do better regarding the entrance hall (especially S3.) Designs C2 and S2 rank

worse because they do not include any form of entrance hall. Finally, design S1 does

not respect the relative sizes of the functional zones, which contributes to make it the

worst of the group. For instance, design S1 has big bedrooms and a relatively small

living room, but the clients indicated big and medium as the area requirements for the

living and sleeping zones.

It is then interesting to find out why some subjects did better than others.

The first explanation is that they set the right priorities before starting to design.

Because the problem was overconstrained, the design subjects had to decide which

requirements were more important to satisfy. Therefore, they interpreted the program in

different ways by augmenting the importance of some requirements, and diminishing the

importance of others. Results show that the interpretation of those design subjects that

achieved better results is closer to the clients' intentions. Consider, for instance, design

subject C1. (We chose her design to illustrate the discussion below because it is the

one that achieves the best balance between respecting the rules and satisfying the

clients' requirements.)

Design subject C1 thought that it was unlikely that they would have five children as they

mentioned in the ideal scenario, but she admitted that they could have one more child,

as they had mentioned in the real scenario. Therefore, she decided that she would try to

291

allocate, one bedroom for the parents, one bedroom for each of the existing children,

and, eventually, another for the future child. Consequently, before she started to design,

she mentioned that there were three possible design briefs: (1) a three bedroom

apartment and a studio/bedroom; (2) a three bedroom house that could expand up to

four bedrooms, and a studio; (3) a four bedroom house that could expand up to five

bedrooms. She also said that she intended to allocate three bathrooms: one in the lower

floor for guests, and two in the upper floor (one for the parents, and the other for the

children). It turns out that this order of priorities corresponded to the clients' own

priorities.

The second explanation is that the design subjects who achieved a better result were

more successful in informing their derivation process with their a priori interpretations.

Consider the derivation of design subject C1 reconstituted in Figure 6.21 after the video

and graphic protocols. The comments on the derivation process by the designer are

shown in Table 6.2, as well as other analytical comments made a posteriori.

The history of her derivation process can be described as follows. First, she developed

the design up until obtaining a stair pattern (moves 1-5). However, she did not decide

the exact location of the sleeping and service zones. Instead, she moved on to the

upper floor to see how that stair pattern worked on the second floor (moves 6-10).

Before continuing studying the functional organization of the upper floor, she quickly

returned to the lower floor to dimension the staircase (move 11). Then she returned to

the upper floor to sketch its functional organization (moves 12-16).

292

DEFINE 2nd FLOOR

1 1

'22 4

23115
24 1
25 17

6.21 - Tree diagram of the derivation of the houses designed by subject C1 after the video and
graphic protocols. The numbers indicate the sequence of design moves (rule applications.)

Please compare each move with the corresponding comments on Table 6.2. The small crossed
lines indicate the location of the staircase landings. The big crossed lines indicate that the

derivation reached a dead end. The bold rectangles indicate her design solutions.

293

6 _

DEFINE 1st FLOOR

Table 6.2 - Comments of the derivation diagram in Figure 6.19.

Move Rule Design subject's comments " Analytical comments '

1 Introduce initial shape
2 Divide the lot into inside There is no verandah on the

and outside zones upper floor, therefore the
dissection is in the middle. The
dots indicate the possible
locations for the entrance to the
patio

3 Divide the outside zone The location of the service and
to allocate the patio. sleeping zones is not definite yet.

4 Divide the inside zone to The location of the service and The living is at the opposite corner
allocate the living. sleeping zones is not definite yet. of the patio as in all the Siza's

houses.

5 Locate the staircase. The staircase is placed in the
living zone, but by borrowing area
to the sleeping zone

6-10 Replicate the division of
the lower floor into
zones and staircase.

11 Divide the staircase into She made a mistake by not
landings and main steps. considering that the landings

could steps too.
2 x 0.9 + 3.5 = 5.3

12 Replicate the division of
the staircase.

13 Define circulation
scheme

14-16 Divide "zones" into First attempt to locate the The exact locations of the
rooms. bedrooms and the bathrooms. bedrooms and bathrooms are not

indicated.

17 Divide the sleeping zone Locating the bedroom/studio and Decides the location of the
into bedroom and the bathroom sleeping and service zones.
bathroom

18 Create circulation I do not like the hall.
19 Divide the sleeping zone There is not enough space for the

into kitchen/laundry entrance hall. The service zone
is too big, and the living and
dining rooms are joint but they do
not have enough area.

20-25 I will redivide the lot into zones to Attempt to diminish the service
make the patio shorter, as area and increase the living area,
desired by the client. The but this division does not respect
sleeping zone gets too big, and the Malagueira grammar rules.
the house is too massive She realizes her mistake and
relatively to the lot. I realize I returns to the previous solution.
made mistake regarding the
staircase.

26 There is enough space for the She corrects her mistake.
hall, after all. I can now define the
entrance to the plot and the
house.

27 Create a circulation. Creating a circulation to access She did not perceive that the
the laundry. The kitchen circulation could be external. This
incorporates an informal dining would allow to connect the laundry
area. to the patio, as desired by the

client, and bring direct light to the
kitchen.

294

28 Divide laundry into wash I will divide the laundry into wash She satisfies the clients
and dry areas. and dry areas, being the latter requirements, regarding the

close, or even connected to the connections between the kitchen,
patio as desired by the client. the laundry, and the patio, but is
The service zone is too big, and not happy with the formal dining
there is not enough space for a area.

______ ________________ joining dining/living areas
29-31 Locate the kitchen. Reduce the service area to She perceives that there is not

increase the living/dining area. enough space for both formal and
This makes it possible to have informal dining areas for all the
enough space in the living zone residents and she makes a trade -

for a formal dining area for all the off judgement.
residents. The informal dining
will only have enough space for
two people.

32 Create a circulation She mentions that she could She abandons this solution
widen the circulation to make an because the kitchen has no direct
informal dining area close to the sunlight.
patio.

33 The other circulation worked The relative positions of the
better because it was closed to kitchen and the circulation are
the entrance, but the kitchen gets reversed to allow the kitchen to
natural light now. get direct sunlight, but she is
The pantry is missing. unhappy with both solutions. In

addition, they have no pantry and
she abandons them.

34 Locate the kitchen The kitchen can get light in this
position.

35 Locate the pantry This is the transitional space. She is thinking of the transitional
The kitchen is too small. space as an informal dining area,

but the kitchen is too small.
36 Locate the kitchen.
37 Locate the pantry.
38 Locate the laundry The laundry is closed to the patio. She satisfies the client's

requirements regarding the
spaces included in the service
area.

39-41 She redesigns the upper floor due
to correct the mistake the
staircase mistake.

42 Locate bathroom She seems to have preferred to
locate the bedroom facing the
patio.

43 Create circulation. She seems to realize that the
bathroom on the upper floor is not
above the bathroom on the lower
floor, and she abandons this
solution.

44 Locate bathroom She redesigns the upper floor,
making sure that the bathrooms
are on the top of each other.

45 Create circulation This bathroom is the private
bathroom.

46 Create circulation

47 Create closet

48 Locate bedrooms This other space can only be a
bathroom because it does not
have direct sunlight.

49 Locate bedroom and This solution is abandoned
terrace/bedroom because one of the bedrooms

has no sunlight.

295

50 Locate bathroom / have too many bedrooms. She realizes that she has too
many bedrooms and she
abandons the solution.

51-55 She redesigns the upper floor,
turning the room with no access to
light into two bathrooms, and the
other bathroom into a bedroom.

56 She tries to allocate a fifth
bedroom, but she realizes that the
fourth bedroom would become
interior, and she backtracks.

57 1 will enlarge the transitional She redesigns the lower floor with
space and turn it into a single no changes, except that at the
dining area. end, she realizes that she can

enlarge the transitional space,
thereby merging the informal and
formal dining areas into a single
space. (She places the windows
and doors.)

58-59 She redesigns the solution for the
upper floor, redimensioning the
rooms, and showing how it can
evolve from three up to four
bedrooms. (She places the
windows and doors.)

At this stage I have considered to She did this after the protocol
mirror the solution to take better experience finished.
advantage of the urban context.

60-70 Developing the mirrored solution,
correcting aspects perceived as
problematic.

71-78 Developing the mirrored solution,
correcting aspects perceived as
problematic.

(1) These comments are adapted from those made by the design subject in the video protocol,
and the comments that she made in the reconstitution of her derivation process.

These comments try to explain the intention of the design subject during her designs moves,
when her comments are not clear enough.

After confirming that such a stair pattern worked for the upper floor, she decided to place

the service zone on the side of the living zone because she saw an opportunity to repeat

a pattern of functional organization on both floors: the master bedroom connected to the

bathroom on the upper floor, and the studio/bedroom connected to the restroom on the

lower floor (moves 17-18). (when she reached move 16, she did not went on to allocate

the master bedroom and the bathroom but she saw the opportunity to do so and went

back to the upper floor to allocate the studio and the restroom).

296

Then she moved on to the service zone and allocated the laundry (move 19). While

studying the circulation pattern in the service zone, she worried about the design of the

staircase and the entrance hall. Because she made a mistake in the dimension of the

staircase and thought that she would have no space to allocate a satisfactory entrance

hall, she decided to experiment with another basic pattern (moves 20-25).

After realizing her mistake, she returned to the initial basic pattern to resume the study of

the service zone. She created a corridor in the kitchen, and she divided the laundry into

wash and dry areas (moves 25-26). Then she perceived that living zone in which she

included the living and the formal dining areas was to small, and increased the living

zone at the expense of the service zone (moves 29-32). She explained that initially she

was trying to allocate a big kitchen because she wanted to include an informal dining

area for all the residents, but this jeopardized the possibility of allocating a formal dining

area for them all in the living room. Therefore, she decided that it was better to have a

formal dining area for all the residents, and an informal one for only two, or so. Then

she realized that the kitchen had no direct natural light and experimented to flip the

position of the kitchen and the circulation (move 33). She was not happy with the new

solution because one had to traverse the living zone to reach the kitchen and seemed to

there be no room for the pantry. She also realized that the laundry probably was too big

relatively to the kitchen. She looked at Siza's solutions and backtracked to start dividing

the service zone from scratch. Then she allocated the kitchen, the transitional space,

and the pantry, in this order (move 34-35,) before realizing that the kitchen was too small

relatively to the transitional space (perceived as the informal dining area), and enlarging

it (move 36-37). Then she allocated the laundry, placing it close to the patio (move 38).

297

At this stage, she seemed fairly satisfied with the functional organization of the lower

floor and returned to the study of the upper floor. She started the division of the upper

floor from the stair pattern to correct the stair design mistake. Then she allocated the

master bedroom and the private bathroom (moves 39-43). She did not like the solution

because the bathroom was not on the top of the one on the lower floor and she

backtracked. Then, she redefined the functional organization of the upper floor,

reproducing her initial sketch, but placing the bathrooms on the top of each other (moves

44-50). She realized that one of the spaces could only be a bathroom because it had no

natural light. However, such a bathroom would be as big as the bedrooms. She seemed

to have noticed that it had enough space to allocate two bathrooms, but she was bugged

by the fact that she could not expand the house into a four bedroom (58), in case the

clients had the third child. Therefore, she abandoned this solution, backtracked and,

redefined the functional organization of the upper floor, placing the two bathrooms on the

slot that had no natural light, but turning the first bathroom into a bedroom (moves 51-

56). She seemed content with this solution that had the right number of bedrooms (one

for the parents, one for each of the existing children, and one for the future children).

At this point, she redesigned the lower floor to check whether it respected the grammar

the rules and satisfied the clients' requirements, and to place the openings (as there

were no changes to the layout, these moves are not shown). At the end of these moves,

she realized that she could enlarge the transitional space at the expense of the living

zone, thereby fusing the informal and formal dining areas into a single dining room, and

making the living room bigger (move 58). She hesitated whether she would enlarge the

pantry, because she was afraid that it would become too big, but she did it in the end.

Finally, she redesigned the upper floor for similar reasons, but she did in such a way as

to show how it could, in fact, expand from three (57) up to four bedrooms (55). (The full

298

sequence of moves is not shown because it is very similar to 51-55, except that the

division of the terrace into a bedroom and a smaller terrace is done at the end.) At the

end of this processes she placed the windows and doors.

After ending the experimental session, and before making the 3D model, she noticed

that if she mirrored the house it would be possible to pierce openings on the side wall,

thereby solving the problem of the fourth bedroom loosing access to light when building

the fifth bedroom. There is no video protocol of this design moves, but there is graphic

protocol diagrammed in moves 59-69 for the upper floor, and moves 70-77 for the lower

floor. In this new solution the lower floor is simply mirrored, but there are some changes

on the upper floor. Namely, the bedrooms and the bathrooms are bigger, and one of the

bathrooms is on the top of the one in the lower floor, as she initially desired.

The first feature of Cl's derivation process that becomes immediately apparent is that

she moved back and forth between the designs of the lower and upper floors. In this

sense, she did not respect the grammar, which foresaw first the derivation of the lower

floor, and then, the derivation of the upper floor. Moreover, those design subjects who

tried to follow this constraint, for instance C2, had difficulties in achieving a satisfactory

solution, and finally gave up and worked alternately on the two floors. This result

suggests that the grammar should be changed to account for such feature. For

instance, not only should the grammar have rules that place labels on the second floor to

signal changes on the first one, but the reverse should also be true.

The second feature is that the derivation of the design searching for a solution is not a

continuous and linear progress towards the goal. It contains some dead ends (e.g. 25,)

backtracking (e.g. 28-29,) and jumps in different directions (e.g. 60.) The question that

299

comes immediately to our mind is whether it would be possible to avoid such moves

saving time in the derivation process. This means whether it would be possible to gather

enough knowledge to make the derivation process as linear as possible. Consider, for

instance, the urban context. Noticing that most of the design subjects decided to mirror

the design at the end of the design process, one could be tempted to create a rule that

says "if the lot has no houses on the right side, then place the patio on the left side."

This would permit to pierce openings on the right and to decrease the circulation area.

However, the results show that this does not necessarily lead to solutions with the best

degree of satisfaction. For instance, designs S3 and S4 ranked better than some

mirrored designs. This suggests that there might be some niches in the universe of

design solutions that contain good solutions that will never be reached if one introduces

such rules. The tradeoff involved in such a decision is one between accelerating the

generation of designs, or increasing the probability of achieving a better solution.

What is, then, the alternative? The design subjects who achieved better results seemed

to have used the following strategies.

First, they tried to satisfy the requirements that were considered more important. For

instance, Cl's first concern was to allocate the bedrooms and the bathrooms, and then,

to define the spaces that formed the service zone, which ranked at the top of the priority

list set by the client. (Table 6.1)

Second, they tried to allocate the spaces with bigger demands both in terms of area and

topological requirements. For instance, the placement of the kitchen, the biggest space

in the service area with a multitude of connection requirements to the other spaces in the

300

zone and to the other zones was instrumental to the definition of the service area in Cl's

process.

Third, they used transformation rules as a way of doing "local optimization"of the design

solution. These rules worked as short-cuts in the derivation process. For instance, C1

moved from position 28 to position 32, in a single move. This move corresponds to the

rule shown in Figure 6.22, which was not foreseen in the shape grammar. The grammar

included other transformation rules, such as Rule 61-turn kitchen into bedroom and

transitional space into kitchen (permuting functions), and Rule 132--expand a bedroom

to achieve natural light. The conditions for the applications of these rules were very

restricted--the number of bedrooms should be two in the case of Rule 61, and the

bedroom had no windows in the case of Rule 132. It is possible to loosen such

conditions so they can be used both for expanding and for contracting rooms in the

process of the dimensioning of rooms.

Rule T1: Change the dimension of a room
fb f b On dimension:
fi f| If 11 -||> 113 -1|

1!fr f2 e fr

f13

21 2 e f14 * *

f2 fa

f i f

Figure 6.22 - Transformation rule used by design subject C1 in her design process.

301

Fourth, they did some kind of informed backtracking. When they moved up in the

derivation tree to take a new path, this process was influenced by the knowledge

acquired while traversing the initial path. Such an influence was perceived in the

selection of new branches in the tree, as well in the sequence of rule application.

Consider, for instance, the move from design state 33 to 34. Assessing the design

solution in 33, C1 considered the kitchen too small compared to the laundry, and noticed

that there was no space left for the pantry. Therefore, she backtracked, until none of

these spaces was allocated and then, she re-allocated the kitchen increasing its area,

followed by the pantry, and then, the laundry. This procedure can be captured into an

algorithm like the following:

If space x is too small, and space y is too big, then
backtrack to the point where none of these spaces was allocated;
allocate the space with bigger area demands, correcting the problem;
allocate the other spaces.

Other procedures, such as the one from design state 35 to 37, lead to simpler

algorithms:

If space x is too small, then
backtrack to the point where it was allocated;
remember the sequence of rule application;
re-allocate the space, correcting the problem;
and re-apply the rules in the remaining sequence.

This type of procedures is considerably different from doing random transformations to

the design solutions, hoping to correct the problem, which is the procedure used by

stochastic optimization processes like genetic algorithms and simulated annealing.

Therefore, we propose to introduce such types of heuristics into the grammar, as a way

of saving time, and achieving better design solutions. We will call such a grammar a

discursive grammar as described in Chapter 7.

302

6.5 Experiment 4: goal-oriented design II (goal test) / collaborative design

6.5.1 Goal

This experiment simulated the situation in which a group of design teams is in charge of

designing houses for various clients in the same development. Thus, some of its goals

were similar to those of the previous one: to test the Malagueira grammar, especially its

ability to generate criteria-matching designs. It had, nevertheless, additional goals. The

first additional goal was to check whether the use of the grammar contributed to improve

collaboration among different designers. It targeted both collaboration among members

of the same team, and collaboration among different teams. The second goal was to

verify whether the grammar provided the means to solve the following variety/unity

paradox faced by each design team. On the one hand, it wanted to customize the

houses as much as possible to solve the problem of their particular client. On the other,

it needed to integrate the house into the whole. The third goal was to study

client/designer interaction mediated by a protocol, which is instrumental to the housing

provision framework envisaged in this research. In this experiment, such a protocol was

provided by a questionnaire composed of key-questions regarding the house, filled by

the client, and used by the designer as a basis for designing.

This experiment took the form of an intensive four-week workshop conducted between

the Massachusetts Institute of Technology (MIT) in Cambridge, U.S.A., and Miyagi

University (MU) in Sendai, Japan. The designers had to design a housing block

composed of units, for a given set of clients, both by following the grammar rules and by

changing these rules. Rapid prototyping techniques were used in the process of design.

The project required students at both ends to work collaboratively through Web-based

and videoconferencing technologies.

303

6.5.2 Subjects

There were four sets of subjects in this experiment. The first set was formed by four

Japanese and two North American families who volunteered to perform the role of

clients. (Figure 6.22) These families were represented by one or two of its family

members, who were university professors at MU (4), MIT (1), and the Chinese University

of Hong Kong (1). These families were selected from a larger pool using as criteria the

need to obtain varied social profiles (members, age, gender, activity, interests, lifestyle,

etc.) to provide a variety of design problems.

The second set of subjects consisted of four design teams. These teams were formed

by two MIT graduate students and three Miyagi undergraduate students according to the

following criteria: (1) one of the MIT students had reasonable knowledge of shape

grammars; (2) the other MIT student had basic knowledge of shape grammars; (3) two

of the Miyagi students were architecture students with no knowledge of shape

grammars: and (4) the third Miyagi student was a non-design student whose role was to

work as a language assistant. None of the design subjects were knowledgeable of the

architectural and cultural contexts in which the Malagueira project was developed.

The third set of subjects included the author of the grammar and Siza, who were in

charge of reviewing the results to determine their stylistic fitness.

6.5.3 Setting

Four experimental settings were used in this experiment. The first setting served to

interview the client remotely. It included a computer with Internet connection on each

end, and the following software: Picturetel (videoconference,) Netmeeting (Web-based

videoconference, chat system, drawing board, and desktop and application-share,) ICQ

304

(alternative chat system,) Internet Explorer (Web browser,) and Camtasia (desktop

recording.)

The second setting was used in remote work sessions among team members. (Figures

6.23 and 6.24) It was similar to the first setting, but it also included a document camera,

a video recorder, paper with the Malagueira lot drawn over a milimetric grid, pencil, a list

of rules, and a table summarizing the dimensional requirements of Malagueira houses.

All these items were used for synchronous work. In addition, this setting included

various e-mail applications, Web-based pin-up pages, and file transfer sites for non-

synchronous work.

The third setting was used in remote sessions (lectures and presentations) attended by

all the participants and it used the same devices of the previous setting. (Figure 6.25)

In addition, it included wall projection equipment on each end so that all the local

participants could easily see desktop and document camera images, as well as room

images captured by several video cameras.

The last setting was used to show the designs to Siza. It was very similar to the one

described in Section 6.4, except that it used a portable computer.

6.5.4 Tasks

The overall task of the experiment was to redesign one of the Malagueira city blocks,

from which some houses had been deleted. (Figure 6.26) Then, there were specific

tasks assigned to the clients, the design teams, and the reviewers. The clients had to

choose a plot, and to describe the house that they needed. Then, they had to comment

on how the design solutions satisfied them.

305

In an attempt to overcome the limitations of the previous experiment, the design teams

were assigned four tasks of increasing difficulty. The first task was in the realm of

abstract grammars and consisted of three parts, each constituting a short version of the

remaining three tasks. The second task was to come up with the derivation of existing

Malagueira designs, based on the given grammar rules. The goal of these two tasks

was to give those design subjects who were not familiar with grammars the opportunity

to learn the basics and become familiar with the Malagueira grammar. The third task

was to design a house that satisfied the clients' requirements by strictly following the

rules of the grammar. The subjects were, thus, put in the position of Siza's

collaborators. The explicit request for strictly following the rules was motivated by the

results of the previous experiment, and the goal was to clarify whether designers did not

respect the rules because they did not know them enough, or because their design

problem demanded so. The fourth task assigned to the design teams was to generate a

house that satisfied the clients' requirements, but they were allowed to change the

grammar rules by deleting, changing, or adding new rules, as long as they respected the

building regulations defined by Siza. They were, thus, placed in the position of the

designers who were not affiliated with Siza's office and had to design houses for the

Malagueira development. In this fourth task, the design teams had to design a house for

a new client, or to re-design the house for the former clients, depending on whether their

designs had been considered satisfactory.

The author of the grammar had to verify whether the houses respected the grammar

rules during the design process. Siza's task was to make the final comment regarding

stylistic compliance.

306

6.5.5 Procedure

The clients were asked to describe their desired house by filling in a form. This form

was similar to the one used in the previous experiment and is presented in Appendix 1.

Then, they had to attend a short interview (2-5 minutes) with the designer of the

grammar, who asked them to mention the important aspects about their house that were

not covered in the form, or to clarify the answers to some of the included questions. This

interview proceeded through videoconference, and it was recorded.

This experiment took four weeks, each devoted to one of the tasks mentioned above.

The first week intended to brief the design teams on shape grammars and it included an

introductory lecture and a task in which design teams manipulated simple abstract

grammars. The second week included a lecture on the Malagueira grammar, and the

task was to propose a derivation for a given Malagueira house. In the following two

weeks, the design teams were asked to design houses for given clients, the tasks that

formed the core of the experiment. Before starting these tasks, they were given on-line

access to their clients' forms and interviews, and provided with the list of rules, the area

requirement table, and a plan with the location of the plots. Then, they were asked to

start designing the house, using paper, pencil, and the document camera or a CAD

application with the application-share feature turned on. This session was videotaped

for posterior analysis. They were allowed to continue developing the houses after this

session, and to show them to the client and to the author of the grammar for comments

on requirement satisfaction and stylistic compliance, respectively. For communicating

with the reviewers, the design teams could post drawings on the pinup page, and then

use e-mail or a chat system. At the end of the week, they had to present their housing

solutions to the clients through videoconference, using 2D and 3D drawings, as well as

physical models produced by rapid prototyping. Also, they were required to show the

307

derivation of their designs, indicating the rules applied at each step, including any

eventual new rules. The workshop terminated with a final presentation in which all the

produced houses were gathered to form the housing block. At the end of the workshop,

the design subjects were asked to fill-in a questionnaire regarding their understanding of

the grammar and Siza's architecture at Malagueira.

After the workshop finished, the individual houses and the city block were shown to Siza.

6.5.6 Results

The forms filled in by the clients are shown in Appendix 1. Figure 6.27 shows the

assignment of clients to the available plots, and the plans of the new houses inserted

into the block. The 3D digital model of the block before and after the new houses were

inserted is presented in Figure 6.28. Figure 6.29 includes examples of plans used by

one of the design teams to show its solution to the client, and the author of the grammar.

Figure 6.30 presents the plans, sections, and elevations of the designs generated in the

experiment 4 for task 3, whereas Figure 31 presents the same elements but for task 4.

Figure 6.32 and 33 presents the corresponding 3d digital models. Finally, Figure 6.34

shows physical models produced at MU and MIT using different rapid prototyping

techniques.

308

M Client MPermanent
family
member

MWill join
family in 5
years

MWill join
family in 10
years

0Will have left
family in 5
years

Figure 6.22 - The families of the clients who participated in the experiment. The clients are
identified by the letter C, followed by a number, whereas the designers of their houses are

identified by the letter S, also followed by a number. In each frame, each level represents a
generation; in top-down fashion: great grandparents, grandparents, parents (the client's

generation,) and children. The numbers next to family members indicate their ages.

309

090 C1 S1
100

If5
3 gb70

D5

f7 g4
Ir I l

11 Wi

C2 S2

37 38

T II

C3 S3

a,5
101r

C5 Si

g40s g50s

;96

C6 S4

.44
I,||

M'Will have
left family
in 10 years

Housing block

JoseP.Duate Plan Corpus Grammar New Designs Interpreter 4 > Home Info Help Mail

\ <' New Desig ns-Netscape l | Rl'....

Figure 6.23 - Work session with members of the same design team at MIT and MU
communicating through videoconference and a chat system (top,) while listening to the interview

with the client (bottom right,) and looking at the Web page with site information (background.)

310

Figure 6.24 - Snapshots of work sessions with videoconference at MIT showing the design
subjects working on the derivation of their houses together with their Miyagi teammates through

the document camera. The video recording set up is shown on the bottom right image.

Figure 6.25 - Snapshots of sessions attended by all the participants: lecture (left,) and
presentation (right.)

311

4NM #,
PP-

,"um

Figure 6.26 - The location of the Malagueira city block redesigned in this experiment.

312

Al
to

I,

"HO
I.

Before

After

1st floor

2nd floor

Terrace

Figure 6.27 - The plan of the city block before and after the new houses were introduced. The
top plan also shows the assignment of clients to plots.

313

Before

After

South

North

Figure 6.28 - The 3D digital model of the city block before and after the new houses were
inserted.

314

Street

Street

Second Floor
Street

Second Floor

Figure 6.29 - Floor plans used by one of the design teams to communicate the solution to the
client (top,) and author of the grammar (bottom.)

315

Street Street

First Floor

Street

Street

Street

Street Street

First Floor

street

be
st te

be

be

Floor 2 Floor 1

0 2 4m

C1 S1 t4

he
te

Floor 2

be
be
be

Floor 1

0 2 4m

C2 S2 I t4

Figure 6.30 - Plans, sections and elevations of the designs generated in Experiment 4, task 3
(respecting the rules). Design C2 S2 I was considered non-satisfactory (see text.)

316

Floor 2 Floor 1

ED
0 2 4m

C3 S3 t6

Floor 2 Floor 1

DDD
D D

0 2 4m

C4 S4 t4

Figure 6.30 (continued) - Plans, sections and elevations of the designs generated in Experiment
4, task 3 (respecting the rules). Design C3 S3 I was considered non-satisfactory (see text.)

317

= F-I
F-I =

I FF_

Floor 2 Floor 1

0 24m

C5 S1 t3

be ki l

di Ia

be

te be Ii y

Floor 2 Floor 1

R

0 2 m

C2 S2 11 t3

Figure 6.31 - Plans, sections and elevations of the designs generated in Experiment 4, task 4
(changing the rules).

318

Floor 2 Floor 1

| LJ 0 2 4m

C3 S3 Il t6

be be ki

stdi

Floor 2 Floor 1

H0 2 4m

C6 S4 t2

Figure 6.31 (continued) - Plans, sections and elevations of the designs generated in Experiment
4, task 4 (changing the rules).

319

New designs <...,.. Malagueira - Alvaro Siza Vieira

Figure 6.32 - Digital models of the designs generated in Experiment 4, task 3 (respecting the
rules.) Designs C2 S2 I and C3 S3 I were considered non-satisfactory (see text.)

320

New designs Malagueira - Alvaro Siza Vieira

Figure 6.33 - Digital models of the designs generated in the Experiment 4, task 4 (changing the
rules.)

Figure 6.34 - Physical model of a house generated in the experiment produced by
stereolithography at MU (top) and physical models of all the houses and the city block produced

by Fused Deposition Model at MIT (bottom.)

322

6.5.7 Discussion

Analytic test: are the designs in the language?

Similarly to the previous experiment, we relied on two procedures to find the answer to

this question. The first procedure was to ask Siza, and the second was to analyze the

derivations of the new designs to check whether rules had been properly applied. Siza's

comments on designs produced in the third task, when designers were asked to follow

the grammar, were similar to those on the results of the previous experiment. Some of

the designs disrespected the rules for dimensioning the patio, and the rules for placing

and dimensioning openings. The disrespect for the patio dimensioning rules was,

nevertheless, in accordance with our decision to allow the patio to be smaller on the

second floor, by eliminating the verandah, as explained in Section 6.4.7. The only

exception was design C3 S3 1, whose designers made the patio smaller on the first floor,

as well. The disrespect for the opening rules existed in the number, location, and size of

openings. In addition, Siza mentioned that the proportions of some rooms "did not seem

right." When asked to clarify this aspect, Siza said that he liked to give the rooms certain

"ideal" proportions such as 1:1, 1:2, 3:4, etc. When we called his attention that in the

design of types A and B, the use of such proportions was evident, but that in the

remaining it was not so, Siza explained that the need to create varied housing programs

had constituted a constraint. When we suggested that the same could have happened

in the new designs, Siza said that the use of non-ideal proportions was acceptable, but

he preferred designs that used them, anyway, suggesting that the grammar should

incorporate such a preference.

323

DEFINE 1st FLOOR

LOCATE FUNCTIONAL ZONES
Locate outside inside zones

Locate backyard corridor

Locate patio / service zones

Locate remaining zones
Basic pattern defined

LOCATE STAIRCASE
Type defined

DIMENSIONING

DIVIDE FUNCTIONAL ZONES

Basic layout defined
(functional organization)

DEFINE 2nd FLOOR

C3 S3I11t6

Em1 1.......rrW
C3 S3 It6 C4 S4 t4 C2 S2I11t3

'p
F

C2 S2 I t4
Change Respect Respect Change Respect

I FI!Ii

C1 S1 t4 C5 S1 t3 C6 S4 t2
Respect Change Change

Figure 6.35 - Partial tree diagram showing the derivation of the designs produced in Experiment
4, tasks 3 and 4. (Compare with the ones in Figures 5.9, 6.6, and 6.18.)

324

m1I

I

---------- I -----
I .

The analyses of the derivations, summarized in Figure 6.35, confirmed the disrespect for

the patio dimensioning rules in design C3 S3 1, and the disrespect for the opening rules

in the majority of the designs, although to a much lesser extent than in the previous

experiment.

Analysis also revealed other problems with design C3 S3 1, such as a studio with no

windows. It also showed that need for allocating a large piano required by the client,

and the choice of stair patterns available within the grammar were behind the flawed

design. Because the client chose a backyard patio, and because the grammar in the

strictest interpretation of Siza's rules did not allow the placement of a U-shaped staircase

in the living zone, the design team decided to use the same stair pattern of Siza's type B.

However, the location of the staircase next to the fagade in this pattern, required the

design team to carve the studio out of the living zone, next to the wall between the

house and the neighboring one. This caused the studio to have no windows, and the

piano to be allocated by carving space out of the patio. The client did not accept the

solution, and the designers were asked to re-design the house in the fourth task. They

solved the problems in the new design (C3 S3 II) by permuting the location of the service

and sleeping zones, and by creating a rule for allocating the staircase in the living zone,

next to the wall between the two houses.

Analysis also showed that in design C2 S2 I the living room had now windows and was

too small, whereas the dining room was too big. The topological requirements specified

by the client, and the choice of basic patterns available within the grammar, in the

strictest interpretation of Siza's rules, hampered the possibility of achieving a satisfactory

solution. Because the dining room needed to be connected to the kitchen, the designers

enlarged the dining room at the expense of the living room. However, as the patio was

325

located on the side with no houses and the living zone was diagonally opposite to the

patio in the available patterns, such an enlargement caused the living room to have no

windows. The client considered the design non-satisfactory, and the designers were

asked to re-design the house in the fourth task. They solved the problems in the

derivation of the new design (C2 S2 II) (Figure 6.36) by shifting the location of the patio,

and by creating a rule for locating the living zone next to the patio, and a rule for locating

the service zone next to the sleeping zone. (R(new 1) and R(new2), Figure 6.37)

Deriuation for Ist Floor

So

RIB R23 R

So

;(new3) R20 F

TS, TS t

U V Y

R56 R21 R

27 R.

R56 RI

T o

4 Y

so R

Rwnewik (F1.LXn,XXsXwLSe,S>

FRnew2Y (F1LXnXe.XXw0;LiY>

RWnew3U (F1.DXn.XeX.Xw.C:C.Se>

ferination for 2nd Floor

R25 R103 R103

s o Ba B h
B B Be Be

Be Be Be

-- B Be

5R21 R105 R'C6 ,107

FR FIT
Bee52B rB

Piercing EUteror Openings an ist floor

IKi M

Ts t

~ ~ -
1Y

Figure 6.36 - The derivation of design C2 S2 Il presented by its design team in the final
presentation. Rule numbers do not match those in Figure 5.19 because the rule numbering

system was changed after the experiment.

326

R (new 1): Dissecting the inside zone into sleeping and service zones.

R (new 2): Dissecting the outside zone in living and yard zones.

ElBill

R (new 3): Dissecting a circulation room to expand the service zone.

R (new 4): Adjusting the thickness of the bathroom wall to install a large bathtub.

ti

Ti
*t I

t I Z *L

.t, I

Figure 6.37 - Some of the rules introduced in the derivation of design C2 S2 11, in the fourth task.

327

R (new 5): Pierce a skylight above the bathroom.

IX 125AI3 > !
tX# *S .1)AL

R (new 6): Pierce two parallel thin windows on the living room wall.

Li

Figure 6.37 - Some of the rules introduced in the derivation of design C2 S2 II, in the fourth task.

328

I

Li

Therefore, the analyses of designs C2 S2 and C3 S3 derivations revealed the conflict

between the need to satisfy the client's requirements, and the need to respect the

pattern generating rules in the third task, leading designers to change them in the fourth

task. Siza accepted the new designs, which suggests that the universe of design

solutions could be enlarged to encompass the patterns that can be inferred from a

broader interpretation of Siza's rules. (Figure 5.12)

In addition to the rules for creating new patterns just mentioned, designers introduced

other rules in the fourth task. Some of these rules were prompted by idiosyncratic formal

preferences on the behalf of the designer, such as the rules for piercing two vertical, thin

windows next to each other; (Design C2 S2 II, R(new6)) and a rule for creating an

overhang over a terrace by not piercing the slab. (Design C5 S1) However, the great

majority was motivated by the need to satisfy functional requirements specified by the

client. Namely, they introduced: a rule for creating skylights; (Design C2 S2, R(new5),

Design C6 S4, Design and C5 S1) a rule for checking the lower floor structure after

introducing a wall on the upper floor; (Design C5 S1) a rule for piercing the slab of an

internal room to create a double height room; (Design C5 S1) an assignment rule for

creating a terrace between the core of the house and another interior room; (Design C3

S3) a rule for adjusting the wall of a bathroom to introduce a jacuzzi; (Design C2 S2 II,

R(new4)) and a rule for creating a laundry next to a bathroom. (C2 S2 II)

The introduction of such rules confirmed the conflict between the need to satisfy the

clients' requirements and the need to respect the grammar. The conflict was largely

motivated by the cultural difference between the origin of the client (Japanese) and the

context for which the grammar was developed (Portuguese). For instance, in the

329

Japanese tradition the bathroom is located next to the bathroom, whereas in the

Portuguese tradition it is next to the kitchen. Interestingly enough, the introduction of

such rules did not imply radical changes to the grammar, but it was achieved by

changing the conditions for the application of existing rules. Moreover, Siza seemed to

accept such changes, because they did not cause visible stylistic discrepancy. This

result confirms results of the previous experiment that suggested the need to change the

grammar to increase the possibility of client satisfaction, and the possibility of making

such changes within the same stylistic framework. As discussed in Section 6.4.7, these

changes should allow the generation of housing programs not foreseen in the initial

grammar. Considering that to determine beforehand all the possible combinations of

functional requirements is very difficult, the solution is to re-write the rules as a general

algorithm to generate spatial configurations based on given functional requirements.

1. Difficulties in using the grammar for designing:
a)Was it difficult?
b)How difficult it was?
c)What was difficult?
d)Which information did you think was missing?

2. Limitations caused by the grammar:
a)Were there limitations caused by the grammar?
b)What were they?
c)Were such things prompted by the client's requirements or by your personal style?

3. What did you learn about Siza's architecture at Malagueira?

Figure 6.38 - The questionnaire presented to design subjects at the end of the workshop.

Descriptive test: does the grammar explain the common underlying features of designs?

330

Once more, we relied on two strategies to answer the above question. The first strategy

was to ask design subjects what they thought, and the second was to consider their

performance. The list of questions presented to design subjects at the end of the

workshop is shown in Figure 6.38.

The design subjects indicated two difficulties in working with the grammar. The first was

to understand the rules, and the second was to apply the rules. They indicated the high

number of rules, the symbolic notation used to specify the conditions for rule application,

the lack of a "procedural clarity," and the short time available as the major reasons

behind their understanding difficulty. However, most of them considered that they

eventually had overcome this difficulty. They were then faced with the rule application

difficulty and indicated the high number of rules and conditions, and the lack of an

automated engine to find the rules that could be applied at each step in the derivation,

as the biggest hurdles.

The design subjects confirmed the existence of two limitations linked to the use of the

grammar. The first limitation constrained the expression of the designers' idiosyncratic

formal preferences, and the second limited possibility of satisfying some of the client's

functional requirements. Nevertheless, they acknowledged that the grammar helped

them to structure their decisions during the design process, and that it taught them about

Siza's work at Malagueira, including how to generate a house in the style. Not

surprisingly, the subjects who were not architects or architecture students (the language

assistants) were even more enthusiastic about the use of the grammar by stating that it

had taught them a lot about architecture. As one of the architects acknowledged, "the

rules do not require a trained designer to generate an acceptable outcome." (Member of

Team S2)

The opinions expressed by the design subjects are in accordance with the analysis of

their designs discussed above. Furthermore, Siza stated that "these houses are much

better than most of the houses designed by other designers [non-affiliated with his office]

at Malagueira," who only followed the building regulations. Therefore, the grammar

succeeded in explaining the essential underlying features of Malagueira houses, thereby

overcoming the descriptive test.

Synthetic test: does the grammar tell how to generate new designs in the style?

Considering that designs generated by the design subjects were, to a considerable

extent, in the Malagueira style, it is reasonable to accept that the grammar also

overcame the synthetic test.

Goal test: do the designs meet the given requirements?

As discussed above, results of the third task suggested that some designers did not

succeeded in satisfying the clients' requirements because they were asked to respect

the grammar rules. Moreover, results of the fourth task showed that such design

subjects succeeded in satisfying their clients when they were allowed to change the

grammar. On the other hand, Siza seemed to accept such changes when they did not

cause stylistic discrepancy. Therefore, experimental results showed the need for

changing the grammar to allow the generation of functional features not foreseen in

Siza's initial designs, and confirmed the possibility of making such changes while

maintaining stylistic coherence. The first proposed change is to enlarge the universe of

solutions by incorporating all the design patterns that can be inferred from Siza's

designs, including those that Siza did not use. The second change is to re-write the

332

rules in a general format to diminish the number of rules, to highlight the algorithmic

nature of Siza's approach to the Malagueira design problem, and to permit the

satisfaction of spatial configurations based on user requirements. The variety of the

designs generated in the in Experiment 4 confirms the potential of the grammar to satisfy

varied requirements if such changes are incorporated. In conclusion, the designs meet

the requirements, but it advisable to change the grammar to increase the possibility of

satisfying diverse requirements.

Did the grammar contribute to improve collaboration among designers?

We rely again on the design subjects' opinion and on the analysis of their design

processes to answer this question. The designers' opinion can be summarized as

follows. First, they stressed the need to have a solid understanding of the grammar

before collaboration could take place and mentioned that they were too concerned with

learning the grammar in the workshop to take effective advantage of its eventual

collaborative potential. Second, they acknowledged such a potential. As one designer

put it: "Since the basic rules are already established by the grammar, it provides a good

platform to begin collaborative design. Much of the ground is already covered, value

judgements are already made, and one can focus on finer points." (Member of Team S1)

The analysis of the design processes confirms the potential of using grammars for

collaborative design. The design teams took advantage of such potential in different

degrees, depending on the working strategies that they adopted. Some teams used a

strong division of labor with some members generating the plans, others making the 3D-

model, and other preparing the presentations. On a first glance, these teams took less

advantage of the collaborative potential of grammars. However, results suggest that

333

their division of labor was successful exactly because the use of the grammar limited

conflict. When they had to evaluate their design before switching shifts, their discussion

was focused because the grammar made decisions less arbitrary, diminished the

importance of authorship, and focused the discussion around the satisfaction of user

needs. Thus, they could easily come to an agreement. Other teams followed a weaker

division of labor with all its members involved in each task. The role of the grammar in

limiting conflict was even more useful in these cases. Discussion was centered on what

existing rules permitted, on which rules should be used, on how they should be applied

to satisfy the clients' requirements, or on what rules needed to be created. In

conclusion, independent from the working strategy adopted by a design team, the

grammar provided the common thread that guided its members through the design

process.

Did the grammar contribute to solve the variety/unity paradox?

Collaboration among the different design teams was low. In fact, interaction among

members of different teams was restricted to the exchange of information regarding the

location and size of the yard, and the number of floors in their houses. However, by

looking at the 3D model of the city block, it is reasonable to state that it possesses

stylistic unity. There are no striking differences among the different houses in terms of

color, proportions, the size and location of openings, or in any other visible stylistic

aspect. On the other hand, it does present some formal variety. Moreover, the houses

that form the block are tailored to their users, and they were designed by designers with

varied backgrounds. Therefore, it was possible to achieve a balance between the

satisfaction of different user requirements and a formally coherent urban environment.

We argue that balance was possible because the grammar provided a formal protocol, a

334

common architectural language that permitted the expression of individual requirements

without jeopardizing the whole.

Did the questionnaire provide the means to mediate the client/designer interaction?

The analysis of experimental results show that the use of the questionnaire was useful
but insufficient, as explained below.

Results show that the design problem often was over-constrained. It was over-

constrained because the client specified too many requirements to satisfy within the

Malagueira framework. For instance, the area to allocate exceeded the available area in

design problem C1 S1. The problem also was over-constrained because the client

specified contradictory requirements. For instance, the client wanted a sunny backyard

house, in a lot surrounded by houses on three sides in C1 S1. The approach used by

design subjects to solve the over-constrained problems was to talk to the client,

proposing alternative solutions:

"Hi, this is your client [C1 S1]. First of all, thank you for your design in spite of my
tough request. I like it very much [with] only one exception. Could you connect
the bathroom directly to the Grandma's bedroom? It will be easier for Grandma
and somebody who helps her to access ... it. About [the] yard, I agree with your
idea; in this case, front-yard looks much better than backyard because of
sunlight, wind, and other environmental aspects. I got you."

Experimental results also show that the problem often was ill-defined. It was ill-defined

because clients did not have a very clear idea of what the needs were until a solution

was seen:

"Hello! I just took a look at "my" house. It is looking good, though of course now
that I see it I have second thoughts about my requirements."

The designers approach such cases was to go through a design-show cycle with the

client, until the solution eventually became stable.

335

Results also showed that, even when the problem was not over-constrained or ill-

defined, designers made qualitative judgments about the requirements set by the client.

For instance, in design C6 S4, designers deliberately chose to connect the dining room

to the patio, instead of to the kitchen, although the client had specified otherwise and

both were possible.

Therefore, results suggest that the interface between the client and the designer should

support a dynamic interaction between the client and the designer. Namely, it should

announce that the problem becomes over-constrained when the design brief is being

specified, for instance, by telling the client that the available area has been exceeded. It

should also provide the means for the client to assess a solution, to change the

requirements, and to generate a new solution. Ideally, it should also enquire the client,

when the design is being generated, although this seems more difficult to achieve.

In Experiment 4 we tried to measure the satisfaction of clients with their houses using

the concept of degree of satisfaction proposed in Experiment 3. Recall that degree of

satisfaction is the ratio between the number of satisfied requirements over the total of

requirements. To count the number of requirements it is necessary to decompose the

requirements specified by the user into atomic requirements. For instance, the

requirement "a large living room communicating with the yard through a door" yields the

atomic requirements "living room," "large living," "living room communicating through a

door with yard," and "yard." To find out which requirements are satisfied one just has to

answer the following questions. "Is there a living-room?" "Is it large?" "Does it

communicate through door with the yard?" "Is there a yard?" However, unlike in

336

Experiment 3 in Experiment 4, we did not consider the ranking of requirements because

the clients did not rank them.

Table 6.3 - Requirements and satisfaction of designs in Experiment 4

c1 S1 C2 S21 C3 S31 C4 S4 C5 S1 C2 S2 11 C3 S3 11 C6 S4
Requirements 131 48 50 44 39 48 51 24
Satisfaction 55.7% 93.7% 80.4% 81.8% 84.6% 97.9% 86.3% 95.8%

The use of the degree of satisfaction to evaluate the designs in Experiment 4 showed

some of the difficulties in using such an evaluation system, but suggested how they can

be overcome. Table 6.3 presents the number of requirements, and the degrees of

satisfaction in Experiment 4. The table shows that satisfaction tends to drop as the

number of requirements increases. In other words, the higher the number of

requirements, the smaller the possibility of achieving a higher degree of satisfaction.

Therefore, it is not appropriate to use the degree of satisfaction to compare solutions to

different design problems. For instance, the degree of satisfaction of client C1 was

much smaller than that of client C2, but C1 showed more satisfaction than C2, when

they evaluated their houses. In addition, the degree of satisfaction might be high but the

solution might be unacceptable. For instance, design C2 S2 degree of satisfaction is

93.7%, but it includes a room with no windows.

Nevertheless, results show that it is possible to compare the degrees of satisfaction of

different solutions for the same design problem. For instance, the degrees of

satisfaction of designs C2 S2 11 and C3 S3 I are higher than those of designs C2 S2 I

and C3 S3 II, respectively, which corresponded to client perception. Therefore, it is

possible to use the degree of satisfaction to guide the generation of a solution to a given

problem.

337

6.6 Summary

A set of experiments were devised and undertaken with the goal of generating new

designs and testing the grammar. Results of Experiment 1 (analytic test) showed that

the grammar could successfully account for the generation of a design by Siza, not

included in the original corpus, with the exception of features related to a change in plot

shape. Moreover, results showed that it was possible to explain such features with the

introduction of rules to deal with the new plot. Results of Experiment 2 (synthetic test)

showed that the grammar could be used in the random generation of new designs in the

language. A set of designs produced in this way was shown to Siza who did not

distinguish them from his own designs. Results of Experiment 3 and 4 (goal test)

showed that the grammar could be used by designers not familiar with Siza's work to

generate designs in the language that matched given requirements. Nevertheless,

results suggested some changes to increase the possibility of generating customized

designs. These changes include unrestricting the rules to enlarge the universe of design

solutions, and re-writing them as an algorithm to generate spatial configurations based

on given functional requirements. Results of Experiment 4 also showed that the use of

the grammar by different designers could guarantee a balance between the satisfaction

of individual requirements and a formally coherent whole in the design of urban

environments. Also, results showed that design problems are over-constrained and ill-

defined and the need to support dynamic interaction with the client to overcome these

difficulties. In Chapter 7, we will see how changes suggested by experimental results

are incorporated into the grammar.

338

New Designs Malagueira - Alvaro Siza Vieira

Figure 6.39 - The set of Malagueira designs by design subjects in the experiments.

339

References

Akin, Omar 1987 "Exploration of the Design Process" in The Design Process, pp. 23-28.

340

7. Discursive grammar

7.1 Introduction

This chapter presents a mathematical model for the problem of finding a solution that

matches given requirements within the set defined by a shape grammar, called

discursive grammar. Chapter 5 presented a shape grammar for Siza's Malagueira

houses, based on the compositional principles of dissecting and concatenating

rectangles. This grammar was developed considering an upper and a lower bound for

the universe of design solutions. The upper bound corresponded to the exhaustive set

of solutions that could be derived from those two compositional principles, whereas the

lower bound corresponded to the subset that could be derived from a strict interpretation

of Siza's compositional rules. The grammar was restricted to generate only the

solutions in the lower bound. Chapter 6 presented a set of experiments undertaken with

the goal of testing such a grammar and with the goal of generating new designs. In

these experiments, subjects were asked to use the grammar to generate designs that

matched given requirements. In some experiments, they had to respect the grammar

rules, and in others they were allowed to change them. The designs were then analyzed

to determine whether they satisfied the requirements, and shown to Siza to determine

whether he considered them to be in the grammar. Compared results of both

experiments, showed that in some cases it was not possible to generate solutions for the

requirements, while respecting the lower bound rules, and that it was possible to

unrestrict the rules and enlarge the universe of solutions, while maintaining stylistic

coherence. Results also suggested re-writing the rules so that spatial configurations

341

were generated based on given functional requirements. However, enlarging the

universe of design solutions makes the problem of finding a solution more difficult.

