
Improving the Software
Upgrade Value Stream

Prepared by:
Mr. Brian Ippolito

Professor Earll Murman
Massachusetts Institute of Technology

September 2001
RP01-01

web.m
it.e

du
/ l

ea
n

Lean
Aerospace
Initiative

1

IMPROVING THE SOFTWARE UPGRADE VALUE STREAM
Mr. Brian Ippolito1

Professor Earll Murman,
Massachusetts Institute of Technology, Cambridge, MA 02139

1 Present address, Northrop Grumman, Electronics Systems and Sensors Sector, Baltimore, MD

Overview
This paper reports findings from a two-year

study [1] to identify Lean practices for deriving
software requirements from aerospace system level
requirements, with a goal towards improving the
software upgrade value stream. The study was
undertaken as part of the MIT Lean Aerospace
Initiative. Three detailed case studies and 128
surveys collected from ten “successful” mission
critical aerospace software upgrade programs
support seven major findings:

1. Aerospace software upgrades are dependent
upon multiple, interacting value streams.

2. Lean Enterprise Metrics for the end-to-end
software development process are deficient.

3. Although all phases of the software
development process are deemed to add value,
they are not accomplished with the same level
of effectiveness.

4. Information provided by the end user is
considered “very important” by the requirement
practitioners and needs to be captured through
end user involvement early in the development
process.

5. The responsibilities for assuring that the
software requirements “meet the end user
needs” and are “cost effective” are divided
among different process owners.

6. Data suggests positive correlation between
reduction in unplanned requirement changes
and leadership continuity in both concept
definition and requirement analysis phases.

7. Formal training for aerospace software
requirement practitioners does not appear to be
highly effective or abundant.

Background
The Lean Aerospace Initiative (LAI) is a

government, industry, labor, and academic
consortium focused on identifying and
implementing the principles of Lean in the
aerospace industry. Lean originated in the
automotive industry and is grounded in the
manufacturing domain. To the authors’ knowledge,
this is the first research specifically designed to
apply the Lean principles and the Lean Enterprise
Model to the process of deriving aerospace software
requirements. The basic principles of Lean are
focused on employing value added activities to
reduce product cycle time, increase quality, reduce
cost, and increase stakeholder satisfaction.

Deriving software requirements are an
important step in developing aerospace software
products. Requirement derivation activities occur
early in the product development process and can
have significant impacts on the cost, schedule, and
performance of the system [2]. The cost to correct
errors made early in the phases of product
development grows exponentially the longer they
go undetected [3]. Analyzing the requirement
process using a Lean framework allows
practitioners the opportunity to improve the process
to reduce the possibility of adverse system impacts.

 The Lean Enterprise Model (LEM) [4] is a
framework that incorporates enterprise level lean
principles and practices, together with supporting
data. This research utilized the LEM framework to
identify the presence of Lean practices in the
process of deriving software requirements on real
time mission critical aerospace systems. LEM
enterprise level metrics (Flow Time, Stakeholder
Satisfaction, Quality Yield, and Resource
Utilization) were used to develop process outcome

2

measures. The twelve Overarching Practices
identified in the LEM [4] were used as a guide for
analyzing the presence of effective Lean practices
for deriving software requirements.

The findings identified in this paper are the
product of a comprehensive two year research effort
involving three detailed case studies consisting of
45 interviews, in support of 128 stakeholder surveys
collected from 10 aerospace systems, feedback
from numerous aerospace industry practitioners,
and Massachusetts Institute of Technology faculty

and students. All 10 aerospace systems were real-
time mission critical software upgrades representing
four application domains (military aircraft, military
space ground terminal, commercial aircraft, and
missile/munitions). LAI industry and government
consortium members selected the systems involved
in the research effort. Each system is believed to be
one that had a successful derivation of software
requirements. Table 1 summarizes some of the
discriminatory characteristics of the systems used in
the research.

Table 1: Discriminatory Characteristics of the Ten Aerospace Software Upgrades Used in the Research

Research Findings

Finding 1: Aerospace software upgrades are
dependent upon multiple, interacting value
streams.