Mitchell (1989) illustrated the need for shape grammars by comparing a designer's

attempt to design without one to Gulliver's Lilliputians attempt to write books by randomly

combining words. A grammar guarantees that English sentences will be generated, but

one problem remains, how can one assure that the grammatically correct sentences will

say what we are trying to convey? To expect this is as hopeless as expecting the

random concatenation of words to generate English sentences. So, there are two parts

to the problem. The first is concerned with the generation of legal designs--designs in

the language, the other with the generation of suitable designs--designs that match

requirements given at the outset. In other words, the goal is to generate both formally

and semantically correct designs. Only a grammar with such a power can be used as an

effective tool for customizing mass housing. The problem of building grammars that

generate suitable (semantically correct) designs is, to a certain extent, foreign to

previous architectural shape grammars, as they only provide the means to generate

solutions that match very general criteria. Engineering grammars, however, have been

developed with the goal of generating optimized solutions for given design contexts.

This was the case, for instance, of Reddy's and Cagan's 5 truss design grammar. This

grammar used a directed stochastic search algorithm, shape annealing, to guide the

generation of designs by the grammar towards a global optimum. We propose a

different approach called a discursive grammar.

342

7.2 Definitions

A discursive grammar is a grammar that is capable of generating both syntactically and

semantically correct designs. In other terms, it deals with both form and meaning so that

it finds a design within the language that matches given criteria.

7.2.1 Technical definition

From the technical viewpoint, a discursive grammar consists of a shape grammar, a

description grammar, and a set of heuristics. The concept of shape grammar was

invented by Stiny and Gips. (1972) A shape grammar specifies how designs can be

composed with shapes starting with an initial shape and then proceeding recursively by

applying shape rules. The concept of description grammar was developed by Stiny' to

account for features of designs not covered by shape grammars. (1981) A description

grammar describes the design in terms of other features considered relevant according

to some criteria of interest. Stiny suggests that the description grammar can be

considered a grammar of another language and that it is possible to translate back and

forth between the two languages. Our proposal is to use such a translation mechanism

to obtain the design from a goal description. The set of heuristics is used to guide

search through the space of solutions until one that closely matches the goal is

encountered. This is accomplished by selecting at each step the rules that bring the

description of the evolving design closer to the goal description.

1 According to Stiny (1990), designs are descriptions of artifacts and they comprise both shapes
and symbols. In this sense, shapes also are descriptions. In the literature, however, the term
shape has been used to designate shape descriptions, whereas as the term description has been
used to refer to symbolic descriptions. We will follow this convention whenever there is no sort of
confusion as to which type of description we are referring to, and we will use the extended
expressions when such confusion can arise.

343

7.2.2 Operative definition

From the operative viewpoint, the discursive grammar consists of a programming

grammar (or programmer) and a designing grammar (or designer.) The programming

grammar processes the user and site data (design data) to generate the housing

program (design brief). The designing grammar uses the housing program to generate a

housing solution (design). The relation between these grammars and the description

and shape grammars mentioned above is diagrammed in Figure 7.1. The programming

grammar has a description part and an empty shape part, whereas the designing

grammar has both a description and a shape part.

Technical viewpoint Operative viewpoint

Programming grammar Designing grammar

Description grammar 4 __ _

Shape grammar 0 __ _

Figure 7.1- Technical and operative definitions of discursive grammars.

7.2.3 Mathematical definition

From the mathematical viewpoint, a discursive grammar can be described by a nine-

tuple (D, U, G, H, S, L, W, T, F, I,). D is a set of description rules. U is the initial

description, to which the first rule applies to start a computation. Other rules than apply

to define G, the goal description, that is, the description of the intended design. S is a

set of shape rules of the form A -> B that specifies that whenever a shape A is found in

the design, it can be substituted by a shape B. L is a set of labels that are used to

control computations. W is a set of weights associated with shapes in a specified

algebra. Weights can be used to control computations, when meaning is assigned to

weights as in color grammars (Knight 1989), a special case of grammars with weights.

Weights also can be used to account for visual features of designs to improve its

344

readability like in the use of lines with different thickness. T is the set of similarity

transformations (rotation, translation, scaling, and so on) under which rules apply. F is a

set of functions that assigns values to parameters in rules, for example: the width and

length of a rectangle. I is the initial shape to which the first rule applies to start a

computation. Other rules then apply recursively to define a design within the language

defined by the grammar. Finally, H is a set of heuristics that are used to decide which

rule to fire at each stage of the design process in such a way as to guarantee that a

design with a description that closely matches the goal is generated. Heuristics are to

description rules as labels are to shape rules; they constrain the ways in which rules are

triggered and fired.

7.3 The PAHPA-Malagueira discursive grammar

Programmer Interpreter

Site data e Regulations 1 -ri- Design language 1 - eig

or
housing program

User data - euaions 2 Design language 2

Regulations n Design language n

Figure 7.2 - Different programming grammars can be used in combination with different
designing grammars.

In theory, different programming grammars can be combined with different designing

grammars to form various discursive grammars. (Figure 7.2) First, one could use

several programming grammars to generate housing programs appropriate for various

contexts. For instance, one could have programming grammars that encode the rules

set by the Swedish, or the Portuguese regulations. Second, one could use several

designing grammars to generate a solution for the same housing program. For instance,

345

one could have grammars that generate designs in the style of Frank Lloyd Wright's

prairie houses, or Siza's Malagueira houses. Then, one could generate a housing

program using any of the programming grammars, and then generate a solution for that

program using any of the designing grammars.

In practice, the independence of programming grammars from designing grammars is

limited. The first limitation exists because there needs to be contextual compatibility

between the two grammars, otherwise no solution can be found in the designing

grammar that satisfies the housing program specified by the programming grammar.

For instance, the housing program specifies area requirements that cannot be met by

the designing grammar. A way to overcome this limitation is to ensure that the contexts

of both grammars match. For instance, one could use a programming grammar that

generates housing programs that are appropriate for a given social, cultural, economic,

and geographic context, say Portugal. Then, one could have several designing

grammars that generate solutions that also are appropriate for this context in different

styles, such as Alvaro Siza's, Rafael Moneo's, Frank Lloyd Wright's, and so on. The

second limitation exists because the programming grammar needs to be informed of

constraints posed by the designing grammar. For instance, the area limits set by a

designing grammar needs to be taken into account in the generation of the housing

program to limit the possibility of generating over-constrained programs. This limitation

is solved by conceiving the programming and the designing grammars in such a way

that when the two grammars are put together, information on constraints posed by the

designing grammar are transferred to the programming grammar.

In the specific discursive grammar proposed in this work, the programming grammar

adapts both the rules of the Portuguese housing program guidelines (Programa

346

Habitacional-PH, Pedro 1999), and the rules of the Portuguese housing evaluation

system (Indicadores de Qualidade Arquitect6nica, Pedro 2000). It is, therefore, called

the adapted Portuguese Housing Program and Evaluation grammar, or just the PAHPA

grammar. The designing grammar encodes Siza's rules for the design of Malagueira

houses. Therefore, the proposed grammar is called the PAHPA-Malagueira grammar.

(Figure 7.3) The PHAPA programming grammar is presented in Section 7.4, and the

Malagueira designing grammar is presented in Section 7.5.

Programmer Designer

Site data PAHPA Grammar Bri efMalagueira grammar - Desi gr

or
housing program

User data

Figure 7.3 - The proposed PAHPA-Malagueira grammar includes the grammar of the Portuguese
housing program and evaluation guidelines (programming grammar) and the grammar of Siza's

Malagueira houses (designing grammar).

7.4 The PAHPA programming grammar

The programming grammar follows the PHAP guidelines rules to generate the housing

program from site and user data and to evaluate the outcome. The PAHP were selected

for the following reasons. They are the sequential development of the documents that

regulated the design of housing when Siza designed the Malagueira houses. They are

recommended by the major Portuguese institutions that regulate housing issues. They

are written in a way that allows the flexible specification of housing programs. Finally,

they were selected after the grammars were shown to have the sort of contextual

compatibility referred to in the section above. Nevertheless, the programming grammar

does not strictly follow the PAHP. It includes only a subset of the housing features that

2 PAHPA - Programa e Avaliag.o Habitacional Portugussa adaptada

347

they foresee, and introduces new ones. It also reorganizes features into a different

hierarchy. Moreover, it includes rules that capture the intelligence of a human

programmer browsing through the PH to explore design brief possibilities, thereby

regulating the interdependency among features.

Stiny indicates two issues as being crucial in the development of description grammars

(1981). The first issue is fixing the contents of the description, that is, which features to

include. The second issue is developing the description rules. Choosing the categories

and developing the rules are important because they determine which questions to ask

the client, and how to derive the housing program, and ultimately, how to derive and

evaluate the design.

Two approaches were taken to overcome such difficulties. The first approach was to

consider the features proposed in the PH presented in Table 3.1. The second approach

was to consider the features used by the subjects in the experiments presented in

Chapter 6. The final selected features are presented in Table 7.1 in a simplified manner,

and in Table 7.2 in more detail, including the data structure. They include only a subset

of the PAHPA features, but it is possible to extend the grammar to account for non-

included features, such as comfort, security, and personalization. They also include new

features, such as context, morphology, typology, and aesthetics. The values that each

feature can take are listed in Table 7.3.

7.4.1 Description (features): constraints, quality, and cost

As shown in Figure 7.1, the features are organized into three main groups, according to

the role that they perform in the derivation of the housing program and in the derivation

of the design solution.

348

Table 7.1 - Main features in the housing program description.

Main groups Groups of features Features Elemental features

Constraints Context Lot
Urban context
Solar orientation

Typology Customization
Users
Bedrooms
Quality

Morphology Housetype
Floors
Balconies

Quality Function Spatiality Capacity (dwelling)
Capacity (spaces)
Articulation (spaces)

co
c1
C2

C3
C4

(5
X6

X7
C8

X9

xi 0-1a
ci 0-13
X10-12

Spaciousness (dwell. & C1.5-1e
spaces)

Topology Ci7

Aesthetics Proportion X22

Cost Construction X24

The first group is formed by features such as context (lot, urban context, and solar

orientation), typology (customization, number of users, number of bedrooms, and quality

level), and morphology (housetype, number of floors, and balconies.) This group is

called constraints because the values of elemental features are specified by the user3

and cannot be changed by the programmer, thereby constraining the values of

subsequent features. The only exceptions are quality and balconies, whose values can

be updated after the user changes quality features. The second group includes function

and aesthetics. Function includes spatiality (dwelling capacity, and space capacity,

articulation, and spaciousness) and topology. The only aesthetic quality considered is

proportion, which Siza regarded as important. The features in this group describe the

performance of the programmed house and are referred to as qualities. The user can

assign weights to these qualities to express their relative importance and to determine

3 In this Chapter, the term "user" will be used to refer to the user of the program, and the term
"dweller" will be used to refer to the user of the house.

349

the overall quality. The third group includes only the construction cost. Constraints,

qualities, and cost frame the problem of designing a house as follows. Within the

specified contextual, typological, and morphological constraints, design a house with the

specified qualities at a specified cost.

As shown in Table 7.2, the detailed description includes two parts and shows the data

structure used to encode the housing program. The first part is the variable description,

that is, the set of features that constitute the housing program (design brief), whose

values are defined by user prompt information and the programming rules. These

features are identified with the Greek letter x, followed by a number. They correspond to

the features mentioned above plus the features building elements (windows, doors,

walls, and pavements) and history, which are not specified by the user, but constitute

features of the future design. History is the record of the design rules application

sequence. The variable description actually is the program description. The second

part of the detailed description is the fixed description, whose features have pre-defined

values that cannot be changed by the user. These categories are identified with the

letter 0, followed by a number. Among such features are spatial dimensions, sectional

dimensions, and cost. Spatial dimensions refer to the minimum width, height, and area

of the space that is required to perform a given function (e.g. sleeping) whose values are

those indicated in the PAHPA. Sectional dimensions refer to the pavement thickness,

and the floor height, whose values are determined by the upper and lower bounds of the

values found in the Malagueira houses, presented in Table 4.4. The cost includes the

costs per square meter of enclosed, covered, and open spaces, which are regularly

published in governmental tables. A brief explanation of each description precedes the

explanation of its rules, given further below.

350

Table 7.2 - Housing program description

Variable description (program description)

Features Groups of variables a Variables

Contexts Lot co < w, 1, h, a>
Urban a1 <front, right, back, left>
Solar orientation a2 <front, right, back, left>

Typology Customization as < degree >
Users c4 < number, [(name, gender, age, share),...]>
Bedrooms as < number, [(couple, number), (double, number), (single, number)] >
House quality c6 < initial quality, current quality >

Morphology Yard location ar < yard >
Floors a8 < floors >
Balconies a < balconies >

Spatiality Capacity Minimum clc < [use, number, ((articulation, number)...)]... >
obligatory
spaces
Initial c < [use, articulation, weight],... >
obligatory
spaces
Current C1 2 < [use, articulation, weight],... >
optional
spaces

Current a13 < [name, id, (users, functions, (capacity, weight), (articulation, weight),
spaces (spaciousness, weight), (insertion point, rotations, width, length, height,

area)],... >
Zones a14 < [use,rooms, area],... >

Spaciousn Areas cl5 <available,
ess (max interior gross, min exterior gross, 1st Floor gross),

(max interior gross, min exterior gross, 2nd Floor gross),
(max interior gross, min exterior gross, house gross), useful/gross>

a16 < used,
(inhabitable, interior useful, exterior useful, 1st Floor useful),
(inhabitable, interior useful, exterior useful, 2nd Floor useful),
(inhabitable, interior useful, exterior useful, house useful), inhabitable/useful >

Topology Adjacency graph a17 <[(room1, room2, relation, weight)] ... >
Building Windows c, < [window, (room 1, room 2), (insertion point, depth, width, height, area)], ..>
elements Doors a19 < [door, (room 1, room 2), (insertion point, depth, width, height, area)],... >

Walls ca < [wall, (room 1, room 2), (insertion point, thickness, width, height, area)],... >
Pavements C21 < [pavement, floor, (insertion point, width, length, thickness, area)],... >

Aesthetics Proportion a22 <[proportion1, weight],...>
Quality C23 <[function, weight], [spatiality, weight], [capacity, weight], [articulation, weight],

[spaciousness, weight], [topology, weight], [aesthetics, weight] >

Cost Cost C24 c
History Rule c2 < rl, r2,..., rm >

Fixed description

Spaces width 1, tables width (space, quality)
dimensions height 132 tables height (space, quality)

area pa tables area (space, quality)
Sectional Pavement thickness p4 thickness (pavement)

dimensions Floor height sPheight (floor)

Cost p6 table unit cost (element, material)

Table 7.3 - Housing program features values

Feature Feature c Feature Values
Morphology Lot ao Width 8 m2

Length 12 m2
Area 96 mz

Urban a1 Houses on three sides (default),
house on one side, house at the back,
house on the side and back

Solar orientation a2 N, NE, E, SE, S, SW, W, NW
Typology Customization a3 Custom, type (default)

Dwellers a4 Number 1, 2, 3, 4, 5, 6, 7, 8, 9
Name User prompted

Blank (default)
Gender Male

Female
Blank (default)

Age 0-1, 2-5, 6-13, 14-17, 18-23
23-65, > 65, Blank (default)

Share Room
Bed
Blank (default)

Bedrooms C Number 1, 2, 3, 4, 5
Quality* a6 Initial Minimum (default), medium, maximum

(high)
Current Minimum (default), medium, maximum

(high)
Morphology a7 Yard Front, back

C Floors 1,2
a9 Balconies True, False

Spatiality Capacity (dwelling) (10 Minimum List of spaces' IDs
c11 Initial obligatory
C12 Optional
C13 Current
aC14 Zones

Spaciousness (dwelling) a15 Available See Tables 7.8-7.10
aC16 Used m

Name Kitchen, laundry, pantry, living, closet,
step-in-closet, stairs, patio, bedroom,
bathroom, circulation, corridor, studio,
balcony (terrace)

Space ID Random number
Functions See table 7.7
Capacity (spaces) 1, 2, 3, 4, 5, 6, 7, 8, 9
Articulation (spaces) Included, delimited, isolated
Spaciousness (spaces) See Tables 7.18-30

Topology C17 Relation Away, close, adjacent, window, door,
passage, merged, any (default)

Aesthetics a23 Proportion 1:1, 1:\2, 1:2, 2:3, 3:4, 5:6
Quality C22 Weights 0, 5, 10, 15,...,100
Cost a24 Construction USD $/ m2
History aX25 Sequence of Sequence of rule numbers

rules

352

7.4.2 User/programmer interface

The programming grammar captures the rules of the Housing program, but the study of

the client/designer interaction, undertaken with the experiments described in Chapter 6

was instrumental for the definition of the user/programmer interface. The goal of the

interface is to support the dynamic user interaction suggested by the experimental

results as a way of limiting the possibility of over constraining and ill defining the design

problem. The envisaged interface is represented in Figure 7.4.

7.4.3 Dependency among features

The dependency among features and the flow of information originated by the

application of the programming rules, is represented in Figure 7.5. In brief, the flow

proceeds as follows. The context, the morphology, and the maximum affordable cost

determine the available area. Then, as the user specifies the number of dwellers and

the desired quality level, the programmer calculates the lists of obligatory and optional

spaces (dwelling capacity), as well as each space's capacity, articulation, and

spaciousness. Then, these spatial qualities are used to calculate the minimum width,

height, and area of each space. These dimensional requirements, together with the list

of spaces, are used to calculate the total used area, and then, to estimate the cost of the

house. The user can change the lists of spaces, by adding and subtracting spaces, or

change their spatial qualities. The programmer, then, recalculates the quality level, the

available area, and the estimated cost. The number of floors and the list of spaces

cause the programmer to define required and recommended topological relations among

spaces. The user can then subtract recommended relations and add others. The

programmer uses the topological relations in which floors assignments are involved to

define the available area per floor. When the available area becomes close to zero, the

user cannot make any further changes that require an increase in area. The user is,

353

Figure 7.4 - The interface envisaged for the programming grammar.

354

Context

Lot Maximum cost Estimated cost

Urban context

Available area Used area

Solar orientation 1st floor Area 1loor Area

-.Moqphology

Housetype 2ndloorArea 2nd floorArea

Floors

Balconies With HeightArea

Users~~se arealiyLeel _

Obligatory Spaces Optional Spaces Capacity AriuainSpaciousness

Width HegtArea

Figure 7.5 - The information flow from user and site data to the definition of the design brief by the
programmer.

thus, led restrict his/her choices, thereby limiting the possibility of over-constraining the

design problem. The programmer also assigns default weights to the requirements,

which the user can change to set his/her own priorities. Once the housing program is

defined it can be saved, retrieved, or sent to the designer for generating the solution.

355

The generation of default requirements by the programmer saves the user from the

burden of defining all the requirements while overcoming the ill-definition problem. The

user just has to define those requirements that he or she considers essential. Moreover,

the user can change the initial requirements after seeing the solution generated by the

designer, thereby refining the initial problem.

7.4.4 Rules

The rules of the programming grammar are shown in Table 7.35 at the end of this

section. There are two types of rules. One is used for user-prompted data and the other

to programmer-specified requirements. The first rule (gO) initializes a description

consisting of 31 features. Explanations of the rules for the function, aesthetics, and cost

features are provided below. In the explanation of the programming rules, the hierarchy

of features was flattened to allow the explanation to follow the flow of rule interaction.

Nevertheless, to help the reader to keep track of the position of the feature in the

hierarchy, the sequence of the preceding hierarchical levels is shown in each section's

heading.

7.4.4.1 Constraints: Context

The context describes basic site features, such as lot type, urban context and solar

orientation. Topography was not included because in the Malagueira housing grammar

the lot always becomes flat after urban planning rules are applied to sloped terrain. The

programming grammar can be extended to include other site features, provided that the

designing grammar includes rules to deal with such features. Rule g1 describes the

features of the usual Malagueira land plot (width, length, and area). No rules were

included to describe other plots, but it is possible to extend the grammar to include them.

Rule g2 describes the default urban context. Rules g3 through g6 include in the

356

description user-prompted data regarding the urban context. These rules correspond to

the four possible urban contexts that are in accordance with the Malagueira planning

rules. They manipulate description c (urban context), but also a13 (list of current

spaces) by subtracting the current descriptions and adding the new ones. They need to

manipulate a 13 because the designing grammar will need the description of the

contextual spaces (a set of four boxes named house or street placed around the lot) to

apply its rules. Rule g7 describes the default solar orientation. Rules g8 through g1 5

include in the description user-prompted data about the solar orientation. They

manipulate descriptions a2 (solar orientation) and a13 (list of current spaces) by updating

these descriptions with the new data.

7.4.4.2 Constraints: Typology

The typology is a synthesized description of the house. It is determined by the degree of

customization (x), the number of bedrooms (c4), the number of dwellers (as), and the

quality level (a%). The programmer sets the default degree of customization to

housetype (rule g1 6). The user can change it to describe a customized house (rule

g17), or reset it back to housetype (rule g18).

If the user chooses to describe a customized house, the user needs to provide detailed

dweller information (c4) (rule g1 9). For each dweller, the programmer will add a

bedroom to the list of current spaces (C13) and to the list of sleeping zone spaces (a14).

Also, it will use the quality level (aN) to retrieve the appropriate dimensional requirements

(1-), and to update the used area (c15), the available area (C16), and the cost (a24),

accordingly. If no bedroom exists on the first floor, the new one will be assigned to this

floor, otherwise, it will be assigned to the second floor (a17).

357

Then, the user can specify that two given dwellers can share a bedroom (rule g20) or a

bed (rule g21), and the programmer will merge their single bedrooms into one double or

couple bedroom, respectively.

If the user decides to describe a housetype, the user needs to specify the number of

bedrooms (a) (rules g22-g27) and the number of dwellers (a4) (rules g28-g37). These

features are mutually dependent as shown on Table 7.5. This means that, for instance,

if the number of bedrooms is 1, then the number of dwellers can be only 1 or 2 (rule

g23). Conversely, if the number of dwellers is 2, the number of bedrooms can be only 1

or 2 (Rule g30). Such a dependency exists because the PAHP guidelines assume that

the household consists of a traditional nuclear family formed by the parents and their

kids, that the parents do not share the bedroom with their children, and that no more

than two children can share a bedroom.

Table 7.5- Dependency between the number of
bedrooms and the number of dwellers

Bedrooms Dwellers
blank blank, 1 to 9
1 to 2
2 2to4
3 4to6
4 5to7
5 7to9

7.4.4.3 Constraints: Morphology

The morphology describes the basic features regarding the overall shape of the house,

including the location of the yard (a7), the number of floors (a8), and whether it has

balconies on the second floor (a9). The programmer sets front as the default location of

358

the yard (rule g38), which the user can then change (rule g39). The number of floors

depends on the number of bedrooms as follows. If the number of bedrooms is one (aX),

the number of floors (as) is one (rule g40). If it is two, it can be either one or two,

depending on user's choice (rule g41). Finally, if the number of bedrooms is more than

two, the numbers of floors is two (rule g42). As default, the programmer specifies that

the house will have balconies (rule g43), which the user can change (rule g44).

7.4.4.4 Quality

Quality describes how well the dwelling satisfies the functional and aesthetic

requirements. In both the customized house and the housetype scenarios, the

programmer sets the dwelling quality level to minimum, and assigns to qualities the

default relative weights shown in Table 7.6 (rule g45). The user can, then, change the

dwelling quality level by choosing one from minimum, medium, and maximum (rule g46),

and reset the relative weights of qualities by selecting a value from the interval [5, 10,...,

100] (rule g47). The programmer standardizes the weights to assure that they add up to

100, at each level in the qualities tree. For instance, if the user assigned the weight 30

to function, and the weight 30 to aesthetics, then the programmer resets both to 50.

Table 7.6 - The default weights assigned to qualities

Main groups Groups of qualities Quality Elemental qualities

Quality Function 50 Spatiality 50 Capacity (dwelling) 25 a10-13
Capacity (spaces) 25

Articulation (spaces) 25
a10-13
a10-13

Spaciousness (dwell. & C15-
spaces) 25

Topology 50 a17

Aesthetics 50 Proportion a22

16

359

The programmer uses the dwelling quality level to make assumptions about the dwelling,

such as the spaces that it should include (dwelling capacity), the spatial requirements of

its spaces (capacity, articulation, and spaciousness), as well as the required topological

relations among them. If the user does not indicate specific quality levels for these

features, the dwelling quality level becomes their default quality level. If the user

indicates specific quality levels, the programmer re-calculates the dwelling quality level

by calculating the weighted average of the qualities quality levels (rule g48).

The average dwelling quality level equals the weighted average of the function and the

aesthetics average quality levels (Table 7.35, Rule g48, Equation 1). The function

quality level is the weighted average of the spatiality and topology quality levels

(Equation 2). The average spatiality quality level is the weighted average of the dwelling

capacity, and the spaces capacity, articulation, and spaciousness average quality levels

(Equation 3).

The average dwelling capacity is the weighted average of its spaces dwelling capacity

quality levels (Equation 4), calculated as follows. If the space is in the minimum dwelling

capacity list of spaces, its dwelling capacity is 1 (minimum); if it is in the medium dwelling

capacity list, but not in the minimum, its dwelling capacity is 2 (medium); and if it is in the

maximum capacity list, but not in the minimum and medium, its dwelling capacity is 3

(maximum).

The space capacity average quality level is the weighted average of its spaces capacity

quality levels (Equation 5). The rules for determining the quality level of a space's

capacity are listed in Table 7.35. For instance, if the space is a bathroom, and if its

capacity is lavatory, then the quality level is 1 (minimum); and if its capacity is shower,

360

then its quality level is 2 (medium); and if its capacity is bathtub, then its quality level is 3

(maximum).

The articulation average quality level is the weighted average of its spaces articulation

quality levels (Equation 6). The rules for determining the quality level of a space's

articulation are very straightforward. If the space's articulation is included, then its

articulation quality level is 1 (minimum); if it is delimited, then its articulation quality level

is 2 (medium), and if it is isolated, then it is 3 (maximum).

The spaciousness average quality level is the weighted average of its spaces

spaciousness quality levels (Equation 7). The spaciousness quality level of a space is

the average of its width, height, and area quality levels, whose individual values are

shown in Tables 7.18-7.30.

The topology average quality level is the weighted average of the quality levels of the

relations among all the dwelling spaces (Equation 8). The rules for determining the

quality level of a relation between two spaces are listed in Tables 7.35. For instance, if

the required relation among two spaces is door, and if the actual relation is door, then

the quality level is 3 (maximum); if the actual relation is adjacent or window, then the

quality level is 3 (medium); if it is close, then its is 1 (minimum); otherwise it is 0.

The aesthetic quality level is the weighted average of all the spaces aesthetic quality

levels (Equation 9). The programmer assigns the same default weights to all the

proportions, no matter the space. This means that in the definition of the housing

program, proportion has no impact on the overall quality. The default quality level is 3

(maximum), independently from the space and the proportion. In the design of the

solution, however, the quality level of the proportion of a given space is lower than 3, if it

does not have the specified proportion.

If the average dwelling quality level is in the interval [0, 1], then the quality level is said to

be minimum; if it is in the interval]0, 2], then it is medium; and if it is in]2, 3], then it is

maximum.

7.4.4.5 Quality: function: spatiality

Spatiality describes the spatial features of the dwelling and its spaces. It includes the

dwelling capacity (the list of spaces in the dwelling), the space capacity (the number of

users that the space shelters), articulation (how the functions sheltered in the space

relate to each other) and spaciousness (how large the space is).

A function is a behavioral activity performed with a certain goal (e.g. sleeping). A space

is defined as the three-dimensional volume that is required to perform a given function.

A room is an enclosed space that shelters one or more functions. A dwelling is a set of

rooms, sheltering several related dwelling functions. The relationship between functions,

spaces, rooms, and dwelling is diagrammed in Figure 7.6.

The dwelling functions and rooms are listed in Table 7.7, after Portas (1969) and Herbert

et al (1978), quoted in Pedro (2000). The Malagueira houses considered in the corpus

(Chapter 4) sheltered all of these functions, with the exception of "exterior storage" and

"parking car," mainly because the lot was small and the cars were parked in clusters of

garages segregated from the houses. However, Type F (Section 6.2) did include

exterior storage spaces, and people park their cars in front of their houses disregarding

functional segregation. Therefore, it seems reasonable to accept that the functions

362

Function / Space: SLEEPING

Function - activities - furniture:

dressing

Room: BEDROOM

Function: sleeping
storing personal clothes

Dwelling: one-bedroom, two-dwellers

Rooms: double bedroom, kitchen,
bathroom, living room, hall

Quality level:

lys

minimum
medium
high

valk ahead

Quality level:

Minimum Medium High

Quality:

medium

Figure 7.6 - From spaces to rooms, to dwellings. Top: the space required for performing the
function sleeping by one person. Middle: the bedroom required for performing the function
sleeping by two people. Bottom: a dwelling congregating several functions for two people.

363

"exterior storage" and "park car" can be included in the design of future Malagueira

houses.

Table 7.7 - Dwelling functions, rooms, and their existence in Malagueira houses

Function Room Zone Existence*
1 Sleeping Bedroom Sleeping Always
2 Cooking Kitchen Service
5 Living Living Living-room Living
6 Hosting Living-room, bedroom Living
13 Bathing Bathroom Sleeping
14 Being outside Patio, terrace, balcony Patio
15 Circulation Corridor, staircase Living,

sleeping,
service

3 Dining Informal dining Dining-room, Kitchen, living- Service Sometimes
room

4 Formal Dining Dining-room, Living-room Service
7 Work/leisure Playing (children) Studio, bedroom, living Living,

sleeping,
service

8 Studying (youth) Studio, bedroom, living Living,
sleeping,
service

9 Working (adult) Studio, bedroom, living Living,
sleeping,
service

10 Clothing Ironing clothes Laundry, kitchen, living-room, Service
bedroom

11 Washing clothes Laundry, kitchen Service
12 Drying clothes Laundry, kitchen, patio, terrace, Service

balcony

16 Interior storage Closet, pantry, Living-room, Living,
circulation sleeping,

service

16 Exterior storage Closet, garage Never
17 Parking car Garage

Notes: A function in bold is a main dwelling function. A rooms in bold
function is most likely located in Malagueira houses.

is the room where a given

7.4.4.6 Quality: function: spatiality: Dwelling Spaciousness - Area

The programmer will prevent the user from adding more spaces or rooms when the

combined area of all the spaces that have already been added exceeds the available

area. Checking the area presents three difficulties. First, national regulations classify

the area of different spaces into different categories, and impose different restrictions on

364

each category. Second, the Malagueira regulations cause the available area to depend

on the morphology. Third, the area occupied by walls and other building elements is

unknown at the specification time. There are, nevertheless, ways to overcome such

difficulties as explained below.

The PAHPA, like other Portuguese regulations consider that a single-family house

(habitago) is composed of the dwelling (fogo) and of the annex (dependencias). The

classification of spaces into dwelling and annexes is shown in Table 7.8. In short, the

dwelling consists of all the interior spaces, except garages and detached storage rooms;

and the annex consists of exterior spaces, garages, and storage rooms. The

Portuguese regulations also make a distinction between gross area (srea bruta), useful

area (srea util), and inhabitable area (drea habitsveo, and specify limits for the ratios

between these areas (Table 7.9). The Malagueira regulations impose limits on the gross

interior area, depending on the morphology (Table 7.1 0).4 Therefore, it is possible to

calculate the available useful areas by applying those indexes to the gross areas for the

selected morphology.

To check whether the available area has been exceeded, it is necessary (1) to match the

sum of the useful interior areas against the available useful interior area to guarantee the

respect for yard's minimum area; and (2) to match the sum of the interior and exterior

useful areas to assure that the total available useful area is not exceeded.

Rules 49-53 capture the five morphological situations and determine the corresponding

available areas as shown in Table 7.10. For instance, if the yard is at the back, there is a

4 It was introduced a change to the Malagueira building regulations by considering that the
exterior area on the second floor could be smaller if there is a street at the back.

365

street at the back, and there are no balconies on the second floor, then the first floor's

interior, exterior, and total available areas are 68.50 m2, 27.50 m2, and 96.00 M2; the second

floor's are 68.50 M2 , 0.00 M2 , and 72.50 M2; and the total are 137.00 M2, 27.50 M2 , and

164.50 M2, respectively (Rule 53). These rules are the rules that transfer information from

the designing grammar to the programming grammar, as mentioned in Section 7.3. More

accurately, these rules are urban planning rules, and if the urban planning Malagueira

grammar was developed, they would be transferred from this grammar to the programming

and designing grammars.

Table 7.8 - Classification of functions, spaces, and rooms from an area measurement
viewpoint

House Gross Useful Inhabitable Functions Rooms
Dwelling Gross Useful Inhabitable 1 Sleeping Bedroom

area area area 7 Playing Studio, bedroom, living
Agd Aud= Aid 8 Studying Studio, bedroom, living

Agd e 9 Working Studio, bedroom, living
IAud/Agd 2 Cooking Kitchen

3 Informal dining Dining-room, Kitchen,
living-room

4 Formal Dining Dining-room, living-room
5 Living Living-room
6 Hosting Living-room
10 Ironing clothes kitchen, living-room,

bedroom

11 Washing clothes kitchen
12 Drying clothes kitchen

Non- 10 Ironing clothes Laundry
inhabitable 11 Washing clothes Laundry
area 12 Drying clothes Laundry, patio, terrace,
And balcony

13 Hygiene Bathroom
15 Circulation Corridor, staircase
16 Storage Closets, storage, pantry

Non-useful area Walls, ducts, etc.
Annexes Gross Useful area 14 Being outside Patio, terrace, balcony

area Aud = Aga e IAda/Aga 16 Storage
Aga 17 Garage Garage

Non-useful area Walls, ducts, etc.
Ana

366

Table 7.9 - Area indexes

Document Indexes

Aid / Aud Aud / Agd Aua/Aga
PH Min 0.667 (T1/1 dweller) 0.769 0.769

0.741 (T5/9 dwellers)
Ref 0.769 0.800 (T1/1 dweller) 0.820

0.820 (T5/9 dwellers)

RRTHS 0.77 0.77

RTHS 0.81 0.75

Key:
Aid - dwelling inhabitable area
Aud - dwelling useful area
Agd - dwelling gross area
Aua - annex useful area
Aga - annex gross area

Note:
The Aua/Aga index (annex useful / annex gross area) did not exist in the RTHS, which used the Agh/Aud
index (house gross area / dwelling useful area). However the PH considered that this index could be
misleading in assessing a house's quality because "the annex might contain spaces that compensate for
some limitations found in the dwelling." This is, in fact, the case of the Malagueira patio houses. Therefore,
the Aua/Aga was preferred.

Table 7.10 - Gross areas in Malagueira lots (after Table 4.3)

Yard Urban Balco- Gross Areas (m_2)

Loca- context nies 1s Floor 2"' Floor Total
tion Int. Ext. Total Int. Ext. Total Int. Ext. Total

Lot 96.00 0.00 96.00 96.00 0.00 96.00 192.00 0.00 192.00

Front any yes 72.50 23.50 96.00 68.50 27.50 96.00 141.00 51.00 192.00
*23.50

**04.00 72.50 1 27.50 168.50

no 68.50 27.50 96.00 68.50 0.00 72.50 141.00 23.50 164.50
Back no back yes 72.97 23.03 96.00 56.80 39.20 96.00 129.77 62.23 192.00

street or no *23.03
_ _**16.17 72.97 39.20 168.97

back yes 72.50 23.50 96.00 68.50 4.00 72.50 141.00 27.50 168.50
street no 68.50 27.50 96.00 68.50 0.00 72.50 137.00 27.50 164.50

Note: * Area above the 1"s floor's patio , **minimum useful exterior area

7.4.4.7 Quality: function: spatiality: Space capacity

A space's capacity is related to the number of dwellers that will be involved in the

function assigned to it, and/or to the pieces of equipment required to perform its function.

In the PH grammar, the capacity of a room for common use, such as the living-room, the

dining room, the pantry, and the house clothing and general storage spaces, is

367

measured in terms of the total number of dwellers. The capacity of a room for private

use, such as a bedroom, a studio, and a balcony is measured in terms of the number of

its users. The capacity of a room for common use where equipment has an important

role, such as a kitchen, and a laundry, is measured both in terms of the total number of

dwellers, and the required pieces of equipment. The capacity of bathrooms is given by

the pieces of equipment that it contains. The rules for determining a space's capacity

are embedded in the rules that add spaces.

7.4.4.8 Quality: function: spatiality: Space Articulation

A space's articulation refers to the way in which the space is articulated with other

spaces. The space is isolated if the associated function is the sole or the primary

function in the room. The space is delimited if it is in a room primarily designed for

another function, but clearly delimited from the rest of the room, otherwise it is included.

(Figure 7.7) In Malagueira houses, sleeping, cooking, living, bathing, and exterior

spaces always constitute isolated rooms, whereas dining, working, and storage spaces

can be isolated, delimited, or included.

Included Delimited Separated

Dining Dnn
Living
Dining Living Living

Fig. 7.7 - Articulation of spaces: included, delimited, and isolated.

7.4.4.9 Quality: function: spatiality: Dwelling capacity

The dwelling capacity is the list of spaces included in the dwelling. The programmer

provides a list of obligatory spaces required for the minimum quality level -- the minimum

368

obligatory list, based on the type and number of bedrooms, if the chosen degree of

customization was type, or on detailed dweller information if it was custom. It also

calculates the list of obligatory spaces -- the initial obligatory list, and the list of optional

spaces for the quality level specified by the user. The user has then the possibility of

changing that list to define the list of current spaces - the current list. The degree of

freedom in making such changes is limited to respect the regulations and the available

area. The user cannot delete or downgrade spaces in the desired list if they are in the

minimum obligatory list, except in particular circumstances when the previous addition of

an optional space covers up for the loss of that space, as explained further below. The

user can upgrade obligatory spaces or add optional spaces as long as the area of all the

desired spaces does not exceed the amount of available area. Such a restriction

prevents the user from upgrading or adding rooms when the available area has already

been exceeded. The exact changes that can be made regarding each space, as well

the rules for determining the available area are explained in suit. Figure 7.8 shows the

relation among the different lists of spaces.

izObligatory
Minimum

Initial U Optional

Desired

Non-desired Current

Figure 7.8 - List of spaces used in the generation of the housing program: obligatory (minimum,
and initial), optional (desired, and non-desired), and current (obligatory, and desired).

Obligatory dwelling capacity

The programmer determines the obligatory dwelling capacity depending on typological

and morphological constraints, following Rules g54-gl 02, summarized in Table 7.11.

369

The programmer assigns weights to each space requirement, to express how important

its inclusion in the house is. The designer will use these weights in the derivation of a

solution. The assignment of weights follows the following rules. If a space is in the

minimum list and in the current list for the selected quality level, its weight is 100. If the

space is in both lists, but with different spatiality features in each, its weight is 90. If the

user changes the spatiality features of such spaces, the user can assign a weight

between 80 and 60. If the space is in the optional list, the user can assign a weight

between 60 and 10.

Table 7.11 - Obligatory spaces

Space Articulation Conditions Room

Patio Isolated none own
Living-room Isolated none own
Kitchen Isolated none own
Bedroom * Couple own

Double own
Single own

Bathroom * Bathtub none own
Shower own
Lavatory own

Formal dining * Included If quality min or med living
Delimited If quality max living

Informal dining * Included If quality min or med, kitchen
bedrooms [2, 5], dwellers [3,9]

Delimited If quality max, kitchen
bedrooms [1, 5], dwellers [2,9]

Children play * Included If custom Bedroom, living, kitchen,
circulation

Youth study * Included If quality min, med, or max Bedroom, living
Adult work * Included If quality max Bedroom, living
Laundry * Included If quality min Kitchen

Delimited If quality med or max
Pantry * Included If quality min, med, or max Kitchen, circulation
Clothing storage * Included If quality min, med, or max Circulation, bedrooms
Global storage * Included If quality min, med, or max Circulation

Note: * See rules g54-102 or tables 7.12-7.17 to get the exact number and articulation of each space

370

Patio, kitchen, living room, and staircase

Rules 54-56 always add a patio, a kitchen, a living-room to the minimum (a1o) and initial

obligatory lists of spaces (a11), as well as to the current lists of spaces (a13), and to the

appropriate zones (a14). Rule 57 adds a staircase if the number of floors (as) is two.

These rules also calculate the dimensional requirements based on the number of

dwellers and on the quality level and then update the areas (a15, a16), and the cost (a24).

They also introduce the corresponding topological requirements (a16). The exact

number and type of the remaining spaces varies according to typological and

morphological constraints, as explained below.

Bedrooms

If the user chooses to specify a customized house, the number and type of bedrooms is

derived from the provided detailed dweller information as explained above. If the user

chooses to specify a housetype, the programmer determines the number and type of

bedrooms based on the total number of dwellers and bedrooms, according to Rules g58-

71, summarized in Table 7.12. The rationale behind these rules derives from the

traditional concept of nuclear family formed by the parents and their kids. A couple

bedroom is always allocated, except in those cases in which the number of dwellers

matches the number of bedrooms. The number and type of the remaining bedrooms is

a matter of fitting the remaining dwellers into the remaining rooms as follows. The

remaining dwellers are placed in single bedrooms until there are no more rooms

available. Then, single bedrooms are turned into double bedrooms until all the dwellers

are assigned to a bedroom. For instance, Rule g71 specifies that if the number of

bedrooms is 5 and the number of users is 9, then there is 1 couple and 3 double and 1

individual bedrooms.

Table 7.12 - Obligatory bedrooms

Bedrooms Dwellers Number Type
1 1 1 individual

2 1 couple

2 2 2 individual
3 1 couple

1 individual
4 1 couple

1 double

3 4 1 couple
2 individual

5 1 couple
1 double
1 individual

6 1 couple
2 double

4 5 1 couple
1 double
1 individual

6 1 couple
1 double
2 individual

7 1 couple
2 double
1 individual

5 7 1 couple
1 double
3 individual

8 1 couple
2 double
2 individual

9 1 Couple
3 Double
1 individual

Bathrooms

The programmer adds bathrooms to the housing program according to rules g72-83,

summarized in Table 7.14. Rules 72-74 add bathrooms to the minimum list of spaces

based on the number of users and floors to ensure that the user cannot delete the

required bathrooms. Rules 75-83 add bathrooms to the current list of spaces based on

the number of dwellers and floors, but also on the quality level. There are three types of

bathroom, depending on their capacity: bathtub, shower, and lavatory5 (Table 7.13). All

s In rigor, a lavatory is not a bathroom. Nevertheless, the term bathroom is used in a broader
sense in this work encompass all the spaces dedicated to personal hygiene functions.

372

the dwellings have a bathtub but they also can have a shower and a lavatory in some

cases. For instance, rule g83 specifies that if the dwelling quality level is maximum and

the number of users is between 6 and 9, then there is a bathtub, a shower, and a

Lavatory.

Table 7.9 - Type of bathrooms and their equipment

Type (capacity) Equipment
Bathtub Bathtub, sink, toilette, bide
Shower Shower, sink, toilette, bide
Lavatory Sink, toilette

Table 7.14 - Obligatory bathrooms

Quality Users Floors 1st 2nd 3rd
any 1-9 any bathtub
min 2-6 2 lavatory
min 7 any lavatory
min 8-9 any shower
med 2-5 2 lavatory
med 6 any lavatory
med 7-9 any shower
med 8-9 any lavatory
max 2-4 2 lavatory
max 5 any lavatory
max 6-9 any shower
max 6-9 any lavato

Dining spaces

The programmer includes dining spaces in the housing program following rules g84-88,

summarized in Table 7.15. Rule g84 adds an included informal dining space to the

minimum list of spaces. Rules g85-88 add appropriate dining spaces to the initial

obligatory and to current lists of spaces, as well as to the appropriate zone. There is no

obligatory dining room. However, depending on the number of bedrooms and dwellers,

there might be obligatory informal and formal dining spaces. These can be included in

373

the living or kitchen rooms, or constitute a delimited space adjacent to them. The formal

dining space is always related to the living room, whereas the informal one is related to

the kitchen. In case there is no informal dining space, the informal meals will take place

in the formal dining space be it included, delimited or isolated. For instance, rule g85

specifies that if the quality level of the house is minimum or medium, and if the number

of bedrooms is equal or bigger than 2, and the number of dwellers is equal or bigger

than 3, then add an included informal dining space.

Table 7.15 - Obligatory dining spaces

Quality Dining Bedrooms 1 2 3 4 5
Dwellers 1 2 2 3 4 4 5 6 5 6 7 7 8 9
Articulation ___

min Current included x x x x x x x x x x x
or delimited
med Formal included x x x x x x x x x x x x X X

delimited

max Current included
delimited x x x x x x x x x x x x x

Formal included
delimited x x x x x x x x x x x x x x

Studio spaces

The programmer determines the inclusion of studio spaces following rules g89-96,

summarized in Table 7.16. A studio shelters those activities that are secondary to the

dwelling function such as the work of adults, the study of youngsters, and the play of

children. There are, thus, three types of studio spaces: work, study, and play spaces.

The rules to include these spaces in the housing program depend little on the degree of

customization specified by the user. In the housetype option (rules 89-91) the

programmer assumes that the occupants of the couple bedrooms are adults and the

374

occupants of the remaining are youngsters. In the customized option (rules g92-96), it

checks the dwellers' ages to decide which type of studio space to include. For instance,

rule g89 specifies that if the user chose to describe a housetype, and if the number of

single bedrooms is smaller than the number of single youth study spaces, then include

one single youth study space in a free single bedroom. For instance, rule g92 specifies

that if the user chose to describe a customized house, and a dweller's age is smaller

than 14, and the he/she does not share a bedroom, and he/she is not the user of an

existing children play space, then add one included single children play space for this

user in his bedroom.

Table 7.16 - Obligatory studio spaces

Laundry space

The programmer adds laundry spaces following rules g97 and g98. The laundry space

includes both wash and dry clothing spaces. The rules are very straightforward. Rule

g97 specifies that if the housing quality level is minimum, then add one included laundry

space to the minimum, initial obligatory, and current lists of spaces, as well as to the

service zone. Rule g98 specifies that if the housing quality level is medium or maximum,

then add one delimited laundry space to such lists.

Storaqe space

In the PH, the storage space required in the performance of functions is included in the

area requirements of the corresponding spaces. This included the bedroom. In

375

Dwelling Bedrooms 1 2 3 4 5
capacity Dwellers 122 34 4 5 6 5 6 7 7 8 9

Space single 1 - 2 1 - 2 1 2 3 2 1 3 2 1_
capacity double - - - - 1 - 1 - - 1 1 2 3

addition, the PH required pantry, house clothing storage, and general storage spaces.

In the RTHS, one of the documents that preceded the PH, the bedroom closet space

was not included in the bedroom, but in the house clothing storage. Comparing the area

demands of both documents, one can conclude that in the PH area demands are just

slightly higher than those in the RTHS. (For instance, for a two-bedroom, three-dwellers

house, the RTHS area requirement is 3.00-4.50m 2, and the PH one is 3.20-5.54m2)

Although, Siza followed the RTHS after 1984, when they became mandatory, the

analysis of his designs showed that the storage area allocated in the Malagueira designs

is always above the RTHS minimum and around the PAHPA one. Therefore, to follow

the PAHPA requirements in the programming grammar does not make it incompatible

with the Malagueira design grammar.

The programmer adds pantry, house clothing storage, and general storage spaces

following rules g99-1 01. The pantry can be a piece of furniture in the kitchen, or a room

easily accessible from the kitchen, but it is not obligatory to include an isolated pantry.

Rule g99 adds one included pantry space. The house clothing storage can be a

furniture closet. Rule g100 adds one included house clothing storage space. The global

storage is used to store larger items used in activities of the dwellers, such as bicycles,

folding pieces of furniture, and so on. It is not obligatory to include a step-in closet. Rule

g101 adds one included global storage space.

Exterior spaces

The exterior spaces include balconies, exterior storage spaces, and garages. The

programmer adds a balcony, only if the user chose this option in the description of the

morphology (Rule g102). Exterior storage spaces and garages are not obligatory

spaces.

376

Optional Dwelling Capacity

The programmer automatically includes in the optional list those spaces that are not

included in the obligatory list using rule g1 03. The user can then add such spaces to the

current list. In addition, user can subtract spaces from the current list, provided that they

are not included in the minimum list, if he/she is describing a customized house; or in the

initial obligatory list, if he/she is describing a housetype. The user also can upgrade and

downgrade the spaces in the current list. When the user manipulates this list, the

programmer automatically updates the optional list to ensure that the maximum capacity

that is allowed by the PH is not exceeded. The PH imposes such an upper limit because

they target state-subsidized social housing, and therefore, they want to guarantee that

the state is not subsidizing upper-class houses. This restriction was respected in the PH

programming grammar because they also were respected in the design of Malagueira

houses, and therefore, in the Malagueira designing grammar. Moreover, even when the

PH did not impose an upper limit on the requirements, these were introduced in the

grommet to prevent the user from specifying an over-constrained housing program.

Nevertheless, these upper limits could be relaxed in the programming grammar if the

designing grammar was changed.

The rules to add and subtract spaces from the current list are rules g104 through g136,

summarized in Table 7.17. As shown in this table, the optional list includes only

bathrooms, dining spaces, studios, storage spaces, and balconies. The rules to

manipulate these optional spaces are described below.

377

Table 7.17 - Optional spaces

Operation Spaces Articulati Conditions Rooms where are located
on

Upgrade Bathroom * bathtub

(obligatory shower

spaces) Formal dining Delimited If quality min or med
Isolated living

Informal dining Delimited If quality min, med kitchen
If quality max,
bedrooms [1],
users [1]

Isolated
Children play Delimited Bedroom, living, kitchen,

circulation

Isolated Bedroom, living, kitchen,
circulation

Youth study Delimited Bedroom, living
Isolated

Adult work Delimited If quality min or med Bedroom, living
Isolated If quality max

Laundry Delimited If quality min Kitchen
Isolated

Pantry Isolated Kitchen, circulation
House clothing Isolated Circulation, bedrooms
storage

Global storage Isolated Circulation

Delete Informal dining Included If it exists formal
(obligatory) Delimited dining isolated

Add Bathroom bathtub nbathrooms < nbedroom+2
(optional shower
spaces) lavatory

Informal dining Included If min or med, kitchen
bedrooms [1],
users [1,2]

Adult work Included nadult studio < nadult dwellers
Clothing storage Included Circulation, bedrooms
Global storage Included Circulation

Isolated

Balcony -- If nalcony < 2
Terrace -- If nerrace < 2

Bathrooms

The user can either upgrade any of the existing bathrooms, by turning a lavatory into a

shower bathroom, or a shower bathroom into a bathtub bathroom (rule 104). Bathrooms

can be downgraded and deleted, as long as the requirements of the minimum obligatory

list are fulfilled. The user also can add new bathrooms, as long as the total number of

bathrooms does not exceed the number of bedrooms plus two (rule 105). The rationale

behind this rule is to consider that all the bedrooms can have a private bathroom, and

378

that there can be additional bathrooms linked the service and the living zones. The user

also can subtract bathrooms when the number in the current list is above the minimum

(rule g106). The programmer removes the bathroom from the optional list, if the number

of bathrooms in the current list equals the maximum allowed (rule 107), and adds if it is

below (rule 108).

Dining spaces

The formal dining can be upgraded from included to delimited, and from delimited to

isolated (rule g109). The formal dining cannot be deleted. The informal dining space

can be only upgraded from included to adjacent, and if one delimited formal dining space

exists, then the informal dining space can be downgraded to included (rule g 10). An

informal dining space can be added, if there is none (g11). The informal dining space

can be deleted, if one isolated formal dining space exists (rule g 12).

Studio spaces

All the studio spaces -- children play, youth study, and adult workspace -- can be

upgraded from included to delimited, and from delimited to isolated and later

downgraded if the minimum obligatory list is respected (rules g1 14-115). The user can

add adult workspaces as long as their number does not exceed the number of adult

dwellers (rule gi 16), and then delete them (rule g 17). The programmer removes the

adult workspace from the optional list, if the number of adult spaces in the current list is

equal to the number of adult dwellers (g 18), and adds it back, if it is below (g 19).

Laundry spaces

The laundry can be upgraded from included to delimited, and from delimited to isolated

and then downgraded, to the initial type (rule g122). The laundry cannot be deleted.

379

Storaqe spaces

The storage spaces-pantry, house clothing storage, and global storage-can be

upgraded from included to isolated and then downgraded (rules g121-g123). The user

also can add and delete house clothing and global storage spaces (g124-127). The

programmer deletes the house clothing storage and the global storage spaces from the

optional list, if the current capacity reaches the maximum, which equals the number of

dwellers plus two, and adds them back, if it gets below (g1 28-131).

Exterior spaces

The user can upgrade and downgrade a balcony by changing its capacity, as long as it

does not exceed the number of dwellers plus two (g1 32). The user can add a balcony to

the current list, if he specified such in the morphology and there are no more than two in

the current list (g133). The user also can delete a balcony, if there are two (g134). The

programmer deletes balcony from the optional list, if the current number equals two

(g135), and adds it back if it is below (g136). No rules were included to add garages and

exterior storage spaces, but they could be easily added.

7.4.4.10 Quality: function: spatiality: Space spaciousness - width, height, and area

The spaciousness of a space depends on the dimensional requirements of that space,

namely its width, height, and area. When a space is introduced in the housing program,

the programmer determines its dimensional requirements based on its capacity (dwellers

or equipment), articulation, and quality level. It does so by using functions with the

spaces's name, capacity, articulation, and quality level as arguments to retrieve the

appropriate values from tables 1 (width), $2 (height), and 03 (area). Tables 1 and 2 are

rearranged into Tables 7.18 through 7.30. The dimensional requirements shown

380

correspond to the PH requirements with the few exceptions indicated below the tables.

The analysis of the Malagueira houses confirmed that their dimensions respect the PH

requirements with very few exceptions. Therefore, the compatibility between the PAHPA

grammar and the Malagueira grammar also is guaranteed at this level.

Table 7.18 Dimensional requirements of bedrooms

Feature ($) (units) Capacity Quality
Min Med Max

Width (1) (M) Couple 2.70 3.00 3.30
Double 2.10 2.40 2.70
Single 2.10 2.40 2.70

Height (12) (M) Any 2.40 2.60 2.70

Area ($3) (m2) Couple 10.5 11.5 12.0
Double 9 10.0 11.0
Single 5.5 6.0 6.5

Note: The area of bedrooms in the Malagueira houses are in accordance with the PH requirements.

Table 7.19 - Dimensional requirements of living rooms

Feature (1) (units) Capacity Quality
(dwellers) Min Med Max

Width (1) (M) 1-3 2.70 2.85 3.00
4-5 2.85 3.00 3.30
6-7 3.00 3.30 3.60
8-9 3.30 3.60 3.90

Height (2) 1-9 2.40 2.60 2.70

Area ($3) (M2) 1-2 6.00 (< 10.00) 7.5 (< 10.00) 9.00 (< 10.00)
3 7.50 (< 10.00) 9.00 (< 10.00) 10.50

4-5 9.00 (< 10.00) 10.5 12.00
6 10.50 12.00 15.5
7 12.00 (16.00) 15.50 19.00

8-9 15.50 (16.00) 19.00 22.5

Note: (< x.xx) the RGEU requirements.

The Malagueira houses are expandable, but the areas of those rooms that are common to all the variations
(1-5 bedroom) of a particular type do not change from variation to variation. Therefore, the areas of living-
rooms of the smallest variation are as large as those of the biggest variation. The smallest living room area

in a Malagueira house was 16.35m2 (Subtype Da), which is above the 15.50 minimum required for a five-

bedroom, nine-dweller house.

381

Table 7.20 - Dimensional requirements of informal dining spaces

The area of the dining spaces (transitional spaces) in the Malagueira houses is above the limits of the
requirements considered in this table. The smallest dining space's area is 5.51 m2, which is above the
required 5.00 M2.

Table 7.21 - Dimensional requirements of formal dining spaces

Feature ($) Articulation Capacity Quality
(units) (dwellers) Min Med Max

Width ($1) (M) (delimited! 1-3 2.40 2.70 3.10
isolated) 4 2.40 2.70 3.30

5 2.40 2.90 3.30
6 2.60 2.90 3.50
7 2.60 3.10 3.50
8 2.80 3.10 3.70

1 9 2.80 3.30 3.70

Height (2) (M) 1-9 2.40 2.60 2.70

382

Feature ($) Articulation Capacity Quality
(units) (Dwellers) Min Med Max

Width ($1) (M) 1-3 2.15 2.35 2.55
4-5 2.15 2.35 2.75
6-7 2.15 2.55 2.75
8-9 2.35 2.55 2.95

Height (03) (M) 1-9 2.40 2.60 2.70

Area (03) (M2) Included 1 - - -
2 - - 2.50
3 2.00 2.50 3.00
4 2.00 3.00 4.00
5 2.50 3.50 4.50
6 3.00 4.00 5.00
7 3.50 4.50 5.50
8 4.00 5.00 6.00
9 4.50 5.50 6.50

Delimited 1 - - -
Isolated* 2 - - 3.00

3 2.50 3.00 3.50
4 2.50 3.50 4.50
5 3.00 4.00 5.00
6 3.50 4.50 5.50
7 4.00 5.00 6.00
8 4.50 5.50 6.50
9 5.00 6.00 7.00

requirements of isolated informal dining spaces. In this work, theyNote: The PH did not indicate the area
equal those of delimited spaces.

Area (03) (M2)
I I I

Included

Delimited 1 5.50 6.50 7.00
2 5.50 6.50 7.00
3 5.50 6.50 8.00
4 5.50 7.50 9.00
5 6.50 8.50 10.00
6 7.50 9.50 11.00
7 8.50 10.50 12.00
8 9.50 11.50 13.00
9 10.5 12.50 14.00

Isolated

11.00 13.00 1 14.00

7.22 - Dimensional requirements of kitchens

Feature($) Capacity Quality

(units) Bedrooms I Dwellers Minimum Medium Maximum

Width (1) (m) I or L-shaped counter 1.70 1.70 1.80
Double I-shaped counter 2.30 2.30 2.40

U-shaped counter 2.30 2.30 2.40

Height(P2)(m) 0-5 1-9 2.40 2.60 2.70

Area (P3)(m2) 0 1 4.50 5.00 5.50
1 1 4.50 5.00 5.50
1 2 4.50 5.50 6.00
2 2 4.50 5.50 6.00
2 3 4.50 5.50 6.00
2 4 5.00 6.00 6.50
3 4 5.00 6.00 6.50
3 5 5.00 6.50 7.00
3 6 5.00 6.50 7.00
4 5 5.00 6.50 7.00
4 6 5.00 6.50 7.00
4 7 5.50 7.00 7.50
5 7 5.50 7.00 7.50
5 8 5.50 7.00 7.50
5 9 5.50 7.00 7.50

383

2 5.00 6.00 6.50
3 5.00 6.00 7.50
4 5.00 7.00 8.50
5 6.00 8.00 9.50
6 7.00 9.00 10.50
7 8.00 10.00 11.50
8 9.00 11.00 12.50

13.0012.0010.00

2 - - 7.50

3 - - 8.50

4 - 8.00 9.50
5 7.00 9.00 10.50
6 8.00 10.00 11.50
7 9.00 11.00 12.50
8 10.00 12.00 13.50

5.00 6.00 6.50

Table 7.23 - Dimensional requirements of bathrooms

Feature (0) Capacity Quality
(units) Min Med Max

Width (1) (M) Bathtub 1.50 1.70 1.90
Shower 1.30 1.40 1.60
Lavatory 0.80 0.80 0.90

Height (02) (M) Any 2.20 2.40 2.60

Area (03) (M2) Bathtub 4.00 (3.50) 4.50 5.00
Shower 2.50 (2.50) 2.50 3.00
Lavatory 1.50 (1.00) 1.50 2.00

Note: (x.xx) the RGEU requirements.

In some cases, the dimensions of bathrooms in Malagueira houses are above the RGEU requirements, but
below the PH requirements.

Table 7.24 - Dimensional requirements of studio spaces

Space Feature ($) Articulation Capacity Quality
(units) (dwellers) Min Med Max

Playing (children) Width (01) (M) 1.30 1.40 1.60

Height(2) (m 2.40 2.60 2.70

Area (03) Included Single 1.00 1.50 2.00

2) Double 1.50 2.50 3.50
Delimited Single 3.00 3.50 4.00

Double 3.50 4.00 4.50

Studying (youth) Width (1) (M) 1.20 1.30 1.40

Height (02) (m 2.40 2.60 2.70

Area (03) Included Single 1.00 1.50 2.00

(2) Double 1.50 2.50 3.50
Delimited Single 1.50 2.00 2.50

Double 3.00 4.00 5.00

Working (adult) Width (01) (M) 1.30 1.40 1.60

Height (02) (M) 2.40 2.60 2.70

Area ($3) Included 1.00 2.00 3.00
(2) Delimited 2.00 3.00 4.00

Table 7.25 - Dimensional requirements of laundry spaces

Feature (p) (units) Articulation Dwellers Quality
Min Med Max

Width ($1) (M) Included Single counter 0.90 1.20 1.50
(parallel to the Opposed 0.60 0.60 0.90
counter) counters

Delimited Single counter 1.20 1.20 1.50
Opposed 0.60 0.60 0.90
counters

Isolated Single counter 1.20 1.20 1.50
Opposed 0.90 1.00 1.10
counters I _III

384

Length (01) (M) Included Single counter 1.30 1.40 1.50

(perpendicular to Opposed 2.30 2.30 2.40
the counter) counters

Delimited Single counter 1.40 1.50 1.50
Opposed 2.30 2.40 2.40
counters

Isolated Single counter 1.50 1.50 1.60
Opposed 2.30 2.30 2.40
counters

Height (02) (M) Any 1-9 2.20 2.40 2.60

Area (03) (M2) Included 1-3 1.17 1.0+ 1.0 1.5+ 1.0 2.0+ 1.0
4-6 1.0+1.0 1.5+1.0 2.0+1.0
7-9 1.0+1.0 2.0+1.0 2.5+1.0

Delimited 1-3 - - -

Isolated 4-6 1.5+1.0 2.0+1.0 2.5+1.0
7-9 1.5+1.0 2.5+1.0 3.0+1.0

Note: The dimensions of laundries in the Malagueira houses are in accordance with the PH requirements,
except for Type Bb's laundry whose width is slightly below (2.26 < 2.30).

Table 7.26 - Dimensional requirements of pantry spaces

Feature (0) Articulation Capacity Quality

(units) (dwellers) Min Med Max

Width (p1) (M) Any 0.90 1.20 1.50

Height (2) (M) Any 2.20 2.40 2.60

Area (03) (M2) Included 1 0.50 0.75 1.00
Isolated* 2 0.50 0.75 1.25

3-4 0.75 1.00 1.50
5 1.00 1.25 1.75
6 1.00 1.25 1.75
7 1.25 1.25 1.75
8 1.25 1.50 2.00

F 9 1.50 1.75 2.00

Note: The dimensions of isolated pantries in Malagueira houses are in accordance with the PH
requirements.

Table 7.27 - Dimensional requirements of general storage spaces (step-in closet)

Feature (0) Articulation Capacity Quality
(units) (dwellers) Min Med Max

Width (1) (M) Isolated 1-9 0.90* 1.20 1.50

Height (3) (M) Isolated 1-9 2.20 2.40 2.60

Area ($3) (M 2) Isolated 1-2 1.00 1.00 1.25
3 1.00 1.00 1.50
4 1.00 1.25 1.50

5-6 1.00 1.25 1.75
7-8 1.00 1.50 2.00
9 1.00 1.75 2.25

385

Table 7.28 - Dimensional requirements of house Clothing storage (furniture)

Feature ($) Articulation Capacity Quality
(units) (dwellers) Min Med Max

Width (1) (M) Included 1-9 0.90 1.20 1.50

Height (2) (m) Included 1-9 2.20 2.40 2.60

Area (03) (M2) Included 1 0.50 0.75 0.75
2 0.50 0.75 1.00
3 0.75 1.00 1.25
4 0.75 1.25 1.50
5 1.00 1.50 1.75
6 1.00 1.50 2.00
7 1.25 1.75 2.25
8 1.25 2.00 2.50

_ _ 9 1.50 2.00 2.75

Note: The analysis of Malagueira houses showed that Siza designed furniture closets whose smallest
dimension was 0.45 m and isolated closets whose smallest dimension was 0.75 m.

Table 7.29 - Dimensional requirements of balconies

Feature (P) (units) Capacity Quality
(dwellers) Min Med Max

Width (1) (M) 1 - 0.60 1.25
2 - 0.60 1.25
3 - 0.60 1.25
4 - 1.25 1.50
5 - 1.25 1.50
6 - 1.25 1.50
7 - 1.50 1.80
8 - 1.50 1.80
9 - 1.50 1.80

Height (02) (M) 1-9 _ - -

Area(P3) (M) 1 - 1.50 2.50
2 - 1.50 2.50
3 - 1.50 2.50
4 - 2.50 3.50
5 - 2.50 3.50
6 - 2.50 3.50
7 - 3.00 4.00
8 - 3.00 4.00
9 - 3.00 4.00

Table 7.30 - Dimensional requirements of stairs

Feature (f) (units) Type Quality

Minimum Medium Maximum

Width (01) (M) Any 0.70 0.80 0.90

Height (02) (M) Any 1.90 1.90 1.90

Area (03) (M2) I-shaped 3.88 4.55 5.25
L-shaped 4.08 4.77 5.55
U-shaped 4.88 5.87 6.94

386

7.4.4.11 Quality: function: Topology

Topology qualifies the relations between any two spaces in terms of their distance, and

communication. It affects privacy and accessibility. If a space is added to the current list

of spaces, the programmer adds to the housing program the required and recommended

topological relations involving that space and other included spaces. The required and

recommended topological relations are shown in Tables 7.31 and 7.32.

Rules g137-146 add required topological requirements. For instance, rule g151

specifies the required topological requirement between the kitchen and the laundry,

depending on their specified articulation (isolated, delimited, and included) and on the

dwelling quality level (minimum, medium, and maximum). For instance, if a kitchen and

an isolated laundry are included in the current list of spaces, and if the quality level is

minimum, then the laundry should be preferably close to, adjacent to, or communicate

with the kitchen through a door in this order. If the quality level is maximum, then the

order of preference is reversed. The order of preference This means that if the quality

level is maximum, then designer will first try to place the laundry in a way they

communicate through a door. If it fails, then it will try to place them adjacent to, and then

close to each other.

Rules 147-152 add recommended topological requirements. The user can change

recommended requirements, or create new ones between any two spaces included in

the current list of spaces (rule g156). If a space is subtracted from the current list of

spaces, the programmer removes the topological relations involving that space (rule

g157).

387

Table 7.31 - Required topological relations among spaces

Space 1 Space 2 Articulation Quality Relation Weight
level

Kitchen Laundry Isolated Minimum Close, adjacent, door 100
Medium Adjacent, close, door 100
Maximum Door, adjacent, close 100

Delimited Any Passage 100
Included Any Merged 100

Informal Isolated Minimum Close, adjacent, window, door 100
dining Medium Adjacent, close, window, door 100

Maximum Door, window, adjacent, close 100
Delimited Any Passage 100
Included Any Merged 100

Formal Isolated Minimum Close, adjacent, window, door 100
dining Medium Adjacent, close, window, door 100

Maximum Door, window, adjacent, close 100
Delimited Any Passage 100
Included Any Merged 100

Pantry Isolated Minimum Close, adjacent, door 100
Medium Adjacent, close, door 100
Maximum Door, adjacent, close 100

Included Any Merged 100
Patio, Isolated Minimum Adjacent, close, window, door 100
street Medium Window, close, adjacent, door 100

Maximum Door, window, adjacent, close 100
Living-room Isolated Minimum Close, adjacent, window, door 100

Medium Adjacent, close, window, door 100
Maximum Door, window, adjacent, close 100

Living-room Formal Isolated Minimum Close, adjacent, window, door 100
dining Medium Adjacent, close, window, door 100

Maximum Door, window, adjacent, close 100
Delimited Any Passage 100
Included Any Merged 100

Patio Isolated Minimum Adjacent, close, window, door 100
Medium Window, close, adjacent, door 100
Maximum Door, window, adjacent, close 100

Laundry Isolated Minimum Close, adjacent, window, door 100
Medium Adjacent, close, window, door 100
Maximum Door, window, adjacent, close 100

Global Staircase, Isolated Minimum Close, adjacent, merged, door 100
storage corridor Medium Adjacent, merged, close, door 100

Maximum Merged, door, adjacent, close 100

Table 7.32 - Recommended topological relations among spaces

Space 1 Space 2 Relation Weight
Bedroom First floor on 80

Living-room same floor 80
Kitchen same floor 80
Bathtub same floor 80

Lavatory Living-room same floor 80
Kitchen same floor 80

388

7.4.4.12 Quality: Aesthetics: proportion

The only included aesthetic feature is proportion because the experimental results

showed that it was not embedded into the Malagueira grammar. However, unlike other

dimensional features such as width, height, and area, proportion impacts aesthetics

more than function. Therefore, it was included in the programming grammar as a sub-

feature of aesthetics. It also would be possible to extend the grammar and include other

categories such as symmetry, rhythm, and so on.

Proportion is the ratio between two dimensions of shapes. In architecture, several

proportions are usually considered. Two of these proportions are the one between the

width and the length of rooms and the one between the width and the height of rooms.

Other common proportions are the ones between the dimensions of fagade elements.

Proportioning systems refer to the relations among the proportion of shapes in a

composition. For instance, it might refer to the proportion among windows or among

windows and walls or other elements in the design of a fagade. The use of certain

proportions or the use of a proportioning system is said to contribute to the beauty of a

design. Andrea Palladio, for instance, recommended rooms with proportions 2:1, 1:1,

4:3, 3:2, 5:3, and 2:1 in his Quattro Libri (Palladio, 1980). Table 7.33 shows some

commonly suggested proportions in architectural treaties. (March 1998)

Table 7.33 - Proportions commonly used in architecture

Ordered by dividr Ordered by ratio
Proportion Ratio Proportion Ratio
1:1* 1.0 1:1 1.0
1: 2 0.7071 5:6 0.83(3)
1:2 * 0.5 4:5 0.8
1:3 0.33(3) 3:4 0.75
1:4 0.25 1:12 0.7071
2:3 * 0.66(6) 2:3 0.66(6)
2:5 0.4 3:5 0.6
3:4 * 0.75 1:2 0.5

389

Siza confirmed proportion as an important design quality in the design of Malagueira

houses, in our conversations with him. Siza mentioned that there was the concern to

design rooms with certain proportions, such as 1:1, 2:3, 3:4, and so on. A careful

analysis of the floor plans was undertaken to confirm this assertion. In this analysis, two

issues needed to be considered: which proportions to take into account, how to measure

the dimensions to calculate the proportions.

As the Malagueira floor plans were generated by a dissection process, two proportions

needed to be considered. One was the proportion of the dissection, and the other was

the proportion of the resulting rectangles (Figure 7.9). The adequate proportioning of the

dissection assures a harmonious relation among rooms, whereas the adequate

proportioning of the resulting rectangles influences the beauty of each individual room.

8.00 1:1

12.00

1:2

4.00 1:2

8.00 m

a b

Figure 7.9 - Two proportions considered in the dissection of rectangles: the proportion of the
dissection, and the proportion of the resulting rooms.

390

3:5* 0.6 2:5 0.4
4:5 0.8 1:3 0.33(3)
5:6 0.83(3) 1:4 0.25

Note: * Proportions cited by Palladio in the Quattro Libri.

The measurement issue consisted of two problems. The first was to choose whether to

consider preliminary or construction drawings. The preliminary drawings are closer to

the initial stages of the design and, therefore, they are theoretically better to identify the

original ideas behind the genesis of form. The construction drawings, on the other hand,

potentially represent a compromise between aesthetic, functional (e.g. the space

required to perform a function) and construction requirements (e.g. modular

coordination), and so they can identify other forces that contributed to the final form.

Comparative analyses of both drawings provided important clues in modeling the

process of generating Malagueira plans. The second problem was how to take into

account wall thickness. That is, should the dimensions of rooms be measured from the

axes of the walls (Figure 7.10a), or should they be measured from their surfaces (Figure

7.1 Ob)? Furthermore, if rooms were measured from their surface, should the thickness

of the finishing material be considered (Figure 7.11)? In preliminary studies, the degree

of abstraction of the drawings does not pose such a problem, but in construction

drawings, there is a difference between drawings showing the superstructure (for

instance, non-plastered walls), and drawings showing the finished materials (plastered

walls). The former drawings are used at an early construction stage for building the

walls, pillars, pavements, and other structural elements, whereas the latter are used for

finishing the building (plastering, tiling, and so on). The different measurement

strategies yield different results, especially when small rooms are involved.

Preliminary drawings were not available for all the housetypes, and therefore a complete

comparison between preliminary and construction drawing was not possible.

Preliminary design drawings were available for the first frontyard and backyard houses

that Siza designed, namely subtypes Aa and Ba. These houses were never built and

they were, in fact, preliminary studies of types A and B houses.

391

8.00

4.00

4.00 3.80

Figure 7.10 - Two ways of measuring the dimensions in a dissected rectangle: from the axes, or
from the surfaces of walls.

7.80

3.80

Figure 7.11 - Schematic representation of the two types of construction drawings, one showing
just the elements of the superstructure (a), and the other the same elements with finishing

materials applied (b).

The first step in the search for revealing Siza's strategy for wall placement was to

overlay the floor plans on a one by one meter grid (Figure 7.12). This procedure

revealed that the wall placement did not strictly follow the grid. The only wall

consistently placed on the grid in all the housetypes, with the grid line cutting through the

middle of the wall, was the first level dissection wall (dissection into inside and outside

zones). In the majority of cases, the second level dissection walls (dissection into

functional zones) is also placed on the grid line, but sometimes in the middle, and some

392

7.80

other times on one side (Figure 7.13). This suggests that the grid was used merely as a

reference and not as a bounding rule. Only in housetypes Aa and Ba did the grid seem

to have been followed more strictly. Considering that these were preliminary studies that

evolved to types Ab, Ac, and Bb, during the construction design stage, it suggests that

the need to conform with functional and construction requirements overrode the grid

constraint.

t l

Ab

Cb

Figure 7.12 - First floor plans of the 5-bedrooms variations of the Malagueira types designed by
Siza overlaid on a one meter grid. Dates: Aa, August 1977; Ab, January 1978; Ac, May 1978; Ba,

August 1977; Bb, January 1978; Ca, 1984; Da, 1988; E, January 1984, March 1984.

- - - --........ 1 2

7.70

3.90

Figure 7.13 - The three different ways of placing a wall relatively to the axis of the dissection.

393

-i Ti

But did the same happen to the proportioning requirement? The survey of the

construction drawings revealed that rare are the cases in which there is an exact match

of the proportions in the drawing with any of the canonic types, if the rooms are

measured from the walls surface.

In housetypes Aa and Ba, there is a strict compliance with proportioning rules, if the

measurements are made from the grid lines to which the walls are related. (Fig. 7.14) In

housetype Aa, the wall between the corridor and the patio recess is on the "wrong"

place, but that is because building regulations are very strict regarding the corridor width,

which needs to be 1.10 m and, therefore, could not be related to the grid at all. All the

other proportions are one of Siza's favorite. The main theme is the dissection into 2:3

(the same proportion as the lot) and 3:4 rectangles through 1:2 and 2:3 dissections. In

housetype Ba, there is a similar use of canonic proportions although the grid is not

followed as strictly as in Aa. The predominant theme, however, is the dissection into 1:1

and 1:2 rectangles through 1:2 and 3:5 dissections. The analyses of Aa and Ba

drawings (preliminary drawings) suggest that Siza's strategy comprised two steps: (1)

use canonic dissections to obtain canonic rectangles by following the grid and, (2) place

the walls in the middle, on the left, or on the right of the dissecting lines, to conform with

functional requirements.

1:21:4 3:5

1:2 2:5
2:3 3:5

1:12:3
2:3

1:4 ,-- 1:2

1:2 1:21:2

1:2 2:3 1:2

3:4 1:2

1:2
Aa Ba

Figure 7.14 - The canonic proportions of the dissections (italics) and the rooms in types Aa and
Ba, prior to the consideration of wall thickness.

394

The analysis of the construction drawings of types Ab, Ac (Figure 7.15), and Bb reveal a concern

for obtaining rooms with final good proportions, more than for respecting canonic

dissections obtained by following the grid. The deviations of the final proportions of

rooms from the canonic types is smaller in these types (0.0070), than in Aa (0.0131) and

Ba (0.0150). In types Ca, Da (Figure 7.16), and E, the situations differ. In Ca and E

there is a bigger emphasis on following the grid, whereas in Da, the emphasis is on the

final proportion of rooms, which deviate very little from the canonic proportions (0.0053).

These results suggest two additional steps in Siza's proportioning strategy: (3) once

walls have been placed, shift them around to better accommodate functional

requirements and (4) shift them again to bring the final proportions of rooms closer to the

canonical proportions.

1:21:4 1:21:4 1:21:4

1:2 1:2 1:2
...... 2:3 . . . 2:3 . . . 2:3

2:3 2:3 2:3
2:3 2:3 r2:3

1:2 *1:2 1:2
1:2 1:2 1:2 1:2 1:2 1:2

1:1 1:1
3:4 3:4 2:3 2:3

1:2 3:4 2:3 1:2 1:1 2:3 1:2 2:3

S1:1 1:3

1:2 1:2 1:31:2
Ab1 Ab2 Ac

Figure 7.15 - The dissection and room proportions in subtypes Ab, and Ac.

1:2 3:40.0358 0.0140 2:3
2:3 2:3 0.0015 1:2 3:4 0.0216
0.0119 0.0000 0.0055 0.0053 3:5

4:5 _ | 0.0000
- --- 0.0031F1=

4:5 4:5 1: sqrt 2 2:3
o.0000 2:3 0.004a 0.0012 0.0146

0.0287 1:2 5:6
5:6 1:3 0.0091 0.0034

0.0026 0.0015

0.0131 0.0053
Aa Ac Da

Figure 7.16 - The proportions of the final rooms in types Aa, Ac, and Da, and their deviations from
the strictly canonic types.

395

In summary, results suggest that room dimensioning stems from interaction between two

types of requirements, one related to function, and the other related to aesthetics

(proportion), thereby supporting the inclusion of proportion as a design requirement.

The programmer introduces the default weights assign to proportions through Rule

g1 64. The user can then change such weights using rule g1 65.

7.4.4.13 Cost

In the PH three different costs are considered: construction, exploitation, and

maintenance. The land cost also is frequently considered in the design of housing.

However, the only cost considered in the programming grammar is the construction cost

(X24) because it is relatively easy to estimate, and to budget. Moreover, many

institutions regularly publish tables with construction costs, thereby making it easier to

make accurate estimations. The land cost is not important in the context of the PAHPA-

Malagueira grammar because there is only one type of land plot, and the lot is an

independent variable in the top-down approach followed by Siza. (Once a lot is selected

by the user, changing the lot is not a design option.)

The programmer estimates the construction cost by multiplying the area of each space

by the cost per area unit (square meter) of that space, and then adding up the cost of all

spaces. The cost per area unit depends on whether the space is a service space

(kitchen or bathroom), an enclosed non-service space (bedroom, living-room, etc.), a

covered space (balcony or patio with overhangs), or an external space (balcony or

patio). (Table 7.34) There are no specific cost rules. The cost is updated by the rules

that add, subtract, upgrade, and downgrade spaces. The user controls the total cost

associated with a housing program by controlling the added spaces.

396

Table 7.34 - Cost per area unit

Space
Service Enclosed Covered Exterior

Cost (USD/m) $600.00 $500.00 $400.00 $300.00

7.4.4.14 Activating the designing grammar

When the user hits the 'send' button on the interface, the programmer creates an empty

design description (Rule 166), except for the inclusion of the appropriate available area

(C15), the weights that the user assigned to the proportions (C23) and to the qualities

(a2 3), and the inclusion of rule RO in the history of the design derivation (M2). The

features in the design description are the same in the housing program, but they are

identified with the Greek letter 8 to differentiate them. The rules in the designing

grammar, manipulated both descriptions as explained below.

397

*

Table 7.35 - The programming grammar rules

go: Initializing description
a1i<- < nil, nil, nil, nil >
a2<-- < nil, nil, nil, nil >
as3<- < nil >
a4<-0
as <- 0
a6<- < nil >
a7<- < nil >
as <- < nil >
as <- < nil >
amo <- 0
aii <-0

11<*- 0
a12 <- 0
a13 +- 0
a14 <- < [patio, 0], [service, 0], [living, 0], [sleeping, 0], [f2, 0]>
a15<- (available, (0, 0, 0, 0), (0, 0, 0, 0), (0, 0, 0, 0), 0)
a16<- (used, (0, 0, 0, 0), (0, 0, 0, 0), (0, 0, 0, 0), 0)
a117 <- 0
a1 +- 0
aig <- 0
a2o <- 0
a21 <-0

a22 <- <[1:1, 0], [1:42, 0], [1:2, 0], [1:3, 0], [1:4, 0], [2:3, 0], [2:5, 0], [3:4, 0], [3:5, 0],
[4:5, 0], [5:6, 0]>

a23 <- < [function, 0], [spatiality, 0], [capacity, 0], [articulation, 0], [spaciousness, 0],
[topology, 0], [aesthetics, 0]>

a24 0

125 <-0

$4 <- @
3 <- 3

P34 <--134

@s <- @s

g1: default lot context (programmer)
ao<-cao +<8,12,96>

~~d 41#S AN~

g2: default urban context (programmer)
a11<-' a1 -< ?context, ?contexti, ?context, ?contextr > ,

?contextf, ?contexti, ?contextb, ?contextr e {street, house}
+ < street, house, house, house >

a13 <-' a13 - < [front, ?id, ?users, ?functions, (?capacity, ?wt), (?articulation, ?wt), (?qievel, ?Wq), ?w, ?h, ?a],
[left, ?id, ?users, ?functions, (?capacity, ?wt), (?articulation, ?wt), (?qievei, ?wq), ?w, ?h, ?a],
[back, ?id,?users, ?functions, (?capacity, ?wt), (?articulation, ?wt), (?qievei, ?wq), ?w, ?h, ?a],
[right, ?id,?users, ?functions, (?capacity, ?wt), (?articulation, ?wt), (?qievei, ?wg), ?w, ?h, ?a]>

+ < [front, 1, 0, (street), 0, 0, 0, 0, 0, 0],
[left, 2, 0, (house), 0, 0, 0, 0, 0, 0],
[back, 3, 0, (house), 0, 0, 0, 0, 0, 0],

398

[right, 4, 0, (house), 0, 0, 0, 0, 0, 0]>

g3: houses on both sides and at the back (user)
i <- ci - < ?contextf, ?contexti, ?contextb, ?contextr > ,

?contextt, ?contexti, ?contextb, ?contextr e (street, house}
+ < street, house, house, house >

a13 +- (13 - < [front, ?id, ?users, ?functions, (?capacity, ?wt), (?articulation, ?wt), (?qevei, ?Wq), ?w, ?h, ?a],
[left, ?id, ?users, ?functions, (?capacity, ?wt), (?articulation, ?wt), (?qevei, ?wq), ?w, ?h, ?a],
[back, ?id,?users, ?functions, (?capacity, ?wt), (?articulation, ?wt), (?qievei, ?Wq), ?w, ?h, ?a],
[right, ?id,?users, ?functions, (?capacity, ?wt), (?articulation, ?wt), (?qievei, ?wq), ?w, ?h, ?a]>

+ < [front, 1, 0, (street), 0, 0, 0, 0, 0, 0],
[left, 2, 0, (house), 0, 0, 0, 0, 0, 0],
[back, 3, 0, (house), 0, 0, 0, 0, 0, 0],
[right, 4, 0, (house), 0, 0, 0, 0, 0, 0]>

g4: houses on one side and at the back (user)
ai <- a1 - < ?contextf, ?contexti, ?contextb, ?contextr > ,

?context, ?contexti, ?contextb, ?contextr e (street, house}
+ < street, house, house, street >

a13 <- a13 -< [front, ?id, ?users, ?functions, (?capacity, ?wt), (?articulation, ?wt), (?qievei, ?Wq), ?w, ?h, ?a],
[left, ?id, ?users, ?functions, (?capacity, ?wt), (?articulation, ?wt), (?qievei, ?wq), ?w, ?h, ?a],
[back, ?id,?users, ?functions, (?capacity, ?wt), (?articulation, ?wt), (?qievei, ?wq), ?w, ?h, ?a],
[right, ?id,?users, ?functions, (?capacity, ?wt), (?articulation, ?wt), (?qievei, ?wg), ?w, ?h,?a]>

+ <[front, 1, 0, (street), 0, 0, 0, 0, 0, 0],
[left, 2, 0, (house), 0, 0, 0, 0, 0, 0],
[back, 3, 0, (house), 0, 0, 0, 0, 0, 0],

[right, 4, 0, (street), 0, 0, 0, 0, 0, 0]>

g5: houses on one side (user)
a1 <- a1 -< ?contextf, ?contexti, ?contextb, ?contextr > ,

?context, ?contexti, ?contextb, ?contextr e (street, house}
+ < street, house, street, street >

a13 <- a13 - < [front, ?id, ?users, ?functions, (?capacity, ?wt), (?articulation, ?wt), (?qievei, ?Wq), ?w, ?h, ?a],
[left, ?id, ?users, ?functions, (?capacity, ?wt), (?articulation, ?wt), (?qievel, ?Wq), ?w, ?h, ?a],
[back, ?id,?users, ?functions, (?capacity, ?wt), (?articulation, ?wt), (?qievei, ?wq), ?w, ?h, ?a],
[right, ?id,?users, ?functions, (?capacity, ?wt), (?articulation, ?wt), (?qievei, ?Wq), ?w, ?h,?a]>

+ < [front, 1, 0, (street), 0, 0, 0, 0, 0, 0],
[left, 2, 0, (house), 0, 0, 0, 0, 0, 0],
[back, 3, 0, (street), 0, 0, 0, 0, 0, 0],
[right, 4, 0, (street), 0, 0, 0, 0, 0, 0]>

g6: houses on both sides (user)
ai +- ai -< ?contextf, ?contexti, ?contextb, ?contextr > ,

?contextf, ?contexti, ?contextb, ?contextr E (street, house}}
+ < street, house, street, house >

C13 <-- C13 - < [front, ?id, ?users, ?functions, (?capacity, ?wt), (?articulation, ?wt), (?qievei, ?Wq), ?w, ?h, ?a],
[left, ?id, ?users, ?functions, (?capacity, ?wt), (?articulation, ?wt), (?qievei, ?Wq), ?w, ?h, ?a],
[back, ?id,?users, ?functions, (?capacity, ?wt), (?articulation, ?wt), (?qievei, ?wq), ?w, ?h, ?a],
[right, ?id,?users, ?functions, (?capacity, ?wt), (?articulation, ?wt), (?qievei, ?Wq), ?w, ?h,?a]>

+ < [front, 1, 0, (street), 0, 0, 0, 0, 0, 0],
[left, 2, 0, (house), 0, 0, 0, 0, 0, 0],
[back, 3, 0, (street), 0, 0, 0, 0, 0, 0],
[right, 4, 0, (house), 0, 0, 0, 0, 0, 0] >

Solar orienfation: spefying the solar orientation (user)

g7: default urban context (programmer)
w2 +- a2 - < ?orientationf, ?orientationi, ?orientationb, ?orientationr >

+ < South, East, North, West >,
aC13 <- C13 - function (?orientationf, ?orientationi, ?orientationb, ?orientationr),

399

+ function (south, east, north, right, west)
?orentationf, ?orientationi, ?orentationb, ?orientationr

e {nil, south, west, north, east, southwest, southeast, northwest, northeast}

g8: front elevation facing South (user)
a2 +- a2 -< ?orentationf, ?orentationi, ?orientationb, ?orientation, >

+ < South, East, North, West >,
a13 +- a13 - function (?orentationf, ?orentationi, ?orientationb, ?orentationr),

+ function (south, east, north, right, west)
?orentationf, ?orentationi, ?orentationb, ?orientationr

e {nil, south, west, north, east, southwest, southeast, northwest, northeast}

g9: front elevation facing West (user)
a -< ?orientationf, ?orentationi, ?orentationb, ?orientationr >

+ < West, South, East, North >,
aX13 <- X13 - function (?orentationf, ?orentationi, ?orientationb, ?orentationr),

+ function (west, south, east, right, north)
?orentationf, ?orientationi, ?orentationb, ?orentationr

E {nil, south, west, north, east, southwest, southeast, northwest, northeast}

glO: front elevation facing North (user)
c2 <- a2 -< ?orentation, ?orentationi, ?orentationb, ?orientationr >

+ < North, West, South, East >,
C13 <- a13 - function (?orentation, ?orentationi, ?orientationb, ?orentationr)

+ function (north, west, south, east)
?orientation, ?orentationi, ?orientationb, ?orientationr

e {nil, south, west, north, east, southwest, southeast, northwest, northeast}

g11: front elevation facing East (user)
c2 <- c2 -< ?orentationf, ?orentationi, ?orentationb, ?orientationr >

+ < East, South, West, North >,
a13 <- aX13 - function (?orentation, ?orientationi, ?orentationb, ?orentationr)

+ function (east, west, south, north)
?orentationi, ?orentationi, ?orientationb, ?orientationr

e {nil, south, west, north, east, southwest, southeast, northwest, northeast}

g12: front elevation facing Southwest (user)
aw <- a2 - < ?orentationf, ?orentationi, ?orentationb, ?orientationr >

+ < Southwest, Southeast, Northeast, Northwest >,
a13 <- C13 - function (?orientationf, ?orentationi, ?orientationb, ?orientationr)

+ function (southwest, southeast, northeast, northwest)
?orentationf, ?orientationi, ?orientationb, ?orientationr

E (nil, south, west, north, east, southwest, southeast, northwest, northeast}

g13: front elevation facing Northwest (user)
c2 <- c2 -< ?orentation, ?orientationi, ?orentationb, ?orientationr >

+ < Northwest, Southwest, Southeast, Northeast >,
C13 - a13 - function (?orientation, ?orentationi, ?orientationb, ?orentationr)

+ function (northwest, southwest, southeast, northeast)
?orientationf, ?orentationi, ?orientationb, ?orientationr

e {nil, south, west, north, east, southwest, southeast, northwest, northeast}

g14: front elevation facing Northeast (user)
a2 <- a2 - < ?orentation, ?orentationi, ?orientationb, ?orientationr >

+ < Northeast, Northwest, Southwest, Southeast >,
a13 <- aX13 - function (?orentation, ?orientationi, ?orientationb, ?orientationr)

+ function (northeast), northwest, southwest, southeast)
?orentationf, ?orientationi, ?orientationb, ?orientationr

e {nil, south, west, north, east, southwest, southeast, northwest, northeast}

400

g15: front elevation facing Southeast (user)
a2 <- a2 - <?front, ?left, ?back, ?right >

+ < Southeast, Northeast, Northwest, Southwest >,
a13 <- al3 - function (?odentationf, ?orentation, ?orentationb, ?odentationr)

+ function (southeast, northeast, northwest, southwest)
?odentationt, ?orientationi, ?odentationb, ?orientationr

e (nil, south, west, north, east, southwest, southeast, northwest, northeast)

g16: Deafault degree (programmer)
as <- as -< ?degree > , ?degree e (custom, type)

+ <type>

g17: Customized house (user)
as +- as -< ?degree > , ?degree e (custom, type)

+ < custom >
g18: Housetype (user)

as <- as -< ?degree > ?degree e (custom, type)
+ <type>

Dwellers:
g19: Specifying dwellers information (user), and adding required bedrooms (programmer)

as <- as, as = custom
a4<- a4+<1, (namen+1, agen+1, gendern+) >,

agei e ('0-1', '2-5', '6-13', '14-17', '18-23', '23-65', '> 65'},
gender e (male, female)

as <- as + < 1, [(couple, 0), (double, 0), (single, 1)]>
as - a6 , qievel = a6
a1n <- a13 + < be, idbe, (namen.1), (sleeping), (single, 100), (qievei, 100), wsi, hei, asi>

idbe= max (id) +1
- 3 < ?ide, ?idfl, on, ?w > e a17

> a14 <- a14 , + sleeping (idbe, asi)
a15 <- a15 , + < available, (0, -asi, 0, -asi), (0, 0, 0, 0), (0, -asi, 0, -asi), 0>
a16 <- a16 , + < used, (asi, asi, 0, asi), (0, 0, 0, 0), (asi, asi, 0, asi), - ai / au + (ai +

asi / au + asi) >
a17 <- a17 , + < [idbe, idi1, on, 100] >

3 < ?ide, ?idfl, on, ?w >
-> a14 <- a14 , + f2 (idbe , asi)

a15 <- a15, + < available, (0, 0, 0, 0), (0, -asi, 0, -asi), (0, -asi, 0, -asi), 0>
a16 <- a16, + < used, (0, 0, 0, 0), (asi, asi, 0, asi), (asi, asi, 0, asi), - ai / au + (al +

asi / au+ asi) >
a17 <- a17 , + < [idbe, id2, on, 100] >

a24 <- a24+ asi -cm2
1i <- 01 , wsi = w (qievel, Si)

12 <- P2, hsi = h (qievel, si)
P3 <- 03, asi = a (qievel, Si)
D6 <- BP6, cm2 = cost-m2 (qievel, covered)

Share:
g20: Specifying that two dwellers share a bedroom (user), and update description (program.)

as <- as, as = custom
as <- as+ < -1, [(couple, 0), (double, 1), (single, -2)]>,
a6 <- a6 , qlevei= a6

401

C13 -- a13
- < [be, ?idi, (?name1), (sleeping), (single, ?wc1), (isolated, 100), (?qieveii, ?wg1), ?W1, ?hi, ?a],

[be, ?id2, (?name2), (sleeping), (single, ?wc2), (isolated, 100), (?qIeve2, ?Wq2), ?W2, ? ?h2, ?a2]>
+ < [be, ?idi, (?namei, ?namei), (double, 100), (?articulation, 100), (?qieveldo, ?Wqdo), Wdo, hdo, ado]>

?qlevedo = max (?qieveil, ?qIeve2) , ?Wqdo = max (?Wql, ?Wq2)

-3 < ?idn, ?idfl, on, ?w > e a17
-> a14 <- a14 , - sleeping (idn, asi)

+ sleeping (idi, ado)

C15 <- a15 + < available, (0, 2-asi - ado, 0, 2-asi - ado), (0, 0, 0, 0), (0, 2-asi - ado, 0, 2-asi - ado), 0>
a16 - a16 + < used, (ado - 2 - asi, ado - 2 - asi, 0, ado - 2 - asi),

(0,0,0,0),
(ado -2 - asi, ado - 2 - asi, 0, ado -2 - asi),
- ai / au + (ai + ado - 2 -asi / au + ado - 2 -asi) >

aX17 <- a17 + < [?idbe, idfl, on, 100] >

3 < ?idn, ?idti, on, ?w > e C17
-> aX14 <- a14 - sleeping (idn, asi)

+ f2 (idi, ado)
a5 <- a1 + < available, (0, 0, 0, 0), (0, 2-asi -ado, 0, 2-asi -ado), (0, 2-asi -ado, 0, 2-asi -ado), 0>
a16 - a16 + < used, (0, 0, 0, 0),

(ado - 2 - asi, ado - 2 - asi, 0, ado - 2 - asi),
(ado - 2 - asi, ado - 2 - asi, 0, ado - 2 - asi),
- ai / au + (ai + ado - 2 - asi / au + ado - 2 - asi) >

X17 <- a17 + < [?idbe, idf2, on, 100]>

aC24 <- aC24 + ado - cm2 - 2 - asi - cm2
1i <- 1 , Wdo = W (qievel, do)

12 - 32, hdo = h (qievei, do)
P33<- P3, ado = a (qievei, do)
$6 <-- De, cm2 = cost-m2 (qievel, covered)

g21: Specifying that two dwellers share a bed (user), and update description (programmer)
C <- as, a = custom
a <- cs + < 1, [(couple, 1), (double, 0), (single, -2)]>,
a6 *- c6 , qievei= a6

a13 <- C13
- < [be, ?idi, (?namei), (sleeping), (single, ?wc1), (isolated, 100), (?qeveii, ?wq), ?w1, ?h1, ?a1],

[be, ?id2, (?name2), (sleeping), (single, ?wc2), (isolated, 100), (?qeve12, ?Wq2), ?w2, ? ?h2, ?a2]>
+ < [be, ?idi, (?namei, ?namei), (sleeping), (double, 100), (?articulation, 100), (?qieveido, ?Wqdo),

Wcu, hcu, acu)] >
?q1eveldo = max (?qieveli, ?qlever2), ?Wqdo = max (?Wq1, ?Wq2)

-3 < ?idn, ?idfl, on, ?w > E a17, n e (1, 2)
-> a14 <- a14 - sleeping (idn, asi)

+ sleeping (idi, acu)
aC1 <- aC1 + < available, (0, 2 -asi -acu, 0, 2 -asi -acu), (0, 0, 0, 0), (0, 2 -asi -acu, 0, 2 asi -acu), 0>
a16 - a16 + < used, (acu - 2 - asi, acu - 2 - asi, 0, acu - 2 -asi),

(0,0,0,0),
(acu - 2 -asi, acu - 2 - asi, 0, acu- 2 - asi),
- ai / au + (ai+ acu - 2 - asi / au + acu - 2 - asi) >

a17 <- a17 + < [?idbe, idfl, on, 100]>
3 < ?idn, ?idfl, on, ?w > e a17, n e {1, 2)

-> aC14 <- a14 - sleeping (idn, asi)
+ sleeping (idi , acu)

a15 <- a15 + < available, (0, 0, 0, 0), (0, 2 - asi -acu, 0, 2 - asi -acu), (0, 2 -asi -acu, 0, 2-asi -acu), 0>
a16 <- a16 + < used, (0, 0, 0, 0),

(acu - 2 - asi, acu - 2 - asi, 0, acu - 2 - asi),
(acu - 2 - asi, acu - 2 - asi, 0, acu - 2 - asi),
- ai / au + (ai + acu - 2 - asi / au + acu - 2 - asi) >

a17 <- a17 + < [?idbe, idf2, on, 100]>
C(24 -- C24+ acu - cm2 -2 - asi -cm2
1i +- 1i , wcu = w (qieve, cu)

402

P2<- P2, hu= h (qievel, Cu)
P3+- P3, acu = a (qevei, cu)
P6<-- P6, cm2 = cost-m2 (qievel, covered)

Bedrooms: setting the range for the possible number of dwellers (programmer)
g22: The number of bedrooms is 0 (user)

aM <- a3 , as = type
a4<- a4+ < ndwelers, O >, nusers E {1, 2, 3, 4, 5, 6, 7, 8, 9}
as <- as + < 0, 0 >

g23: The number of bedrooms is 1 (user)
C3 <- C3 , x3= type
a4+- c4+ < ndweners, 0 >, nusersE {1, 2}
(s - as + <1, 0 >

g24: The number of bedrooms is 2 (user)
as<-as , as=type
a4 <- a4+ < ndwellers, 0 >, nusers E {2, 3, 4}
as <- as + < 2, 0 >

g25: The number of bedrooms is 3 (user)
s <- as , a3= type

a4 <- a4 + < ndwellers, 0 >, nusers e {4, 5, 6}
a5 <- as + < 3, 0 >

g26: The number of bedrooms is 4 (user)
s <- a , s = type

a(4 <- a4+ < ndwellers, 0 >, nusers e (5, 6, 7}
as +- as + < 4, 0 >

g27: The number of bedrooms is 5 (user)
s <- as , as= type

a4<- a4+ < ndwellers, 0 >, nusers E {7, 8, 9}
as <- as + < 5, 0 >

Dwellers: setting the range for the possible number of bedrooms (programmer)
g28: The number of dwellers is 0 (user)