A value stream analysis and a detailed
description of the requirement derivation processes
completed on three aerospace software upgrade
case studies indicated aerospace software upgrades
are a multi-discipline and multi-organizational
development effort. Figure 1 represents a high-
level representation of a military avionics upgrade
value stream. It identifies the elements of the
system that MUST be delivered in order for the
capability to be used by the person operating the
system, the end user. The military avionics software

upgrade requires changes not only to the avionics
software code but changes to technical orders,
support equipment, aircraft sensors, weapons,
tactics trainers, and government certification. All
of these elements represent multiple independent
value streams that require updates prior to fielding
the capability. The effective and efficient capture
of the stakeholder needs is a challenge for the
requirement derivation process owners.

Case study data suggest software code
generation is less than 10% of the total software
development program cost (Figure 2). To
characterize the software upgrade process as simply
a “code generation” exercise would be an
oversimplification and an inaccurate representation
of the complete set of activities associated with the

Application Domain
Software Development
Cycle Time (months)

Case
Study

 Stakeholder
Survey

Responses

Software
Development
Model Utilized

System 1 Commercial Aircraft 32 13 Incremental

System 2
Military Fighter

Aircraft
62 14

Waterfall/
Incremental

System 3
Military Fighter

Aircraft
49 12

Waterfall/
Incremental

System 4 Military Bomber
Aircraft

46 15
Waterfall/

Incremental

System 5
Military Missile/

Munition
Unknown 7

Waterfall/
Incremental

System 6 Military Missile/
Munition 84 11

Waterfall/
Incremental

System 7
Military Missile/

Munition
29 14 Waterfall

System 8 Military Missile/
Munition

Unknown 13 Incremental

System 9
Military Space

Ground Terminal
7 18 Spiral

System 10
Military Fighter

Aircraft
36 11 Waterfall

4
4

4

3

development effort of the military avionics upgrade program.

Figure 1: Military Avionics Software Upgrade Value Stream Example

Figure 2: Estimated Cost distribution of the major end-to-end process activities for a military avionics
software upgrade (based on historical data).

Finding 2: Lean Enterprise Metrics for the
end-to-end software development process are
deficient

At the enterprise level, LEM metrics typically
associated with manufacturing performance (Flow
Time, Stakeholder Satisfaction, Quality Yield, and
Resource Utilization) should apply to software
requirement derivation. Despite the fact that only
successful programs were investigated, the case
studies failed to identify effective enterprise metrics
for either the end-to-end software development or
the requirement processes. Metrics used to measure
the software development cycle time , customer
satisfaction, end user satisfaction, and quality yield
were deficient. Metrics measuring aspects of
quality yield were found, but failed to capture the

relationship between the requirement rework and
the impact on the enterprise. Resource utilization
measures were observed. but were focused on
productivity associated with the generation of code.
Quantitative measures for stakeholder satisfaction
and the product development cycle time were not
observed. A more detailed look at each of these
enterprise metrics provided a deeper understanding
of the importance of establishing enterprise
measures.

Flow Time: For the software upgrade effort,
the authors interpreted flow time to be the total
program development cycle time (defined as
concept definition to delivery of the product to the
customer). Having a product development cycle
time measure is important for organizations focused
on delivering products faster, at a lower cost, and

10101010
01010...Software (SW) Code

Documentation (Technical Orders)

Government Certification

Support Equipment SW Changes

Multiple Aircraft Sensor SW Changes

Multiple Weapons SW Changes

Weapons & Tactics Trainers

Delivered
Product

C
on

ce
pt

 D
ef

in
iti

on

System Design and Development ~ 11%
• Code Generation ~ 1/2 the Design and

Development Cost
• Code Generation ~ 6% of total Cost

Modifications to
Other Value
Streams ~ 50%
(Sensors,
Trainers, Etc..)