M <-- a, as = type
a4 *- a4 + < 0, 0 >
as <-as < nbedrooms, 0 >, nbedroom E {1, 2, 3, 4, 5}

g29: The number of dwellers is 1 (user)
as <- aW, as= type
c4 +- a4 + < 1, 0 >

5 <- as < 1, 0 >

g30: The number of dwellers is 2 (user)
as <- as, as= type
a4 <- a4+ < 2, 0 >
a5 <- as < nbedrooms, O >, nbedrooms E {1, 2}

g31: The number of dwellers is 3 (user)
as +- as, as= type
a4 <- a4+ < 3, 0 >
as +- as < nbedrooms, 0 >, nbedroorm e (2, 3)

g32: The number of dwellers is 4 (user)

403

as <-cas, C= type
a4 <-- ca +< 4, 0 >
a5<- as < nbedrooms, O >, nbedrooms E (2,3)

g33: The number of dwellers is 5 (user)
a13 <- a, axw= type
(4 <- c4+ < 5, 0 >
Cs <- Cs < nbedrooms, 0 >, nbedrooms e (3, 4)

g34: The number of dwellers is 6 (user)
as <- a, a3 = type
a4 <- a4+ < 6, 0 >
a5 <- 5 < bedrooms, O >, nbedron E (3,4)

g35: The number of dwellers is 7 (user)
as <- a3, s = type
a4 <- a4+ <7, 0 >
a5 <- 15 < nbedroms, 0 >, nbedroons E (4,5)

g36: The number of dwellers is 8 (user)
as <-c a, cs= type
c4 <- c4+< 8, 0 >
as <- ca < 5, 0 >

g37: The number of dwellers is 9 (user)
Cs <- s, a = type

C4 <- a + <9, 0 >
cs <- ca < 5, 0 >s

g38: Specifying the yard location (programmer)
a <- a - < ?yard >, ?yard e (0, default)

+ < front >

g39: Specifying the yard location (user)
ar <- a7 -< ?yard >

+ < yard >, ?yard, yard e (front, back, default)

g40: Setting the number of floors to 1, when the number of bedrooms is 1
as <- a, nbedrooms=1

a8 <- as - < ?nfloors >
+ < 1 >

g41: Setting the possible number of floors to 1, when the number of bedrooms is 2
s <-- as , nbedrooms= 2

(8 <-c a - < ?nfloors >
+ < n >, ne {1,2}

g42: Setting the number of floors to 2, when the number of bedrooms is 2
a5 <- as5, nbedrooms> 2
ca <-- ca - < ?nfloors >

+ < 2 >

g43: Indicating whether balconies are desired (programmer)
ag <-- asq - < ?balconies,> , ?balconies e {0, default}

404

+< true >

g44: Indicating whether balconies are desired (user)
as <- (g - < ?balconies>

+ < balconies >, ?balconies, balconies e (true, false)

g45: setting the default housing quality to minimum (programmer)
as <- as + < minimum >
W23 <- a23

+ < [minimum, 50], [minimum, 50], [minimum, 34], [minimum, 33], [minimum, 33],
[minimum, 50], [minimum, 50]>

g46: specifying the housing quality (user)
as<- as - < ?quality >

+ < quality >, ?quality, quality e {minimum, medium, maximum)

g47: setting the qualities weights
a23 <- a23 + set-qLevel-weight (vpi, wi) ,

vpi e (function, spatiality, capacity, articulation, spaciousness, topology, aesthetics),
wi e (5, 10, 15,--.,100}

g48: calculate the current quality level
as +- as + <qievei>
a13 <- aC13

(23 <- (23- < [Vitunction, Wunction], [Vspatiality, Wapatiality], [Vcapacity, Wcapacity],

[Varticulation, Warticulation], [Vspaciousness, Wspaciousness],
[Vtopology, Wtopology], [Vaesthetics, Waesthetics]>

+ < [Viunction, Wiunction], [Vspatiaoty, Wspatiatity], [Veapacity, Wcapacity],
[Varticuation, Warticulation], [Vspaciousness, Wspaciousness],
[Vtopology, Wtopology], [Vaesthetics, Waesthetics]>

Viunction - Wunction + Vaesthetics -Waesthetics

(1) Vtiouing =
Wiunction + Waesthetics

Vspatiality - Wspatiality + Viopology - Wtopology
(2) Vunttion =

Wspatiality + Wtopology

Vdwelling capacity -Waweiling capacity + Vcapacity - Wcapacity + Varticulation - Warticulison + Vspaciousness Wspaciousness
(3) Vspacaiity =

Wdweiling capacity + Wcapacity + Waricution + Wspaciousness

(4) Vdwelling capacity = I Vdwelling capacity (space) - Wiweiling capacity (spacei) / I Waweiling capacity (spacei)
(5) Vcapacity = Z Vcapacity (spacei) - Wcapacity (spacei) / I Wcapacity (spacei)
(6) Varticulation = X Varticulison (space) - Warticulation (space) / I Wanicuation (spacei)
(7) Vspaciousness = I Vspaolousness (space) -Wspaciousness (spacei) / Z Wanieuion (space),
(8) Vtopology = X Vtopoiogy (relationi) -Wtopoiogy (relationi) / Z Wtopology (relationi),
(9) Vaesthetics = I Vaestheties (spacei) - Waestihetics (spacei) / I Waesthetics (spacei)

Vq C [0, 1] -> qievei = minimum
Vq c]1, 2] => qievel = medium
Vq c]2, 3] => qieve = maximum

Vq e (function, aesthetics, spatiality, topology, dwelling capacity, capacity, articulation, spaciousness

405

Getting the dwelling capacity average quality level
Vdwelling capacity (space):
spacei e minimumlist -> Vdwellingcapacity (spacel) = 1
spacel e mediumlist - minimumlist => Vdwelling capacity (spacei) = 2
spacei e maximumlist - (minimum-list + mediumlist) -> Vdwelling capacity (spacei) = 3

Getting the capacity average quality level
Vcapacity (spacei):
spacei= bedroom: capacity (spacei) = 2 A share (users (spacel)) = room -> Vcapacity (spacei) = 1

capacity (spacei) = 2 A share (users (spacel)) = bed -> Vcapacity (spacei) = 2
capacity (spacei) = 1 => Vcapacity (space) = 3

spacel e {kitchen, livingroom, laundry, pantry, global storage, patio, terrace)
capacity (space) = nusers = Vcapacity (spacel) = 1
capacity (spacei) = nusers +1 -> Vcapacity (spacei) = 2
capacity (spacei) nusers +2 - Vcapacity (spacei) = 3

spacei = bathroom capacity (spacei) = lavatory -> Vcapacity (space) = 1
capacity (spacei) = shower=-> Vespacity (space) = 2
capacity (spacei) = bathtub -> Vcapacity (spacei) = 3

spacele {formal diningroom, informal diningroom)
capacity (spacefd)+ capacity (spaceid) = nusers -> Vcapacity (spacei) = 1
capacity (spacel)+ capacity (spacei) = nusers +1 -> Vcapacity (spacei) = 2
capacity (spacel)+ capacity (space) nusers +2 -> Vcapacity (spacei) = 3

spaceie {playspace, studyspace, workspace)
capacity (spacei) = 2 -> Vcapacity (spacei) = 1
capacity (spacei) = 1 -> Vcapacity (spacei) = 2
capacity (spacel) = 1 A
capacitycuffent (funtion(spacei)) > capacitycuent (funtion(spacei)) -> Vcapacitys (spacei)= 3

spacele {balcony, terrace, patio)

spacel e {hall, corridor, staircase)

Getting the articulation average quality level
Varicuation (spacel):
Articulation = included -> Varticuiation (space) = 1
Articulation = delimited -> Varticuation (spacel) = 2
Articulation = isolated -> Varticulation (space) = 3

Getting the spaciousness average quality level
Vspaciousness = (quality (area (space)) + quality (width (space)) + quality (height (spacei))) /3

Getting the topology average quality level
Vtopology (spacei, spacej):
rreg (spacei, spacej) = door

A r (spacei, spacej) close, adjacent, window, door => qievei = 0
A r (spacei, spacej) = close -> qievei = 1
A r e {adjacent, window) -> qIevei = 2
A r = door -> qievei = 3

rreq (spacei, spacej) = merged
A r (spacei, spacej) # close, adjacent, window, door, merged > qieve = 0
A r (spacei, spacej) e {adjacent, close) -> qievei = 1
A r (spacei, spacej) E {door, window) -> qievei = 2
A r (spacei, spacej) = merged -> qievei = 3

406

rreq (spacei, spacej) = any
V r (spacei, spacei) -> qievei = 3

Getting the aesthetic average quality level
V proportion, space => qievei = 3

g49: the housetype is frontyard, and there are balconies on the second floor
ao <- a , Ag =lot-area (ao) = 96.00 m2

w7 <- (7 , a7= frontyard
as <- a, as = true

115 +- 115+ < available, (72.50, 23.50, Ag), (68.50, 4.00, 72.50), (0,141.00, 27.50,168.50), 0.77 >

g50: the housetype is frontyard, and them are no balconies on the second floor
ao <- ao , Ag = lot area (ao) = 96.00 m2

a7 <- a7 , a7 = frontyard
as <- a , ag= false
a1s <- a1s+ < available, (68.50, 27.50, Ag), (68.50, 0.00, 72.50), (0, 141.00, 27.50, 164.50), 0.77 >

g51: the housetype is backyard, and them is a house at the back
ao <- a , Ag = lot-area (ao) = 96.00 m2

a1l+- a1, al= < street, ?contexti, house, ?contextr > , ?contexti, ?context, e (house, street}
a7 <-(a7 , a7= backyard
a15 <- als+ < available, (72.97, 23.03, Ag), (56.80,16.17, 72.97), (0,129.77, 39.20,168.97), 0.77 >

g52: the housetype is backyard, them is a street at the back, and them are balconies on the second floor
ao <- ao , Ag = lot area (ao) = 96.00 m2

a1 <- a1, a1= < street, ?contexti, street, ?contextr > , ?contexti, ?contextr e (house, street)
a7 <-(a7 , a7 = backyard
a <- as , ag= true
C1s <- as+ < available, (72.50, 23.50, Ag), (68.50, 4.00, 72.50), (0,141.00, 27.50,168.50), 0.77 >

g53: the housetype is backyard, them is a street at the back, and them are no balconies on the second floor
ao <- ao , Ag = lot area (ao) = 96.00 m2

a1 <- a1, a1= < street, ?contexti, street, ?contextr > , ?contexti, house, ?contextr e (house, street)
a7 <- a7 , a7 = backyard
ag <- as , ag= false
a1s <- als+ < available, (68.50, 27.50, Ag), (68.50, 0.00, 72.50), (0, 137.00, 27.50, 164.50), 0.77 >

g54: Adding a patio (programmer
a4 <- 4, ndwellers = (14

as <- a6, qievei = a16

a1 <- a1o+ < [y, 1]>
a11 <- a11 + < [y, isolated, 100]>
a13 <- a13+ < [y, idy, 0, (being outside), (ndweliers, 100), (isolated, 100), (qievei, 0), wy, hy, ay]>

idy = max(id) +1
a14 <- a14+ patio (idy, ay)
C1s <- ans + < available, (0, 0, -ay, -ay), (0, 0, 0, 0), (0, 0, -ay, -ay), 0>
a16 <- al6 + < used, (0, 0, ay, ay), (0, 0, 0, 0), (0, 0, ay, ay), - ai / au + (ai/ au + ay) >
U17 <- a17 + < [idy, idi, on, 100]>
a24 <- a24 + ay -cm2
1i <- Pi , wy = w (y, qievel)

P2<- @2, hy = h (y, qievel)
P3<- @s, ay = a (y, qievel)

407

D6+- D6, cm2 = cost-m2 (qievel, uncovered)

g55: Adding a kitchen (programmer)
a4 <- a4 , ndwellers = a4

ac6 - ax6, lievei= a6
a0 +- aio + < [ki, 1] >

ail +- ci + < [ki, isolated, 100]>
a13 <- aC13+ < [ki, idki, 0, (cooking), (ndwellers, 100), (isolated, 100), (qievel, 0), Wki, hki, aki] >

idki= max(id) +1
a14 <- 1 14+ service (idki, aki)

1 <- a15 < available, (0, -aki, 0, -aki), (0, 0, 0, 0), (0, -aki, 0, -aki), 0>
a16 +- a16 < used, (aki, aki, 0, aki), (0, 0, 0, 0), (aki, aki, 0, aki), - ai / au + (ai+ aki / au + aki) >

(17 <- (17 + < [idki, idi, on, 100] >
a124 +- (24+ aki - cm2
P1+ - 1 , Wki, n= W (ki, fldwellers, isolated, qievel,)
12+- 12 , hki, n = h (ki, ndweilers, isolated, qievel)

P3<*- 13 , aki, n= a (ki, ndwellers, isolated, qievel)
D6<- B6, cm2 = cost-m2 (qievel, covered)

g56: Adding a living room (programmer)
ac4 4- a24, fldwellers = aC4

ax6 <- a6%, qievei= a6

a1i0 <- 110+ <[Ir, 1] >
a <11- an11 + < [Ir, isolated, 100]>
a13 <- (13+ < [Ir, idir, 0, (living, receiving), (ndwellers, 100), (isolated, 100), (qievei, 0), Wir, hir, air] >

idir = max(id) +1
a14 <- a14+ living (idir, air)
115 <- a1s < available, (0, -air, 0, -air), (0, 0, 0, 0), (0, -air, 0, -air), 0>

a16 <- 16 < used, (air, air, 0, ay), (0, 0, 0, 0), (air, air, 0, air), - ai / au + (a + air! au + air) >
X17 <- 1(17 + < [idir, idti, on, 100]>
(24 *- a24 + air -cm2

11 4- P1 , WIr W (Ir, ndwellers, isolated, qievel)
12 <-- 12, hir = h (Ir, ndwellers, isolated, qievel)
P3 <- 13, air = a (Ir, ndweliers, isolated, qievel)
P6<- 136, cm2 = cost-m2 (qievel, covered)

g57: Adding a staircase when the number of floors is 2 (programmer)
c4 +- a24 , ndwellers = a4
ax6 <- ax6, qievei = (6
a6 <- c, a = 2

cn +- ci + < [st, isolated, 100] >
a13<- (13+ < [St, idir, 0, (circulation), (ndwellers, 100), (isolated, 100), (qievel, 0), Wst, hst, ast] >

idii = max(id) +1
14 - m14+ living (idst, ast)

115<- a15 < available, (0, -ast, 0, -ast), (0, 0, 0, 0), (0, -ast, 0, -ast), 0>
a16 4- a16 < used, (0, ast, 0, ast), (0, ast, 0, ast), (0, 2 - ast, 0, 2 - ast), - ai I au + (ai / au + 2- ast) >
a17-- C a7 + < [idst, idii, on, 100], [idst, idf2, on, 100]>
(24<- (24+ ast - cm2

P31 Pi , Wst = w (st, qievel,)
124- 12, Hsi = h (st, qievel)
134- 13, Aq, st = a (st, qievel)
164- P6, cm2 = cost-m2 (qievel, covered)

Bedrooms: couple / double / single (programmer)

g58: Adding a single bedroom when there is 1 bedroom and 1 dweller

408

a3 +- as, as = type
cA4 <- a4 + < 1, 0 >
as +- as + < 1, [(couple, 0), (double, 0), (single, 1)]>
a6 <- as6, qlevel= a6
a1o +- a1o + < [be, 1, ((couple, 0), (double, 0), (single, 1))]>
aii - ai+ < [single, 0, 0]>
a13 <- a13+ < [be, idbe, 0, (sleeping), (single, 100), (isolated, 100), (qievei, 0), wsi, hsi, asi] >

idbe = max(id) +1
a14 <- aC14+ sleeping (idbe, asi)
a15 <- a1 + < available, (0, -asi, 0, -asi), (0, 0, 0, 0), (0, -asi, 0, -asi), 0>
a16 <- a16 + < used, (asi, asi, 0, asi), (0, 0, 0, 0), (asi, asi, 0, asi), -ai / au + (ai + asi / au + asi) >
a17 +- a17 + < [idbe, idfi, on, 100]>
a24 <- a24+ asi -cm2
1i- 1i , wsi= w (be, si, isolated, qievel)
P2<- P2, hsi= h (be, si, isolated, qievel)
P3<-- @3, asi = a (be, si, isolated, qievel)
P6 <- P16, cm2 = cost-m2 (qieve, covered)

g59: Adding a couple bedroom when there is only 1 bedroom and 2 dwellers
as +- as, as3= type
a4 <- ca+ <1, 0 >
as <- as + <1, [(couple, 1), (double, 0), (single, 0)]>
as <- as, qievei= a
aio - a1o+ < [(be, 1, ((couple, 1) (double, 0), (single, 0))]>
all +- al + < [couple, 0, 0]>
a13 +- a13+ < [(be, idbe, 0, (sleeping), (couple, 100), (isolated, 100), (qievei, 0), wcu, heu, acu]>

idbe = max(id) +1
a14 +- a14 + sleeping (idbe, acu)
a15 +- a15 + < available, (0, -acu, 0, -acu), (0, 0, 0, 0), (0, -acu, 0, -acu), 0>
a16 - a16 + < used, (acu, acu, 0, acu), (0, 0, 0, 0), (acu, acu, 0, acu), - ai / au + (ai + acu / au + acu) >
a17 +- a17 + < [idbe, idfl, on, 100]>
a24 <- aE24+ acu -cm2
1i - 1i , wcu= w (be, cu, isolated, qievel)

12 <- @2, heu = h (be, cu, isolated, qievel)

P33<- P33, acu = a (be, cu, isolated, qievei)
@6 +- B6, cm2 = cost_m2 (qievel, covered)

g60: Adding bedrooms with the appropriate capacity when there are 2 bedrooms and 2 dwellers
as +- as , as = type
a+ <- a4+< 2, 0 >
as <- as + < 2, [(couple, 0), (double, 0), (single, 2)] >
as as, qlevel= a6
as +- as , nfloors= as
aio +- aio+ < [be, 2, ((couple, 0), (double, 0), (single, 2))]>
ail +- ani + < [single, 0, 0], [single, 0, 0]>
a13 <- a13+ < [be, idbel, 0, (sleeping), (single, 100), (isolated, 100), (qievel, 0), wsi, hsi, asi],

[be, idbe2, 0, (sleeping), (single, 100), (isolated, 100), (qieve, 0), wsi, hsi, asi] >
idben = max(id) +1, n E (1, 2)

a14 <- a14 + sleeping (idbel, asi)
+ sleeping (idbe2, asi)

nflors= 1 >
ais +- a1s + < available, (0, -2 -asi, 0, -2 -asi), (0, 0, 0, 0), (0, -2 -asi, 0, -2 -asi), 0>
a16 <- a16 + < used, (2 - asi, 2 - asi, 0, 2 -asi),

(0,0,0,0),
(2 -asi, 2 -asi, 0, 2 -asi),
- ai / au + (a + 2 - asi / au + 2 - asi) >

a17 <- a17 + < [idbel, idfl, on, 100], [idbe2, idfi, on, 100]>
nfloors= 2 ->

a1s <- a15 + < available, (0, 0, 0, 0), (0, -2 - asi, 0, -2 -asi), (0, -2 - asi, 0, -2 -asi), 0>

409

C16 <- a16 + < used, (0, 0, 0, 0),
(2 - asi, 2 asi, 0, 2 - asi),

(2 - asi, 2 asi, 0, 2 - asi),
- ai / au + (al + 2 - asi / au + 2 - asi) >

C17 <-- a17 + < [idbel, idf, on, 100], [idbe2, idf, on, 100]>
24 <- a24+ 2 - asi - cm2

1i - 1i , wsi= w (be, si, isolated, qievel)
12 <- P2, hsi= h (be, si, isolated, qievel)

P3<- P3, asi = a (be, si, isolated, qievel)
B3<-- 136, cm2 = cost-m2 (qievel, covered)

g61: Adding bedrooms with the appropriate capacity when there are 2 bedrooms and 3 dwellers
as <- as, as = type
a4 <- a+ < 3, 0 >
as <- as + < 2, [(couple, 1), (double, 0), (single, 1)]>
a <- a6 , qievei= a6

a1o <- a1o+ < [be, 2, ((couple, 1), (double, 0), (single, 1))]>
a11<- a1 + < [couple, 0, 0], [single, 0, 0]>
a13 <- a13+ < [be, idbel, 0, (sleeping), (couple, 100), (isolated, 100), (qieve, 0), wcu, h cu, acul,

[be, idbe2, 0, (sleeping), (single, 100), (isolated, 100), (qievel, 0), wsi, hsi, asi]>
idben = max(id) +1, n e {1, 2)

a14 <- (14 + sleeping (idbel, acu)
+ sleeping (idbe2, asi)

nlors= 1 >

a15 <- aC1s + < available, (0, -2 -asi, 0, -2 -asi), (0, 0, 0, 0), (0, -2 -asi, 0, -2 -asi), 0>
a16 <- a16 + < used, (2 -asi, 2 - asi, 0, 2 - asi),

(0,0,0,0),
(2 - asi, 2 - asi, 0, 2 - asi),
-ai / au + (ai + 2 -asi / au + 2 - asi) >

a17 <- a17 + < [idbel, idfl, on, 100], [idbe2, idfl, on, 100]>
nloors= 2 ->

a15 <- a15 + < available, (0, 0, 0, 0), (0, -2 - asi, 0, -2 - asi), (0, -2 - asi, 0, -2 - asi), 0>
a16 <- a16 + < used, (0, 0, 0, 0),

(2 - asi, 2 - asi, 0, 2 - asi),
(2 - asi, 2 - asi, 0, 2 - asi),
- ai / au + (ai + 2 -asi / au + 2 - asi) >

(17 <- a17 + < [idbel, ides, on, 100], [idbe2, ide, on, 100] >
a24 <- a24 + (acu + asi) - cm2
P1i <- Pi , wcu = w (be, cu, isolated, qievel), wq, si= w (be, si, isolated, qievel)
12 <- D2, heu= h (be, cu, isolated, qievel), hq, si= h (be, si, isolated, qievel)
@s <- P3, acu = a (be, cu, isolated, qievel), aq, si= a (be, si, isolated, qievel)
36 <- 136, cm2 = cost-m2 (qievel, covered)

g62: Adding bedrooms with the appropriate capacity when there are 2 bedrooms and 4 dwellers
as <- as, as = type
a4 <-- a4+ < 4, 0 >
as <- as + < 2, [(couple, 1), (double, 1), (single, 0)]>
as+- as, qievei= a6
a1o <- a1o+ [be, 2, ((couple, 1), (double, 1), (single, 0))]
anl <- all + < [couple, 0, 0], [double, 0, 0]>
C13 <- a13+ < [be, idbel, 0, (sleeping), (couple, 100), (isolated, 100), (qievel, 0), wcu, heu, acu],

[be, idbe2, 0, (sleeping), (double, 100), (isolated, 100), (qievei, 0), wdo, hdo, ado]>
idben = max(id) +1, n e {1, 2)

a14 <- a14 + sleeping (idbel, acu) + sleeping (idbe2, ado)
nfloors = 1 -->

a1s <- C1s + < available, (0, -2 - asi, 0, -2 - asi), (0, 0, 0, 0), (0, -2 - asi, 0, -2 -asi), 0>
(16 <-- (16 + < used, (2 -asi, 2 - asi, 0, 2 - asi),

(0,0,0,0),
(2 -asi, 2 - asi, 0, 2 - asi),

410

- ai / au+ (al+ 2 -asi/au+ 2 - asi) >
a17 *- a17 + < [idbe1, idf, on, 100], [idbe2, idi1, on, 100] >

nfloors= 2 ->

C1s - C15 + < available, (0, 0, 0, 0), (0, -2 -asi, 0, -2 -asi), (0, -2 -asi, 0, -2 -asi), 0>
a16 <- a16 + < used, (0, 0, 0, 0),

(2 -asi, 2 -asi, 0, 2 -asi),
(2 -asi, 2 -asi, 0, 2 -asi),
- ai / au + (ai + 2 - asi / au + 2 - asi) >

a17 <- a17 + < [idbel, idi2, on, 100], [idbe2, d2, on, 100]>
a(24 +- 24 + (acu + ado) - cm2

1i<- 1 , wcu= w (be, cu, isolated, qievel), Wq, do= w (be, do, isolated, qievel)

P2+- P2, hcu = h (be, cu, isolated, qievel), hq, do = h (be, do, isolated, qievel)

P33<- P33, acu = a (be, cu, isolated, qievel), aq, do = a (be, do, isolated, qievel)

B6+- B6, cm2 = cost_m2 (qievel, covered)

g63: Adding bedrooms with the appropriate capacity when there are 3 bedrooms and 4 dwellers
as <- as, as = type
a4 <- ac4 + < 4, 0 >
as <- as + < 3, [(couple, 1), (double, 0), (single, 2)]>
a6 <- a6, qievel = a6
aco <- a1o+ < [be, 3, ((couple, 1), (double, 0), (single, 2))]>
aii - ani + < [couple, 0, 0], [single, 0, 0], [single, 0, 0] >
C13 <- a13+ < [be, idbel, 0, (sleeping), (couple, 100), (isolated, 100), (qievel, 0), wcu, h cu, acu],

[be, idbe2, 0, (sleeping), (single, 100), (isolated, 100), (qlevel, 0), wsi, hsi, asi],
[be, idbes, 0, (sleeping), (single, 100), (isolated, 100), (qievel, 0), wsi, hsi, asi] >

idben = max(id) +1, n e (1, 2, 3}
a14 <- a14 + sleeping (idbel, acu) + f2 (idbe2, asi) + f2 (idbe3, asi)
a5 <- a1s + < available, (0, -acu, 0, -acu),

(0, -2 -asi, 0, -2 -asi),
(0, - (acu+ 2 -asi), 0, - (acu+ 2 -asi)),
0>

a16 <- a16 + < used, (acu, acu, 0, acu),
(2 -asi, 2 -asi, 0, 2 -asi),
(acu,+ 2 - asi, acu + 2 - asi, 0, acu + 2 - asi),
-ai / au + (a + acu + 2 - asi / au + acu + 2 - asi) >

a17 <- a17 + < [idbe1, idi1, on, 100], [idbe2, idi2, on, 100], [idbes, idi2, on, 100]>
a24 +- a24 + (acu + 2 - asi) -cm2
P1< - 1 , wcu= w (be, cu, isolated, qievel), Wq, si= w (be, si, isolated, qievel)
12<- @2, hcu = h (be, cu, isolated, qievei), hq, si = h (be, si, isolated, qievel)
P3+- 133, acu = a (be, cu, isolated, qievel), aq, si = a (be, si, isolated, qievel)
B6 <- 136, cm2 = cost_m2 (qievel, covered)

g64: Adding bedrooms with the appropriate capacity when there are 3 bedrooms and 5 dwellers
as +- as, as = type
a4 <- a4 + < 5, 0 >
as <- as + < 3, [(couple, 1), (double, 1), (single, 1)] >
a6 - a6, qievel= as
alo <- a + < [be, 3, ((couple, 1), (double, 2), (single, 2))]>
a <- a, + < [couple, 0, 0], [double, 0, 0], [single, 0, 0] >
a13 <- a13+ < [be, ?idbel, 0, (sleeping), (couple, 100), (isolated, 100), (qievel, 0), wcu, hcu, acu],

[be, ?idbe2, 0, (sleeping), (double, 100), (isolated, 100), (qievel, 0), Wdo, hdo, ado],
[be, ?idbe3, 0, (sleeping), (single, 100), (isolated, 100), (qievel, 0), wsi, hsi, asi]>

iden = max(id) +1, nE {1, 2, 3)
a14 <- aX14 + sleeping (idbel, acu) + f2 (idbe2, ado) + f2 (idbe3, asi)
a1 <- a1 + < available, (0, - acu, 0, - acu), (0, -(ado+ asi), 0, -(ado+ asi)), (0, - (acu + ado + asi), 0, - (acu + ado + asi)), 0>

a16 +- a16 + < used, (ac, acu, 0, acu),
(ado+ asi, ado+ asi, 0, ado+ asi),
(acu + ado+ asi, acu + ado + asi, 0, acu + ado + asi),
- ai / au + (ai + acu + ado + asi / au + acu + ado + asi) >

411

a17 <- a17 + < [idbe1, idfl, on, 100], [idbe2, idf, on, 100], [idbe3, ide, on, 100]>
a24 <- a24 + (acu + ado+ asi) - cm2

1 <- 1, wcu = w (be, cu, isolated, qievel), wdo = w (be, do, isolated, qievel), wsi = w (be, si, isolated, qievel)
12 <- 12, heu= h (be, cu, isolated, qievel), ho = w (be, do, isolated, qievel), hsi = w (be, si, isolated, qievel)

P3<-- P33, acu = a (be, cu, isolated, qievel), ado = w (be, do, isolated, qievel), asi = w (be, si, isolated, qievel)
B3<- 136, cm2 = cost-m2 (qievel, covered)

g65: Adding bedrooms with the appropriate capacity when there are 3 bedrooms and 6 dwellers
s <-- as, as = type

ca<-- a4 + < 6, 0 >
as <- as + < 3, [(couple, 1), (double, 2), (single, 0)]>
a6 <- a6, qlevel= a6

alo <- a10+ < [be, 3, ((couple, 1), (double, 2), (single, 0))]>
a1 l all + < [couple, 0, 0], [double, 0, 0], [double, 0, 0] >
a13 <- C1s+ < [be, ?idbe1, 0, (sleeping), (couple, 100), (isolated, 100), (qievel, 0), wcu, heu, acu],

[be, ?idbe2, 0, (sleeping), (double, 100), (isolated, 100), (qieve, 0), wdo, ho, ado],
[be, ?idbes, 0, (sleeping), (double, 100), (isolated, 100), (qievei, 0), Wdo, hdo, ado], >

iden = max(id) +1,ne {1, 2, 3}
C14 +- C14 + sleeping (idbel, acu) + f2 (idbe2, ado) + f2 (idbe3, ado)
a1s +- ais + < available, (0, - acu, 0, - acu), (0, -2 - ado, 0, -2 -ado), (0, - (acu + 2 - ado), 0, - (acu + 2 - ado)), 0>
a16 <- a16 + < used, (acu, acu, 0, acu),

(2 - ado, 2 - ado, 0, 2 - ado),

(acu + 2 -ado, acu + 2 - ado, 0, acu + 2 - ado),
- ai / au+ (ai+ acu+ 2 - ado / au+ acu+ 2 - ado) >

C17 <- a17 + < [idbel, idi, on, 100], [idbe2, idf2, on, 100], [idbes, idf2, on, 100]>
a24 <-- C24 + (acu + 2 - ado) -cm2

1i <- 1i, wcu = w (be, cu, isolated, qievei), wdo = w (be, do, isolated, qievel),
P2<- @2, hou= h (be, cu, isolated, qievel), hdo = h (be, do, isolated, qievel),
13<-- @s, acu = a (be, cu, isolated, qievei), ado = a (be, do, isolated, qievel)
P6 <- P6, cm2 = cost-m2 (qievei, covered)

g66: Adding bedrooms with the appropriate capacity when there are 4 bedrooms and 5 dwellers
as <- as, as = type
4 <- a4+ < 5, 0 >

as <- as + <4, [(couple, 1), (double, 0), (single, 3)]>
a6 *- as, qievei= as6

a10 +- a1o+ < [be, 3, ((couple, 1), (double, 0), (single, 3))] >
all <- all + < [couple, 0, 0], [single, 0, 0], [single, 0, 0], [single, 0, 0]>
C13 <- C13+ < [be, ?idbel, 0, (sleeping), (couple, 100), (isolated, 100), (qievel, 0), 0), wcu, heu, acu],

[be, ?idbe2, 0, (sleeping), (single, 100), (isolated, 100), (qievei, 0), 0), wsi, hsi, asi],
[be, ?idbe3, 0, (sleeping), (single, 100), (isolated, 100), (qievei, 0), 0), wsi, hsi, asi],
[be, ?idbe4, 0, (sleeping), (single, 100), (isolated, 100), (qievel, 0), 0), wsi, hsi, asi] >

idben = max(id) +1, n e {1, 2, 3, 4}
C14 <- C14 + sleeping (idbe1, acu) + f2 (idbe2, asi) + f2 (idbes, asi) + f2 (idbe4, asi)
a1 +- a1s + < available, (0, - acu, 0, - acu), (0, -3 - asi, 0, -3 - asi), (0, - (acu + 3 - asi), 0, - (acu + 3 - asi)), 0>
a1e +- a16 + < used, (acu, acu, 0, acu),

(3 - asi, 3 - asi, 0, 3 - asi),
(acu + 3 - asi, acu + 3 - asi, 0, acu + 3 - asi),
- ai / au + (ai + acu + 3 - asi / au + acu + 3 - asi) >

a17 <- a17 + < [idbe1, idfl, on, 100], [ide2, idi2, on, 100], [idbe3, idf2, on, 100], [idbe4, idf2, on, 100] >
a24 <- 24 + (acu + 3 - asi) - cm2
1i - 1i , wcu= w (be, cu, isolated, qiever), wsi= w (be, si, isolated, qievel)

12<- 12, hu = h (be, cu, isolated, qievei), hsi = h (be, si, isolated, qieve)
P3+- P33, acu = a (be, cu, isolated, qievei), asi = a (be, si, isolated, qievel)
P6-- P6, cm2 = cost.m2 (qievel, covered)

g67: Adding bedrooms with the appropriate capacity when there are 4 bedrooms and 6 dwellers
as <- as, as = type
a4 <- a4+ < 6, 0 >

412

as +- as + < 4, [(couple, 1), (double, 1), (single, 2)] >
a6 -- a6 , qievel= aC6

ao +- a10o+ < [be, 4, ((couple, 1), (double, 1), (single, 2))] >
a1l 1- ai + < [couple, 0, 0], [double, 0, 0], [single, 0, 0], [single, 0, 0] >
a13 <- al13+ < [be, ?idbel, 0, (sleeping), (couple, 100), (isolated, 100), (qevel, 0), 0), WCu, heu, acu],

[be, ?idbe2, 0, (sleeping), (double, 100), (isolated, 100), (qievel, 0), 0), Wdo, hdo, ado],

[be, ?idbe3, 0, (sleeping), (single, 100), (isolated, 100), (qievei, 0), 0), wsi, hsi, asi],
[be, ?idbe4, 0, (sleeping), (single, 100), (isolated, 100), (qievel, 0), 0), wsi, hsi, asi] >

idben = max(id) +1, n e {1,2,3,4}
a14 <- a14 + sleeping (idbel, acu) + f2 (idbe2, ado) + f2 (idbe3, asi) + f2 (idbe4, asi)

a(15 <- a15 + < available, (0, - acu, 0, - acu), (0, -(ado + 2 - asi), 0, -(ado + 2 - asi)), (0, -(ado + 2 - asi), 0, -(ado + 2 asi)), 0>

Ca16 +- a16 + < used, (acu, acu, 0, acu),

(ado + 2 -asi, ado + 2 - asi, 0, ado + 2 - asi),
(acu + ado + 2 - asi, acu + ado + 2 - asi, 0, acu + ado + 2 - asi),
- ai / au + (ai+ acu+ ado + 2 - asi / au+ acu+ ado + 2 - asi) >

a17 - a17 + < [idbel, idfl, on, 100], [idbe2, ide, on, 100], [idbe3, id2, on, 100], [idbe4, idf2, on, 100] >
aC24 <- a24 + (acu + ado + 2 -asi) - cm2

1i <- 1 , wcu= w (be, cu, isolated, qievel), Wdo w (be, do, isolated, qievei), wsi= w (be, si, isolated, qievel)

P2+- 2, heu= h (be, cu, isolated, qievel), ho = h (be, do, isolated, qievel), hsi = h (be, si, isolated, qievei)

13<- 03, acu = a (be, cu, isolated, qievel), ado = a (be, do, isolated, qievei), asi = a (be, si, isolated, qievei)
16<- P6, cm2 = cost-m2 (qievel, covered)

g68: Adding bedrooms with the appropriate capacity when there are 4 bedrooms and 7 dwellers
a <-- as, as = type
a4 <- a4+ <7, 0 >
a5 <-- as + < 4, [(couple, 1), (double, 2), (single, 1)] >
ca - a6, qievei= a6
al <-- a1o+ < [be, 4, ((couple, 1), (double, 2), (single, 1))]>
al +-- all + < [couple, 0, 0], [double, 0, 0], [double, 0, 0], [single, 0, 0]>
a13 <- al3+ < [be, ?idbel, 0, (sleeping), (couple, 100), (isolated, 100), (qievel, 0), 0), Wcu, heu, acu],

[be, ?idbe2, 0, (sleeping), (double, 100), (isolated, 100), (qievel, 0), 0), Wdo, hdo, ado],
[be, ?idbe3, 0, (sleeping), (double, 100), (isolated, 100), (qievei, 0), 0), Wdo, hdo, ado],
[be, ?idbe4, 0, (sleeping), (single, 100), (isolated, 100), (qievel, 0), 0), wsi, hsi, asi]>

idben = max(id) +1, n e {1, 2, 3, 4)
a14 - al4 + sleeping (idbel, acu) + f2 (idbe2, ado) + f2 (idbe3, ado) + f2 (idbe4, asi)

a15 +- a15 + < available, (0, - acu, 0, - acu), (0, -(2 - ado + asi), 0, -(2 - ado + asi)), (0, -(2 - ado + asi), 0, -(2 - ado + asi)), 0>
a16 <-- a16 + < used, (acu, acu, 0, acu),

(2 - ado + asi, 2 - ado + asi, 0, 2 - ado + asi),
(acu + 2 - ado + asi, acu + 2 - ado + asi, 0, acu + 2 - ado + asi),
- ai / au + (ai + acu + 2 - ado + asi / au + acu + 2 - ado + asi) >

a17 <- a17 + < [idbel, idfl, on, 100], [idbe2, idi2, on, 100], [idwes, idf2, on, 100], [idbe4, idf2, on, 100] >
a24 <- a24 + (acu + 2 - ado + asi) - cm2

p1<-- $1 , wcu = w (be, cu, isolated, qievel), Wdo = w (be, do, isolated, qievel), wsi = w (be, si, isolated, qievei)

@2<- 12, heu= h (be, cu, isolated, qievel), hdo = h (be, do, isolated, qievel), hsi = h (be, si, isolated, qievel)
P3 <- 13, acu = a (be, cu, isolated, qievei), ado = a (be, do, isolated, qievel), asi = a (be, si, isolated, qievel)
16<-- Pe, cm2 = cost_m2 (qievel, covered)

g69: Adding bedrooms with the appropriate capacity when there are 5 bedrooms and 7 dwellers
as - as, as = type
a4 <- ca + < 7, 0 >
as +- as + < 5, [(couple, 1), (double, 1), (single, 3)] >
a6 +- a6 , qievel= a6
al +-- alo+ < [be, 5, ((couple, 1), (double, 1), (single, 3))]>
an +- an + < [couple, 0, 0], [double, 0, 0], [single, 0, 0], [single, 0, 0] [single, 0, 0]>
a13 <- C13+ < [be, ?idbel, 0, (sleeping), (couple, 100), (isolated, 100), (qievel, 0), 0), WCu, heu, acul,

[be, ?idbe2, 0, (sleeping), (double, 100), (isolated, 100), (qievel, 0), 0), Wdo, hdo, ado],
[be, ?idbes, 0, (sleeping), (single, 100), (isolated, 100), (qievei, 0), 0), wsi, hsi, asi],
[be, ?idbe4, 0, (sleeping), (single, 100), (isolated, 100), (qievel, 0), 0), wsi, hsi, asi],
[be, ?idbe5, 0, (sleeping), (single, 100), (isolated, 100), (qievel, 0), 0), Wsi, hsi, asi]>

413

idben = max(id) +1, n e (1, 2, 3, 41
C14 - C14 + sleeping (idbel, acu) + f2 (idbe2, ado) + f2 (idbe3, asi) + f2 (ldbe4, asi) + f2 (idbes, asi)
c15 - c15 + < available, (0, - acu, 0, - acu), (0, -(ado + 3 - asi), 0, -(ado + 3 - asi)), (0, -(ado + 3 - asi), 0, -(ado + 3 - asi)), 0>
aC16 +- a16 + < used, (acu, acu, 0, acu),

(ado + 3 - asi, ado + 3 - asi, 0, ado + 3 - asi),
(acu + ado + 3 - asi, acu + ado + 3 - asi, 0, acu + ado + 3 - asi),
- ai / au + (ai + acu + ado + 3 - asi / au + acu + ado + 3 - asi) >

a17 <- a17 + < [idbe1, idfi, on, 100], [idbe2, id2, on, 100], [idbe3, ide, on, 100], [idbe4, idf, on, 100], [idbe5, idf2, on, 100] >
aX24 <- a24 + (acu + ado + 3 - asi) -cm2
1 <- 01 , wcu= w (be, cu, isolated, qievel), Wdo= w (be, do, isolated, qievei), wsi= w (be, si, isolated, qievel)

02<- 12, heu = h (be, cu, isolated, qievei), ho = h (be, do, isolated, qievel), hsi = h (be, si, isolated, qievel)
D33<- 03, acu = a (be, cu, isolated, qievel), ado = a (be, do, isolated, qievei), asi = a (be, si, isolated, qievel)
B6<-- 136, cm2 = cost-m2 (qievel, covered)

g70: Adding bedrooms with the appropriate capacity when there are 5 bedrooms and 8 dwellers
c <- as, a = type
cc4 - c4+ < 8, 0 >
as <- c + < 5, [(couple, 1), (double, 2), (single, 2)]>
ax6 a6, qievel= a6

a1o <- aio+ < [be, 5, ((couple, 1), (double, 2), (single, 2))] >
an +- ai + < [couple, 0, 0], [double, 0, 0], [double, 0, 0], [single, 0, 0] [single, 0, 0]>
C13 <- a13+ < [be, ?idbel, 0, (sleeping), (couple, 100), (isolated, 100), (qievei, 0), 0), Wcu, heu, acul,

[be, ?idbe2, 0, (sleeping), (double, 100), (isolated, 100), (qievel, 0), 0), Wdo, hdo, ado],
[be, ?idbe3, 0, (sleeping), (double, 100), (isolated, 100), (qievel, 0), 0), wdo, hdo, ado],
[be, ?idbe4, 0, (sleeping), (single, 100), (isolated, 100), (qievel, 0), 0), wsi, hsi, asi],
[be, ?idbe5, 0, (sleeping), (single, 100), (isolated, 100), (qievel, 0), 0), wsi, hsi, asi]>

idben = max(id) +1, n e {1, 2, 3, 4)
aC14 +- aE14 + sleeping (idbe1, acu) + f2 (ide2, ado) + f2 (idbe3, ado) + f2 (idbe4, asi) + f2 (idbes, asi)
a15 <-- aC15 + < available, (0, - acu, 0, - acu),

(0, -(2 - (ado + asi)), 0, -(2 - (ado + asi)),
(0, -(2 - (ado + asi)), 0, -(2 - (ado + asi)),
0 >

a16 <- C16 + < used, (acu, acu, 0, acu),
(2 - (ado + asi), 2 - (ado + asi), 0, 2 - (ado + asi)),
(acu + 2 - (ado + asi), acu + 2 - (ado + asi), 0, acu + 2 - (ado + asi)),
- ai / au + (ai + acu + 2 - (ado + asi) / au + acu + 2 - (ado + asi) >

X17 <- aC17 + < [idbel, idfl, on, 100], [idbe2, idf2, on, 100], [idbe3, idf2, on, 100], [idbe4, ide, on, 100], [idbes, id, on, 100] >
C24 +- a24 + (acu + 2 - (ado + asi)) - cm2
01 <-- 1i , wcu= w (be, do, isolated, qievel), Wdo= w (qiever, do), wsi= w (be, si, isolated, qievel)
12 <- D2, heu= h (be, do, isolated, qievel), hdo = h (qievei, do), hsi = h (be, si, isolated, qievel)
@3 <- P3, acu = a (be, do, isolated, qievel), ado = a (qieve, do), asi = a (be, si, isolated, qievel)
@6 +- P36, cm2 = cost-m2 (qievei, covered)

g71: Adding bedrooms with the appropriate capacity when there are 5 bedrooms and 9 dwellers
Cs +- as, a = type
ca4 -- C4+ < 9, 0 >
s <-- c + < 5, [(couple, 1), (double, 3), (single, 1)] >

a6<-- c6, qievel= C6
a10 <- cio+ < [be, 5, ((couple, 1), (double, 3), (single, 1))]>
ci - al + < [couple, 0, 0], [double, 0, 0], [double, 0, 0], [double, 0, 0] [single, 0, 0]>
C13 - c13+ < [be, ?idbel, 0, (sleeping), (couple, 100), (isolated, 100), (qievei, 0), 0), wcu, heu, acu],

[be, ?idbe2, 0, (sleeping), (double, 100), (isolated, 100), (qievel, 0), 0), Wdo, hdo, ado],
[be, ?idbe3, 0, (sleeping), (double, 100), (isolated, 100), (qievel, 0), 0), Wdo, hdo, ado],
[be, ?idbe4, 0, (sleeping), (double, 100), (isolated, 100), (qievel, 0), 0), Wdo, hdo, ado],
[be, ?idbes, 0, (sleeping), (single, 100), (qievei, 0), 0), wsi, hsi, asi]>

idben = max(id) +1, n e {1, 2, 3, 4}
a14 +- C14 + sleeping (idbel, acu) + f2 (idbe2, ado) + f2 (idbe3, ado) + f2 (idbe4, ado) + f2 (idbe5, asi)
a15 <- a15 + < available, (0, - acu, 0, - acu), (0, -(3 - ado + asi), 0, -(3 - ado + asi)), (0, -(3 - ado + asi), 0, -(3 ado + asi)), 0>

414

C16 +-- C16 + < used, (acu, acu, 0, acu),
(3 - ado + asi, 3 - ado + asi, 0, 3 - ado + asi),

(acu + 3 -ado + asi, acu + 3 - ado + asi, 0, acu + 3 - ado + asi),

- ai / au + (ai + acu + 3 - ado + asi / au + acu + 3 - ado + asi) >

a17 +- a17 + < [idbel, idfl, on, 100], [ide2, idf2, on, 100], [idbe3, ide, on, 100], [idbe4, ide, on, 100], [idbes, idf2, on, 100] >
a124 +- a24+ (acu + 3 - ado + asi) - cm2

P1< - 1i, wcu = w (be, cu, isolated, qievel), Wdo= w (be, do, isolated, qievel),Wsi = w (be, si, isolated, qievel,)
P2<- 12, hu = h (be, cu, isolated, qievel), hdo = h (be, do, isolated, qievel), hsi = h (be, si, isolated, qievel)

33 <D- D33, acu = a (be, cu, isolated, qievel), ado = a (be, do, isolated, qievel), asi = a (be, si, isolated, qievel)
B6e+- @6, cm2 = cost-m2 (qievel, covered)

Bathrooms: bathtub / shower / lavatory bathrooms (programmer)

g72: Adding a bathtub bathroom to the minimum list of spaces
alo +- c1o+ < [ba, 1, ((bathtub, 1))] >

g73: Adding a lavatory bathroom to the minimum list of spaces
a4 +- a4, nusers = a4

a8 <- c , nfloors= c8
a1a *- c ao+ < [ba, 1, ((lavatory, 1))] >

(nusers E {2, 3, 4, 5, 6} A nfloors = 2) v nusers = 7

g74: Adding a shower bathroom to the minimum list of spaces
a4 - a4 , nusers e (8, 9}
a0l <- a0l + < [ba, 1, ((shower, 1))]>

g75: Adding a bathtub bathroom as the main bathroom to the current list of spaces
a6 <- a6, qievei= aX6

a8 <- c , nfloors= a8

ai - an + < [bathtub, 0, 0] >
a13 -- a13+ < [ba, idbt, 0, (hygiene), (bathtub, 100), (isolated, 100), (qievel, 0), wbt, hbt, abt]>,

nbathrooms = 0

nioors= 1 >

a14 <- a14 + sleeping (idbt, abt)

a15 - a15 + < available, (0, -ant, 0, -abt), (0, 0, 0, 0), (0, -ant, 0, -abt), 0>
a16 <- a 6 + < used, (0, abt, 0, abt), (0, 0, 0, 0), (0, abt, 0, abt), - ai / au + (ai / au+ abt) >

a17 <-- a17 + < [idbt, idf1, on, 100] >
niloors> 1 -->

a14 +- a 14+ f2 (idbt, abt)
a1s -- as + < available, (0, 0, 0, 0), (0, -abt, 0, -abt), (0, -abt, 0, -abt), 0>
a16 +- a16 + < used, (0, 0, 0, 0), (0, abt, 0, abt), (0, abt, 0, abt), - ai / au + (a + / au + abt) >

a17 +- a17 + < [idbt, id, on, 100] >
a24 <- a24 + abt - cm2

1+ - 1, Wbt= w (ba, bt, qievel)
P2<- D2, hbt = h (ba, bt, qievel)
P3+- P3a, aut = a (ba, bt, qievel)

P6 6, cm2 = cost-m2 (qievel, covered)

g76: Adding a lavatory bathroom as a second bathroom to the current list of spaces
c4 <- ax4, nusers =
a6 - a6 , qlevel= a6
as <- as, nffoors =as
all <- ani + < [lavatory, 0, 0]>
a13 <- a13+ < [ba, idu, 0, (hygiene), (lavatory, 100), (isolated, 100), (qievel, 0), ww, hw, aw]>

nbathroomrs = 1 A qievel= min A [(nusers e {2, 3, 4, 5, 6} A nfoors = 2) v nusers = 7]
idw = max(id) +1

a14 <- a14+ sleeping (idw, aw)
as <-- ais + < available, (0, -alv, 0, -aw), (0, 0, 0, 0), (0, -aw, 0, -alv), 0>

415

CC16 <- C16 + < used, (0, ai, 0, aiv), (0, 0, 0, 0), (0, aw, 0, aw), -ai / au + (ai / au + aiv) >
a17 <- aC17 + < [idw, idi, on, 100] >
a24 +- a(24 + aw -cm2
1i +- 1i , wiv = w (ba, lv, qievel)

P2<- @2, hiv = h (ba, lv, qievel)
@33+- B3, aiv = a (ba, lv, qievel)
P6<-- D6, cm2 = cost-m2 (qievel, covered)

Note: the building regulations say that on the same floor of the living there should be a lavatory and that on the same floor of the
kitchen there should also be a lavatory, as the living and kitchen are on the first floor, then the lavatory should be on the first floor.
However, it would be possible to write the rule so that it checked the floor of the living and kitchen first and then assigned the
lavatory to the same floor, unless there existed another bathroom on this floor.

g77: Adding shower bathroom as a second bathroom to the current list of spaces
c4 <- c4 , nusers = Q4

x6 <- c6, qievei= (X6
ci <- ci + < [shower, 0, 0] >
C13 <- a13+ < [ba, idsh, 0, (hygiene), (shower, 100), (isolated, 100), (qievel, 0), wsh, hsh, ash] >

nbathrooms = 1 A qtevei = min A nusers E {8, 9}
idsh = max(id) +1

a14 <- a14+ sleeping (idsh, ash)
a15 <- aX15 + < available, (0, -ash, 0, -ash), (0, 0, 0, 0), (0, -ash, 0, -ash), 0>
a16 +- (16 + < used, (0, ash, 0, ash), (0, 0, 0, 0), (0, ash, 0, ash), -ai / au + (ail au + ash) >
C17 +- C17 + < [idsh, idn, on, 100]>

(X24 +- OC24 + ash - cm2
P1 *- 1 , wsh = w (ba, sh, qievei)
P2<- 12, hsh = h (ba, sh, qievel)
P3<- @3, ash = a (ba, sh, qievel)
P63<-- P6, cm2 = cost-m2 (qievel, covered)
Same note as above.

g78: Adding a lavatory bathroom as a second bathroom to the current list of spaces
m4 -- ca , nusers = a4
a6 <- .6, qlevei= aC6

ca8 - c8 , nflors = a8
aii <- cl + < [lavatory, 0, 0]>
a13 <- a1l3+ < [ba, idu, 0, (hygiene), (lavatory, 80), (isolated, 100), (qievel, 0), wws, hw, av] >

nbathrooms = 1 A qievei = med A [(nusers E {2, 3, 4, 5} A nloors = 2) v nusers = 6]
idiv = max(id) +1

aC14 +- a14+ sleeping (idiv, aws)
a1s <- a1s + < available, (0, -aiw, 0, -ais), (0, 0, 0, 0), (0, -aiv, 0, -ais), 0>
aC16 +- a116 + < used, (0, aiw, 0, aiv), (0, 0, 0, 0), (0, aiv, 0, aiv), -ai / au + (ai / au + ai) >
a17 <- a17 + < [idis, idi, on, 100] >
aC24 <- C24 + ai -cm2
1i +- 1i , wiw = w (ba, lv, qievel)
32 +- @2, hiw = h (ba, lv, qievel)

13 +- P3, aq, iv = a (ba, lv, qievel)
$6 <-- P6, cm2 = cost-m2 (qievei, covered)
Same note as above.

g79: Adding a shower bathroom as a second bathroom to the current list of spaces
c4 <-x4 , nusers = O4

a6<- x6, qievei= (X6
(Xi <-- aXi + < [shower, 0, 0] >
a13+- a13+ < [ba, idsh, 0, (hygiene), (shower, 80), (isolated, 100), (qievel, 0), wsh, hsh, ash] >

nbathrooms = 1 A qievei = med A nusers E {7, 8, 9)
idsh = max(id) +1

a14 - (X14 + sleeping (idsh, ash)

416

C15 <- C15 + < available, (0, -ash, 0, -ash), (0, 0, 0, 0), (0, -ash, 0, -ash), 0>
C16 <- C16 + < used, (0, ash, 0, ash), (0, 0, 0, 0), (0, ash, 0, ash), - ai / au + (ai / au + ash) >

(17 +- X17 + <[idsh, idfl, on, 100] >
C24 +- C24+ ash - cm2
01 P 1 , Wsh =w (ba, sh, qievel)
P2<- 12, hsh = h (ba, sh, qievel)
P3<- 03, ash = a (ba, sh, qievel)
P6<-- ps, cm2 = cost-m2 (qievel, covered)
Same note as above.

g80: Adding a lavatory bathroom as a third bathroom to the current list of spaces
c4 - c4 , nusers = C
c6 <- c6, qlevel= a

c11 +- c1 + < [lavatory, 0, 0] >
aC13 +- 113+ < [ba, idi, 0, (hygiene), (lavatory, 100), (isolated, 100), (qievel, 0), wwv, hiv, aiw]>

nbathrooms = 2 A nusers E (8, 9)
idi = max(id) +1

a14 <- C14+ sleeping (idiw, aiv)
a15 +- a15 + < available, (0, -awv, 0, -aiw), (0, 0, 0, 0), (0, -av, 0, -a), 0>
C16 +- a16 + < used, (0, aiw, 0, av), (0, 0, 0, 0), (0, aiw, 0, aiw), - ai / au + (ai / au+ aw) >
a17 <- M17 + < [idiw, idi1, on, 100] >
X24 +- X24 + ai - cm2

p1+ <- 1 , wiv = w (ba, lv, qievel)

P2<- @2, hiw = h (ba, lv, qievel)

P3<- P3, auv = a (ba, lv, qievel)
P6 <-- 16, cm2 = cost-m2 (qievel, covered)
Note: If there is no bedroom on the first floor, the shower bathroom cam be on the second floor

g81: Adding a lavatory bathroom as a second bathroom to the current list of spaces
x4 <- c4 , nusers = a4

x6 <- x6, qevel= a6

c8 - ca8, nfloors= C
ci <-- cxi + < [lavatory, 0, 0]>

C13 <- C13 + < [ba, idi, 0, (hygiene), (lavatory, 0), (isolated, 100), (qievel, 0), wIw, hie, a] >
nbathrooms = 1 A qevei = max A [(nusers E {2, 3, 4} A nfloors = 2) v nusers = 4)]
idi = max(id) +1

C1 4 <- a14 + sleeping (idiw, aiv)
c15 -- a1s + < available, (0, -awr, 0, -av), (0, 0, 0, 0), (0, -a, 0, -awv), 0>
C16 <- C16 + < used, (0, aiw, 0, aiw), (0, 0, 0, 0), (0, aiw, 0, aiw), -ai / au + (ai / au+ aw) >

a17 +- a1i7 + < [idv, idi1, on, 100]>
C24 <- a24 + aiu - cm2
P1i -- P1i, ww = w (ba, lv, qievel)
12 <- 12, hiw = h (ba, lv, qievel)

P3<- 13, aiu = a (ba, lv, qievel)
P6 <- 16, cm2 = cost-m2 (qievel, covered)

g82: Adding a shower bathroom as a second bathroom to the current list of spaces
a4 <- x4 , nusers = a4
c6 <- a6, qevei= a6
ci1 <- xi1 + < [shower, 0, 0]>

C13 +- a13+ < [ba, idsh, 0, (hygiene), (shower, 80), (isolated, 100), (qievel, 0), Wsh, hsh, ash]>
nbathrooms = 1 A lievel = maX A nusers E (6, 7, 8, 9)

idsh = max(id) +1
C14 <- C14+ sleeping (idsh, ash)
c15 <- x15 + < available, (0, -ash, 0, -ash), (0, 0, 0, 0), (0, -ash, 0, -ash), 0>

a16 +- a16 + < used, (0, ash, 0, ash), (0, 0, 0, 0), (0, ash, 0, ash), - ai / au + (ai / au + ash) >

C17 <- a17 + < [idsh, idii, on, 100]>

a24-- C24 + ash - cm2

1+ - 1 , Wsh = w (ba, sh, qievel)

417

$2<- D2, hsh = h (ba, sh, qievel)

P3 <-- 13, ash = a (ba, sh, qievel)

P6 <- 136, cm2 = cost-m2 (qievel, covered)

g83: Adding a lavatory bathroom as a third bathroom to the current list of spaces (programmer)
ac4 <- ac4 , nusers = a4

ca6 <- c6 , qievel = X6

aii <- ai + < [lavatory, 0, 0]>
a13 <- aC13+ < [ba, idiv, 0, (hygiene), (lavatory, 80), (isolated, 100), (qievel, 0), ww, hwv, aiv]>

nbathrooms = 2 A qeve = max A nusers e {6, 7, 8, 9)
idiv = max(id) +1

(14 <- (14+ sleeping (idiv, aiv)
aX15 <- aX1s + < available, (0, -aw, 0, -aw), (0, 0, 0, 0), (0, -aw, 0, -aiv), 0>
a(16 <- C16 + < used, (0, aw, 0, aiv), (0, 0, 0, 0), (0, as, 0, aN), -ai / au + (al/ au + aiv) >
a17 - a17 + < [idu, idni, on, 100]>

24 +- a24+ aiv -cm2
1i <- 1i , wiv = w (ba, lv, qievel,)

P2<- 12, hiv = h (ba, lv, qievel)
B3<-- P3 , au = a (ba, Iv, qievel)
P6*+- P6, cm2 = cost-m2 (qievel, covered)
Note: If there is no bedroom on the first floor, the shower bathroom cam be on the second floor

Dining: formal / informal dining spaces (programmer)

g84: Adding an infornal dining space to the minimum list of spaces
cio <- a1io+ < [ts, 2, ((informal, included, 1), (formal, included, 1))] >

g85: Adding an included infornal dining space to the current list of spaces
ca *- ca, ndwellers = ai4
a5 +- c, nbedroons = n (bedrooms)
c6 -- 6 , qevel= a6

aii <- a, + < [informal-dining, (included, delimited, isolated), 0]>
aX12 *- aX12 - < [informal-dining, (included, delimited, isolated), 0]>
a13 +- aX13+ < [id, idid, 0, (informal dining), (ndwellers, 100), (included, 100), (qievel, 0), wid, hid, aid]>

ndining informal = 0 A qievel e {min, med} A ndwellers 3 A nbedrooms 2
aX14 <- aC14+ service (idid, aid)
a15 +- aY15 + < available, (0, -aid, 0, -aid), (0, 0, 0, 0), (0, -aid, 0, -aid), 0>
aY16 -- Ca16 + < used, (aid, aid, 0, aid), (0, 0, 0, 0), (0, aid, 0, aid), -ai / au + (ai + aid au+ aid) >
(X17 -- a17 + < [idid, idfl, on, 100] >
aX24 +- aX24 + aid -cm2

1i - 1i , wid = w (id, ndwellers, included, qievel)
12 <- 12, hid h (id, ndwellers, included, qievel)
P3 <- 13, aid = a (id, ndwellers, included, qievel)

P6*+- P6, cm2 = cost-m2 (qievel, covered)

g86: Adding a fornal dining space to the current list of spaces
ca <- a4 , ndwellers = a4

ars +- as, nbedrooms = n (bedrooms)
c6 -- a6 , qievei= ac6

anl <-- oi + < [formal-dining, (included, delimited, isolated), 0]>
a13 <-- c131 + < [fd, idfd, 0, (formal dining), (ndwellers, 100), (included, 100), (qievel, 0), wfd, hfd, ad]>

ndining formal = 0 A qlevel E (min, med}, V ndwellers, nbedrooms

aY14 <- aX14+ living (idfd, afd)
a15 <-- aX15 + < available, (0, -afd, 0, -afd), (0, 0, 0, 0), (0, -ad, 0, -afd), 0>
aY16 <- aY16 + < used, (afd, afd, 0, afd), (0, 0, 0, 0), (0, afd, 0, afd), -ai / au + (ai + asf / au+ af) >
aY17 <- aX17 + < [idfd, idi, on, 100] >
aY24 <- a24 + ad - cm2
1i - 1i , wid = w (fd, ndwellers, included, qievel)

418

12 <- 32, hfd = h (fd, ndwellers, included, qievel)
13 4- P3, af = a (fd, ndwellers, included, qlevel)

s64+- @e6, cm2 = cost-m2 (qievei, covered)

g87: Adding a delimited infornal dining space to the current list of spaces
4 <- a4 , ndwellers = (4

a5 - (Xs, nbedrooms = n (bedrooms)
a <-- a6 , qlevel = a6

a1+- a1l + < [informal-dining, (delimited, included, isolated), 0]>
C12 - C12 - < [informal-dining, (included, delimited, isolated), 0]>
C13 - CC13+ < [id, idid, 0, (informal dining), (ndwellers, 100), (delimited, 80), (qievel, 0), wid, hid, aid] >

ndining informal = 0 A qlevel = max A nusers 2 A nbedrooms 1
CC14 <- C14+ service (idid, aid)

C15 <- a15 + < available, (0, -aid, 0, -ald), (0, 0, 0, 0), (0, -aid, 0, -aid), 0>
ale 4- CC16 + < used, (aid, aid, 0, aid), (0, 0, 0, 0), (0, aid, 0, aid), - ai / au + (ai + aid au + ald) >

aC17 - a17 + < [idia, idfi, on, 100] >
aX24 4- a24 + aid -cm2
1 <- 1i , wid = w (id, ndwellers, delimited, lievel)

12<- 12, hid = h (id, ndwellers, delimited, qievel)
13<- 13, ald = a (id, ndwellers, delimited, qievel)

B64+- 136, cm2 = cost-m2 (qievel, covered)

g88: Adding a delimited fornal dining space to the current list of spaces
ca4 4- a4 , ndwellers = af4

as +- as, nbedrooms = n (bedrooms)
6 4- a6, qlevel= a6

all <- anl + < [formal-dining, (delimited, included, isolated), 0]>
13+ 4- W13+ < [fd, idfd, 0, (formal dining), (ndwellers, 100), (delimited, 80), (qievei, 0), wfd, hkf, ad]>

ndining formal = 0 A qlevel = max, V ndwellers, nbedrooms

C14 4- a14+ living (idfd, afd)
CC15 - a15 + < available, (0, -afd, 0, -afd), (0, 0, 0, 0), (0, -afd, 0, -afd), 0>
C16 <- a16 + < used, (aid, afd, 0, afd), (0, 0, 0, 0), (0, afd, 0, afd), - ai / au + (ai + ad / au+ ad) >

CC17 4- a17 + < [idfd, idfi, on, 100]>
a24 4- a24 + afd -cm2
1i 1i , wfd = w (fd, ndwellers, delimited, qievel,)

P2- $2, hfd = h (fd, ndwellers, delimited, qievel)

133- 133, afd = a (fd, ndwellers, delimited, qievel)

13<- @6, cm2 = costm2 (qievei, covered)

Studio: adding work/study/play spaces (programmer)

g89: Adding a single youth study space to the current list of spaces to a housetype
as3+- a3 , 3= type
a6 <- a6, qlevel= a6
ao <- a10o+ < [sd, 1, ((youth, single included, 1))] >
all <- ali + < [single youth study, (included, delimited, isolated), 0] >
CC13 4- a13, E [be, idbe, 0, (sleeping), (single ?wt), (isolated, ?wa), (?qevel, ?Wq), ?w, ?h, ?a] A

~3 [idbe, ?id, merged] e a17| function (?id) = youth study ->
+ < [sd, idys, 0, (youth study), (single ?wt), (included, ?Wa), (qievel, ?Wq), wys, hys, ays]>

zone = zone (?id)
zone = sleeping ->

C14 <- C14+ sleeping (idys, ays)

C1s <- C15 + < available, (0, -ays, 0, -ays), (0, 0, 0, 0), (0, -ays, 0, -ays), 0>
a16 4- C16 + < used, (ays, ays, 0, ays), (0, 0, 0, 0), (0, ays, 0, ays), - ai / au + (ai + ays / au + ays) >

CC17 +- U17 + < [idys, idfl, on, 100], [idys, idbe, merged, 80] >
zone = f2 ->

a1 4 - ac14+ f2 (idys, ays)

419

a15 <- aC15 + < available, (0, 0, 0, 0), (0, -ays, 0, -ays), (0, -ays, 0, -ays), 0>
C(16 <- a16 + < used, (0, 0, 0, 0), (ays, ays, 0, ays), (0, ays, 0, ays), - ai / au + (ai + ays au + ays) >
ai17 <- a17 + < [idys, id2, on, 100] , [idys, idbe, merged, 80]>

a24 <- X24 + ays - cm2
1<- 1, wys= w (ys, si, included, qievel)

@2+- @2, hys = h (ys, si, included, qievel)

B3<- 03 , ays = a (ys, si, included, qievel)

13<-- 136, cm2 = cost-m2 (qieve, covered)

g90: Adding a double youth study space to the current list of spaces to a housetype
s <- a3 , 3= type

x6 <- (6, qlevei= a6

1o <-- io + < [sd, 1, ((youth, double included, 1))]>
a <-- ci + < [doubleyouthstudy, (included, delimited, isolated), 0]> , ndouble youth study < ndouble bedrooms
aC13 <- O13, 3 [be, idbe, 0, (sleeping), (double ?wt), (isolated, ?w.), (?qieve, ?wg), ?w, ?h, ?a] A

-3 [idbe, ?id, merged] E a17 function (?id) = youth study ->
+ < [sd, idys, 0, (youth study), (double ?wt), (included, ?wa), (qievel, ?Wq), Wys, hys, ays]>

zone = zone (?id)
zone = sleeping ->

a14 <- C14+ sleeping (idys, ays)
c15 +- c15 + < available, (0, -ays, 0, -ays), (0, 0, 0, 0), (0, -ays, 0, -ays), 0>
aX16 <- a16 + < used, (ays, ays, 0, ays), (0, 0, 0, 0), (0, ays, 0, ays), -ai / au + (ai + ays / au + ays) >
aC17 +- a17 + < [idys, idfi, on, 100], [idys, idbe, merged, 80] >

zone = f2 ->
a14 <- a14+ sleeping (idys, ays)
C1 <- C15 + < available, (0, 0, 0, 0), (0, -ays, 0, -ays), (0, -ays, 0, -ays), 0>
a1 6 +- a16 + < used, (0, 0, 0, 0), (ays, ays, 0, ays), (0, ays, 0, ays), - ai / au + (ai + ays / au + ays) >
C17 <- a17 + < [idys, id2, on, 100], [idys, idbe, merged, 80]>

a24 - a24 + ays - cm2

1i <- 01, wys= w (ys, do, included, qievel)
$2<- @2, hys = h (ys, do, included, qievel)
@33+- @3, ays = a (ys, do, included, qievel)
P6+- P6, cm2 = cost-m2 (qiever, covered)

g91: Adding an adult workspace to the current list of spaces to a housetype
a +- as , a =type
a6 - a6, qievel= a6

aio <- aio + < [sd, 1, ((adult, included, 1))]>
ci1 +- ail + < [adult work, (included, delimited, isolated), 0] >

a13 +- aC13, 3 [be, idbe, 0, (sleeping), (couple ?wt), (isolated, ?wa), (?qieve, ?Wq), ?w, ?h, ?a] A
-3 [idbe, ?id, merged] e a17| function (?id) = adult work ->
+ < [sd, idaw, 0, (adult work), (couple ?wt), (included, ?wa), (qievel, ?Wq), waw, haw, aaw]>

zone = zone (?id)
zone = sleeping =>

aE14 <- C14+ sleeping (idaw, aaw)
a15 <- C15 + < available, (0, -aaw, 0, -aaw), (0, 0, 0, 0), (0, -aaw, 0, -aaw), 0>
a16 U a16 + < used, (aaw, aaw, 0, aaw), (0, 0, 0, 0), (0, aaw, 0, aaw), - ai / au + (ai + aaw / au + aaw) >
C17 - aX17 + < [idaw, idi, on, 100], [idaw, idbe, merged, 80]>

zone = f2 ->
a14 +- (14+ sleeping (idaw, aaw)

a15 -- a15 + < available, (0, 0, 0, 0), (0, -aaw, 0, -aaw), (0, -aaw, 0, -aaw), 0>
aX16 *- a16 + < used, (0, 0, 0, 0), (aaw, aaw, 0, aaw), (0, aaw, 0, aaw), -ai / au + (a + aaw /au+ aaw) >
C17 <- C17 + < [idaw, idf2, on, 100], [idaw, idbe, merged, 80]>

24 <- a24 + aaw - cm2
1< - 1i , waw = w (aw, included, qievel)

12+- 12, haw = h (aw, included, qIevel)
133 <- $3, aaw = a (aw, included, qievel)
36 +- 136, cm2 = cost-m2 (qevel, covered)

420

g92: Adding a single children play space to the current list of spaces to a customized house
as <-- a , 3 = custom
a4 +- a4, age (name) < 14, name e user (studios)
a6 <- a6, qievei= a6

aio +- ca + < [sd, 1, ((children, single included, 1))]>
ail +- aln + < [singlechildren-play, (included, delimited, isolated), 0]>
Ca13 <- aC13, 3 [be, idbe, (?name), (sleeping), (single ?wt), (isolated, ?wa), (?qevei, ?wq), ?w, ?h, ?a] A

~3 [idbe, ?id, merged] e C17| function (?id) = children play =
+ < [sd, idep, (?name), (children play), (single ?wt), (included, ?wa), (qievel, ?Wq), wcp, hep, acp]>

zone = zone (?id)
zone = sleeping ='

aC14 <- aC14+ sleeping (idep, acp)

a15 +- as + < available, (0, -acp, 0, - acp), (0, 0, 0, 0), (0, - acp, 0, - acp), 0>
ais <- a16 + < used, (acp, acp, 0, acp), (0, 0, 0, 0), (0, acp, 0, acp), -ai / au + (a + acp / au+ acp) >

aC17 <- a17 + < [idcp, idii, on, 100], [idcp, idbe, merged, 80]>
zone = f2 ->

a1 4 <- a1 4+ f 2 (idep, acp)
a15 <-- ac15 + < available, (0, 0, 0, 0), (0, -acp, 0, -acp), (0, -acp, 0, -acp), 0>
ais <- al 6 + < used, (0, 0, 0, 0), (acp, acp, 0, acp), (0, acp, 0, acp), - ai / au + (ai + acp / au + acp) >

a17 +- a17 + < [idcp, idi2, on, 100], [idcp, idbe, merged, 80]>

a24 +- a24 + acp - cm2

P1i <- Pi , wcp w (cp, single, included, qievel)
P2 <- 2, hp = h (cp, single, included, qievel)
P3 <- P33, acp = a (cp, single, included, qievel)
p6 <- Ps, cm2 = cost-m2 (qlevel, covered)

g93: Adding a single youth study space to the current list of spaces to a customized house
as <- as , a3 = custom
a4 <- a4, 14 age(name) < 18, name e user(studios)
a6 -- a6 , qievei= U6
a1o <- a1o+ < [sd, 1, ((youth, single included, 1))]>
all <-- all + < [single-youth study, (included, delimited, isolated), 0] >

31 <- a13, 3 [be, idbe, (?name), (sleeping), (single ?wt), (isolated, ?wa), (?qievel, ?Wq), ?w, ?h, ?a] A
~3 [idbe, ?id, merged] e a17 function (?id) = youth study ->
+ < [sd, idys, (?name), (youth study), (single ?wt), (included, ?wa), (qievel, ?wq), wys, hys, ays] >

zone = zone (?id)
zone = sleeping ->

aC14 <-- C14+ sleeping (idys, ays)
ai5 <-- a15 + < available, (0, -ays, 0, -ays), (0, 0, 0, 0), (0, -ays, 0, -ays), 0>
a1 <- C16 + < used, (ays, ays, 0, ays), (0, 0, 0, 0), (0, ays, 0, ays), - ai / au + (ai + ays au + ays) >

(X <-- W7 + < [idys, idi1, on, 100], [idys, idbe, merged, 80]>
zone = f2 ->

a1i4 +- ax14+ f2 (idys, ays)

a15 <- a1s + < available, (0, 0, 0, 0), (0, -ays, 0, -ays), (0, -ays, 0, -ays), 0>
a1 <- a1 + < used, (0, 0, 0, 0), (ays, ays, 0, ays), (0, ays, 0, ays), - ai / au + (a + ays / au + ays) >

aC17 <- a17 + < [idys, id2, on, 100], [idys, idbe, merged, 80] >

aC24 +- aC24 + ays - cm2

1i <-- 1i, wys= w (ys, single, included, qievel)
12 - 12, hys = h (ys, single, included, qievel)
P33- P33, ays = a (ys, single, included, qievel)
16 <+- 136, cm2 = cost-m2 (qievel, covered)

g94: Adding a double children play space to the current list of spaces to a customized house
as <-- as , 3 = custom
a4 <- a4, age(max(namei, name2)) 14, name e user(studios)
a6 <- a6, qlevel= a6

ao <- (xio+ < [sd, 1, ((children, double included, 1))]>
all <- all + < [double-children-play, (included, delimited, isolated), 0]>
a13 <- U13, 3 [be, idbe, (?namei, ?name2), (sleeping), (single ?wt), (isolated, ?wa), (?qievei, ?Wq), ?N, ?h, ?a] A

421

~3 [idbe, ?id, merged] e C1| function (?id) = children play ->
+ < [sd, idaw, (?namei, ?name2), (children play), (single ?wt), (included, ?wa), (qievel, ?wq), waw, haw, aaw]>

zone = zone (?id)
zone = sleeping ->

a14 +- a14+ sleeping (idep, acp)
C15 <- a15 + < available, (0, -acp, 0, - acp), (0, 0, 0, 0), (0, - acp, 0, - acp), 0>
a1e <- aC16 + < used, (acp, acp, 0, acp), (0, 0, 0, 0), (0, acp, 0, acp), -ai / au + (ai + acp / au + acp) >
a17 <- (X17 + < [idep, idti, on, 100], [idcp, idbe, merged, 80]>

zone = f2 ->
a14 +- a14 + f2 (idep, acp)
a15 <- a15 + < available, (0, 0, 0, 0), (0, -acp, 0, -acp), (0, -acp, 0, -acp), 0>
ale -- a16 + < used, (0, 0, 0, 0), (acp, acp, 0, acp), (0, acp, 0, acp), -ai / au + (a + acp / au + acp) >
a17 4- aX17 + < [idcp, id2, on, 100], [idcp, idbe, merged, 80] >

a24 <- a24 + acp -cm2
P1i <- 1i, wcp= w (cp, double, included, qievel)
P2+- @2, hop = h (cp, double, included, qievel)
P33<- @3, acp = a (cp, double, included, qievel)
P6 <- Pe, cm2 = cost-m2 (qievei, covered)

g95: Adding a double youht study space to the current list of spaces to a customized house
as +- as , a3 = custom
a4 <- a4, 14 age(max(namei, name2)) < 18, name e user(studios)
W +- C6

aio +- aio + < [sd, 1, ((youth, double included, 1))]>
ani <-- all + < [double-youth-study, (included, delimited, isolated), 0]>
a13 <- a13, 3 [be, idbe, (?namei, ?name2), (sleeping), (double ?wt), (isolated, ?wa), (?qievei, ?Wq), ?w, ?h, ?a] A

~3 [idbe, ?id, merged] e al7| function (?id) = youth study ->
+ < [sd, idys, (?namei, ?name2), (youth study), (double ?wt), (included, ?wa), (qievel, ?Wq), Wys, hys, ays]>

zone = zone (?id)
zone = sleeping ->

a14 +- a14 + sleeping (idys, ays)
a15 +- a15 + < available, (0, -ays, 0, -ays), (0, 0, 0, 0), (0, -ays, 0, -ays), 0>
ale <- a16 + < used, (ays, ays, 0, ays), (0, 0, 0, 0), (0, ays, 0, ays), - ai / au + (ai + ays / au + ays) >
C17 <- a17 + < [idys, idfl, on, 100], [idys, idbe, merged, 80] >

zone = f2 ->

a14 +- C14+ f2 (idys, ays)
a1s <- a1s + < available, (0, 0, 0, 0), (0, -ays, 0, -ays), (0, -ays, 0, -ays), 0>
aie <- a16 + < used, (0, 0, 0, 0), (ays, ays, 0, ays), (0, ays, 0, ays), - ai / au + (a + ays / au + ays) >
U17 4- a17 + < [idys, id2, on, 100], [idys, idbe, merged, 80] >

a24 <- aE24 + ays ' cm2
1i +- P1i, wys= w (ys, double, included, qievel)

12 <-- 12, hys = h (ys, double, included, qievel)
133- P3, ays = a (ys, double, included, qievel)
P64- Pe, cm2 = cost-m2 (qievel, covered)

g96: Adding a double adult workspace to the current list of spaces to a customized house
as <-as , a3 = custom
a4 <- a4 , age(max(name1, name2)) > 18, name e user(studios)
a <- a6
a1a <- aio+ < [sd, 1, ((adult, included, 1))]>
an <- aii + < [adult work, (included, delimited, isolated), 0]>
a13 <- a13,] [be, idbe, (?name1, ?name2), (sleeping) (couple ?wt), (isolated, ?wa), (?qievel, ?wq), ?w, ?h, ?a] A

- [idbe, ?id, merged] e a(17| function (?id) = adult work =>
+ < [sd, idaw, (?name1, ?name2), (adult work), (double, 0), (included, ?wa), (qievel, ?Wq), Waw, haw, aaw] >

zone = zone (?id)
zone = sleeping ->

a14 <- al4 + sleeping (idaw, aaw)
a15 <- a15 + < available, (0, -aaw, 0, -aaw), (0, 0, 0, 0), (0, -aaw, 0, -aaw), 0>
a1e 4- ale + < used, (aaw, aaw, 0, aaw), (0, 0, 0, 0), (0, aaw, 0, aaw), - ai / au + (a + aaw / au + aaw) >

422

a117 <- a17 + < [idaw, ida, on, 100], [idaw, idbe, merged, 80] >
zone = f2 =>

a114 <- a14+ sleeping (idaw, aaw)
a115 - cs + < available, (0, 0, 0, 0), (0, -aaw, 0, -aaw), (0, -aaw, 0, -aaw), 0>
a1 6+- 16 + < used, (0, 0, 0, 0), (aaw, aaw, 0, aaw), (0, aaw, 0, aaw), -ai / au + (ai + aa / au+ aaw) >
a17*- 0117 + < [idaw, idf2, on, 100], [idaw, idbe, merged, 80]>

a24+- a124 + aaw - cm2

1i 4- 1i , Waw= w (aw, included, qievel)
P2<- $2, haw = h (aw, included, qievel)
03 <- D3, aaw = a (aw, included, qievel)
B6 <- 36, cm2 = cost-m2 (qievel, covered)

Laundry (programmer)

g97: Adding an included laundry space
ca4 +- x4 , nusers = 14
x6 <- (16, qlievei = 6
c10 <- ao10+ < [Ia, 1, included]>
a11i -- aii + < [laundry, (included, delimited, isolated), 0]>
a13+- CC13,3 [ki, ?idki, 0, (cooking) (isolated ?wt), (?qievei, ?Wq), ?w, ?h, ?a]

+ < [la, idia, 0, (wash and dry cloths), (included, 100), (qievel, 0), wia, hia, ala] >
nia= 0 A qievel = min

a14 <- (14+ service (idia, ala)
115- C15 + < available, (0, -ala, 0, -ala), (0, 0, 0, 0), (0, -ala, 0, -ala), 0>

C116 <- a16 + < used, (ala, ala, 0, ala), (0, 0, 0, 0), (0, ala, 0, ala), - ai / au + (ai + ala / au + ala) >

a17 <- a17 + < [idia, idi, on, 100] >
a24 <- 24 + ata -cm2
1i <- Pi , wia = w (la, nusers, included, qievel,)

12 <- 12, hia = h (la, nusers, included, qievel)

B3<- P33, ala = a (la, nusers, included, qievel)

36 <- 136, cm2 = cost-m2 (qievel, covered)

g98: Adding a delimited laundry space
c4 -- c4, nusers = 14
x6 <- xa6, qievel = a6
cii +- ccii + < [laundry, (included, delimited, isolated), 0] >
C13 <- a113, 3 [ki, ?idki, 0, (cooking) (isolated ?wt), (?qievei, ?wq), ?w, ?h, ?a]

+ < [la, idia, 0, (wash and dry cloths), (delimited, 80), (qievel, 0), wla, hia, ala] >
nia = 0 A qievel e {med, max)

a14 <- a14+ service (idia, ala)
axs +- ax1s + < available, (0, -ala, 0, -ala), (0, 0, 0, 0), (0, -ala, 0, -ala), 0>
(a16 <- (a16 + < used, (0, ala, 0, ala), (0, 0, 0, 0), (0, ala, 0, ala), -ai / au + (ail au + ala) >
(17 +- (17 + < [idia, idf, on, 100] >

aC24 +- (24 + ala -cm2
1i <- 1i , Wia = w (la, nusers, included, qievel,)

P2<- 12, Hia = h (la, nusers, included, qievel)
13 34- 13, Ala = a (la, nusers, included, qievel)
13<- P6, cm2 = cost_m2 (qievel, covered)

Storage (programmer)

g99: Adding an included pantry space
x4 -- a4, nusers = (4

(6 +- (16, qlevel = a6

(11o <- 10+ < [cl, 1, (pantry, 1, included)] >
(11 <- an1 + < [pantry, (included, isolated), 0]>

423

a13 <- a13+ < [pa, idpa, 0, (food storage), (included, 100), (qievel, 0), wpa, hpa, apa]>
npa= 0

a14 <- (14+ service (idpa, apa)
C15 +- a15 + < available, (0, -ape, 0, -apa), (0, 0, 0, 0), (0, -apa, 0, -apa), 0>
a16 *- a16 + < used, (apa, apa, 0, apa), (0, 0, 0, 0), (apa, apa, 0, apa), - ai au + (ai + apa / au + apa) >
a17 +- a17 + < [idpa, idfl, on, 100]>
X24 <- X24 + apa - cm2
1 - 1I, Wpa = w (pa, nusers, included, qievel,)

12 +- 32, hpa = h (pa, nusers, included, qievel)

@3 <- P3, apa = a (pa, nusers, included, qievel)
P6<- P6, cm2 = cost-m2 (qievel, covered)

glOO: Adding a house clothing storage space (programmer)
x4 <- x4, nusers = 4
x6 +- x6 , qievel= 6

awo <- x1o+ [ci, 1, (clothing, 1, included)]
xi 1- ci + < [house-clothing-storage, (included, isolated), 0]>
aE13 <- a13+ < [cl, idhe, 0, (house clothing storage), (included, 100), (qlevel, 0), Whc, hhc, ahc)] >

n house clothing = 0

a14 <- C14+ service (idhc, ahc)
C15 <- (15 + < available, (0, - ahc, 0, - ahc), (0, 0, 0, 0), (0, - ahc, 0, - ahc), 0>
X16 <-- a16 + < used, (0, ahc, 0, ahc), (0, 0, 0, 0), (0, ahc, 0, ahc), - ai au + (ai / au + ahc) >

a17 +- ali7 + < [idhc, idi1, on, 100] >

a(24 +- aE24 + ahc -cm2
1 <-- 1, Whc = w (hc, nusers, included, qievel)

D2<- @2, hhc = h (hc, nusers, included, qievel)
@3<- 133, ahc = a (hc, nusers, included, qievel)
B6+- P6, cm2 = cost-m2 (qievel, covered)

glOl: Adding a global storage space (programmer)
c4 <- a4w, nusers =
6 <-- c6w, qievel = C6

a1o +- c1o+ < [cl, 1, (global, 1, included)]>
al <- cn1 + < [global-storage, (included, isolated), 0]>
X13 <- C13+ < [cl, idhc, 0, (global storage), (included, 100), (qlevel, 0), wci, hei, aci)]>

n global storage = 0

a14 <- a14+ service (idci, aci)
ois +- xis + < available, (0, - aci, 0, - aci), (0, 0, 0, 0), (0, - aci, 0, - aci), 0>
C16 +- C16 + < used, (0, aci, 0, aci), (0, 0, 0, 0), (0, aci, 0, aci), -ai / au + (ai / au + aci) >

a1i7 <- XI7 + < [idci, idfl, on, 100] >
a24 <- C24 + aci - cm2
1i - 1i, wci= w (cl, nusers, included, qievel,)

P24- 32, hei = h (cl, nusers, included, qlevel)
P33+- $3, aci = a (cl, nusers, included, qievei)
P6 <- 16, cm2 = cost-m2 (qlevel, covered)

Exterior spaces (programmer)

g102: Adding a balcony (programmer)
a(4 *- c4 , ndwelers = C6

6 <- c6 ,qievei= c6
x9 <- xs, aw = true
cii <- xii + < [bl, (isolated), 0]>
a13 <- X13

+ < [bl, idbl, 0, (being outside), (ndwellers, 100), (isolated, 100), (qlevel, Wq), Wbi, hbi, abi] >
n (balcony) = 0

C14 - C14+ f2 (idbl, - ao)
C1 4- x5 + < available, (0, 0, 0, 0), (0, 0, -abl, -abl), (0, 0, -abi, -abl), 0>

424

a1i <- am + < used, (0, 0, 0, 0), (0, 0, abi, abi), (0, 0, abi, abi), - ai / au+ (ai / au+ a) >
a17 - a17 + < [idbi, idbl, on, 100]>
a24 <- a24 + aba -cm2
1i <- 1i , Wbi= w (bl, ndwellers, isolated, qievel,)

P2 <- 12 , hbl = h (bl, ndwellers, isolated, qievel,)
P3 4- 13, abi = a (bi, ndweters, isolated, qievel)
P <- 1s, cm2 = cost-m2 (qievel, covered)

g103: Initialize list of optional spaces (programmer)
£124- a12 + < [bathroom (bathtub, shower, lavatory), 0],

[informal-dining, (included, delimited, isolated), 0],
[adult-studio, (included, delimited, isolated), 0]
[clothing-storage, (included, delimited, isolated), 0],
[global storage, (included, delimited, isolated), 0],
[balcony, (isolated), 0], [terrace, (isolated), 0]>

Bathrooms (user)

g104: Up/downgrading a bathroom (user)
a1o +- a11o, nolitory = n (capacity)
a13 4- a13

- < [ba, ?idba, 0, (hygiene), (?capacity, wc), (isolated, 100), (?qievei, wq), ?wo, ?h, ?ao]>
+ < [ba, ?idba, 0, (hygiene), (capacity, wc), (isolated, 100), (qievel, Wq), Wn, hn, an]>
ncurrent= n (capacity)
ncurrent n obligatory
capacity e {bathtub, shower, lavatory)
qievei e {min, med, max)
Wc , Wq E {0, 5, 10,..., 100)
ncurrent = nobligatory Wc = 100,

ncurrent > nobligatory Wc < 80

fn =f1 =>
a14 4- a14+ sleeping (idba, -?ao + an)
a11 <- a15 + < available, (0, ?ao - an, 0, ?ao - an), (0, 0, 0, 0), (0, ?ao - an, 0, ?ao - an), 0>
a1 +- £116 + < used, (0, -?ao + an, 0, -?ao + an),

(0,0,0,0),
(0, -?ao + an, 0, -?ao + an),
-ai / au+ (ail / au - ?ao + an) >

fn =f2 =

£114 4- a14 + f2 (idba, -?ao + an)
£115 <- 115 + < available, (0, 0, 0, 0), (0, ?ao - an, 0, ?ao - an), (0, ?ao - an, 0, ?ao - an), 0>
£16 <- £116 + < used, (0, 0, 0, 0),

(0, -?ao + an, 0, -?ao + an),
(0, -?ao + an, 0, -?ao + an),
- ai / au + (al / au - ?ao + an) >

£117 <- 117 , 3 < [idba, ?idn, on, ?wt]>
a22 <- a22+ (?ao - an) -cm2
B1+ <- 1i, Wn = w (ba, capacity, isolated, qievei,)
12<- @2, hn = h (ba, capacity, isolated, qievel)
13<- @3, an = a (ba, capacity, isolated, qievel)
s <- 1s, cm2 = cost-m2 (qievel, covered)

g105: Adding a bathroom, if the number of bathrooms does not exceed the maximum allowed (user)
£s <- as , nbedrooms = aC5

£13 4- £13 + < [ba, idea, 0, (hygiene), (capacity, wc), (isolated, 100), (qievel, wq), wn, hn, an] >
idba= id (max) +1

425

nbathroorns < nbedrooms + 2
newjtype e {bathtub, shower, lavatory)
new-qievei e {min, med, max}
Wc , q E{0, 5, 10,..., 80)

capacity = lavatory A first floor available area > an ->
a14 <- a14+ sleeping (idba, + an)
C15 <- a15 + < available, (0, - an, 0, - an), (0, 0, 0, 0), (0, - an, 0, - an), 0>
C16 <- C16 + < used, (0, an, 0, an), (0, 0, 0, 0), (0, an, 0, an), - ai/au + (ai / au + an) >

a17 <-- 17 , 3 < [idba, idti, on, 80]>
capacity lavatory v (capacity = lavatory A first floor available area < an) ->

a14 <- 1 14+ f2 (idba, + an)
C15 +- c15 + < available, (0, 0, 0, 0), (0, - an, 0, - an), (0, - an, 0, - an), 0>
a16 <- C16 + < used, (0, 0, 0, 0), (0, an, 0, an), (0, an, 0, an), -ai / au + (ai / au + an) >
aX17 <- a17 , 3 < [idba, idf2, on, 80t] >

a22 <- c22+ ant - cm2
D1 1- PI, Wn = w (ba, capacity, isolated, qievei,)
D2 <- D2, hn = h (ba, capacity, isolated, qievel)

D3 <- D3, an = a (ba, capacity, isolated, qievel)

D6 <- 16, cm2 = cost-m2 (qlevel, covered)

g106: Deleting a bathroom, if there is more than the obligatory number of bathrooms (user)
io <- a0io, n obligatory = n (new-type)

a13 <- X13

- < [ba, idba, (?users), 0, (hygiene), (?capacity, ?wc), (isolated, 100), (?qevel, ?Wq), ?wo, ?ho, ?ao] >
ncurrent = n (capacity)
ncurrent > nobligatory

C14 +- C143 [zone, ?rooms, ?area] , idbae ?rooms
-space (zone, idba, - ?ao)

zone # f2 ->
X14 +- C14 - zone (idba, - ?ao)

ax15 <- c15 + < available, (0, ?ao, 0, ?ao), (0, 0, 0, 0), (0, ?ao, 0, ?ao), 0>
ai16 <- C16 + < used, (0, -?ao, 0, -?ao), (0, 0, 0, 0), (0, -?ao, 0, -?ao), - ai / au + (ai / au -?ao) >

zone = f2 =>

X14 <- a14 - zone (idba, - ?ao)
C15 <- C1s + < available, (0, 0, 0, 0), (0, ?ao, 0, ?ao), (0, ?ao, 0, ?ao), 0>
aX16 <- aX16 + < used, (0, 0, 0, 0), (0, -?ao, 0, -?ao), (0, -?ao, 0, -780), - ai / au + (ai / au - ?ao) >

a17 <- a17 - < [idba, ?id, ?r, ?w]>, V ?id, ?r, ?w
(a22 <- (a22 - ?ao - cm2

36 <- 136, cm2 = cost-m2 (qievel, covered)

g107: Deleting the bathroom from the optional list when its number equals the maximum allowed
a5 <-- a, nbedrooms = a15

a112 <- a112 - < [bathroom (bathtub, shower, lavatory), 0]>
(113 <- aX13

nbathrooms = nbedrooms + 2

g1O8: Adding the bathroom to the optional list when its number is below the maximum allowed
axs <-- s, nbedroons= a15

(a12 <- (12 -< [bathroom (bathtub, shower, lavatory), 0] >
a113<- (X13

nbathrooms = nbedrooms + 2

Dining (user)

g109: Up/downgrading a formal dining space (user)
a4 <- c4 , nusers = a4

cio +- cia, obligatory-articulation = articulation (formal dining)

426

aC13 +- a13
- < [ts, idfd, 0, (formal dining), (?capacity, we), (?articulation, ?wa), (?qievei, ?wq), ?wo, ?ho, ?ao]>
+ < [ts, idfd, 0, (formal dining), (capacity, we), (articulation, Wa), (qievei, Wq), Wn, hn, an] >

capacityid = capacity (informal dining), nusers capacity + capacityid ! 2 -nusers

articulation e {included, delimited, isolated), articulation 2 obligatory-articulation,
We , a , wq E{0, 5 , 10,..., 100}
capacity > nusers > wc < 80
articulation > obligatoryarticulation -:> wa < 80
qievel> min => wq < 80

ai14 <- a14 3 [zone, ?rooms, ?area] , idfd c ?rooms
-space (zone, ?idep, -?ao)
articulation = included = + living (idfd, an)
articulation e (delimited, isolated) > + service (ida, afd)

C1s <- C15 + < available, (0, ?ao - an, 0, ?ao - an), (0, 0, 0, 0), (0, ?ao - an, 0, ?ao - an), 0>
C16 <- a16 + < used, (-?ao + an, -?ao + an, 0, -?ao + an),

(0,0,0,0),
(0, -?ao + an, 0, -?ao + an),
-ai / au + (ai -?ao + an / au -?ao + an) >

a2 2- C22 + (an - ?ao) -cm2
P1 <-- P1, Wn = w (fd, capacity, articulation, qievel)
P2<- @2, hn = h (fd, capacity, articulation, qievel)
P33+- 13, an = a (fd, capacity, articulation, qievel)
D6e<- 136, cm2 = cost-m2 (qievel, covered)

Note: It is not necessary to check the floor of the dining space because it is always on the first floor. In fact, the dining space needs
to be close to the kitchen, which in turn, needs to be on the same floor as the bedroom that is required to be on the entrance floor,
which in the case of the Malagueira houses is on first floor.

g11O: Up/downgrading an informal dining space (user)
c4 <- a4 , nusers = 4
aio - cio, obligatory-type = type (informal dining)
Ca13 <- a13

- < [ts, idfd, 0, (informal dining), (?capacity, we), (?articulation, ?wa), (?qievei, ?wq), ?wo, ?ho, ?ao]>
+ < [ts, idfd, 0, (informal dining), (capacity, we), (articulation, wa), (qievei, wq), wn, hn, an]>

capacityid = capacity (formal dining), nusers capacity + capacityi 2 - nusers
articulation e (included, delimited, isolated), articulation > obligatory-articulation,
we , wa , wq G {0, 5, 10,..., 1001
capacity > nusers -> we < 80
articulation > obligatory-articulation -> wa < 80
qievel> min => wq< 80

X14- a14, + service (idfd, -?ao + an)
a15 +- a15 + < available, (0, ?a. - an, 0, ?ao - an), (0, 0, 0, 0), (0, ?ao - an, 0, ?ao - an), 0>
C16 <- C16 + < used, (-?ao + an, -?ao + an, 0, -?ao + an),

(0,0,0,0),
(0, -?ao + an, 0, -?ao + an),
- ai / au + (ai -?ao + an / au -?ao + an) >

a22 <-- X22 + (an - ?ao) -cm2
1i <- 1i, wfd= w (id, capacity, articulation, qievel)

P2<- D2, hfd = h (id, capacity, articulation, qievel)
P33<- P3, afd = a (id, capacity, articulation, qievel)
P6*+- 16, cm2 = cost-m2 (qievel, covered)

g111: Adding an informal dining space, is there is none (user)
aX12 +- C12 - < [informaLdining, (included, delimited, isolated), 0]>
a13 <- X13

+ < [ts, did, 0, (informal dining), (capacity, we), (articulation, wa), (qievel, wq), wn, hn, an]>
idid= id (max) +1
ninforrl dining = 0
capacityd = capacity (formal dining), nusers capacity + capacityid 2 - nusers

427

articulation e (included, delimited, isolated), articulation obligatory.articulation,
Wc, Wa, q e {0, 5, 10,..., 100}
capacity > nusers -> wc < 80
articulation > obligatoryarticulation => wa < 80
qievei> min -> wq< 80

aC14 <- a14+ service (idid, an)
aX15 <- a15 + < available, (0, - an, 0, - an), (0, 0, 0, 0), (0, - an, 0, - an), 0>
C16 <- CC16 + < used, (an, an, 0, an), (0, 0, 0, 0), (0, an, 0, an), - ai / au + (ai + an /au + an) >
a7 <- a17 + < [idid, idfl, on, 100]>
aC22 <- c22+ an -cm2
1i <- 1i , wid= w (id, capacity, articulation, qievel)

P2<- $2, hid = h (id, capacity, articulation, qievel)
P3 <- 13, aid = a (id, capacity, articulation, qievel)

P6<- P6, cm2 = cost-m2 (qievel, covered)

g112: Deleting an informal dining space, if exists an isolated formal dining space (user)
C12 <- X12 + < [informal-dining, (included, delimited, isolated), 0]>
C13 <- C13

- < [id, ?idi, (?users), (informal dining), (?capacity, ?wc), (?articulation, ?wa), (?qievei, ?wq), ?wo, ?h, ?ao] >
articulation (formal dining) = isolated

C14 <- a14 - service (idid, -?ao)
C15 *- a1 + < available, (0, ?ao, 0, ?ao), (0, 0, 0, 0), (0, ?ao, 0, ?ao), 0>
C16 <-- a 6 + < used, (-?ao, -?ao, 0, -?ao), (0, 0, 0, 0), (0, -?ao, 0, -?ao), - ai / au + (ai -?ao / au - ?ao) >

a17 <- a17 - < [idid, ?id, ?r, ?w]>, V ?id, ?r, ?w
a22 <- a22+ ?ao -cm2
P36<- P6, cm2 = cost-m2 (?qievei, covered)