System Test ~34%

Requirement Derivation ~ 5%

4

with increased performance. Product cost and
performance design trades, with respect to total
time, are difficult to make if the product
development cycle time is unclear or unknown.
The program and process leadership were asked to
define the software development cycle time for
their program [1]. The results, shown in Figure 3,
indicated that the end-to-end cycle time is not well
understood by the process leadership. Furthermore,
the end-to-end cycle times for most software
upgrades are longer than three years. Respondents

from two programs were unable to identify their
product development cycle time (Figure 1).

Several factors contributed to the leadership’s
inaccurate estimates of cycle time: in some cases
start and end dates of the product development
process appear to be clouded by multiple program
restructuring events; poor visibility into the value
stream elements; and limited developer control of
the major process activities (e.g. operational testing)
at the beginning and end of the development
process.

Figure 3: Software Development Cycle Time Responses

Stakeholder Satisfaction: Quantitative
measures of stakeholder satisfaction were not
observed. Overall, the subjective estimation of
customer and end user satisfaction were very high.
This is not a surprise given that the research
focused on successful programs. The lack of
customer and end user satisfaction measures
suggests that more research is needed in this area to
define effective enterprise metrics for software
programs. Qualitative measures are subject to
organizational issues and individual interpretation
and may not be appropriate for multi-million dollar
software upgrades.

Survey data indicated the program and process
leadership had a uniform definition of the end user,
shown in Figure 4. Interestingly this is NOT true
for the definition of the customer. Multiple
definitions of the customer existed and appear to
vary based on the application domain as shown in
Figure 5.

Caution should be taken when the term
“Customer” is used to describe a person or
organization since it is clear this definition has
different interpretations.

On your program, how many months is your software development
cycle? (Defined as concept definition to delivery of the product to
the customer.)

32

62

49 46

84

29

7

36

0

10

20

30

40

50

60

70

80

90

100

System
1

System
2

System
3

System
4

System
6

System
7

System
9

System
10

M
o

n
th

s

High Actual Avg Low

5

Figure 4: Defining the End User

Figure 5: Defining the Customer

63%

10.50%
0

15.80% 10.50%
0.00%

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Govt SPO Another
Unit

Airline Pilot Prime
Contractor

Warfighter Other

Commercial Aircraft Customer(s)

Military Avionics Customer(s)

Missile/Munitions Customer(s)

Space Ground Terminal Customer(s)

Assuming that the "Customer" is defined as the organization/person to whom you
deliver your product and "End User" is defined as the person who operates the system.
For your project which of the following categories best fits the terms "Customer" and
“End User”.

Survey Respondents Definition of Customer

5.90% 0.00%
11.70%

0

64.70%

11.70%

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Govt SPO Another
Unit

Airline
Pilot

Prime
Contractor

Warfighter Other

Commercial Aircraft End User

Military Avionics End User

Missile/Munitions End User

Space Ground Terminal End User

Assuming that the "Customer" is defined as the organization/person to whom you
deliver your product and "End User" is defined as the person who operates the system.
For your project which of the following categories best fits the terms "Customer" and
“End User”.

Survey Respondents Definition of End User

6

Resource Utilization: Case study interviews
identified that the only measures of resource
utilization employed in practice were associated
with the code generation. The presence of such a
large number of value stream elements and the
relative small cost of changing the avionics
software code (Figure 2) suggests software upgrade
programs should be thought of as much more than
just a coding effort. Metrics associated with lines
of code should only be used for the effort associated
with code generation NOT the entire development
effort. Appropriate measures for the entire
development were lacking and need to be
developed.

Quality Yield: Metrics associated with rework
of the requirements were observed on all of the case

studies. All three programs tracked the additions,
deletions, or modification of the software
requirements. None of the programs were using a
measure to understand how much of the rework was
unplanned or the impact of the unplanned rework to
the enterprise. Two new measures were developed
by the authors to identify the amount of rework and
the impact of this rework on the total software
development cost.

First, the program and process leadership were
asked to estimate the percentage of the total
software development cost associated with the
rework of the software. On average, unplanned
rework was estimated to cost 16% of the total
software development cost. A breakdown of the
responses for all systems is shown in Figure 6.