Studio spaces (user)

g113: Up/downgrading a child play space (user)
cio <- cio , nobligatory = n (child play), capacityobligatory = Ji=1nobligatory capacity (child playi)
C13 <- a13

- < [sd, idep, (?users), (child play), (?capacity, ?wc), (?articulation, ?wa), (?qievei, ?wq), ?wo, ?ho, ?ao]>
+ < [sd, idep, (?users), (child play), (capacity, wc), (articulation, wa), (qievei, 0), Wn, hn, an] >

nourrent = n (child play), capacitycurent = =1 "ncurrent capacity (child playi)
capacityobigaory 5 capacity S capacitytotai + 2
articulation e {included, delimited, isolated)
qievei e {min, med, max)
Wc, Wa, Wq E{0, 5,10,..., 100}
capacity > capacityobligatory -> wc < 80
articulation > included > Wa < 80
qievel> min -> wq< 80

aX14 +- a14 3 [zone, ?rooms, ?area] , idep e ?rooms
-space (zone, idep, -?ao)

zone w f2 ->
a15 <- a1 + < available, (0, ?ao - an, 0, ?ao - an), (0, 0, 0, 0), (0, ?ao - an, 0, ?ao - an), 0>
C16 <- a16 + < used, (-?ao + an, -?ao + an, 0, -?ao + an),

(0,0,0,0),
(-?ao+ an, -?ao + an, 0, -?ao + an),
- ai / au + (ai - ?ao + an / au -?ao + an) >

zone = f2 -
a15 <- a15 + < available, (0, 0, 0, 0), (0, ?ao - an, 0, ?ao - an), (0, ?ao - an, 0, ?ao - an), 0>
aX16 <- aC16 + < used, (0, 0, 0, 0),

(-?ao + an, -?ao + an, 0, -?ao + an),
(-?ao + an, -?ao + an, 0, -?ao + an),
- ai / au + (ai - ?ao + an / au -?ao + an) >

a22 +- a22 + (an - ao) - cm2
B1 <- B1, Wn = w (cp, capacity, articulation, qievel,)

428

P2<- P2, hn = h (cp, capacity, articulation, qievel)
P3 <- P3, an = a (cp, capacity, articulation, qievei)
36 <- P6, cm2 = costm2 (qievel, covered)

g1 14: Up/downgrading a youth study space (user)
aio - a10, nobligatory = n (youth study), capacityobligatory = 1i=1nobligatory capacity (youth study)
X13 <-- a13

- < [sd, idys, (?users), (youth study), (?capacity, ?we), (?articulation, ?Wa), (?qievei, ?wq), ?wo, ?ho, ?ao]>
+ < [sd, idys, (?users), (youth study), (capacity, we), (articulation, wa), (qievei, 0), wn, hn, an]>

ncurrent = n (youth study), capacitycurent = Xi=1ncurrent capacity (youth study)
capacitytotais capacity capacitytotai + 2
articulation e {included, delimited, isolated)
qieveie (min, med, max)
We , a , Wq E{0, 5, 10,..., 100}
capacity capacityobligatory > wc < 80
articulation > included > wa < 80
qievei> min > Wq < 80

C14 <- a14] [zone, ?rooms, ?area] , idp e ?rooms
-space (zone, idys, -?ao)

zone + f2 ->
a15 <-- a15 + < available, (0, ?ao - an, 0, ?ao - an), (0, 0, 0, 0), (0, ?ao - an, 0, ?ao - an), 0>
a1 <- a16 + < used, (-?ao + an, -?ao + an, 0, -?ao + an),

(0,0,0,0),
(-?ao + an, -?ao + an, 0, -?ao + an),
-ai / au + (al -?ao + an / au -?ao + an) >

zone = f2 ->
C15 <-- a15 + < available, (0, 0, 0, 0), (0, ?ao - an, 0, ?ao - an), (0, ?ao - an, 0, ?ao - an), 0>
C16 <- C16 + < used, (0, 0, 0, 0),

(-?ao + an, -?ao + an, 0, -?ao + an),
(-?ao+ an, -?ao + an, 0, -?ao + an),
-ai / au + (al - ?ao + an / au -?ao + an) >

a22 <- a22+ (an - ao) - cm2

1i +- 1i , Wn = w (ys, capacity, articulation, qievel,)

P2<- P2, hn = h (ys, capacity, articulation, qievel)

P33+- 13, an = a (ys, capacity, articulation, qievel)
P6 <- P6, cm2 = costm2 (qievel, covered)

g1 15: Up/downgrading an adult workspace (user)
X4 <- 4 , naduft dwellers = aF4

cio <- aio, nobligatory = n (adult work), capacityobligatory = yi=1nobligatory capacity (adult worki)

aX13 <- (13
- < [sd, idaw, (?users), (adult work), (?capacity, ?we), (?articulation, ?wa), (?qlevel, ?Wq), ?wo, ?ho, ?ao] >

+ < [sd, idaw, (?users), (adult work), (capacity, we), (articulation, wa), (qievel, 0), Wn, hn, an] >
ncurrent = n (adult work), capacitycurent= 1=1 "ncurren capacity (adult worki)
capacityobligatory capacityeurent nadult dwellers+ 2

capacity e (1, 2)
articulation e (included, delimited, isolated)
qieveie (min, med, max}
we , a , wq E {0, 5, 10,..., 100}
capacitycureni capacityobligatory --> w < 80
articulation > included > wa < 80
qievel> min -> wq< 80

C14 <- C14 [zone, ?rooms, ?area] , idep e ?rooms
- space (zone, idaw, - ?ao)

C15 +- a15 + < available, (0, ?ao - an, 0, ?ao - an), (0, 0, 0, 0), (0, ?ao - an, 0, ?ao - an), 0>
aX16 +- aX16 + < used, (-?ao + an, -?ao + an, 0, -?ao + an),

(0,0,0,0),
(-?ao + an, -?ao + an, 0, -?ao + an),
-ai / au + (ai - ?ao + an / au -?ao + an) >

429

aC22 <- aC22+ (an - ao cm2
B1+ -- 1I, Wn= w (aw, capacity, articulation, qievel,)
P2<- D2, hn= h (aw, capacity, articulation, qievel)

13 <- @3, an = a (aw, capacity, articulation, qievel)
P6 <- 16, cm2 = cost-m2 (qievel, covered)

g116: Adding an adult workspace (user)
a4 <- 4 , naduit dwellers = a4

aio +- a1io, nobligalory = n (adult work), capacityobligatory = li=1 nobligalor capacity (adult work i)
a13 <- a13

+ < [sd, idaw, (?users), (adult work), (capacity, wc), (articulation, wa), (qievel, 0), Wn, hn, an]>
ncurrent = n (adult work), capacityurent = i=1ncufnent capacity (adult worki)
capacityobligatory capacitycurent naduit dwellers+ 2
capacity e (1, 2}
articulation e (included, delimited, isolated}
qievelE (min, med, max)
Wc, Wa, Wq e{0, 5, 10,..., 1001
capacitycurent capacityobligaory - wc < 80
articulation > included -> Wa< 80
qievel> min = wq< 80

first floor available area an =>

a14 <- a14+ sleeping (idaw, + an)
a15 <- adl5 + < available, (- an, - an, 0, - an), (0, 0, 0, 0), (- an, - an, 0, - an), 0>
C16 <- a16 + < used, (an, an, 0, an), (0, 0, 0, 0), (an, an, 0, an), -ai/ au + (ai + an / au + an) >

C17 <- a17, 3 < [idaw, idt, on, 80]>
first floor available area < an ->

aC14 <- (14+ f2 (idaw, + an)
ad15 <- a15 + < available, (0, 0, 0, 0), (- an, - an, 0, - an), (- an, - an, 0, - an), 0>
aC16 +- C16 + < used, (0, 0, 0, 0), (an, an, 0, an), (an, an, 0, an), - ai/ au + (ai + an / au + an) >
C17 <- a17 , 3 < [idaw, idt2, on, 80]>

cca <- a22+ an -cm2
P1+ - 1I, wn = w (aw, capacity, articulation, qlevel,)

P2+- D2, hn= h (aw, capacity, articulation, qlevel)
03+ <- 03 , an = a (aw, capacity, articulation, qlevel)

36 <-- 16, cm2 = cost-m2 (qlievel, covered)

g1 17: Deleting an adult workspace
cio <- xio, nobligatory = n (adult work), capacitytotal = Ji=1 nobligatory capacity (adult worki)
C13 <- a13

- < [sd, idaw, (?users), (adult work), (?capacity, ?wc), (?articulation, ?wa), (?qieve, ? wq), ?wo, ?ho, ?ao] >
ncurrent = n (adult work), capacityurent = 1lncurrent capacity (adult worki)
capacitytolals capacitycurent

a14 <- a14 3 [zone, ?rooms, ?area] , idaw e ?rooms
- space (zone, idaw, - ?ao)

zone w 2 ->
a14 <- a14+ sleeping (idaw, - ?ao)
C15 <- c15 + < available, (0, ?ao, 0, ?ao), (0, 0, 0, 0), (0, ?ao, 0, ?ao), 0>
a16 <- aC16 + < used, (-?ao, -?ao, 0, ?ao), (0, 0, 0, 0), (-?ao, -?a., 0, -?ao), -ai / au + (ai -?ao / au - ?ao) >

zone = 2 ->
C14 +- a14+ f2 (idaw, -?ao)
C15 <- c15 + < available, (0, 0, 0, 0), (0, an, 0, an), (0, an, 0, an), 0>

C16 <- aC16 + < used, (0, 0, 0, 0), (-an, -an, 0, -an), (-an, -an, 0, -an), - ai / au +(ai - an / au - an) >
C17 <- CC17 - < [idaw, ?id, ?r, ?w] >, V ?id, ?r, ?w

C22 <- 22-?an -cm2
136 - 136, cm2 = cost-m2 (qievel, covered)

g1 18: Deleting the adult workspace from the optional list when its number equals the maximum (programmer)
4 +- C4, naduit dwellers = a4

a12 <- C12 -< [adult-work, (included, delimited, isolated), 0]>

430

a13 <- aE13, ncurrent = n (adult work), capacitycurent = i=1"cu"ent capacity (adult worki)
capacitycurent = nadult dwellers+ 2

g119: Adding the adult workspace to the optional list when its number is below the maximum (programmer)
a4 <- a 4, naduit dwellers = a4

(x1o *- ao, nobligatory = n (adult work), capacityobligatory = yi=nobligatory capacity (adult work i)
C12 <- a12+ < [adult-work, (included, delimited, isolated), 0]>
X13 <- aC13, ncurrent = n (adult work), capacitycurent = l=1ncurrent capacity (adult worki)

capacitycurent < naduit dwellers + 2

Laundry (user)

g120: up/downgrading the laundry (user)

Storage (user)

g121: up/downgrading the pantry (user)
a11 <- anl - < [pantry, (included, isolated), 0]>

+ < [pantry, (isolated, included), 0]>
C13 <-- X13

-< [pa, idpa, (?users), (food storage), (?capacity ?wc), (?articulation, ?Wa), (?qeve, ?wq), ?wo, ?h, ?ao]>
+ < [pa, idpa, (?users), (food storage), (?capacity ?wc), (articulation, Wa), (qlevel, Wq), Wn, hn, an]>

articulation e {included, isolated)
qlevele {min, med, max)
wa , wq e{0, 5, 10,..., 100)
articulation > included -> wa < 80
qlevel> min -> Wq < 80

a14 <- a14 + service (zone, idaw, an - ?ao)
a15 +- aX15 + < available, (0, ?ao - an, 0, ?ao - an), (0, 0, 0, 0), (0, ?ao - an, 0, ?ao - an), 0>
?articulation # articulation A ?articulation = included ->

C16 <- (16 + < used, (-?ao, -?ao + an, 0, -?ao + an),
(0,0,0,0),
(-?ao, -?ao + an, 0, -?ao + an),
- ai / au + (ai -?ao / au -?ao + an) >

?articulation * articulation A ?articulation = isolated ->
a6 +- a-6 + < used, (an, -?ao + an, 0, -?ao + an),

(0,0,0,0),
(an, -?ao + an, 0, -?ao + an),
-ai / au + (a + an / au -?ao + an) >

C122 <- a22 + (?ao - an) - cm2

1i <- $1, Wn= w (pa, ?capacity, articulation, qievel,)
32 <- 12, hn = h (pa, ?capacity, articulation, qievel)

13 <- P3, an = a (pa, ?capacity, articulation, qievel)
36 <- 136, cm2 = cost-m2 (qievel, covered)

g122: Up/downgrading the house clothing storage space (user)
c4 <- c4, nusers = a
axo <- axio, nobligatory = n (house clothing storage), capacitytotai = i=1 nobligatory capacity (house clothing storagel)
aX13 <- C13 -< [hc, idhc, (?users), (house clothing storage), (?capacity ?wc), (?articulation, ?wa), (?qevei, ?wq), ?wo, ?ho,

?ao] >
+ < [hc, idhc, (?users), (house clothing storage), (?capacity ?wc), (articulation, wa), (qievel, Wq), wn, hn, an]>

ncurrent = n (global storage) , capacitycurrent = li=1 "current capacity (global storagei)
capacityobligatory < capacitycurrent < nusers + 2

articulation e {included, isolated}
qlevei e {min, med, max)
wc , wa , wg G {0, 5, 10,..., 100}

431

capacitycurrent > capacityobligatory > wc < 80
articulation > included > Wa < 80
qievel> min = Wq < 80

C14 -- 14 3 [zone, ?rooms, ?area] , idhc e ?rooms
+ space (zone, idhc, an - ?ao)

C15 <-- ac15 + < available, (0, ?ao - an, 0, ?ao - an), (0, 0, 0, 0), (0, ?ao - an, 0, ?ao - an), 0>
?articulation # articulation A ?articulation = included z:

C16 -- C16 + < used, (-?ao, -?ao + an, 0, -?ao + an),

(0,0,0,0),
(-?ao, -?ao + an, 0, -?ao + an),
- ai / au + (ai - ?ao / au -?ao + an) >

?articulation # articulation A ?articulation = isolated ->
C16 +- C16 + < used, (an, -?ao + an, 0, -?ao + an),

(0,0,0,0),
(an, -?ao + an, 0, -?ao + an),
- ai / au + (a + an / au -?ao + an) >

C22 +- C22 + (?ao - an) - cm2
P1+ - $1 , Wn = w (hc, ?capacity, articulation, qievel,)
P2<- @2, hn = h (hc, ?capacity, articulation, qievel)
P33+- P33, an = a (hc, ?capacity, articulation, qievel)
D1 3- s36, cm2 = cost-m2 (qievel, covered)

g123: Up/downgrading the global storage space (user)
ca <- c4 , nusers = a
c1o +- aio, nobligatory = n (global storage), capacitytota = Ji=1nobligatory capacity (global storagei)
C13 <- C13 -< [gs, idgs, (?users), (global storage), (?capacity, ?wc), (?articulation, ?wa), (?qeve, ?Wq), ?wo, ?ho, ?ao] >

+ < [gs, idgs, (?users), (global storage), (capacity, wc), (articulation, wa), (qievel, Wq), Wn, hn, an]>
ncurrent = n (global storage) , capacitycurrent = xi=1ncurrent capacity (global storagel)
capacityobligatory < capacitycurent < nusers + 2
articulation e {included, isolated)
qieveie {min, med, max)
Wc , Wa , Wq E {0, 5, 10,..., 100}
capacitycurent > capacityobligatory -> wc < 80
articulation > included > wa < 80
qievei> min -> wq < 80

aX14 <- C14 3 [zone, ?rooms, ?area] , idg e ?rooms
+ space (zone, idgs, an -?ao)

C15 <- c1s + < available, (0, ?ao - an, 0, ?ao - an), (0, 0, 0, 0), (0, ?ao - an, 0, ?ao - an), 0>
?articulation + articulation A ?articulation = included ->

C16 +- C16 + < used, (-?ao, -?ao + an, 0, -?ao + an),
(0,0,0,0),
(-?ao, -?ao + an, 0, -?ao + an),
- ai / au+ (ai - ?ao / au -?ao + an) >

?articulation # articulation A ?articulation = isolated ->
C16 -- C16 + < used, (an, -?ao + an, 0, -?ao + an),

(0,0,0,0),
(an, -?ao + an, 0, -?ao + an),
- ai / au + (ai + an / au -?ao + an) >

C22 +- a22+ (?ao - an) - cm2
P1+ -- B1 , Wn= w (gs, capacity, articulation, qievel,)
P2+-- $2, hn = h (gs, capacity, articulation, qievel)
B33+- D3, an = a (gs, capacity, articulation, qievel)
P6s<- P6, cm2 = cost m2 (qievel, covered)

g124: Adding a house clothing storage space (user)
co <- aio, nobligatory = n (house clothing storage), capacitytotal = Y=1jnobligatory capacity (house clothing storage 1)

aX13 <- a13 + < [hc, idhc, (?users), (house clothing storage), (capacity wc), (articulation, wa), (qievel, Wq), Wn, hn, an] >
neurrent = n (house clothing storage) , capacitycurrent = i=1 ncurrent capacity (house clothing storage1)
capacitycurrent < ndwellers + 2

432

articulation e {included, isolated)
qlevele {min, med, max)
Wc , a , q E{0, 5 , 10,..., 100)
capacityurrent > capacityobligatory > wc < 80
articulation > included => Wa < 80
qievei> min = wq< 80

first floor available area an =

a14 <- C14+ sleeping (idhc, + an)

a15 <- a15 + < available, (0, -an, 0, -an), (0, 0, 0, 0), (0, -an, 0, -an), 0>
articulation = included ->

C16 <- C16 + < used, (an, an, 0, an), (0, 0, 0, 0), (an, an, 0, an), -ai / au + (ai + an /au + an) >

articulation = isolated =>
a1e <- a16 + < used, (0, an, 0, an), (0, 0, 0, 0), (0, an, 0, an), - ai / au + (ai / au + an) >

a17 <- 17 , + < [idhc, idf1, 80] >
first floor available area < an ->

C14 <- C14 + f2 (idhc, + an)

C1s <- C15 + < available, (0, 0, 0, 0), (0, -an, 0, -an), (0, -an, 0, -an), 0>
articulation = included =

C1s <- C16 + < used, (0, 0, 0, 0), (an, an, 0, an), (an, an, 0, an), - ai / au +(a + an / au + an) >

articulation = isolated =>
C16 <- a16 + < used, (0, 0, 0, 0), (0, an, 0, an), (0, an, 0, an), - ai / au +(ai / au + an) >

a17 <- C17 + < [idhc, id2, 80] >
C22 <- 22 + an - cm2
@14 <- B1 , Wn = w (hc, capacity, articulation, qievel,)
P2 +- P2, hn = h (hc, capacity, articulation, qievel)
P33 @3, an = a (hc, capacity, articulation, qievel)

16- Be, cm2 = cost-m2 (qievel, covered)

g125: Adding a global storage space (user)
1o - aio, nobligatory = n (global storage), capacitytotal = Ji=1nobligatory capacity (global storagei)

C13 <- a13 + < [gs, idgs, (?users), (house clothing storage), (capacity wc), (articulation, wa), (qievel, Wq), Wn, hn, an]>
ncurrent = n (global storage) , capacityurrent = i=.1ncurrent capacity (global storagei)
capacityurrent < ndwellers + 2
articulation e {included, isolated)
qieveE (min, med, max}
Wc , a , q E{0, 5 , 10,..., 1001
capacityurrent > capacityobligatory -> wc < 80
articulation > included > wa < 80
qievel> min > Wq < 80

first floor available area > an =
C14 <- a14+ sleeping (idgs, + an)

a5 +- C15 + < available, (0, -an, 0, -an), (0, 0, 0, 0), (0, -an, 0, -an), 0>
C16 - a16 + < used, (an, an, 0, an), (0, 0, 0, 0), (an, an, 0, an), -ai / au + (ai + an / au + an) >

a17 +- a17 + < [idgs, idi, 80]>
first floor available area < an ->

aC14 - a14 + f2 (idgs, + an)

C15 +- a15 + < available, (0, 0, 0, 0), (0, -an, 0, -an), (0, -an, 0, -an), 0>
a16 <- C16 + < used, (0, 0, 0, 0), (an, an, 0, an), (an, an, 0, an), - ai / au +(ai + an / au + an) >

a17 +- a17 , + < [idgs, idt2, 80]>
a22 <- aX22+ an -cm2
1i- 1i, Wn = w (gs, capacity, articulation, qievel,)

12<- 2, hn = h (gs, capacity, articulation, qievel)
P3+*- 13, an = a (gs, capacity, articulation, qievel)
P6+- P6, cm2 = cost-m2 (qievel, covered)

g126: Deleting a house clothing storage space (user)
a +- aio, nobligatory = n (house clothing storage), capacitytotal = yi=1nobligatory capacity (house clothing storagei)

433

C13 +- C13 - < [hc, idhc, (?users), (house clothing storage), (?capacity ?wc), (?articulation, ?wa), (?qevei, ?w), ?wo, ?ho,
?ao,]>

ncurrent = n (house clothing storage) , capacitycurrent = =1ncurren capacity (house clothing storagei)
capacitycurent > capacityobligaory

0a14 <- C14 3 [zone, ?rooms, ?area] , idne G ?rooms
- space (zone, idhc, -?ao)

zone +2 ->
aC14 <- a14+ sleeping (idhc, - ao)
aC15 +- a115 + < available, (0, ao, 0, ao), (0, 0, 0, 0), (0, ao, 0, ao), 0>
a16 < C16 + < used, (-ao, - ao, 0, ao), (0, 0, 0, 0), (-ao, -ao, 0, -ao), -ai / au+ (a - ao /au -ao) >

zone = 2 ->
aX14 +- aC14+ f2 (idhc, - ao)
a15 <-- aC15 + < available, (0, 0, 0, 0), (0, ao, 0, ao), (0, ao, 0, ao), 0>
(16 - a16 + < used, (0, 0, 0, 0), (-ao, -ao, 0, -ao), (-ao, -ao, 0, -ao), -ai / au+(ai - ao au - ao) >

a17 <- Ca17 - < [idhc, ?id, ?r, ?w]>, V ?id, ?r, ?w
aC22 <- c22 - ?ao -cm2
D6<-- DP6, cm2 = cost-m2 (qievel, covered)

g127: Deleting a global storage space (user)
cio <- cio, nobligalory = n (global storage), capacitytotai = yi=nobigatory capacity (global storagei)

a13 +-- a13 - < [gs, idhe, (?users), (global storage), (?capacity ?wc), (?articulation, ?wa), (?qevel, ?Wq), ?wo, ?h, ?ao] >
ncurrent = n (global storage) , capacitycurrent = li=1ncurrent capacity (global storagei)
capacitycurreni > capacityobligatory

a14 <- C14 3 [zone, ?rooms, ?area] , idgs e ?rooms
-space (zone, idgs, - ?ao)

zone 4 2 =>
aC14 <- aC14 - sleeping (idgs, + ao)
ai15 <-- C15 + < available, (0, ao, 0, ao), (0, 0, 0, 0), (0, ao, 0, ao), 0>
C16 - C16 + < used, (-ao, -ao, 0, ao), (0, 0, 0, 0), (-ao, -ao, 0, -ao), - ai / au+ (al -an /au+ - ao) >

zone = 2 -:>

a14 <- C14 - f2 (idgs, + ao)
C15 +- a5 + < available, (0, 0, 0, 0), (0, ao, 0, ao), (0, ao, 0, ao), 0>
X16 <- C16 + < used, (0, 0, 0, 0), (-ao, -ao, 0, -ao), (-ao, -ao, 0, -ao), - ai / au +(ai - ao ao - ao) >

C17 <- C17 -< [idgs, ?id, ?r, ?w]>, V ?id, ?r, ?w
(X22 +- ac22 - ?ao - cm2
P6<-- P6, cm2 = cost-m2 (qievel, covered)

g128: Deleting the house clothing storage space from the optional list spaces when the current capacity equals the
maximum (programmer)
c4 <- 4 , ndwellers = aC4

(io <- axio, nobligatory = n (house clothing storage), capacitytota = Ej=1 nobligatory capacity (house clothing storage)
aX12 <- a12 - < [house-clothing-storage, (included, isolated), 0] >
a13 +- a13, ncurrent = n (house clothing storage), capacitycurent = i=1ncurrent capacity (house clothing storagel)

capacitycunent = ndwellers + 2

g129: Adding the house clothing storage to the optional list when the current capacity is below the maximum
(programmer)
a4 <- C4 , naduit dwellers = aC4
ao <- cio, nobligatory = n (house clothing storage), capacityobligatory = Ji=nobigatory capacity (house clothing storagel)
a12 *- C12 + < [housesclothingstorage, (included, isolated), 0]>
a13 <- a13, ncurrent = n (house clothing storage), capacitycurent= ji=1ncurrent capacity (house clothing storagei)

capacitycurrent < ndweIlers + 2

g130: Deleting the global storage space from the optional list when the current capacity equals the maximum
(programmer)
a4 +- x4, ndwellers = aC4

axo <- acio, nobligatory = n (global storage), capacitytotai = yi=1nobligatory capacity (global storagei)
C12 <- a12 - < [global-storage, (included, isolated), 0] >
C13 <- ua13, nourrent = n (global storage), capacitycurent = i=1ncurrent capacity (global storagel)

434

capaciycunent = ndwellers + 2

g131: Adding the global storage space to the current list of optional spaces when the current capacity is below the
maximum (programmer)
a4 <- a4 , nadult dwellers = aC4

axio <- 0io, nobligatory = n (global storage), capacityobligatory = Ji=nobligatory capacity (global storagei)
a12 +- a12+ < [global storage, (included, isolated), 0]>
X13 +- X13, ncurrent = n (global storage), capacitycurent= i=1ncurrent capacity (global storage)

Exterior spaces

g132: Up/downgrading a balcony (user)
(6 <- a , ndwellers = a4

aC13 <- a13
- < [bl, idbl, (?users), (being outside), (?capacity, ?wc), (isolated, 100), (?qevel, ?wq), ?wo, ?ho, ?ao] >
+ < [bl, idbl, 0, (being outside), (capacity, wc), (isolated, 100), (qievel, wq), Wn, hn, an]>
ncurrent = n (being outside) A < [idbl, idf2, on, ?wt] > e aX17, capacitycurrent = 2 1 ncurrent capacity (being outside i)
capacitycuoent < ndweliers + 2
qleveie {min, med, max}
wc , wa e (0, 5, 10,..., 100}
capacitycurrent > ndwellers > Wc < 80
qievel> min = wq< 80

(X14 <- a14+ f2 (idbl, - ao,+ an)

C1s <- aX1s + < available, (0, 0, 0, 0), (0, 0, ao - an, -ao), (0, 0, ao -an, ao - an), 0>
a16 <- c6 + < used, (0, 0, 0, 0), (0, 0, -ao + an, -an + ao), (0, 0, -an + ao, -an+ ao), - ai /au+ (a /au - an+ ao) >
aX17 <- a17 + < [idbi, idf2, on, 100] >
c22 - a22+ (an - ao) -cm2
B1 <-- P1i, Wn = w (ba, capacity, isolated, qievel)
12 <- $2, ha = h (ba, capacity, isolated, qievel)
P3 <- 13, an = a (ba, capacity, isolated, qievei)
P6 *- B6, cm2 = costm2 (qievei, uncovered)

g133: Adding a balcony (user)
ax6 +- ax6 , ndwellers = a4

g <- ag, cag = true

aC13 <- a13

+ < [bl, idbl, 0, (being outside), (capacity wc), (isolated, 100), (qievel, Wq), Wn, hn, an] >
ncurrent = n (being outside) A < [idbl, idt2, on, ?wt] > e a17, capacitycurrent = y 1=1ncurren capacity (being outside i)
nbalconies < 2
capacitycunent < ndwelers + 2
qievel e {min, med, max)
w , wae {0, 5, 10,..., 100}
capacitycurent > ndwellers = wc < 80

qievel> min = wq< 80

a14 +- a14 + f2 (idbl, + an)

ai15 <- c15 + < available, (0, 0, 0, 0), (0, 0, -an, -an), (0, 0, -an, -an), 0>
C16 +- C16 + < used, (0, 0, 0, 0), (0, 0, an, an), (0, 0, an, an), -ai / au + (ai au + an) >
(X1 7 <- a17 + < [idbi, idf2, on, 100]>

a22 <- a22+ an - cm2

1 <-- 1 , Wn = w (ba, capacity, isolated, qievel)
P2<- 12, hn = h (ba, capacity, isolated, qievel)
B3+*- 13, an = a (ba, capacity, isolated, qievel)
B6+- D6, cm2 = cost-m2 (qievel, uncovered)

g134: Deleting a balcony (user)
x6 +- x6 , ndwellers = a4

a6 <- c , qievei = C6
C9 - X9

435

a13 <- a13

- < [bl, idbl, 0, (being outside), (?capacity, ?wc), (isolated, ?wa), (?qievei, ?Wq), ?wo, ?ho, ?ao] >
nlcurrent = n (being outside) A < [idbl, id2, on, ?wt] > e a17, capacitycurrent = Xi=1ncurrent capacity (being outside)
as = false v (ncurrent> 1 A capacitycurrent> ndwealers)

a14 <- X14+ f2 (idbl, -?ao)

a15 +- a15 + < available, (0, 0, 0, 0), (0, 0, ?ao, ?ao), (0, 0, ?ao, ?ao), 0>
a1e <- a6 + < used, (0, 0, 0, 0), (0, 0, -?ao, -?ao), (0, 0, -?ao, -?ao), -ai / au + (ai / au - ?ao) >
a17 <- a17 - < [idbi, id2, on, 100]>
a22<- a2-?ao -cm2
s6 (<- @e, cm2 = cost_m2 (qievel, uncovered)

g135: Deleting the balcony from the optional list when the current number equals the maximum (programmer)
a12 <- a12 - < [being outside, (isolated), 0]>
a13 <- a13,

ncurrent = n (being outside) A < [idbl, idf2, on, ?wt] > e a17
ncurrent = 2

g136: Adding the balcony to the optional list when the current number is below the maximum (programmer)
a12 <- a12+ < [being outside, (isolated), 0] >
a13 <- a13,

ncurrent = n (being outside) A < [idbl, idt2, on, ?Wt] > e a17
ncurrent < 2

Setting the required topological relations among spaces (programmer)

g137: as <- as , qievei= as
a13 <- a13 , kitchen, laundry e a13
a17 <- a17 + ((idkitchen), (idiaundry), r, 100)
if articulation(laundry) = isolated

qievei= min => r = (close, adjacent, door)
qievei= med => r = (adjacent, close, door)
qievel = max => r = (door, adjacent, close)

if articulation(laundry) = delimited = r = (passage)
if articulation(laundry) = included -> r = (merged)

g138: a1a< - a13 , kitchen, informal dining e a13
a17 <- a17+ ((nkitchen), (ninformaldining), r, 100)
if articulation (informal dining) = isolated

qievei = min -> r = (close, adjacent, window, door)
qievei = med => r = (adjacent, close, window, door)
qievei = max -> r = (door, window, adjacent, close)

if articulation (informal dining) = delimited - r = (passage)
if articulation (informal dining) = included -> r = (merged)

g139: al13<- a1 , kitchen, formal dining e a13
a17 <- a17 + ((nikitchen), (nformal dining), r, 100)
if articulation (formal dining) = isolated

qievei = min => r = (close, adjacent, window, door)
qievei = med -> r = (adjacent, close, window, door)
qievei = max -> r = (door, window, adjacent, close)

if articulation (formal dining) = delimited = r = (passage)

g140: ala <- a13 , kitchen, pantry e a13
a17 <- a17+ ((nkitchen), (npantry), r, 100),
if articulation (pantry) = isolated

qIevei = min -> r = (close, adjacent, door)

436

qieve = med - r = (adjacent, close, door)
qievei = max -> r = (door, adjacent, close)

if articulation (pantry) = included -> r = (merged)

g141: C13 <- a13 , kitchen, patio, street e a13
a17 <- X17 + ((nkftchen), (npatio, nstreet, nbalcony, nierrace), r, 100),

qvel= min => r = (adjacent, close, window, door)
qievei = med -> r = (window, close, adjacent, door)
qievel = max =: r = (door, window, adjacent, close)

g142: a13 - X13 , kitchen, living e (13

a7 +- C7 + ((nkitchen), (niiving), r, 100)

qIevei= min => r = (close, adjacent, window, door)
qievei = med -> r = (adjacent, close, window, door)
qievel= max -> r = (door, window, adjacent, close)

g143: C13<-- a13 ,living, formal dining E a13
an17 <- aI17 + (niiving, nformi dining, r, 100),
if type(formal dining) = isolated

qIevei= min -> r = (close, adjacent, window, door)
qievei= med => r = (adjacent, close, window, door)
qievel= max -> r = (door, window, adjacent, close)

articulation(formal dining) = delimited -> r = (passage)
articulation(formal dining) = included -> r = (merged)

g144: a13 <- a13 , living, patio e C13

C17 <- X17 + (niiving, ni, r, 100), i e {patio, terrace, street, balcony)
qievei = min -> r = (adjacent, close, window, door)
qievel= med -> r = (window, close, adjacent, door)
qievei = max = r = (door, window, adjacent, close)

g145: aX13 <- aX13 , living, laundry e C13

a17 <- (17 + (niiving, nIaundry, r, 100),
qievel= min -> r = (close, adjacent, window, door)
qievei = med -> r = (adjacent, close, window, door)
qIevei= max - r = (door, window, adjacent, close)

g146: aX13 <- a13 , global storage e a13
X17 <- (X17 + (nglobai storage, circulation, r, 100),
r = (merged, door, adjacent, close)

qievei = min -> r = (close, adjacent, merged, door)
qievei = med -> r = (adjacent, merged, close, door)
qievei= max - r = (merged, door, adjacent, close)

Setting the recommended topological relations among spaces and floors (programmer)

g147: C13 <- C13 , bedroom e aX13
C17 <- a17+ (bedroom, first floor, (on), 100)

(bedroom, first floor, on, wip) e a(17, wipe {5, 10, 15,..., 100)

g148: X13 <- a13 , bedroom, living e C13

a17 <- C1l7+ (bedroom, living, (same floor), 100)
(bedroom, living, same floor, wip) e C17, wtp e {5, 10, 15,..., 1001

g149: aX13 <- a13 , bedroom, kitchen e a13

a07 <- a17+ (bedroom, kitchen, (same floor), 100)
(bedroom, kitchen, same floor, wip) e a17, wtp E {5, 10, 15,..., 100}

437

g150: a13 <- a13 , bathtub, bedroom e a13
aO <- a1+ (bathtub, bedrooms, (same floor), 100)
n (bathtub, bedroom, same floor, wip) < nbedroom - 1, Wip E (5, 10, 15,..., 100

g151: a13 <- a3 ,lavatory, living e a13
a17 <- a17+ (lavatory, living, (same floor), 100)
(lavatory, living, same floor, wtp) e av, Wip E (5, 10, 15,..., 100)

g152: a1 <- a13 ,lavatory, kitchen e a13
a17 <- a17 + (lavatory, kitchen, (same floor), 100)
(lavatory, kitchen, same floor, wip) e a7, wip e (5, 10, 15,..., 100

g mFnde

Setting the default topological relations among spaces (programmer)
g153: a17<- aX17+ (n1, n2,

(any, merged, passage, door, window, adjacent, close, away, same floor, different floors), wt)
(ni, n2, ?relation, ?wt) e a17, V ?relation, ?wt, ni, n2 * floon, i e (1, 2)

Setting the default topological relations among spaces and floors (programmer)
g154: a17 <- a17+ (ni, n2, (on, not on), wi)

(ni, n2, ?relation, ?wt) E an, V ?relation, ?wt, ni= floon A n2 floon, i E (1, 2}

Specifying the topological relations among spaces (user)
g155: a17<- a17 - (n1l, n2, ?r, ?wt)

+ (n1, n2, r, wi)

if articulation (n1) = included v articulation (n1) = included -> (ni, ni, ?r, ?wt), i e (1, 2), Vj e N
?r = (ri, r2., rio)
r= (n, rk+i,. i, n1, rm),
1 1 => k =1,
= 1 => k = 2,
= 10 => m = 9,

1 10 => m = 10
I e 1,...10}
ri,...,10 E (any, different floors, same floor, away, close, adjacent, window, door, passage, merged)
wt E {0, 5, 10,..., 100

Specifying the topological relations among spaces and floors (user)
g156: a17 <- a17 - (nl, n2, ?r, ?wt)

+ (n1, n2, r, wi)
V ?relation, ?wt, ni = floon A n2 floon, i e (1, 2)
?r = (ri, r2), ri, r2 e (on, not on)
r = (r2, ri),
wt E (0, 5, 10,..., 100

Introducing proportions and the corresponding default weights (Programmer)
g157: a22<-a22 ,

+ < [1:1, 10], [1:42, 9], [1:2, 9], [1:3, 9], [1:4, 9], [2:3, 9], [2:5, 9], [3:4, 9], [3:5, 9], [4:5, 9], [5:6, 9] >

Set viewpoints weights
g158: a23 <- a23 + setqLevel-weight (vpi, wi) ,

438

Vpi e {function, spatiality, capacity, articulation, spaciousness, topology, aesthetics,
wi e {5, 10, 15,...,100)

Introducing proportions and the corresponding default weights (Programmer)
g164: a23<- a23,

+< [1:1, 10], [1:42, 9], [1:2, 9], [1:3, 9], [1:4, 9], [2:3, 9], [2:5, 9], [3:4, 9], [3:5, 9], [4:5, 9], [5:6, 9]>

Setting the weights assigned to proportions (User)
g165: a23 <- a23 - [?proportion, ?weight]

+ [proportion, weight],
proportion e {1:1, 1:42, 1:2,1:3,1:4, 2:3, 2:5, 3:4, 3:5, 4:5, 5:6)
weight e {5, 10, 15,...,100)

g166: Activate designer
ao <- ao
a7 - a7
ag <- a9

a22<- a22

a23 <- a23
81+- < nil, nil, nil, nil >
82 - < nil, nil, nil, nil>
8 <- < nil>
84 <- 0
85 - 0
8e <- < nil>
87<- < nil>
8a <- < nil >

89 <- < nil >
810 <-0
S11< 0
812 <- 0
813 <-0
814 <- < [patio, 0], [service, 0], [living, 0], [sleeping, 0], [f2, 0]>
815 <- Ag = lot-area (ao) = 96.00 m2 A ar = frontyard A as9 = true ->

< available, (72.50, 23.50, Ag), (68.50, 4.00, 72.50), (0, 141.00, 27.50, 168.50), 0.77 >
Ag = lot-area (ao) = 96.00 m2 A 7 = frontyard A cs = false ->

< available, (68.50, 27.50, Ag), (68.50, 0.00, 72.50), (0, 141.00, 27.50, 164.50), 0.77 >
Ag = lot-area (ao) = 96.00 m2 A a1 = < street, ?contexti, house, ?contextr> A ax = backyard =>

< available, (72.97, 23.03, Ag), (56.80, 16.17, 72.97), (0, 129.77, 39.20, 168.97), 0.77 >
Ag = lot-area (ao) = 96.00 m2 A a1 = < street, ?contexti, house, ?contextr> A cr = backyard A ac = true =>

< available, (72.50, 23.50, Ag), (68.50, 4.00, 72.50), (0, 141.00, 27.50, 168.50), 0.77 >
Ag = lot-area (ao) = 96.00 m2 A a1 = < street, ?contexti, house, ?contextr> A C7 = backyard A as = false =>

< available, (68.50, 27.50, Ag), (68.50, 0.00, 72.50), (0, 137.00, 27.50, 164.50), 0.77 >
816 +- (used, (0, 0, 0, 0), (0, 0, 0, 0), (0, 0, 0, 0), 0)
817<-0
818 <-0
819 +- 0
820 <- 0
821 <- 0
822 <- C22
823 <- C23
824 +-0
825 <- < RO>

439

7.5 The revised Malagueira grammar

This section presents the Malagueira designing grammar, which includes a revised

version of the shape grammar presented in Chapter 5, and a description grammar. The

initial grammar was changed following the experimental results discussed in Chapter 6

to increase the possibility of generating customized houses. There were three major

changes.

The first change was to enlarge the universe of design solutions. Recall that the initial

grammar only allowed the generation of designs that corresponded to the strictest

interpretation of Siza's rules. The goal of the revised grammar is to permit the

generation of designs that correspond to the broadest interpretation of such rules. This

was achieved by writing the space allocating rules as a general algorithm that permits

the allocation of any spaces specified in the housing program, while maintaining stylistic

coherence.

The second change was to make rule application as deterministic as possible. In the

initial grammar, a rule specified the context in which it could be applied in its left-hand

side and in conditionals on dimension and function. However, this was not enough to

make rule application deterministic, as several rules could be applied at each step in the

derivation. In the revised grammar, dimensional and functional conditionals were

incorporated into the description grammar, and heuristics that select the rule that takes

the evolving design closer to the program description were introduced.

440

The third change was to permit moving back and forth between the design of the lower

and upper floors. In the initial grammar, the generation of floors was strictly sequential

as it started with the lower floor, then continued with the second, and terminated with the

terrace. The drawback in this approach was that the derivation of the upper floor was

completely constrained by the lower floor, which could jeopardize the possibility of

satisfying upper floor requirements that were considered by the client more important

than lower floor ones. In the revised grammar, the derivations of all floors proceed in

parallel, and spaces allocation is determined by the heuristics mentioned above,

independent from the floor.

Experimental results also showed that the derivation of a goal-matching design is not a

continuous, linear progress towards the goal, but includes dead-ends and backtracking

in an attempt to 'optimize' the solution. On the other hand, it also showed that many

dead-ends and backtracking could be avoided if the right heuristics were used.

Therefore, effort was placed on the development of appropriate heuristics, and the

grammar was revised accordingly. Nevertheless, it is yet to be shown that the best

solutions can be found by heuristic search alone without 'optimization'.

The details of the revised grammar are explained over the next sections. The

explanation does not include the complete grammar, but only enough detail to illustrate

the mechanisms referred to above.

7.5.1 Algebras and parallel grammars: viewpoints and features

As mentioned above, the Malagueira designing grammar includes both a shape

grammar and a description grammar. Each of these grammars, in turn, includes several

sub-grammars, as diagrammed in Table 7.36. These sub-grammars correspond to

441

viewpoints in the shape grammar (e.g. first floor plan), and to features in the description

grammar (e.g. morphology). The viewpoints are defined in the same algebras used for

the initial Malagueira grammar and they include the same viewpoints, plus two additional

ones. These additional viewpoints-one for the lower floor and another for the upper

one- are sketch viewpoints used to generate alternatives for assessment, before

derivation proceeds with the best alternative. The description includes a program

description, a fixed description, and a design description. The design description

includes the same features as the program description, but they are identified with the

Greek letter 8 instead of a. Thus, for each program feature an there is a design feature

8. However, some features in the description are only manipulated by the one of the

grammars. For instance, the minimum obligatory, initial obligatory, and the current

optional spaces are only manipulated by the programming grammar.

Table 7.36 - The features manipulated in the designing grammar

Parts Subparts Identifier Viewpoints and Algebra More detail
features

Shape part 3D W Envelope (walls) U33 See Figure
(shape R Spaces (rooms) W33 5.1
description) 2D F1 is floor plan U12vo2

F1 sketch
F2 2"d floor plan
F2 sketch
F3 Terrace
E Elevation
S Stair section

Description part Program aX1,. 25 Lot,., history U03 See Table 7.2
(symbolic description
description) Fixed description P .6 Width,., cost

Design .18....625 Lot,., history
I description I

As in the initial grammar, the 3D viewpoints are used only for visualization purposes, and

therefore, they are not included in the explanation below. The derivation is controlled

both by the 2D viewpoints, and the description features. The derivation of the various

442

viewpoints and features can occur simultaneously or alternately, depending on the state

of the design as diagrammed in Figure 7.1.)

Although the derivation of the design is not formally divided into steps, rules were

grouped into the same analytical steps used for explaining the initial grammar, which are

'start', 'locate functional zones', 'define circulation scheme', 'divide zones into rooms',

'introduce details', and 'introduce openings'. The rules of steps 'introduce details', and

'introduce openings' are not included in the explanation because the focus is on the

derivation of the basic layout to illustrate the heuristic search mechanism.

Grammar Define floors

SketchF 1 t

Sketch F2 1 1 1 1

E

Description 11
Legend: F1- first floor; F2 - 2nd floor; F3 - terrace; E - elevation; S - Start; Z - Locate functional zones; C -
Define circulation scheme; R - Divide zones into rooms; D - Introduce details; 0 - Introduce openings; T -
Terminate.

Figure 7.17 - Use of parallel grammars in the derivation of a Malagueira house. Dark shaded
areas identify main viewpoints, and light shaded areas identify sketch viewpoints. Letter symbols

identify steps of the derivation; vertical line symbols mean that the derivation occurs
simultaneously on the marked main viewpoints, with intermediate recourse to sketch viewpoints,
if necessary; double-arrow symbols mean that the derivation might alternate from one or more

viewpoints.

7.5.2 Rule types

'Layout rules' can be classified according to the type of operation they perform in the

derivation of the design. (Table 7.37) There are composition, evaluation rules,

transformation, and consistency rules. Composition rules encompass assigning,

443

dissecting, and concatenating rules, and their goal is to allocate spaces. Evaluation

rules include generate, assess and select alternative rules, and they are part of the

heuristic mechanism that controls the derivation. Transformation rules include extending

and permuting rules, and they aim at improving the solution. Consistency rules include

vertical and horizontal wall aligning rules, and they ensure that stylistic and structural

coherence is maintained after transformation rules are applied. Transformation and

consistency rules are only required if optimization is sought, which is not the case of the

proposed revised grammar.

Table 7.37 - Classification of layout rules according to
the type of operation they perform

Composition Assigning
Dissecting
Concatenating

Evaluation Generating alternatives
Assessing alternatives
Selecting best alternative

Transformation Expanding
Permuting

Consistency Vertical wall aligning
Horizontal wall aligning

7.5.3 Rules

The explanation of the rules used in the generation of the layout included in the revised

grammar is provided below. The set of rules is presented in Table 7.38, at the end of

Section 7.5.

7.5.3.1 Step 0: Introduce initial shape

The single rule in this step (Rule RO) introduces the initial shape representing the lot. It

is activated when the user hits the 'send' button on the interface and the programmer

creates a design description, with the Rule RO included its history (azs). This rule

retrieves the information on the lot (co), the urban context (a1), and the solar orientation

444

(a2), contained in the program description, and introduces the initial shape in the correct

context.

7.5.3.2 Step 1: Start

Rules 1 through 4 apply at this step. Rule R1 introduces the floors and the pavements

into the appropriate viewpoints. First, it checks the context features (ao, a1, and a2) and

the number of floors (a) in the program description, and copies them onto the design

description (8o,81, 82, and 8). Then, it introduces descriptions representing the floors to

the list of current spaces (513) and descriptions representing the pavements to the list of

pavements (821). It also introduces the corresponding topological relations (517), and

updates the available area (515), the quality (823), the cost (524), and the history. Rule R2

encloses the floor. It adds the enclosing walls to the list of walls (820), and updates the

list of current spaces (513), the available area (815), the cost (824), and the history (825).

Rules R3 and R4 adjust the thickness of the enclosing walls. They update the list of

walls (820), the cost (524), and the history (525). In Rule R4, the front elevation is widened

due to the increase in the side wall thickness.

7.5.3.3 Step 2: Locate functional zones

Rules R5 through 16 apply at this step. Rule R5 divides the first floor into inside and

outside zones in five different ways, depending on the urban context (a1), the number of

floors (a), and the need for balconies on the second floor (a9). For instance, for all

urban context, if the yard is at the front, and there are balconies on the second floor,

then split the first floor into two equal halves, so that the outside zone is at the front, and

the inside zone is at the back. In this case, the rule subtracts the first floor and adds the

two zones to the list of current spaces (813), adds the splitting wall to the list of walls (820),

445

and updates the available area (a15), the topological relations (317), the cost (824), and the

history (825). Rules R6 and R7 divide the second floor into inside and outsides zones. In

Rule R6, if the yard is at the front and there are no balconies on the second floor, or the

yard is at the back, then it splits the second floor so that the splitting wall is above the

one on the first floor. In Rule R7, if the yard is at the front, and there are balconies on

the second floor, then it splits the second floor so that the splitting wall is one meter

behind the one on the first floor. Rule R8 divides the third floor into inside and outside

zones so that the splitting wall is above the one on the second floor. Rule R9 divides the

inside zone to introduce an external corridor linking the street to the patio, if the patio is

at the back, and there are no streets on the side and at the back. These rules update

the appropriate features accordingly.

Rules 10 through 13 locate the functional zones-patio, living, sleeping, and service-

either through assignment or through dissections perpendicular to the x axis. The rules

for dissections perpendicular to the y axis were not included in the current grammar,

given its illustrative purposes. The patio is the first zone to be located, because it has a

major impact on functional organization by constraining window and door placement.

Rule 10 locates the patio through assignment by turning the outside zone into the patio

on all floors, if these are included in the current list of spaces (824), the number of

bedrooms is five (as), and the number of floors is two (a8). It actuates by changing the

name of records in all the relevant features. Rule 11 locates the patio by dissecting the

outside zone into patio and an unnamed zone. It locates the patio on one side or the

other of the outside zone, depending on the urban context. If there is a street on one

side, the patio will most likely be located on the opposite side, to increase the possibility

of opening windows. This decision follows the experimental results, which showed that

446

such a patio location yields better solutions in most of the cases, but in all of them. Rule

12 allocates one of the remaining functional zones through assignment using heuristics.

Namely, it allocates the zone whose allocation is more important, that is, the zone whose

allocation in the current design context will likely lead to the design solution that is the

closest to the goal. Moreover, it locates the zone in all possible situations so that it can

assess them later. The heuristic for determining the importance of a zone is explained

below. Rule 13 locates the remaining zones in all possible situations thereby generating

basic patterns.