 Figure 6: Estimated Percentage of Unplanned Derived Software Requirement Changes

Second, the program and process leadership
were asked to estimate the percentage of the
unplanned derived software requirement changes
(additions, modifications, and deletions) with
respect to the total number of software
requirements. Unplanned requirements changes are

important to track since many of the software
development models and software development
plans do account for planned rework. Unplanned
rework was estimated to be approximately 23% of
the total software requirements. A breakdown of
the responses for all systems is shown in Figure 7.

On your program, relative to the total # of software requirements derived
from system requirements, estimate the % of the unplanned derived
software requirements changes (additions, modifications, deletions) during
the development effort?

36

16.46 13.36 10

34.44
25

38.75
27.39

8.7511.220

50

100

150

200

250

System
1

System
2

System
3

System
4

System
5

System
6

System
7

System
8

System
9

System
10

P
e

rc
e

n
ta

g
e

 o
f

R
e

w
o

rk

High Avg Low

7

Figure 7: Estimated Percentage of Unplanned Derived Software Requirement Changes

Despite only analyzing successful programs,
unplanned rework of derived software requirements
is a significant percentage of the total software
development costs.

In their entirety, Enterprise Level Metrics for
the end-to-end software development process are
deficient and could be significantly improved.

Finding #3: Although all phases of the
software development process are deemed to
add value, they are not accomplished with the
same level of effectiveness.

To understand the importance of the
requirement phase, the survey was used to establish
the relative value of all phases of the software
development process. The program and process
leadership were asked to identify the value that each
phase in the software development process
contributes to developing software in a timely, cost
effective approach to meet the end users needs. The
objective was to understand the relationship
between the early stages of the development effort
when requirements are derived, and the later stages
of the development effort. Survey responses
indicated all phases of the development process add
value. The results shown in Figure 8 illustrate the
estimated value of all phases is about 6 on a 7 point
scale. There was no significant variation by
application domain.

The survey also asked the leadership to
estimate their level of effectiveness in
accomplishing these phases. Survey responses
showed a variation by application domain. Figure 8
compares the estimated level of value of each phase
versus the estimated level of effectiveness in
accomplishing these phases.

Figure 8 suggests the phases of the process prior to
Design, Code, and Unit Test are not accomplished
as well as the later development phases (System
Integration, Validation, and Verification). Design,
Code, and Unit Test has the most uniform
responses across the application domains. A greater
level of effectiveness in the latter stages of the
development effort and the higher level of
effectiveness estimated by the space ground
terminal and the commercial aircraft systems
suggest an unequal distribution of effectiveness
across systems and process phases. The difference
between the perceived importance and the level of
effectiveness in accomplishing the phases of the
development process is solid indicators of potential
areas of process improvement.

On your program, approximately what % of the total software development cost
is associated with rework of the software requirements derived from system
requirements?

26.3

15.8

8.25
11.25

43.13

14 13.43

6.836.38

13.68

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

100

System
1

System
2

System
3

System
4

System
5

System
6

System
7

System
8

System
9

System
1 0

E
s

ti
m

a
te

d
 P

e
rc

e
n

ta
g

e
 o

f
T

o
ta

l
S

o
ft

w
a

re

D
e

v
e

lo
p

m
e

n
t

C
o

s
ts

High Avg Low

8

Figure 8: Application Domain Performance versus the Level of Value Added

Finding #4: Information provided by the end
user is considered very important by the
requirement practitioners and needs to be
captured through end user involvement early
in the development process.

 During the case study interviews, requirement
process practitioners repeatedly cited the need to
involve the end user in the requirement derivation
process. Unfortunately, end user involvement is not
enough to guarantee success. Information must be
identified and effectively captured from the end user
during the requirement derivation processes.

Program and process leadership were asked to
identify the level of importance of various aspects
of end user involvement. The responses for all ten
systems are shown in Figure 9. As a whole, the
most important aspects of end user involvement
were: the agreement between the end user and
developers on performance expectations; giving
developers an understanding of the operational
environment the system; and providing an
understanding of the how the system will be used.
Clarifying validation and verification criteria also
considered very important by seven of the ten
systems.