Rule 14 assesses a basic pattern to determine its fitness. The heuristic for determining

the fitness of a basic pattern is explained below. Rule 15 eliminates all the worst basic

patterns, one by one, until only one is left, if all the six possible patterns have already

been generated. Rule 16 chooses the best basic pattern to resume the derivation. Rule

17 replicates the basic pattern on the second and third floors. The description parts of

all these rules, as well as the description part of the remaining rules will not be shown.

Heuristics for determininq the importance of a zone

The importance of a zone is the weighted average between its spatiality importance and

its topology importance as expressed in the equation

lspatiality(zone) X Wspatiality + I topology(zone) X wtopology

zone
Wspatiality + wtopology

where

Ispatiality(zone) is the importance of the zone's spatiality,
wspatiality is the weight assigned to spatiality in the housing program,
lltopology(zone) is the importance of the zone's topology, and
wtopoiogy is the weight assigned to topology in the housing program.

447

This equation implies an indirect comparison between spatiality importance and topology

importance. To make such a comparison possible, it is necessary to translate them into

a similar scale. This is achieved by comparing the importance of a zone from each

viewpoint relative to the importance of the zone with bigger demands from the same

viewpoint. Therefore, the relative importance has a value between 0 and 1, from any of

the viewpoints.

Importance of the zone's spatiality

According to what was said above, the relative importance of the zone's spatiality is

given by

I (a(spacei)) x wi

I wi
ltopology(zone)

Z (a(space;)) x w;

Iwj
where

a(spacel) is the area of a space included in the zone,
wi is the average weight of the weights assigned to this spaces' spatiality features,
a(space) is the area of a space included in the zone with bigger spatiality demands, and
wj is the average weight of the weights assigned to this spaces' spatiality features.

Importance of the zone's topology

Similarly, the relative importance of the zone's topology is given by

I r i (space,, spacen) x Wi

xwi
ltopology(zone)

I rj (spacezmax, spacen) X wj

Iwj
where

ri (spacez, spacen) is a relation that involves one of the zone's spaces and any other
space included in the housing program,

wi is the weight assigned to such a relation in the housing program,

448

rj (spacezmax, spacen) is a relation that involves a space of the zone with higher number of
topological relations involving its spaces included in the housing program,

w; is the weight assigned to such a relation.

Heuristics for determining the fitness of a basic pattern

The fitness of a basic pattern is the weighted average between its spatiality fitness and

its topology fitness as expressed in the equation

fspatiality(pattern) X Wspatiality + fltopology(pattern) X wtopology
fpattern =

wspatiality + wtopology

where

Wspatiality is the weight assigned to spatiality in the housing program,
lltopology(zone) is the pattern's topology fitness, and
wtopoiogy is the weight assigned to topology in the housing program.

Similar to what was said above about the importance of a space, the calculation of the

fitness of a basic pattern implies an indirect comparison between spatiality fitness and

topology fitness. This comparison also requires their translation into a similar 0-1 scale

by measuring the fitness of a pattern from a viewpoint to the fitness of the best pattern

from the same viewpoint.

Spatiality fitness of a basic pattern

The pattern whose zone areas are closer to the respective requirements, and therefore,

requires smaller area exchange among its zones, is considered the best from the

spatiality viewpoint. The area requirements of a given zone are given by

Z (a(spacei)) x wi
arequired(z1) =

X Wi

where

a(spacei) - is the area of each space included in the zone,
wi - is the average weight assigned to this space's spatiality requirements.

449

The area balance of a pattern is the sum of the area balances of its zones:

dapattern = |aallocated(Z1) - arequired(Z1)I + |aallocated(Z2) - arequired(Z2)| + |aanlocated(z3) - arequired(za)I

where

aallocated(zn) is the area allocated for zone n, and
arequired(z1) is the required area for the same zone n.

The relative spatiality fitness of a pattern is, therefore, given by

dabest-pattern

fspatiality(current-pattern) =
d acurrent-pattern

where

dabest-pattern - is the area difference of the pattern with the smallest area difference,
dacurrent-pattern - is the area difference of the current pattern.

Topology fitness of a basic pattern

The topology fitness of a pattern is the sum of the ratio between the length of the wall

separating two zones and the weighted number close relations between them; and the

ratio between the weighted number of distance relations between them, and the length

of the wall. The unit is added to the length of the wall to prevent the problem from

becoming indeterminate when the zones do not share a wall.

X r dk (zonei, zonej) X Wk

Ptopoiogy(current-pattern) =
1 + Iwaii(zonei, zone)

I rck (zonei, zone) x Wk

Z Wk

1 + lwaii(zonei, zone)

E Wk

where

i, j e {patio, living, sleeping, service, front, left, back, right}
ptopoiogy(current-pattern) is the topology performance of the current pattern,
rCk (zonei, zone;) is a close relation either between a space in zone i and space in zone j,

or between a space in zone i and zone j (e.g. living room adjacent to south)
rdck (zonei, zonej) is a distance relation between a space in zone i and space in zone j, or

between a space in zone i and zone j (e.g. living room adjacent to south),
wk is the weight associated with such a relation,
lwail(zonei, zone) is the length of the wall between zone i and zone j.

450

The relative topology fitness of a pattern, it obtained by comparing its absolute topology

fitness with that of the best pattern from this viewpoint

propology(current-pattern)
ftopology(current-pattern) =

ptopology(best-pattern)

7.5.3.4 Step 3: Define circulation scheme

To define the circulation scheme it is necessary to made three decisions. First, to

choose the zone and the wall next to which the staircase will be placed; second, to

select the type of staircase; and third, to chose the corridor on the second floor. A

detailed study of the Malagueira existing and new houses made it possible to make the

stair design rules more deterministic than the rules initially proposed, but not so

deterministic as to avoid generate and testing alternatives.

451

Figure 7.18 - The interdependency of stairs design variables in Malagueira houses.

There are many variables involved in the design of staircases such as type, width, rise,

tread, number of steps, existence of safety step, minimum free height, and slope. These

variables are dependent on each other as changing the value of one, affects the values

of others, especially in tight design contexts. Part of the designer's effort is, therefore, to

establish a hierarchy among these variables to decrease the range of possibilities and

cope with the associated complexity. The analysis of the Malagueira houses revealed

the hierarchy established by Siza, which is diagrammed in Figure 7.18.

Some variables are treated as constants. The number of steps is always 14 and the

treads are always 0.25 m deep. All the stairs have a safety step, and the required free-

height is 1.80m. Among the remaining variables, the only that seems to work as an

independent variable is the width, whose value is determined by the user-chosen quality

level, according to Table 7.30 in Section 7.4.10. The values of the other variables are

dependent on the width or on the values of other design variables as explained below.

The riser height can vary depending on the floor-to-floor height, but it never exceeds the

tread depth. The floor-to-floor height is given by the following system of equations and

inequations

hfloor to floor = hfloor height + hpavement A hfloor height 2.40m A hfioor height = f (hconcrete blocks)

where
hfloor to floor is the floor to floor height,
hiloor height is the floor height, and
hpavement is the thickness of the second floor's pavement.

As mentioned in Section 4.3.2, the floor-to-floor height also is determined by the rules

that specify the height of walls on the front fagade when the lot is not flat. In the current

452

version of the grammar, the rules for adjusting the height of walls on the front fagade lot

is inclined were not incorporated because it was not possible to confirm how they exactly

worked'. The thickness of the second floor's pavement is determined by the height of

the pre-stressed concrete beams, which in turn is determined by the maximum span on

the first floor. For simplification purposes, variations in the pavement thickness also

were not considered, but these could easily be incorporated by introducing a table

relating the height of beams to the span. These tables are provided by the

manufacturers of the pre-stressed concrete beams and tiles used in the construction of

the pavement, and they are commonly used in practice by designers, including Siza.

The floor height is constrained by existing regulation to be bigger than 2.40 m, which is

the value it takes by default when the lot is flat. The floor height also is constrained by

the height of the concrete blocks used for the walls, as mentioned in Section 4.3.2.

The riser height, and the floor height will determine the available free-height, which will

have an impact on the stairs length. The stairs length and the zone width will determine

the type of staircase that can be allocated in the zone.

Types of staircases

There are three possible types of staircases, I-shaped (or straight), L-shaped, and U-

shaped (Figure 7.19). The analysis of the houses in the corpus shows that I-shaped and

L-shaped staircases are located in the living zone, whereas the U-shaped one is located

in the sleeping or service zones. This analysis suggested that the type of staircase

1According to the Malagueira building regulations that can be consulted in Evora city hall, the
owners of lots in the private promotion sector of the development must get the floor and fagade
walls heights from the city hall. This requirement, and the fact that such lots have a fairly steep
topography suggests that there must exist rules to get the floor and fagade heights, and that they
must be know by the municipal architects.
A new trip to the city hall should help to clarify these rules.

453

hkoor

Section
Ending
runaway

Plans

a

Main Steps Starting E
runaway

hextra

3.25

0.75 1.75 0.75

0 1 2 3 - 5 6 7P i"s0.75

1121- 10 % I1.50
II I

1.10

min > 4.15-4.35

Wtairs L in seps Wtairs

1 I 1, I

I~ I
p 11 10 9 8 7 6 5 4

2
1

min = 4.65-4.85

Watairs "min steps Wstars

W.t.i.

I-extra steps

1)(1 I WA
11312 110 9 87 654 3 1

mim > 4.65-4.85

0.70 3.25 0.70

I | | 1 I I

1 13 12 1 10 9 8 7 8 5 4 3

min > 4.90-5.10

0.70 3.50 > 0.70

I I ' Ij8 6

E 1,13 12 1' 10 9 87685 4 3 -

Figure 7.19 - Types and dimensions of staircases in Malagueira houses.

454

T I -r r

-- - .a.-I-I-I. --

depended on the type of functional zone, and so this rule was followed in the first version

of the Malagueira grammar, the one used in the experiments. However, a more careful

analysis also showed that there was also a dependency between the widths of the

functional zones where staircases are located, and the type of staircase. Namely, the

widths of the zones with I-shaped staircases are bigger than those of the zones with L

shaped ones, and these are bigger than the widths of the zones with U-shaped

staircases. This observation thus suggested that the type of staircase should depend on

the width of the functional zone where the staircase is to be located. This rule does not

contradict the previous analysis as it explains that the zones with I-shaped staircases

are wider because living zones tend to have greater area requirements. An explanation

of the computations used in the rules for stair design in accordance with the

dependencies mentioned above is given below.

I and L-shaped staircases

The stair design has to fulfill the following condition

(1) hmin > hperson

where hmin is the height of the free space between the edge of the second floor and the

edge of the step immediately below, and hperson is the threshold below which is the

majority of the population's height. Up to the mid-eighties, this threshold was 1.80 m in

Portugal, and so Siza used it in the design of Malagueira houses. However, due to the

sharp increase of the average height of the Portuguese population during the past 15

years, this value has increased to 1.90 m, which the value used in the revised grammar.

455

Substituting in the condition above hmin and hperson for the expression used to calculate

hmin and the value of hperson successively yields the conditions

hfiloor-to-fioor - (hslab + hextra) > 1 .90 m,
hfioor-to-fioor - (hslab + n - rise) > 1 .90 m,

(2) hfloor-fioor - [hsiab + n - (hfioor-to-tioor / 14)] > 1 .90 m,

where

hfiloor is the floor to floor height,
hsiab is the thickness of the second floor's pavement,
hextra is the height of the flight of stairs up to the minimum free space, and
n is a number approximate to the maximum number of extra steps.

Solving this inequation in terms of n, it yields

(3) n < (14 - (hfioor-to-fioor - hslab + 1 .80)) / hfloor-toioor.

In most cases, this number is not an integer, and therefore, the maximum number of

steps in the extra flight of stairs is equal to the integer part of this number:

(4) nextra steps= int (n).

The minimum number of steps in the main flight of stairs is then given by subtracting the

maximum number of steps in the extra flight of stairs from the total number of steps:

(5) nmain steps = 14 - nextra steps.

The minimum length required to allocate an I-shaped staircase is given by

6) Lmin = Lstarting runaway + Lmain steps + Lending runaway.

Given that the starting and ending runaways should be squares according to Siza's

rules, the equation above is equivalent to

(7) Lmin = 2 - Wstairs + Lmain steps.

456

Finally, by finding the difference between the width (or length) of the functional zone and

the minimum value require to allocate an I-shaped staircase

(8) Lextra = Wo - Lmins

one can determine the shape of the staircase that can be allocated in the functional zone

under consideration. There are four possible cases:

1. Lextra < 0

If the difference is negative, the width of the functional zone is smaller than the minimum

length required and, therefore, neither an I-shaped nor an L-shaped staircase can be

allocated (Figure 7.19a).

2. 0 Lextra < nextra steps - tread

If the difference is non-negative and smaller than the maximum length of the extra flight

of stairs, the staircase should be L-shaped, in which the lengths of the main and the

extra flight of stairs are given by:

(9) Lmain steps = [(nmain steps + integer (Lextra / tread)) tread]

(10) Lextra steps = [(nmain steps - integer (Lextra / tread)) tread]

The non-integer part of the division of the extra length by the tread is added to the

ending runaway and the starting runaway remains a square (Figure 7.19b):

(11) Lending runaway = Wstairs + remainder (Lextra steps / tread)

(12) Lstarting runaway = Wstairs

457

When the lots is flat, meaning that the floor height is 2.40m, and the floor thickness is

maximum (0.30m), the minimum length required to allocate such a staircase is 4.15m

(Wstairs = 0.70m, Lrunaway = Wstairs, nextra steps = 3) and the maximum is 5.00m (Wstairs = 0.90m

+ 0.1Om, Lrunaway = Wstairs , nextra steps = 22). When the lot is so steep that the floor height is

maximum, and the span is small enough for the floor thickness to be minimum, the

minimum length required to allocate such a staircase is 4.15m still (Wstairs= 0.70m,

Lrunaway = Wstairs, nextra steps = 2) and the maximum is 5.00m (Wstairs = 0.90m + 0.1Om,

Lrunaway = Wstairs , nextra steps = 3).

3. nextra steps -tread Lextra < (nextra steps + 1) tread

If the difference between the available width and the minimum width is bigger than the

maximum length of the extra flight of stairs, but smaller than the maximum length of the

extra flight of stairs plus one, the staircase should be I-shaped. The length of the flight

of stairs is given by the same equation as above, but in this case, it yields the value

3.00m. The lengths of the start and ending runaways also are calculated as above

(Figure 7.19c and d):

The minimum length required to allocate such a staircase is 4.65m (Wstairs = 0.70m,

Lrunaway = Wstairs) and the maximum is 5.25m (Wstairs = 0.90m + 0.1 m, Lrunaway = Wstairs).

4. Lextra > (nextra steps + 1) - tread

2 When the number of extra steps is 1, the landing becomes the extra step, and the staircase is I-shaped.

458

If the difference between the available width and the minimum width exceeds the

maximum length of the extra flight of stairs plus one, the allocated staircase is I-shaped.

The length of the flight of stairs is obtained as above, but the non-integer part of the ratio

between the extra length and the tread is added to the starting runaway, and it is the

ending runaway that remains a square (Figure 7.19e):

(13) Lending runaway = Wstairs + safety step

(14) Lmain steps = [(nmain steps + integer (Lextra / tread)) - tread]

(15) Lstarting runaway = Wstairs + remainder (Lextra / tread)

In this case, the starting runaway does not constitute a step. Although none of the

houses in the corpus followed this rules, it was followed in the new design in Experiment

2, which was shown to Siza in one of the experiments, who validate the design.

Therefore, the rule was considered correct.

The minimum length required to allocate such a staircase is 4.90m (Wstairs 0.70m,

Lrunaway = Wstairs) and the maximum length is the maximum width (or length) of functional

zones (7.8m).

U-shaped staircase

If the functional zone is not wide enough to allocate an I-shaped or an L-shaped

staircase, a U-shaped staircase can be allocated. The minimum width (Lmin) required to

allocate this type of staircase is given by the equation:

(16) Lmin = 2 - (Wstairs + 0.10) + nsteps - tread,

where

Wstairs is the width of stairs,
0.10 is the thickness of the wall between the two flights of stairs, and

459

nsteps is the number of steps of in each flight of stairs.

Thus the minimum width required to allocate such a staircase is 3.25m (Wstairs = 0.75),

and the maximum is 3.65m. Thus, there is a gap between the maximum width required

to allocate a U-shaped staircase (3.65m), and the minimum width required to allocate an

L-shaped one (4.00m). In such circumstances, the width of the functional zone is

adjusted to the closest value. The hypothetical alternative of allocating a J-shaped

staircase is not valid because it would use a larger area, or require to carve a J-shaped

stairwell out of the second floor's pavement, which is not possible for the structural

reasons mentioned above.

In summary, the design variables that decide the type of staircase that can be allocated

in a functional zone are its width (or length), and the stairs length. If the functional zone

is large enough -- at least twice the width of the stairs plus the minimum length of the

main steps flight, the staircase will be I-shaped (Rule R19). In this type of staircase,

twelve of the fourteen steps constitute the body of the stairs, which is bounded by

runaways on each side that form the remaining two-steps. If the functional zone is not

large enough to allocate an I-shaped staircase, the linear staircase takes the form of an

L (Rule 20), or invades the neighboring zone (Rule 21). The minimum length of the long

tail of the L-shaped staircase is restricted to 10 steps to guarantee that a person does

not hit the ceiling when climbing the stairs. This restriction is imposed by structural

constraints that require the stairwell to be a rectangle so that the ceiling's pre-stressed

concrete beams can run parallel to the stairs without interruption. All the rules for

placing the staircase adjust the dimension of the zone in which the staircase is placed to

comply with the rule for stair design just described. If the functional zone is not large

460

enough to allocate an L-shaped staircase, a U-shaped staircase is allocated (Rule 22

and 23).

The relation between the width of functional zones and the type of staircases is

diagrammed in Figure 7.20.

U-shaped a 3.25 -- 3.75

L-shaped b 4.15-4.35 -- 4.55-4.75

4.65-4.85 -- 5.05-5.25
1-shaped c __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

4.65-4.85 -- 5.40-5.50

4.90-5.10 - 5.50-7.80
e

0 1 2 3 4 5 6 7 8

Figure 7.20 - The dependency between the width oz zones and the type of staircase
allocated

Locating the staircase

By considering the width of the zones, it is possible to narrow the choices of staircase

placement down. Nevertheless, it is not enough to determine in which zone and wall to

locate the staircase. Therefore, the solution is to generate all of the alternatives, and

then to pick up the one with the highest housing quality. This is accomplished by using

Rules R18, and R24-30.

Rule 18 generates all the possible proto-stair patterns, which will potentially generate the

stair patterns shown in Figure 5.13 if the placement of a staircase by any of the rules 19-

23 mentioned above succeeds. Rules R25 through R26 delete proto-stair patterns if

none of those rules succeed in turning then into stair patterns. Rule R27 assess a stair

pattern and records its fitness using the heuristic:

461

Fitness = V, - Vd

Where

VP is the quality of the program description, and

Vd is the quality of the current design description.

Rule R28 deletes the functional zones, one by one, of all the stair patterns that are not

the best. Rule R29 completes the elimination of such patterns by erasing their

identification and fitness markers. Rule R30 selects the best pattern for continuing with

the derivation.

Create the circulation scheme on the second floor

The definition of the house's circulation scheme is completed with the creation of the

corridor on the second floor. This is accomplished with Rules R31-34, which are

identical to rules 122-125 of the initial grammar.

7.5.3.5 Step 4: Divide zones into rooms

Once a stair pattern has been generated, space-allocation rules apply to generate the

basic layout. These rules apply to both the first and the second floors, as long as the

right shapes and conditions are found in the evolving design, as explained below.

The space allocation problem is illustrated in Figure 7.21. There are five spaces

involved in the computation. The computation starts with a space one wishes to

introduce in the design -- the space to allocate, and a space where one will attempt to

allocate it -- the existing space. If allocation is successful, two spaces will result: the

allocated space, and the remaining space. If the allocated space is larger than the

space to allocate, the difference is an extra space.

462

w r
w a

/remaining space

i I r r
I e e /allocated spacew t

space to allocate - -

w a I > a x//extra space

we It w
existing space X

Figure 7.21 -The space allocation problem. There are five spaces involved in the computation:
the space to allocate (t), the existing space (e), the extra space (x), the allocated space (a, gray),

and the remaining space (r).

There are six different dissecting rules (Rules R36-41). Rules R36 and R37 dissect an

existing space with a wall that is perpendicular to its width. In Rule 37, the extra space

is big enough to let the allocated space be dissected again, whereas in Rule R36 it is too

small to let it happen. This is shown in the rule by shading the allocated space. Rules

R38 and R39 dissect the existing space with a wall that is perpendicular to its length,

whereas Rules R40 and R41 dissect it with a wall that is perpendicular to the previous

level dissection. The assigning rule can be seen as a special case in which the width of

the remaining space is zero, although it is considered separately. The basic steps of the

algorithm behind these rules, including the conditions that determine the type of space

allocating rule that is fired, are outlined below and explained in following:

1. Pick up a space to allocate.
2. Pick up a space where to allocate it.
3. Get the dimensions of the space to allocate.
4. Get the dimensions of the existing space.
5. Does the space to allocate fit in the existing space?
6. If it does, which rule and transformation to use to allocate the space?
7. If it does not, can the requirements be lowered to make it fit?

7.1 If it can, find how and allocate the space.
7.2 If it cannot, give up allocating the space and report the failure.

463

1. Pick up a space to allocate

The first step is to select a space to allocate. The order in which allocation proceeds has

an impact on what can be done in subsequent steps of the generation. Random

selection would not solve the problem in the best way, as it would most likely require

frequent backtracking. In fact, it would be better appropriate for using in a stochastic

process. Heuristic selection is proposed as an alternative. Heuristic selection has the

potential to decrease backtracking and shorten the search process. The basis of the

proposed heuristic is twofold. First, it stems from the analysis of Siza's houses

derivations proposed after the first version of the grammar. Such an analysis revealed

that bigger spaces were allocated first. This observation was confirmed by the analysis

of the experimental results. A deeper analysis revealed that bigger spaces also tended

to have higher demands regarding other design features such as topology and

proportion. Therefore, the proposed heuristic selects the space with the heaviest

requirements, which is given by the equation

spacet = max (h (space)), space c a 13 A 0 813<- 613

where spacet is the space to allocate, and h (space;) is the function

Y vspacej - wspacej
h (space) =

Z wspacej

where Vspacej is the value required for a given requirement, and wspace is the weight

associated with such requirement as specified by the user.

2. Pick up a space where to allocate it

Once a space to allocate has been selected, the next steps are to find the zone in which

the space can be allocated, given by

zone = get-zone (spacej)

464

and then determine whether such a zone exists in the evolving design

813<- 613, 3 [zone, ide, 0, ((xe, ye, ze) , dXe, dye, dZe, ae), n] e 613

If the zone does not exist, the space cannot be allocated and the rule will not be fired.

The space with the next heaviest requirements is then chosen, and so on until a space

and the corresponding required zone are found.

3. Get the dimensions of the space to allocate

The next step retrieves the area, width, and length of the space to allocate:

at = get area (spacei),
wt= get width (spacei), and
I = at / wt.

4. Get the dimensions of the existing space

The next step retrieves the linear dimensions of the existing space and finds which is the

width and which is the length:

dxe< dye -> dxe = we A dye = le, and
dxe> dye -> dxe = le A dye = we .

4. Does the space to allocate fit in the existing space?

The next series of steps are aimed at finding whether the space to allocate fits the

existing space. This is determined by comparing the areas, width, and length of these

spaces. The problem is illustrated in Figure 7.22.

465

a b c d

case 5 case 3 case1
W<We M<We WWe W>we
It>le It>le k>le It>le
k>weo k>weo It>WeD It>WeE
at <ae at> ae at >ae at >ae
e f g

W<We WWe W>we
kt=l Isl k.It= le
k>we k>we a>ae

h jk

case 4 case 2

VA < We Wi = We MA > We Vk > We
It < le kt < le kt < le kt < le
It > we It > weo It > We

a < a a > aW

rm

A < We =% <We

I < le It < le
I > we It = we

n 0

VA< We A< We MA< We V%Wre

It < le It < 10 It < le It < le
It < we It < Weo, It < We It =We

It = wt

VI < We

It < le

Figure 7.22 - Matching the space to allocate (bold line) with the existing space (thin lne).

466

The space to allocate fits the existing space when the width, length, and area of the

space to allocate are smaller than those of the existing space:

at< ae,
lt le, and
wt we .

The cases in which these conditions are true are illustrated in Figure 7.22e, f, h, and I-r.

The choice of a specific allocation rule depends on the fitting situation.

6. The space to allocate fits into the existing space.

If the both the widths and lengths match (Figure 7.22f), or if the width and length do not

match but the difference is so small that the remaining space is not big enough to place

one of spaces that are left to allocate, or if there are no spaces left to allocate in the

zone, then the assigning rule will be triggered (Rule 35). The difference between the

widths or lengths of the space to allocate and the existing space are considered too

small if they are half the width or length of the smallest space that remains to be

allocated.

If none of the previous conditions holds, then a dissecting rule will be applied. The

choice of a specific dissecting rule will be made as follows. If the lengths match (Figure

7.22e), then a dissection perpendicular to the width will take place (Rules 36 and 37). If

the widths match (Figure 7.22i, m, and q), then a dissection perpendicular to the length

will occur (Rules 38 and 39). If the both the width and the length of the space to allocate

are smaller then those of the existing space (Figure 7.22h, i, n, o, p, and r), several

situations can occur. If the length of the space to allocate is bigger than the width of the

existing space (Figure 7.22i), a dissection perpendicular to the width will occur.

467

If the condition above does not hold, the rule that makes a dissection perpendicular to

the previous level dissection (Rules 40 and 41) will be fired if triggered because it has a

higher salience than the other dissecting rules. The higher salience of this rule is

justifiable by the analysis of Siza's designs, which showed a clear biased towards the

recursive use of this rule. Instead of using a label attached to dissecting line to indicate

the last dissection, as in the first version of the grammar, the discursive grammar keeps

track of the dissection level that originates the space. The lot's dissection level is zero,

the inside and outside zones' dissection level are one, and so on. Naturally, the

dissection level can either be an odd or an even number. Even numbers correspond to

dissections parallel to the y axis. Such is the case, for instance, of the lot and the

sleeping, living, service, and patio zones. Odd numbers correspond to dissections

parallel to the x axis.

y

2 4

3 44
2 3

4 454 1 4 5
3 2

4 3

2

x

Figure 7.23 - Dissection levels. "Even dissections" are parallel to the y axis whereas "odd
dissections" are parallel to the x axis. The dissection level of a space is the level of the dissection

that originated it.

468

If this rule is not triggered, meaning that no space could be allocated using the previous

rule, either of the remaining dissecting rules can occur. The choice of rule will depend

on the following heuristic

h (spacex, spacei) = min (Iareaspace x - lareaspace i), spacei e zone

where areaspacex is the area of extra space that results from the allocation, and lareaspace i

is the sum of the areas of the spaces in the zone that are left to allocate. The rule that

minimizes the difference between the two areas will be fired.

Once a rule is chosen, it is still necessary to select the transformation under which the

rules applies. For each dissection there are eight possible transformations (Figure 7.24).

All these possibilities are generated, and then evaluated using the same heuristic used

for evaluating the stair pattern. The one that leads to a higher quality solution will be

selected to carry on to the following stage of the computation.

Figure 7.24 - Dissecting rules and transformations. Left columns represent dissections
perpendicular to the length, and right columns represent dissections perpendicular to the width.

Dissections in the top row are equivalent to dissections on the bottom row.

469

7. The space to allocate does not fit into the existing space.

If the space to allocate does not fit into the existing space (Figure 7.22a-d, g, j, and k) it

is necessary to determine how bad the situation is. If it is not too bad-none of the

dimensions of the existing space is smaller than 60% of the dimensions of the space to

allocate-the solution is to lower one or more of the dimensions of the space to allocate

until it fits into the existing space.

To select the dimension or dimensions to lower, first it is necessary to determine why the

space to allocate does not fit into the existing space to find all the dimension-lowering

rules that can be applied to the situation. (Figure 7.25) Then, it is necessary to apply a

heuristic to choose among these rules the one that keeps the design description closer

to the program description. (Figure 7.26) Finally, it is necessary to record that the

allocated space is smaller than specified in the housing program. The actual rules are

not shown but their format is very similar to the ones used for generating and assessing

basic and stair patterns.

If the situation is very bad-one or more of the dimensions of the existing space is

smaller than 60% of the corresponding space to allocate dimension, then one of two

things can happen. If the space to allocate is optional, the derivation proceeds without

allocating the space. If the space is obligatory, the derivation is halted, and failure is

announced.

470

case 1 1
Wt > We
It > leo
at> ae

k

3ase 2

Wt > We

h<len
a > ase

b

case 31

Wt< We
It > leo

a > ae

IA = We

If W Itoal Whe

a

W = We

I =Ito

a = W.It

Figure 7.25 - The dimension-lowering rules.

471

Wf = We

Ik = len

k

af = ae
If = it n
wf = at/ Iro

case 1
Wt = We

It > leo

k > ee

It = IWe
a = ae

WR = We

If = e80

a = ae

k

case 2

Wt > We

h<Ieri
a > ae

b

case !
Wt <We

It > leo
& > ae

9

case 1
Wt > We Wf = We

hI = le If =len

k

wt = we
I= len
af= ae. If

b

Wf= Wt
If leo

= ae. If

Wr=We

If = at / w'o
af = ae

i = We

a =aw
kf= ae / W

case 4
Wt > We

It < en

a < a

case 4

Wt> We

k<leo
at<ae

a

case -
Wt <We

It> le
a< ae

k1 lee
a= ah

a

Wt < We

It> le
a< ae

Heuristic for lowering the requirements:
lower the requirements in such a way that the distance to the client's requirements is the shortest:
minimize [space's desired quality level - space's allocated quality level]

Choose the least important requirement among:
" proportion (designer)
" capacity (user)

spaciousness (user)
articulation (user)

Can it be lowered?
a. If it cannot chose the next least important requirement
b. If it can, lower it to the next level down

b.1 Calculate the resulting quality level, record it
b.2 Do the changes make the space fit?

If they do, go to a again
If not, lower it to the next level down, and go to b.1 again

c. After choosing all the changeable requirements and calculate the
corresponding quality, make the changes that correspond to the smallest
difference in quality

Figure 7.26 - The requirement-lowering heuristics.

7.5.3.5 Completing Step 4 and performing Steps 5 and 6

To complete the generation of the layout it would be necessary to apply rules to

concatenate spaces, as well as rules to introduce details and openings, as shown for the

initial grammar. These rules were not included in the current revised grammar because

they were not essential to illustrate the heuristic search mechanism embedded into the

discursive grammar.

472

Table 7.38 - The Malagueira designing grammar rules

Step 0: Introduce initial shape
RO: Introduce initial shape

back

left right

S L (70,0)
0) Q 1 4! --- ------ +- --

(6,0,0) Lot

(0,0,0)

w
u-context(front) = street

ao<-- ao liot = length(lot), wiot = width(lot), aot = area(lot)
ai +- a1 s.oientationfont = s-orientation (front), s-orientationeft s orientation (left),

s_orientationback= s-orientation (back), sLorientationright = s orientation (right)
a2 +- a2, u.contextfont = uscontext (front), u-contextion= u-context (left),

u_contextback= uscontext (back), u-contextright = u-context (right)
a13+- a13
a17<- a17
(X25- (x25, RO e (X25

a1 +- a1 + a1
82 <- 82 + a2
813+- 813 +< [lot, 10, (house), 0, 0, 0, ((0, 0, 0), wiot, liot, 0.20, aiot],

[front, 11, (street, s..orientationfont), 0, 0, 0, ((0, - I (lot), 0), wiot, 'lot, 0.20, alot)],
[left, 12, (u contextien, s...orientationien), 0, 0, 0, (- w (lot), 0, 0), wiot, liot, 0.20, aiot)],
[back, 13, (u-contextack, sorientationack), 0, 0, 0, ((0, 1 (lot), 0), wtot, ltt, 0.20, alot)],
[right, 14, (u-contextrht, s.orientationright), 0, 0, 0, ((w (lot), 0, 0), wiot, liot, 0.20, aiot)]

lot, front, left, back, right e a1n A 0 a13
8 17 <- 8 17+ < (idpce1, idspa, adjacent), ?space1 = lot, ?space2 e (lot, front, left, back, right)
a25 +- a2a +< [RO, 0]>

473

Step 1: Start

R1: Introduce pavements and floors

right

Lot

(0,0,0)
ucxe....................

usontext(front) = street

f1

right

(0,0,0)

uscontext(front) = street

f2

(0,0,0
t(pavl)+h(f1))

f3

(0,0,n
t(pavl)+h(f1)+
t(pav2)+h(f2))
.. s...................

hsi

474

Xo<- ao

C1 <- aXi + aCI

aX2 +- C2 + (X2

as+*- cas

aC13 4- (X13

C17 4- C1 7

P4 <-- P4

So+-So+ o
81 <- 81 + aci

82+-82 + C2

8+- 88 + aC2

813<- 813 + < [(f 1, 106, 0, ((0, 0, h (lot)+ h (pav1), (0, 0, 0), dxiot, dyiot, h(f 1), a (lot)],
[(f2, 107, 0, ((0, 0, h (lot)+ h (pav1) + h (f1) + h (pav2)), (0, 0, 0), dxiot, dyct, h(f2), a (lot)],

as= 2 ->
[(f3, 109, 0, ((0, 0, h (lot)+ h (pav1) + h (f1) + h (pav2) + h (f2) + h (pav3)), (0, 0, 0), dxiot, dyiot, h(f3), a (lot)]

f1, f2, f3, e a13 e 813
15<- 81s + < available, (0, 0, 2 -a (lot), 2 -a (lot)), 1 >

817 4- 817+ (id?spacel, id?space2, adjacent),
?space1 e {f1, f2, f3}, ?space2 e {front, left, back, right}

821 4- 821 + < [pav1, 301, 0, ((0, 0, 0.0), (0, 0, 0), dxiot, dyiot, 0.20, aot],
[pav2, 302, 0, ((0, 0, t (pav2) + 0.20), (0, 0, 0), dxit, dyiot, 0.20, aiot],
[pav3, 303, 0, ((0, 0, 2 -t (pav3) + 0.20)), (0, 0, 0), dxbt, dyiot, 0.20, alot] >

8234- 823, update-quality
824<- 824 + 3 x pavement cost (at, unit-cost (pavement, material))
825+- 825+ < [R1, 0]>

475

R2: Enclose floor
back

left

fn

(xfn,yfn,zfn)

u_context(front) = street uscontext(front) = street

h(f 1)

813+- 813, fn e 813, ne {1, 2, 3}
- [(fn, idn, 0, ((x, y, z), dxfn, dyn, dzfn, au],
+ [(fn, ide, 0, ((x + 0.10, y + 0.10, z) , dx,- 2 -0.10, dyfn - 2 -0.10, dzf, afn]

815- 815 +< available, (
2 - dxf -0.10 + 2 -0.10 -dyn,

-(2 -dxl -0.10 + 2 - 0.10 -dyn),
- (2 -dxn -0.10 + 2 -0.10 - dyn),
(Au - (2 -dxn -0.10 + 2- 0.10 -dyfn)) / (Ag -(2 -dxf -0.10 + 2 -0.10 -dyfn)) >

82o<- 2o + < [wall, max(id) + n, (fn, front), ((xfn, yn, zfn), dxfn, 0.10, dzn, dxfn -0.10],
[wall, max(id) + 3 + n, (fn, back), ((xfn, yfl+dyn -0.10, zfn), dxfn, 0.10, dzfn, dxfn -0.10],
[wall, max(id) + n, (fn, front), ((xf, yfn + 0.10, zfn), 0.10, dyn -2 -0.10, dzf, dyfn -0.10],
[wall, max(id) + n, (fn, front), ((xfn + dxn - 0.10, yf + 0.10, zfn), 0.10, dyf -2 -0.10, dzf, 0.10 -dyfn] >

dxfn = w (lot)
824<- 824+ 2 . wall_cost (dxn . 0.10, unit-cost(wall, material)) + 2 -wall-cost (0.10 -dyfl, unit-cost (wall, material))
C25 <- a25 + < [R2, 0]>

476

back

right right

xo+- a(o
P2 <- P2

R3: Adjust enclosing wall thickness

ti- I

u_context(side) = street

) t I I

u-context(side) = street

82<- 82o, 3 wall e {wall I wall, adjacent? (street, fn))
- < [wall, id, (street, fn), ((x, y, z), dx, dy, dz, a)]>
If dx > dy A yin> YwaI ->

+ < [wall, id, (street, fn), (x, y -0.10, z), dx, dy + 0.10, dz, a)]>
w = dy

If dx > dy A Yin < Ywap -
+ < [wall, id, (street, fn), (x, y, z), dx, dy + 0.10, dz, a)]>
w = dy

If dx < dy A Xfn> Xwa ->
+ < [wall, id, (street, fn), (x - 0.10, y, z), dx + 0.10, dy, dz, a)]>
w = dx

If dx < dy A Xfn> XwaN -
+ < [wall, id, (street, fn), (x, y, z), dx + 0.10, dy, dz, a)]>
w = dx

824 <-- 824 -wall-cost (a, unit-cost (wall, w, material))
+ wall-cost (a, unit cost (wall, w, material))

a5 <- aas + < [R3, 0]>

R4: Adjust enclosing wall thickness
u-context(front) O3
= street

u-context(front) El
= street

side

82 <- 82o, 3 wall e {wall I wall, adjacent? (street, fn)}
- < [wall, id, (street, fn), ((x, y, z), dx, dy, dz, a)]>
If dx > dy A y9in> YwaI ->

+ < [wall, id, (street, fn), (x, y -0.10, z), dx, dy + 0.10, dz, a)]>
w=dv

If dx > dy A yin < YwaI ->
+ < [wall, id, (street, fn), (x, y, z), dx, dy + 0.10, dz, a)]>
w = dy

If dx < dy A xin> xwan -
+ < [wall, id, (street, fn), (x - 0.10, y, z), dx + 0.10, dy, dz, a)]>
w = dx

If dx < dy A xin> xwai ->
+ < [wall, id, (street, fn), (x, y, z), dx + 0.10, dy, dz, a)]>
w = dx

824+- 824 - wall cost (a, unit-cost (wall, w, material))
+ wall-cost (a, unit-cost (wall, w, material))

C25 <- a25 + < [R3, 0]>

477

Step 2: Locate functional zones
R5: Locate inside/outside zones on the first floor

back back

left right left , right
use2

f1

e yd
usel

u_context(front)=street u-context(front)=street

Cl <- aXi
CS<- aX8

asg<- ag , V ai, c8= frontyard A as= true
-> usel = outsidel A use2 = insidel Ayd=

6.00 A ain = ause2 A ou = aui
V i, ax8= frontyard A asg= false

-> usel = outsidel A use2 = insidel A yd = 7.00 A ain = ause2 A aou = ause1
ai = < street, ?use, street, ?use > , V ?use A a%= backyard, V as

-> usel = insidel A use2 = outsidel A Yd = 7.00 A ain = ause1 A aou = ause2

w = < street, ?use, street, ?use > , V ?use A aw= backyard , aw= true
-> usel = outsidel A use2 = insidel A yd= 6.00 A ain = ause1 A aou = ause2

ai = < street, ?use, street, ?use > , V ?use A a = backyard, a= false
-> usel = outsidel A use2 = insidel A yd = 5.00 A ain = ausel A aou = ause2

813+- 813 - < [(f1, idn, 0, ((xif, y i, zii), dxii, dyfl, dzii, afi] >
+ < [(usel, idi, 0, ((x , y i, z i) , dxii, dyi - (dxfi - yd+ 2 -0.10), dzii, dxii -dyni - (flay - yd+ 2 -0.10)],

[(use2, max (id) + 1, 0, ((xii, y i + yd, zni), dxii, dyi - yd, dzii, dxi .dyi - yd]>

815+-815 + < available, (fldx -0.20, ain, - (ain+ f1x - 0.20), -f1dx 0.20), -Au / Ag + Au - f1 -0.20/ A >
817<-817 -< [idi, idpa, adjacent] , ?space e (front, left, back, right}

+ < [idinswe1, idien, adjacent],
[id inse1, idright, adjacent],
[idoisisi, idieft, adjacent],
[idouiei, idrht, adjacent],
[idinside, id?spacei, adjacent]
[idoitiei, idpace2, adjacent]

aw = frontyard -> ?spacei = back A ?space2 = front
as = backyard -> ?spacei = front A ?space2 = back

820<- 820 + < [wall, max(id) + 1, (inside, outside), ((x f, yd -0.10, z fi), dxii, 0.20, dzi, dxi -dzn)]>
824<- 824 + wall cost (dxi dzii, unit-cost (wall, 0.20, material))
a25- a25 + < [R4, 0]>

478

Locate inside/outside zones on the second floor (if the yard is at the front and there are no balconies or yard is at the

back back

right right

u_context(front)=street u-context(front)=street

3 (usen, f1, on) => usel, use2 e {insidel, outsidel}
3 (usen, f2, on) = usel, use2 e {inside2, outside2}

as+*- as8
ag+- c , (a8= frontyard A q= false) v as= backyard
813+- 813, 3 [insidel, idin, 0, ((Xin, yin, Zin), dxin, dyin, dzin, ain)]> A

[outsidel, idou, 0, ((xou, you, xou), dxou, dyou, dzou, aou)] > e 813
- < [f2, idf2, 0, ((x , yf, z f), dx2, dym2, dzf, af2]>
+ < [(inside2, id2, 0, ((Xin, yin, z f), dxin, dyin, dzf2, ain],

[(outside2, max (id) + 1, 0, ((xou, you, z 2), dxou, dyou, dzf2, aou] >
815<-- 815 + < available, (dx2 -0.20, ain, - (ain + dx2 -0.20), - dx2 -0.20), - Au / Ag + Au -dxf -0.20/ Ag >
817+- 817, 3 [idinsidel, id?space, adjacent] A [idoutsidel, id?space, adjacent] e 817 , V ?space

-< [ida, iduspace1, adjacent] , ?spacel e {front, left, back, right}
+ < [idinsde2, id?space, adjacent],
[idoutse2, idspce, adjacent]>

82o<- 82o, 3 < [wall, idw, (insidel, outsidel), ((xw, yw, zw), dxw, dyw, dzw, aw)]>
+ < [wall, max(id) + 1, (inside2, outside2), ((xw, yw, zmf), dxw, dyw, dzf2, dxw -dyw)]>

824 <- 824 + wall-cost (dxw -dze, unit-Cost (wall, 0.20, material))
C25<- a25 + < [R5.1, 0] >

479

R6:
back)

R7: Locate inside/outside zones on the second floor (if yard is at the front and there are balconies)

back back

left . right left * right
use2 use2

usel usel

uscontext(front)=street uscontext(front)=street

use2

f2

usel Yd.1.Om

as <- as
a9+-a , ae= frontyardAag= true
813 +- 813, 3 [insidel, idin, 0, ((Xin, Yin, Zin), dxin, dyin, dzin, ain)]> A

[outsidel, idou, 0, ((xou, you, xou), dxou, dyou, dzou, aou)]> e 813
- < [f2, idf2, 0, ((x e, y, zf2), dxv, dy, dzf2, af2]>
+ < [(inside2, ida, 0, ((Xin, yin+ 1.0, z f), dxin, dyin - 1.0, dz, ain],

[(outside2, max (id) + 1, 0, ((xou, you, z f), dxou, dyou + 1.0, dzf2, aou]>
815 - 815 + <available, (dxv - 0.20, ain, - (an + dxf2 - 0.20), - dxf - 0.20), - Au / A + Au - dxf2 - 0.20/ Ag >
817 <- 817, 3 [insidel, ?space, adjacent] A [outsidel, ?space, adjacent] e 817, V ?space

-< [id2, idspace1, adjacent] , ?spacel e {front, left, back, right}
+ < [idinside2, id?space, adjacent],

[idouisde2, idspa, adjacent]>
82o +- 82o , 3 < [wall, idw, (inside1, outside1), ((xw, yw, zw), dxw, dyw, dzw, aw)] >

+ < [wall, max(id) + 1, (inside2, outside2), ((xw, yw+ 1.00, zm), dxw, dyw, dzw, dxw -dyw)]>
824 <- 824 + wall-cost (dxw. -dz2, unit-cost (wall, 0.20, material))
a25<- a2 + <[R5.2, 0]>

480

R8: Locate inside/outside zones on the third floor

back back

left , right left , right
use2 use2

usel usel

u_context(front)=street ucontext(front)=street

use2

f3

JYd
usel

8 13 <- 813, 3 [inside2, idin, 0, ((xin, Yin, Zin), dxin, dyin, dzin, ain)] > A

[outside2, idou, 0, ((xou, you, xou), dxou, dyou, dzou, aou)] > e 813
- < [f3, idf3, 0, ((xe, yo, z1), dxc, dye, dzf3, an)]>
+ < [(inside3, ide, 0, ((Xin, Yin, ztl), dxin, dyin, dze, ain)],

[(outside3, max (id) + 1, 0, ((xou, you, z), dxou, dyou, dze, aou)]>
817<- 817, 3 [inside2, ?space, adjacent] A [outside2, ?space, adjacent] e 817, V ?space

- < [f3, ?spacel, adjacent] , ?spacel e {front, left, back, right}
+ < [inside3, ?space, adjacent],

[outside3, ?space, adjacent]>
820+- 820, 3 < [wall, idw, (insidel, outsidel), ((xw, yw+ 1.00, zw), dxw, dyw, dzw, aw)]>

+ < [wall, max(id) + 1, (inside3, outside3), ((xw, yw, zf3), dxw, dyw, dzf3, dxw. dyw)] >
824<- 824 + wall cost (dxw. dzo, unit-cost (wall, 0.20, material))
a25 <- a25 + < [R6, 0]>

481

R9: Locate the backyard corridor on the first floor

u_context(front) usContext(front)
= street = street

outsidel outsidel

inside1

inside1

e use1lx

813+- 813, 3 < [?neighbor, idhouse, (house, ?orientation), ((xh, yh, Zh), dXh, dyh, dZh, ah)] , ?neighbor e {left, right}
[insidel, din, 0, ((xin, Yin, Zin), dxin, dyin, dzin, ain)] E 813 A [idinside, idhoue, adjacent] E 817

dXh> dxin > xin = Xin A Xco= Xin+ (dXin - 1.10) A Xwall= Xin+ (dXin - 1.30)
dxh< dxin => xin = xin + 1.10 + 0.20 A Xco= xin+ 1.30) A Xwai= Xin+ 1.30

- < [insidel, idin, 0, ((Xin, Yin, Zin), dXin, dyin, dzin, ain)]>
+ <[insidel, idin, 0, ((Xin, Yin, Zin), dxin - 1.30, dyin, dzin, (dXin - 1.30) -dyin)],

[corridor, max (id) + 1, 0, ((Xco, Yin, Zin), 1.10, dyin, dzin, 1.10 -dyin)]>
815+- a15 + < available, (0, 0, - 1.10 -dyin, - 1.10 -dyin), 0 >
816<- 816 +< used, (0, 0, 1.10 -dyin, 1.10 -dyin), 0 >
817 <- 817, V < [idoutside, ?idspace, adjacent] > -> space # street

- < [idinscie, idhouse, adjacent]>,
+ <[idinskie, idcorridor, adjacent],

[idoutside, idcorridor, adjacent],
[idcorrcir, idhouse, adjacent],
[idcorricior, idstreet, adjacent]>,

820+- 820+ < [wall, max(id) + 1, (insidel, corridor), ((Xco, Yin, Zin), 0.20, dyin, dzin, 0.20. dyin)] >
824 - a24 + wall cost (dxw. dze, unit-cost (wall, 0.20, material))
a2a +- aC23 + < [R7, 0] >

482

RIO: Locate the patio zone through assignment on all floors

outsidel

outside2

outside3

patiol

patio2

patio3

as <- a5
a <-- ao%, c = 2 A as =2

813+- 813, 3 [outsidel, idoutside, 0, ((Xou, You, Zou), dxou, dyou, dzou, aou)] e 813,
3 [outside2, idoutside, 0, ((xou, you, zou) , dxou, dyou, dzou, aou)] e 813 ,
3 [outside3, idoutside, 0, ((Xou, you, zou) , dxou, dyou, dzou, aou)] e 813 ,

814<-- 814 + < patiol, 0, aou >
817 - 817

change-name (outsiden, pation) , n e {1, 2, 3)

483

R1 1: Locate the patio zone through a dissection perpendicular to its width on all floors

outsidel

* xdj
usel

uscontext(side)=street u.context(side)=street

e

use2

0

outside2

usel

e

use2

e

outside3

usel

a13 <- 13, apa = a (patio)
813 <- 813, yard e 813

(3 [outsidel, idoutside, 0, ((xou, you, zou) , dxou, dyou, dzou, aou)] > e 813 A
3 [?side, idstreet, (street, ?orientation), ((xs, ys, z) , dxs, dys, dzs, as)] e 813 ,

?side e {left, right}
->p (t= 0) =0.9 Ap (t= 1)= 0.1)

(3 [outside1, idoutside, 0, ((xou, you, zou) , dxou, dyou, dzou, aou)] > e 813 A
- 3 [?side, idstreet, (street, ?orientation), ((xs, ys, zs), dxs, dys, dzs, as)]

e 813 , ?side e {left, right)

484

-> p (t = 0) = 0.5 A p (t = 1) = 0.5)

t = 0 -> use2 = patio, usel = anyzone
t = 1 -> usel = patio, use2 = anyzone
xu1 = xou + au2 / dyou + 0.20 A Xu2 = Xou A XwaiI = xou + au2 / dyou

- < [outsidel, ido, 0, ((xou, you, zou) , dxou, dyou, dzou, aou)] >
+ < [usel, idu1, 0, ((xu1, you, zou), au1 / dyou, dyou, dzou, au1],

[use2, idu2, 0, ((xou, You, zou), dxou - (au1 / dyou), dyou, dzou, aou- au)] >
614<- 614 + < patio, 0, a (patio) >
817 -- 817 - < [idoutside, id?space, adjacent] >, V space

+ < [iduse1, iduse2, adjacent], [iduse1, idin, adjacent], [iduse2, idin, adjacent],
[iduse1, idrght, adjacent], [iduse2, idiet, adjacent] >

3 [idoutside, idtront, adjacent] -> + < [iduse1, idfront, adjacent], [iduse2, idfront, adjacent] >

3 [idoutside, idback, adjacent] -> + < [iduse1, idback, adjacent], [iduse2, idback, adjacent] >

820 <- 820 + < [wall, max(id) + 1, (yard, ?zone), ((xou, you, zou), 0.20, dyou, dzou, 0.20. dyou)] >

824 <- 824 + wall cost (dyou -dzou, unit-cost (wall, 0.20, material))
625<- 825 + < R8, t >

485

R12: Locate on the first floor the most constrained of the remaining zones in all possible
locations on the first floor

sidel sidel

side2 -) side4

yaz1/paJ side2
yzl/az2

bpattern_1 side3

yaz1/zI yz/paz2pa

sidel

side4

yzi/pa

side2

yazllaz2

bpattem_2 side3
| II | I

yz1/azl yaz2/pa
yaz1/pa

sidel

yaz1/pa

side2

yaz2/z1

Description part of the rule not shown

side4 '

e e

anyzone2 zonel

bpattern_5 side3

yazi/az2 yz1/pa
yaz2/pa

side4

side3

486

R1 3: Locate the remaining patterns on the first floor
sidel sidel

0 0 yaz1/pa

any- patiol
zonel

side4 side2

e S yz1/az2
zonel any-

zone2

bpattern_1 side3

yaz1/z1 yz1/pa yaz2/pa

sidel

side4

yz1/pa
side2

yazl/az2

bpattern_2 side3
I i Li |I

yz1/az1 yaz2/pa
yaz1/pa

sidel

S 0 yz2/pa

zone2 patiol

side4 side2

S S yz1/az2
zonel zone3

bpattem_1 side3
L~iLi L f

yz2/z1 yz1/pa yz3/pa

sidel

side4

yz1/paj side2
yazl/az2

bpattern_2 side3
1I I Li I i

yz1/az1 yaz2/pa
yazi/pa

sidel

side4

bpattern_4 side3
I Li 1

yz3Iz1 yz/pa

sidel

side4

bpattern_5 side3
if I LJi i

yz1/z3 yz1/pa
yz3/pa

sidel

e e yaz1/pa e e yz2/pa
anyo patiol zone2 patiol
zonel

side4 side4
side2 side2

e e yaz2z1 e e yz3/z1l
anyzone2 zonel zone3 zonel

bpattern_5 side3 bpattern_5 side3

yazl/az2 yzl/pa yz2/z3 yz1/pa
yaz2/pa yz3/pa

Description part of the rule not shown

side4

e e

zone2 zonel

bpattern_6 side3
|fi LJiI

yz3/z2 yzl/pa
yz2/pa

yz3/pa

side2
yzl/z2

yz1/pa

side2

yz3/z1

yz3/pa

side2

yz2/zl

487

side1

R14: Assess a basic pattern

sidel sidel

Syz1Ipa

zonel patiol zonel patiol

side4 side2) side4 side2

e e y/z2/za e e

zone2 zone3 zone2 zone3

bpattemn side3 bpattern-n side3 fn = fitness
I i LJ L i

Yz1/z2 yz2/pa yz2/z3

zonel, zone2, zone3 e (living, sleeping, service).
number of assessed patterns = number of assessed basic patterns + 1
number of existing basic patterns = number of existing basic patterns + 1
Note: the remaining part of the description is not shown.

R15: Eliminate a bad basic pattern

sidel

e S yfz1/pa

zonel patiol

side4 side2) 0

* 0 ~yz2/z3
zone2 zone3

bpattern-n side3 fn < max(fitness(f1,...,f6))
I I I f |

yzl/z2 yz2/pa yz2/z3

number of assessed patterns = 6.
number of existing basic patterns > 1
number of existing basic patterns = number of existing basic patterns - 1
Note: the remaining part of the description is not shown.

488

R16: Select the best basic pattern
sidel

S

e 0 yzl/pa

zonel patiol

ide4 side2)

e e yZz3

zone2 zone3

bpattern-n side3 fn = max(fitness(f1,...,f6))

sidel

side4

side3

side2

|fiff LI L|

yzuIz2 yz2/pa yz/z3

number of existing basic patterns = number of existing basic patterns - 1
number of existing basic patterns = 1
Note: the remaining part of the description is not shown.

489

R17: Replicate the basic pattern on the second and third floors
sidel sidel

e e dypai

zone2 patiol

side4 side2

e e dXzs
zonel zone3

side3

dxz1 dxz3

) side4

side4

side4

0 Q

i3 i2

side3

dxz1 dxz3

Note: the description part of the rule is not shown.

490

side2

side3

sidel

dypal

side2

dxz3

side3

dxz1 dxz3

sidel

dypai

side2

dz3

*i
*1

*-
*-

*
*l

*

0
E

j
A

 I 1 I i
1

I
o

0
--

..
c~'1

*
0)I-

V
A

c
F. 7

i
I

i

:J
I

.7
1

C
L

0

:~
*
~

.~

I
]

~

1
1

]
I

*~i
I

i
;~

.-~

.'~

*i
I

I
I

I
.j

.L

**~
i

I'
*i

I'

I.
I

-~
*

I
~

*
I

I
I

I
I

= I
= I

*i
I

I
I

I
I

_
_
_

_
_

I

_
_

_
_

_

I
_

_
_

_
_

I

.1
1

'
i*

I
I

=
 I

-I
I

I

F
-71

F --1
7
1

F
 --I-, -

E
J

1

]
lj

I
I

.1
--

1.
i

F
1-0:1

Ff V
-

F

Al 7
1

1
-17

F-1
1~

F.II

-
I

'
1

1. -
I

I
a l

Fi a
11

-i

*i
al

aA

-1--~
A

]F

* 7 F
-,I

I
A

--
I

1
I

1 F-,IC
D

IL
l

1
:1

1
F

7
J
F

F
7

N

-
I

I
I

*
F, --

I
iF

-
I

i
F

R19: Locate I-shaped staircase for pattern assessment

side 4 side2

W1 t W2

Note: the description part of the rule is not shown.

R20: Locate L-shaped staircase for pattern assessment

side 4 side2

side3 14

existing

||

W1 t W2

sidel

es

existing

t w

Note: the description part of the rule is not shown.

493

side2

side3

existing

side3

existing

sidel
sidel

t w
Fm

side 4
12

i1

existing existing

side2

side3

. i

existing

13

side 4

12

11

sidel

existing

R21: Locate I-shaped staircase for pattern assessment

side3

existing

side 4 side2

existing

W1 t W2

sidel

side 4
12

I 1

t w

existing

Note: the description part of the rule is not shown.

s

existing

side2

sidel

494

R22: Locate U-shaped staircase for pattern assessment

side3

side2

w sidel

side3

side2

I I i I I |

W1 t W2 t W2

sidel

existing

Note: the description part of the rule is not shown.

R23: Locate reflected U-shaped staircase for pattern assessment

side3 sides

side2 side~4 side2

existing

w sidel

side 4

existing _1|2

I II II I

Wi t W2 t W2
sidel

e

existing

Note: the description part of the rule is not shown.

495

side 4
12

R24: Eliminate failed I and L-shaped proto-stair pattern
dxzl dxz4

* * dyzvz4
zone1 zone4

0

e e dyz2/zs
zone2 zone3

spn
dxz2 dxz3

dxz5 dxz8

* * dyzs/za

zone5 zone8

* * dyzstz7

zone6 zone7

spn L|

dXze dXz7

Note: the description part of the rule is not shown.

496

R25: Eliminate failed U-shaped proto-stair pattern
dxzi dxz4

u

e e dyzuiz4
zonel zone4

0

e e dyz2z
zone2 zone3

spn ||
dxz2 dXz3

dxz5 dxz8

e dyzstz8
zone5 zone8

* * dyzerz7
zone6 zone7

spn
dxze dxzZ7

Note: the description part of the rule is not shown.

497

R26: Eliminate reflected U-shaped proto-stair pattern

dxzl dxz4

u

e e dyz1/z4

zonel zone4

0

e e dyz2/z3
zone2 zone3

spn L | I

dxz2 dxz3

dxz5 dxz7

* dyzstz8
zone5 zone8

* e dyz6/zr
zone6 zone7

spn
dXz6 dxz7

Note: the description part of the rule is not shown.

498

R27: Assess a stair pattern
sidel

0 0

zonel patiol
6 0

zonel patiol

side2) side4

0 0

zone2 zone3
0 0

zone2 zone3

spnside3 side3

Note: the description part of the rule is not shown.

R28: Eliminate a zone of one of the worst stair patterns
dxzk

0 dyzk

zone k

dy1

spn fitness < spn
dxi max(fitness(spl ,...spn))

0

fitness <
max(fitness(spl ,...spn))

dxzk+1

0 dyzk+1

zone k+1

dy2

spn
dx2

Note: the description part of the rule is not shown.

499

side4
zone4

0

zone4

spn

side2

4
f itness

side1

R29: Eliminate the markers of one of the worst stair patterns

0 ~ 0>
spn fitness <

max(fitness(spl ,...spn))

spn

Note: the description part of the rule is not shown.

R30: Select the best stair pattern
sidel sidel

* e0

zonel patiol

side4
zone4

zone2 zone3

spn side3

side2) side4

fitness =
max(fitness(spl ,...spn))

* 0

zonel patiol

zone4

zone2 zone3

s

side3

Note: the description part of the rule is not shown.

R31-34: Create circulation scheme

Note: Rules 122-125 of the initial grammar apply. The description part of the rule is not shown.

500

side2

R35: Allocate space through assignment

side3

side2
existing

side4 > side2

side3

allocated
side4

sidel sidel

Note: the description part of the rule is not shown. Please see conditions for rule application below.

R36: Allocate space through dissection perpendicular to the width
side3 side3

p3 P3 p3
le le~la

side2 side4) side2

pmax+1

Pao
allocated

pmax+1

e p4

existing
side4

p1 pi p1
I| |I

We Wa We

sidel sidel

Note: the description part of the rule is not shown. Please see conditions for rule application below.

501

R37: Allocate space through dissection perpendicular to the width with extra space left
side3 side3

p3

side2 p2 e p4
existing

p1

We

le

side4 > side2

sidel sidel

Note: the description part of the rule is not shown. Please see conditions for rule application below.

R38: Allocate space through dissection perpendicular to the length
side3 side3

side2 p2 e p4
existing

pi

We

sidel

le

side4) side2

Note: the description part of the rule is not shown. Please see conditions for rule application below.

502

p3 p3
le= la

side4
Pmax+l

p2 e

allocated
0 p4

existing

p1 p1

Wa We

side4

lale

sidel

R39: Allocate space through dissection perpendicular to the length with extra space left
side3 side3

pa pa

p2 e p4 W a

allocated
pmax+1side2 p2 e P4 side4 > side2 -- side4

existing pmax+1

p2 e p4 We

existing
p1 pi

W e la=l e

sidel sidel

Note: the description part of the rule is not shown. Please see conditions for rule application below.

R40: Allocate space through dissection perpendicular to the previous level dissection
side3

side3

pmax epmax pmax e=a

side2 pmaX+1 pmax+1

p2 e p4 side4) side2 side4
existing allocated existing

p1 p1 p1

We Wa We

sidel sidel

Note: the description part of the rule is not shown. Please see conditions for rule application below.

R41: Allocate space through dissection perpendicular to the previous level dissection with
extra space left

side3
side3

pmax le pmax pmax e *a

side2 Pmax+l Pmax+l

p2 p4 side4) side2 side4
existing allocated existing

P1 P1 p1 -

Wae Wa We

sidel sidel

Note: the description part of the rule is not shown. Please see conditions for rule application below.

503

Conditions for applying space allocating rules

1. Pick up a space to allocate
aC13 aO1 3 ,
spacel = max (h (space)), space e a13 A V 613- 6813 use heuristic function to select the space with the

heaviest requirements
I Vspacej - wspacej

h (spacej) =
I wspacej

2. Pick up a space where to allocate it
a14 <- a14, zone = get zone (space toallocate) gets the zone of the space to allocate
813<- 813, 3 [zone, ide, 0, ((xe, ye, ze) , dxe, dye, dze, ae), n] e 613

There must exist a zone of the appropriated kind or a
space in such a zone with extra space to allocate the
space.

3. Get the dimensions of the space to allocate
at = get area (spacel)
wt = geLwidth (spacei)
I = at / wt

4. Get the dimensions of the existing space
dx. < dye =: dxe = we A dye = le
dxe> dyeza dxe= le A dye= we

Get area of the space to allocate.
Get the width of the space to allocate.
Find the length of the space to allocate.

Find which is the width and which is the length
of the existing space.

5. Does the space to allocate fit in the existing space?
at < ae if the area to allocate is smaller than the area of the existing space,
It le and the length of the space to allocate is smaller than the length of the existing space,
wt we and the width of the space to allocate is smaller than the width of the existing space,

then the spaces fits in the existing space.

6. If it does, how does it fit and which rule and transformation to use to allocate the space?

6.1 wt = weA 1t= le
wt - we <wt.1 / 2 A It - le < lti1 / 2

roomst = rooms (a14, zone)
then

roomsa = rooms (814, zone)
roomst - roomsa = 1

If both the width and length match (Fig. xx f),
or they do not match but the difference is so small that
it is not big enough to place another space in the
remaining space if a dissection rule is used,
or there are no spaces left to allocate in the zone,

use assignment rule.

Problem: the last space to allocate, the least important one according to the
heuristics used to pick up spaces for allocating, might be benefited.

6.2 - (wt= weA lIt= le)

6.2.1 Which dissecting rule to use?

6.2.1.1 wt = we A I < le

If neither the widths, nor the lengths match then use a
dissecting rule.

If the widths match (Fig. xx and m), then make a
dissection perpendicular to the length

Get the dimensions of the allocated space:
wa = wt The width of the allocated space is the width of the space to allocate
la = we The length of the allocated space is the width of the existing space

504

6.2.1.2 Wt < We A It = le If the lengths match, then make a dissection perpendicular to the width.

Get the dimensions of the allocated space:
Wa = wt The width of the allocated space is the width of the space to allocate
la = le The length of the allocated space is the length of the existing space

6.2.1.3 wt < we A It < le

even (n) = true

xr1 = xe + aa / dye + 0.20 A

xa1 = xe A
xwaii1 = xe + aa / dye

xr2 = xin A
xa2= xe+ (dxe - aa/ dye) A
xwaii2 = xe + (dxe - (aa / dye + 0.20)

If both the width and the length of the spaces to
allocate are smaller then those of the existing space
(Fig. ?? h, I, n, o, p, and r), then it can be either one.

The last dissection was parallel to the x axis

Get the insertion point:
allocating zone to the left

allocating zone to the right

Get the widht, length, height, and area of the allocated and remaining spaces:

even (n) = false

xr1 = xe + aa / dye + 0.20 A
xa1 = xe A
xwaiii = xe + aa / dye

xr2 = xin A

xa2 = xe + (dxe - aa / dye) A

xwa2 = xe + (dxe - (aa / dye + 0.20)

The last dissection was parallel to the y axis:
Get the insertion point:

allocating zone to the back

allocating zone to the front

Get the widht, length, height, and area of the allocated and remaining spaces.

6.2.2 Introduce the spaces for evaluation:
+ < [allocated, idallocated1, 0, ((xa1, ya, za), dxa, dya, dza, aa), n +1, temp, 1],

[remaining, idremainingi, 0, ((xri, yr, zr), dxr, dyr, dzr, ar), n +1, temp, 1],
[allocated, idailocated2, 0, ((xa2, ya, za), dxa, dya, dza, aa), n +1, temp, 2],
[remaining, idremaining2, 0, ((xr2, yr, zr), dxr, dyr, dzr, ar), n +1, temp, 2] >

7. If the space to allocate does not fit into the existing space (Fig. Xx a-c, and e, h)

Is any of the dimensions of the existing space 60% smaller than the minimum required?
If yes,

If the space is optional, proceed with the derivation without allocating the space
If the space is obligatory, halt derivation, announce failure, and explain why it failed

If not, try to allocate the space with reduced the requirements. Find why it does not fit and lower the
dimensions that exceed those of the existing space until the space to allocate fits:

Case 1: the area, the width, and the length of the space to allocate is bigger than those of the existing space
at> ae
wt > We
lI > le

diminish all the dimensions: assignment rule

505

af = a.
wf = We

If = le

Case 2: the area and the width are bigger but the length is smaller than that of the existing space
at> a.
Wt > We
It < le

af = ae diminish the area
I = It keep the same length
wf = af / lIthe width is still bigger

it ends up being an assignment rule

diminish the width, keep the length the same, find the area
Wf = we diminish the width to fit
If = it keep the same length
at = w - lifind the area, which is smaller to that of the space to allocate
it ends up being a dissection rule but the quality is lower (not a good idea) check proportion

Case 3: the area and the length are bigger but the width is smaller than that of the existing space
at> ae
wt < We
I > le

at = ae diminish the area
w= Wt keep the same width
I = at / wifind the length, which is still bigger

it ends up being an assignment rule

I = le diminish the length to fit
w= Wt keep the same width
a= wf - Itfind the area, which is smaller than that of the space to allocate
it ends up being a dissection rule but the quality is lower (not a good idea) check proportion

Case 4: the area and length are smaller but the width is bigger than that of the existing space
at < a.
wt > We
It < le

Wf = We diminish the width
a= at keep the same area
I = at / wffind the length which increases as a result

wf = We diminish the width
It = it keep the same length
at = w - lIfind the area which decreases as a result

Case 5: the area and width are smaller but the length is bigger than that of the existing space
at < ae
Wt < We
It > le

It = le diminish the length
at = at keep the same area
wt = a / Itfind the width, which increases as a result

It = le diminish the length
Wf= Wt keep the same width
at = wf - Iffind the area, which decreases as a result

If one or more of the dimensions of the allocated space are smaller than those that correspond to the
desired and/or the minimum quality levels, record the deficits of each dimension relatively to each of these
levels.

506

7.6 Summary

In this chapter, it was proposed a model for the problem of finding a goal-matching

design within a specific architectural style called discursive grammar. This model

includes a programming grammar and a designing grammar. The programming

grammar generates the design brief in such a way that the opportunity for the problem to

be over-constrained or ill-defined is considerably reduced, thereby overcoming two of

the major hurdles that plagued other models of design. The designing grammar

generates the design solution using heuristics to select at each state of the derivation

the rule that takes the evolving design closer to the design goal. The use of heuristics

contributes to speed up the derivation, which is a major drawback in previous goal-

oriented approaches. On the other hand, the use of heuristics does not guarantee that

the proposed model generates the best solutions. The proposed model is illustrated with

a discursive grammar for Siza's Malagueira houses, in which the programming grammar

was modeled after the Portuguese guidelines for the design of social housing, and the

designing grammar was developed after Siza's Malagueira houses design rules.

References

HERBERT, G; SWOPE, M; et al - Some Performance Guidelines for the Design and Evaluation
of Environmental Spaces in the Dwelling. Haifa, 1978.

KNIGHT T W, 1989a, "Color grammars: designing with lines and colors" Environment and
Planning B: Planning and Design 16 417-449.

MARCH, L. - Architectonics of Humanism: Essays on Number in Architecture, John Wiley & Son
Ltd., New York, 1998.

MITCHELL W J, 1989 The Logic of Architecture, MIT Press, Cambridge, MA.

MANSO, A. Costa; FONSECA, M. Santos; ESPADA, J. Carvalho "informagAo sobre custos:
Fichas de rendimentos. (2 vols)> Lisboa, 1997. 1030 p.

507

MANSO, A. Costa; FONSECA, M. Santos; ESPADA, J. Carvalho "informagdo sobre custos:
Fichas de actualizagso Lisboa, 2000. 452 p.

PALLADIO, Andrea - I Quattro Libri dell'Architettura, Ed. L. Magagnato and P. Marini, Milan,
1980.

PEDRO, J B - Programa Habitacional. Espagos e compartimentos. Colecgdo Informagdo
T6cnica e Arquitectura, n0 5, Lisboa, LNEC, 1999a.

PEDRO, J B - Programa Habitacional. Habitagdo. Colecgio Informagso Tecnica e Arquitectura,
n0 5, Lisboa, LNEC, 1999b.

PEDRO, J B - Indicadores de Qualidade Arquitect6nica Habitacional. Dissertagdo apresentada
em cumprimento das exigencias de provas de doutoramento na Faculdade de Arquitectura
da Universidade do Porto. Porto, Ed. FAUP, 2000.

PORTAS, N - Fung6es e Exigencias das Areas de Habitagdo. Colecgdo Informagdo Tecnica de
Ediffcios, n0 4. Lisboa, Ed. LNEC, 1969.

REDDY G, CAGAN J, 1995 "An improved shape annealing algorithm for truss topology
generation" ASME J ournal of Mechanical Design 117 315-321.

STINY G, GIPS J, 1972, "Shape Grammars and the Generative Specification of Painting and
Sculpture" in C V Freiman (ed) Information Processing 71 (Amsterdam: North-Holland) 1460-
1465. Republished in Petrocelli 0 R (ed) 1972 The Best Computer Papers of 1971:
Auerbach, Philadelphia 125-135.

STINY G, 1981, "A note on the description of designs" Environment and Planning B: Planning
and Design 8 257-267.

STINY G, 1990,"What is design?" Environment and Planning B: Planning and Design 17 97-103

508

8. Implementation

8.1 Introduction

This chapter describes three important, steps towards the implementation of the

envisioned system for the design of mass housing. These steps represent preliminary

efforts, rather than finished work. The first step is the development of the PAHPA-Malag

interpreter, the computer program encoding the discursive grammar. The section on the

interpreter describes the proposed system's architecture, as well as the specific

computer tools used in the implementation. The second step is the development of a

Web site on the grammar that functions as a catalog of existing houses, a tool for

teaching the grammar, and a tool for generating new houses on-line. The section on the

Web site describes its structure, including its modules, navigation strategies, and user-

interaction. The third step is the framework of the proposed design system, which

includes rapid prototyping and visualization techniques, in addition to the interpreter, and

the Web site. The section on the framework, explains how such visualization techniques

can be used for communicating the housing solution to the client.

8.2 The interpreter

A grammar can be used as an analytical and as a generative tool. As an analytical tool,

the Malagueira grammar allows one to understand the rules behind the design of

Malagueira houses. As a generative tool, it permits the generation of a large set of

design solutions based on such rules. As a generative tool, a grammar can be used by

hand, as did the subjects in the experiments described in Chapter 6. However, the full

generative power of a grammar is unleashed only when the grammar is codified into a

509

computer program. Moreover, such a program, called an interpreter, becomes an

effective design assistant only when it has a user-friendly interface. Effort was, thus,

placed in building a user-friendly interpreter for the PAHPA-Malag grammar.

Previous implementations of shape grammars can be grouped into two groups, based

on the type of representation used for shapes. The first group includes visual

implementations, such as the one by Tapia (1999). They are said visual because shape

rules match directly on the geometry, as "we see it," by closely following Stiny's

mathematical foundation of shape grammars. The second group includes symbolic

implementations, such as those developed for engineering grammars like Reddy's and

Cagan's truss design grammar (1995), or Shea's dome design grammar (1996). In the

symbolic implementations, shape rules match on symbolic descriptions of shapes. As a

result of the different representations, visual implementations support shape emergence,

whereas symbolic ones do not. On the other hand, symbolic implementations make it

easier to deal with parametric shape rules. Because shape emergence is not a feature

of the PAHPA-Malagueira grammar, whereas parametric shape rules are, the proposed

implementation is symbolic.

Program PROGRAMA + Housing Program + DESIGNA House
data + (description) 4 (shape and

(description) (programmer) (designer) description)

Figure 8.1 - From program data to a housing solution: the two modules of MALAG.

The PAHPA-Malagueira interpreter, called MALAG, consists of two main modules: the

programmer, and the designer, as shown in Figure 8.1. The programmer, called

510

PROGRAMA, processes the program data to generate the housing program. The

designer, called DESIGNA, takes the housing program and generates a housing solution

within the Malagueira language.

The system's architecture of MALAG is diagrammed in Figure 8.2. The programming

languages used in the implementation are HTML, Java, Clips, and VRML. These

languages were chosen to allow MALAG to run on the web. The system's architecture

consists of four modules: an interface, an expert system, a solid modeler, and a display.

The interface of PROGRAMA is a Java applet. The expert system uses the Java expert

system shell, called JESS, developed by Sandia Corporation. This shell is an interpreter

of the Clips language written in Java. The description part of the programmer and the

designer's grammar rules are written in Clips, a dialect of Lisp. The solid modeler is

written in Java that use indexed lists to represent shapes. Both the modeler and the

expert system constitute the core of DESIGNA. The output

which is read by the VRML viewer Cosmo Player, to display

web.

of MALAG is a VRML file,

the evolving design on the

Interpreter

Figure 8.2 - The MALAG system's architecture.

511

Malagueira - Alvaro Siza Vieira

ryaem e -6

2 3i

12~' yes 245 4
-M

01999
Jos P. Duarte Plan Corpus Grammar New Designs Interpreter 4 W Home Info Help Mail

RE M MM -6MV "- - ME4

Figure 8.3 - The MALAG Web interface. The PROGRAMA's interface on the right is used to
prompt the program data, whereas the DESIGNA's display on the left is used to see walk through

the solution. The side bar on the left launches other views.

The MALAG's Web interface is shown on Figure 8.3. It includes: on the right, the

PROGRAMA's interface used to prompt the program data; in the middle, the DESIGNA's

display to visualize the housing solution: and on the left, a side bar to launch different

views. The use of MALAG during one work session is briefly explained below. The user

uses the interface to interactively describe the dwellers and the site, and to refine the

housing program. As explained in Chapter 7, the housing program features are

organized into constraints, qualities, and cost. As the user provides information on the

constraints (context, typology, and morphology), PROGRAMA provides the default

values and weights of quality features, and the possible ranges of variation of such

values and weights. In addition, it also provides the quality level and the estimated cost

512

[: Interpietef Miciosoft internet Exploier ir n p

nterpreter - Interface and Display

of the house described in the housing program. The user can then modify this default

program by changing the features values and weights within the allowed ranges. As the

user makes such changes, PROGRAMA updates the quality level and the cost.

When the user is satisfied with the housing program, the user notifies PROGRAMA by

hitting the 'done' button at the bottom of its interface. The user can visualize the housing

program by hitting the 'program description' button on the side bar of the Web interface.

The user also can name and save the housing program, or send it to DESIGNA, by

hitting the appropriate 'save' and 'send' buttons at the bottom of PROGRAMA's

interface. Then, DESIGNA will generate a solution, using a set of heuristics to minimize

the distance between the program description and the design description. The features

weights are used in this process to decide which requirements to satisfy in first place,

thereby minimizing the distance between the program and the design descriptions.

The user can follow this generation from different views by hitting different buttons on the

side bar of the Web interface. (Figure 8.4) Namely, the user can follow the generation

of either floor from a 'walls' or a 'rooms' view. A 'walls' view shows the walls and other

building elements such as, windows, doors, and so on. A 'rooms' view is an abstraction

that shows only the rooms that form the floor, using colors to identify the different types.

Once the housing solution becomes available, the user can walk through the house, or

look at its description to compare it with the program description. Then, user can name,

save, and retrieve the solution.

Given an existing housing program, the user can resend it to DESIGNA to generate

another solution. Because PROGRAMA is not fully deterministic, the new solution will

likely be different from the previous one. The user also can reset the features weights

513

Housing Program Description

CONTEXT
Urban: houses on all three sides
Solar Orientation: south
TYPOLOGY
Customization : type
Number of users: 4
Number of bedrooms: 3
House quality: medium

MORPHOLOGY
Housetype: frontyard
Number of floors: 2
Balconies: yes

SPATIALITY

Service zone
01: kitchen; cooking, informal dining; isolt
02: laundry; washing clothes, drying clothe:
03: pantry; cooking; included; medium; 2.5 1

Living zone
04: living room; living, receiving guests;
05: closet; storing clothes; included; medii
06: staircase; circulation; included; small
07: dining; formal dining; included; small;

Yard zone
08: yard; being outside; isolated; minimum;

Sleeping zone 1st floor
09: bedroom; double sleeping; isolated; med:

Figure 8.4 - Different views permitted by MALAG. From left to right: 'walls', 'rooms', and
'description' views.

before sending it to DESIGNA. The new solution will represent a different balance

among the requirements. Finally, after seeing a solution, the user can change some of

the programmatic requirements, to refine the design problem. The use of default values

and limits for the variation of values helps PROGRAMA to define the problem and to

avoid over-constraints. The use of heuristics allows DESIGNA to find a solution, even if

the problem is still over-constrained.

8.2 The Web site

The Web site was designed with three goals in mind: to constitute a catalog of existing

houses, to teach designers how to generate new designs using the grammar by hand,

514

Interpreter - Ini

and to automatically generate new houses on-line. The site is organized into five main

sections-Plan, Corpus, Grammar, New Designs, and Interpreter-that constitute the

core of the site, and three subsidiary pages-Home, Info, and Help-with additional

information. The structure of the Web site is diagrammed in Figure 8.5. The Home

page is the front page, and like all the others, it contains direct links to the main sections

and subsidiary pages. The Info and Help pages are mainly descriptive and provide the

user with background information.

The Plan section describes the concepts behind the design of the Malagueira urban

plan, and it presents aerial and ground views of the neighborhood, the housing, the

streets, the public spaces, and the urban facilities. The pages in this section allow the

user to explore thematic maps by placing the cursor in their legends. The themes

included are urban uses, housing types and variations, phases of construction, and type

of promotion. The last page in this section contains links to sub-pages that lead the user

to detailed information on a typical housing block, including an interactive evolution of

the block. (Figure 8.6)

The Corpus presents the catalog of existing designs used to infer the Malagueira

housing grammar and it is classified into subtypes and variations. For each subtype,

there are four pages with detailed information on the subtype and its variations. These

pages include pictures of existing houses, 3D digital models, schemes of their functional

organization, plans, sections and elevations, numerical data, and VRML models. For

most of the subtypes, there is also a page that presents a step by step derivation of the

design according to the rules of the grammar. (Figure 8.7)

515

Composition
Structure

Function

Patterns

Stages
Description

Introduction

Designs
Experiment 1- Additional des.

Experiment 2-Random desian

Experiment 3 - Goal design
Experiment 4 - Goal design

TERPRETERoution

Evele t2endWflor

Figure 8.5 - The tree structure of the Web site.

516

Malagueira -Alvaro Siza Vieira

Composition

Block

lotroducing house

-+ U Ab 14

housing density 573 dweihngsais
population density 0,022- 0,035 peopeld
lot average 39,8 %
ttoo0 to area fatio: 0,739

CisseJoseP. Dumle Plan Corpus Grammar New Designs Interpreter 4 l Home Info Help Mail

Figure 8.6 - One of the pages in the Plan section of the Malagueira Web site.

The Grammar section explains the details of the grammar, aiming at showing, in a

visually understandable way, how the Malagueira grammar can be used in the design of

new houses by hand. The information is grouped into eight thematic pages that brief the

user on shape grammars, the compositional rules of the grammar, the structural system,

the urban context, the universe of possible designs, the functional organization, the

stages and steps in the generation of designs, and the connection between the

description grammar and the shape grammar. (Figure 8.8)

517

IHousing Block Evolution

Malagueira - Aivaro Siza Vieira

Functional Organizalian

Ab

Grammar Rules
Stage: Delining 2nd Vowr-bStep: Addirg detalls
Rule: Ajastiag wall height

Variations _!|| J _h" "J..444

Jow P.Duarte Plan Corpus Grammar New Designs Interpreter 4 0 Home Into Help Mail

Figure 8.7 - One of the pages in the Corpus section of the Malagueira Web site.

The New Designs section contains the immediate outcome of the four experiments

described in Chapter 6, in which subjects used the grammar to design new houses. It

includes a text page that describes the goals, subjects, setting, task, procedure, and the

main conclusions of each of the experiments, as well as pages showing the new

designs. (Figure 8.9)

The Interpreter section contains the applet of the computer program described in the

Section 8.1, which users can use the to generate on-line customized houses in the

Siza's Malagueira style.

518

ISubtype Ab T5 - Derivation

Malagueira - Alvaro Siza Viira

Introduction

SPatterns: mapping the universe of designs

The application of rules to allocate functional zones potentially defines 8
basic subdivisions of a lot into 4 zones (A). For each of these geometric
patterns there are 24 topological patterns (B) that can be obtained by
assigning functi.
topotogical patti
can be generat
division of zont
solutions of Siz
separation bets . .
merely analytic:
distinction. Prev
generate a valid s a s s

JoaeP. Duate Plan Cavu ls

Pa tIf Is

1 2 3 4

6 6 7 8

olvsio (A)

a

Topoly (B) Dhi asimla ()

Home Info Help Mail

Figure 8.8 - One of the pages in the Corpus section of the Malagueira Web site.

Navigation in the site requires the use of a frames compatible browser and a true color

monitor, and it is optimized for a 1024 by 768 dpi resolution. The pages are written in

the HTML language and JavaScript functions were used to allow an interactive behavior

through event handling routines. Nested frames were used to achieve an effective

interface in which the uploading time is reduced to a minimum. The use of JavaScript

and nested frames became necessary because the large amount of visual information

required high-quality images.

519

manma - asua unaussa

Patterns

Malagueira -Alvaro SizaVilira

Experiment 3

01999
JoseP. DUte Plan Corpus Grammar New Designs Interpreter 4 ' Home Info Help Mail

Figure 8.9- One of the pages in the New designs section of the Malagueira Web site.

The main navigation system is based on JavaScript encoded keywords-bars placed on

two fixed frames. The frame on the bottom of each page contains the main "Site Ba?',

and the frame on the left contains the "Section Bar'. The "Site Ba?' contains a set of

buttons on the left that is used to change between the different sections of the site, and

another set of buttons on the right that give access to the subsidiary pages referred to

above. The "Section Ba?' is used to navigate from page to page within each section.

Whenever a page contains a set of subsection pages, the left frame is split into top and

bottom frames, which contain the "Section Ba?' and the "Subsection Bar," respectively.

520

IHouses designed for clients

The screen area used to display the contents of each page has a title at the top and it

may have a single area or left and right-framed areas, depending on the specific

contents displayed. To create links among text pages, named anchors coupled with

JavaScript functions were used to identify options and to immediately scroll the page

and display the identified item. For the pages that contain mainly images, visual

metaphors like timelines and colored boxes are used to allow the user to explore its

contents. This interactivity can result from the use of image maps or JavaScript

functions applied to areas sensitive to cursor passage. By clicking on some icons or

images the user launches spare frames containing additional or detailed information

about whatever is depicted in the icon or image. Finally, if the user has a Cosmo Player

plug-in installed, 3D models in the VRML format can be explored in a virtual

environment. The Web site is accessible at http://destec.mit.edu/malaq/.

8.4 The envisioned housing design framework

The web site described above is part of a larger framework proposed for the design of

customized housing. The other components of this framework are the use of rapid

prototyping techniques and virtual reality environments. The web site simultaneously

provides the user with a catalog of existing designs and a computer program to generate

new designs on-line. The catalog provides prospective dwellers with a way of

understanding the available housing solutions, and a way of structuring their needs.

The computer program allows a thorough exploration of the space of design solutions in

search of a solution that matches user needs. The goal is to increase user satisfaction.

One of the advantages of high user satisfaction is to avoid post-construction changes to

the dwelling. However, to decrease the likelihood of such changes it also is important

that users have a way of assessing their houses before they are built. As they are not

521

designers, their ability to understand and visualize designs just by looking at traditional

representations, such as plans, sections, and elevations, is rather limited. It is,

therefore, necessary to provide them with representations that they can understand. In

the envisioned framework, this is achieved by the use of rapid prototyping techniques

and a virtual reality environments.

In brief, rapid prototyping is a technique that automatically produces a physical model

from a CAD file. Among these techniques, there are techniques that create the model

through an additive process. One of this is the Deposition Model (FDM) developed by

Stratasys, which builds the model from bits of a fused material that solidify once

deposited. Another technique is stereolithography, which builds the model by using a

laser to solidify a polymer liquid at given points in the space. In 3D printing, developed

at MIT, the model is built by using a glue to agglomerate a powder. Some of these

techniques were used in the experiments described in Chapter 6 to produce physical

models of new houses, which were then shown to clients. One can imagine techniques

like these being used to explain to clients how their future house will look like. For more

information on rapid prototyping, please see Burns (1993).

The term virtual reality often is abusively used. In the appropriate sense, the term

means to create an environment that simulates reality to an extent that human observers

are led to believe that they are in a real environment. There are several virtual reality

techniques available with varying degrees of immersion. The simplest technique, uses

glasses to give the observer the impression of looking at a 3-D environment while

looking at a flat computer screen through such glasses. On the opposite extreme, is the

system known as CAVE, in which the observer is fully immersed in the environment

through a head-mounted device and aptic gloves. In the CAVE, observers have the

522

impression that they look around as they turn their heads, or that they touch and open

doorknobs, climb stairs, and so on. Our idea is to have environments like these to

enable clients to visit their house before construction.

Siza says that user participation "promotes conflict and delays when it is not simulated or

mystified," and he concludes that "the difficulty is not to build homes but communities."

(Quoted in Fleck 1992.) Our goal in proposing the described framework is to enable

community building by providing a tool that fosters the participation of community

members in the design of their homes. According to Black, (quoted in Fleck 1992) user

participation put a heavy burden on project management at Malagueira. Such a burden

led some critics to say that the project was too expensive to be considered social

housing. Another goal of the proposed framework is to simplify user participation to

diminish the burden on project management. It is proposed to make the Malagueira

Web site available from Evora city hall's Web site. This would allow prospective

dwellers to log in into the Internet and access a wide network of contacts and information

on the project. While the public control of the Web site serves the social scope of the

proposed framework, this is not the only way of using such a framework. Independent

designers and housing companies could develop similar frameworks to advertise and

sell their own customized designs. Figure 8.10 shows some of the ways in which

interpreters, virtual reality and rapid prototyping can be used in the generation and

assessment of designs.

523

The interpreter Virtual Reality

Digital walk-through

Rapid prototyping

3D-printing

Use by the architect with the client Desktop solution FDM (Fused deposition model)

Use by the client alone Partially immersed environment Stereolithography

Use by a salesperson Immersed environment The client looking at the model

Figure 8.10 - The envisioned framework for the design of mass housing: the interpreter is used
either by the designer or the client to input requirements and generate solutions (left column),
virtual reality environments with different degrees of immersion (middle column), and various

rapid prototyping techniques (right column) are, then, used to visit and assess the solution before
construction.

524

8.5 Summary

A Web-based digital framework composed of a discursive grammar, a computer

interpreter of the grammar, rapid prototyping techniques, and a virtual reality

environment, is proposed as a tool for designing customized mass housing. This

framework augments the designer's creativity by enhancing the ability to generate

diverse designs in response to diverse user requirements. It also increases the ability to

convey to clients how their future houses look like thereby avoiding post-construction

changes and leading to greater user satisfaction. It has been described how such

framework could be implemented.

References

Tapia M, 1999, "A visual implementation of a shape grammar system", Environment and
Planning B: Planning and Design 26:1 59-73.

REDDY G. and CAGAN J., 1995, "An improved Shape Annealing Algorithm for Truss Topology
Generation", in Journal of Mechanical Engineering, U.S.A., Volume 117, pages 315-321,
June.

SHEA K and CAGAN J, 1996, "Innovative Dome Design: Applying Geodesic Patterns with Shape
Annealing", Artificial Intelligence for Engineering Design Analysis, and Manufacturing.

Burns, Marshall, 1993, "Automated Fabrication." Prentice-Hall, New Jersey.

FLECK, B., 1992, "Alvaro Siza", Rel6gio d'igua editores; Lisboa, Portugal; page 79.

525

526

9. Conclusion

This chapter summarizes the research presented in this dissertation, lists its

contributions, and outlines paths for future work.

9.1 Summary

The ultimate goal of this dissertation is a framework for the mass customization of

housing that includes computer aided-design and production systems. Its focus is on

the design part by proposing a mathematical model, called discursive grammar, for an

interactive system to be used in the automatic exploration of criteria-matching housing

solutions.

A discursive grammar includes a programming grammar that generates the design brief

based on user and site information, and a designing grammar that generates a design

solution that satisfies the requirements specified in the brief. The solution is achieved by

using a set of heuristics to choose the rule that takes the evolving design closer to the

specified goal. The heuristics are different at different stages of the derivation so as to

provide an appropriate estimation of the distance to the goal, based on the currently

available contextual information.

527

The model is illustrated with a specific grammar called PAHPA-Malagueira grammar. In

this grammar, the programming grammar encodes the rules of the Portuguese housing

guidelines known as Programa Habitacional, as well as the intelligence of a human

designer using such guidelines to generate a design brief. The designing grammar

codifies the rules followed by the architect Alvaro Siza in the design of patio houses at

Malagueira, and they were developed after a proposed methodology comprising

descriptive, analytic, synthetic, and goal tests. The heuristics were developed after a

protocol analysis study in which subjects were asked to design criteria-matching houses.

The division of the problem into two programming and designing steps helped to

overcome the ill-definition and over-constraining problems, which constituted two major

hurdles in previous design systems. The programming grammar leads the user to

increasingly clarify and de-constrain the problem by generating the design requirements

that fit the current design context, which the user can change within allowable limits, until

the brief is defined. If this is still over-constrained, the designing grammar includes rules

to de-constrain it and to generate the feasible solution that is closer to design goal.

9.2 Contributions

This dissertation makes several findings, as well as minor and major contributions, to the

field of design grammars, in particular, and to architecture, in general, as described

below.

528

9.2.1 Findings

The findings that emerged from the research presented in this dissertation are:

Hand-use oriented grammars are different from computer-oriented ones. Monitoring

studies permitted to identify an important difference between developing a grammar for

use by hand by designers and developing a grammar for computer-implementation. The

difference is related to the way in which rules are formalized. Rules with a strong use of

mathematical symbols become difficult to grasp by human designers and are more

appropriate for computer implementation. On the other hand, rules with strong use of

labels and weights put a bigger burden on the computer implementation.

Teaching grammars are different from designing grammars. Monitoring studies also

showed that writing a grammar to teach designers how to design in the style of another

designer is different from writing a grammar for designing in the style.

Skillful designers are better modeled by 'strong grammars' than 'weak grammars.' A

protocol study of designers using the grammar showed the difference between

grammars where the knowledge is more on the side of the generator, here called

'strong', and grammars where it is more on the side of the evaluator, here called 'weak'.

Designers use of grammars falls in between, but skillful designers are better modeled by

strong grammars than weak grammars. Results suggest that skillful designers use

appropriate heuristics to traverse the space of design solutions towards the goal, thereby

diminishing search time and increasing the likelihood of achieving a better solution.

529

'strong' grammars put a burden on the development time. As a consequence of being

knowledge-intensive, 'strong' grammars require more time for acquiring and inferring

such knowledge than 'weak' grammars do.

9.2.2 Minor contributions

The minor contributions are:

A systematized methodology for developing shape grammars. This methodology

comprises descriptive, analytic, and synthetic tests used in previous approaches, but

also a goal test to verify a grammar's ability to generate criteria-matching designs. In

addition, it involves two steps. First, to develop the exhaustive set of rules that could be

derived from the compositional principles observed in the corpus designs and second, to

limit such an exhaustive set whenever it seemed that it would oppose the designer's

design principles.

Use of protocol studies to monitor designers using grammars. This dissertation is the

first to monitor the use of grammars by human designers using protocol studies. These

monitoring studies are important to better understand how grammars can be used in

practice and how they should be developed in the future.

A shape grammar for the work of a living architect. This dissertation is the first grammar

developed for the work of a living architect with the architect's full support. This

permitted to confirm the ability of the grammar paradigm to codify a designer's style and

to represent its implicit design knowledge. This will contribute to foster the use of

530

computational design systems on the behalf of other practicing architects, thereby

leading to more research, and subsequently, to the development of practice-oriented

applications.

A description grammar for real a world application. The dissertation presents the first

application of the concept of description grammar to a real world situation by proposing a

description grammar for the Portuguese housing guidelines. The development of such

grammar, in turn, made it possible to encode design regulations into a coherent rule-

based system.

An application of the parallel grammars paradigm to solve a real design problem. The

dissertation is among the first to validate the use of the parallel grammar paradigm to

model a real design problem, by using it to represent the multitude of viewpoints

involved in the design of a house and to model their mutual dependency.

A general packing algorithm for space allocation. The dissertation proposes a new

packing algorithm embodied into a shape grammar for Siza's Malagueira houses. It is,

nevertheless, a general algorithm that can be applied to other design strategies based

on the dissection of rectangles. The adjustment of the algorithm to specific styles can be

done by controlling the label and description parts of the grammar rules.

The system's architecture of a Web-based interpreter for the grammar. The dissertation

proposes a system's architecture for an interpreter of the PAHPA-Malagueira grammar

that runs on the Web.

531

9.2.3 Major contributions

The major contributions of the dissertation are:

1. The outline of a system for the mass customization of housing. This system includes

computer-aided design and production systems. The design system, which is the

focus of the research, encompasses a Web-based interactive system for the

exploration of design solutions, as well as virtual reality and rapid prototyping

techniques for their visualization. The use of such a system will enable a move from

mass production towards mass customization.

2. A mathematical model for the interactive design system. This model, called

discursive grammar, is an extension of the shape grammar formalism and it includes

a shape grammar, a description grammar, and a set of heuristics that allows the

generation of criteria-matching designs. The model overcomes drawbacks of

previous approaches by generating both syntactically and semantically correct

designs using a heuristic search mechanism embedded into the rules, instead of an

external stochastic mechanism. This potentially enables a decrease in the derivation

time thereby making it reasonable to develop Web-based interpreters.

3. The Prototype of a Web site for teaching the grammar in a visually coherent way. An

interactive Web page in which the process of using the grammar is explained using

interactive gadgets is proposed as a way to overcome the difficulties posed by

technically oriented documents that have been traditionally used to describe shape

grammars. The Web page is part of the mass-customization system mentioned

532

above and it includes a catalog of existing designs, a tool for teaching how to design

new ones and, ultimately, a mechanism for generating new houses on line.

4. A rigorous method for understanding and teaching architectural styles. The

dissertation uses as a case study the houses designed by Alvaro Siza at Malagueira

and proposes a grammar for this style that can be used to teach the style with

mathematical rigor. Similar methods might be applied to other styles leading to the

explanation of general architectural qualities with the same rigor.

9.3 Future work

This dissertation represents a major step towards the development of the proposed

framework for customizing mass housing. Ideas for future work, thus, fall into two

categories. The first category includes improvements to the current research, whereas

the second incorporates other major steps towards the implementation of that

framework. The improvements and the major steps are outlined below.

9.3.1 Improvements

The improvements are:

Develop the computer implementation. The dissertation proposes a system's

architecture for the discursive grammar interpreter, provides the specifications of its user

interface, and tests them by making a small, partial implementation of the system. The

533

next logical step is to complete such an implementation. This will enable extensive

testing and refinement of the model, as well as its use in practice.

Add local 'optimization' rules to the grammar. The heuristics used to guide the

derivation of the design towards the goal were modeled after protocol studies and

attempt at finding the best shortcut to reach the goal without the need for 'optimization'.

The computer implementation will help to determine whether there is the need to add

rules for improving the design locally, at each step in the derivation, as designers did in

the experiments.

Improve the teaching capabilities of the Web page. One of the goals of the development

of the Web page was to teach the Malagueira grammar to designers so that they could

use it to generate customized houses. Experimental results showed that the teaching

capabilities of Web site should and could be improved. Future work should be

developed with this aim, which can be undertaken by using the current site to develop

more experimental work.

Undertake more monitoring studies. The undertaking of further monitoring studies,

including protocol ones, is instrumental to understand how people use grammars in

design. Such an understanding, will permit to tailor the design of grammars and

grammar interpreters to their effective use by human designers. In addition it shoul help

to identify other strategies used by human designers in the generation of goal-oriented

designs.

534

9.3.2 Major steps

The proposed framework for customizing mass housing includes a computer tool for

generating solutions, visualization techniques for their assessment by clients, and

computer-aided manufacturing techniques for producing the house. Major steps for

future work are related to each of these three components of the framework.

Use the grammar paradigm to develop new design systems for housing. The grammar

models Siza's systematic approach to housing. Future work should aim at doing the

reversal, that is, to use the grammar paradigm to help other designers to develop similar

approaches. One possibility for developing new housing design systems is to start by

changing the Malagueira rule set to create new grammars. This can proceed by altering

the label and description part of the Malagueira rules, by deleting existing rules, or by

introducing new ones.

Develop on-line visualization techniques. The visualization techniques considered in the

current research consist of rapid prototyping and virtual reality. These techniques work

well, but either required sophisticated equipment that the user is unlikely to have, or an

effort on his or her behalf to navigate in the house if a simple 3D viewer is used. These

drawbacks limit on-line clients' ability to assess solutions. Therefore, future research

should aim at developing alternative techniques to overcome such drawbacks.

Decompose the houses into building parts for manufacturing. In the current grammar

the knowledge about the building system is encoded at a very abstract level. Future

work should put an effort on the encoding of more explicit knowledge so that the house

might be decomposed into building parts for manufacturing. This requires the

535

development of appropriate building systems, the development of rules encoding such

systems, and the development of algorithms to list the parts and to generate the required

information for manufacturing them.

Once these steps have been completed, the full potential of the envisioned framework

will be achieved. Then, it will be possible to customize mass housing at an affordable

cost, which will constitute a major social contribution.

536