Figure 9: Average Level of Importance of Various Aspects of End User Involvement

Two Questions are plotted here: "Estimate the value that each of the following contribute to developing
software in a timely, cost effective approach to meet the users needs." versus "How well do you think
your program executed the following phases of software development.”

1

2

3

4

5

6

7

Missile/Munitions Military Avionics Commercial Aircraft Military Space Ground Terminal

Very
Well

Average

Not Very
Well

Concept
Development

Validation/
Verification

System
Requirements
Allocation

Software
Requirements
Allocation

Design, Code
& Unit Test

System
Integration

Estimated Value

of Each Phase

1

2

3

4

5

6

7

System 1 System 2 System 3 System 4 System 5

System 6 System 7 System 8 System 9 System 10

Performance
Expectations

Operational
Environment

System
Utilization

Build
Trust

Validation
Verification

New
Business

Very
Important

Not
Important

Somewhat
Important

How important are the following aspects of END USER involvement in the software
requirement process?

9

Data collected on the three case studies, shown
in Figure 10, indicates the end user involvement is
greatest during the early stages of the process. Case
study interviews also found process participants
recognized the need to capture the critical
information early in the development process.

Practitioners indicated the effective and efficient
capture of the critical information early in the
process can be a challenge for the software
developer but is critical to the successful derivation
of software requirements.

Figure 10: Average Estimated Level of End User Involvement in the Requirement Derivation Process2

2 The phases in Figure 10 are different that the ones listed in Figure 8 since Figure 10 represents the phases of the requirement phases
versus the phases of the software development process shown in Figure 8.

The combination of the early involvement and
the ability to extract critical information are key
ingredients to an effective requirement derivation
process.

Finding #5: The responsibilities for assuring
that software requirements “meet the end user
needs” and are “cost effective” are divided
among different process owners.

In general, a software requirement should be
cost effective, meet the end users needs, be
complete, and be traceable [6]. Satisfaction of all

four criteria contributes to the successful
development of a good software requirement. Of
particular importance are the aspects of “cost
effectiveness” and “meet the end users needs”.
Case study interviews indicated a heightened
awareness of the software developers to make
design trades relating to cost and performance. The
program and process leadership were asked to
identify the discipline or individual with primary
responsibility for making sure the requirements
were cost effective and meet the end user needs.
The results, shown in Figure 11, indicate the
primary responsibility for cost is clearly the role of

For your program, estimate the level of involvement of the END USER in
the following software requirements phases.

1

2

3

4

5

6

7

Concept
Definition

Sub-System
Allocation

Hardware
and Software
Allocation

Software
Requirements
Analysis

Traceability

Requirements Phase

A
ve

ra
g

e
R

es
p

o
n

se

System 1 (Case 1) System 2 (Case 2) System 9 (Case 3)

Very
Involved

Not
Involved

Somewhat

10

program management while the responsibility for
meeting the end user needs is scattered among
multiple owners (Customer, End User, System

Engineering, Chief Systems Engineer, System Test
and Program Management).

Figure 11: Primary Responsibility for Cost and Performance

The lack of unified responsibility for cost and
performance appears to increase the difficulty in
accomplishing effective design trades. In a
different domain, earlier LAI findings showed
significant cost and schedule benefits when
designers had simultaneous access to cost and
performance databases [6]. While this may have
been in a different application domain, the research
highlights the benefit of access to the cost impacts
during design. Programs with interoperable design
and cost databases had less cost and schedule slips.
Improvements in the software upgrade programs
might be possible if the person and/or discipline
with the primary responsibility for cost and
performance were unified.

Finding #6: Data suggests positive correlation
between reduction in unplanned requirement
changes and leadership continuity in both
concept definition and requirement analysis
phases.

Survey data indicated a correlation between
the level of continuity of the contractor process
leadership in the concept definition and requirement
analysis phases and the amount of unplanned
requirement rework. Higher levels of continuity
reduced the amount of unplanned rework. Figure 12
illustrates the estimated percentage of unplanned
changes for each system (shown in Figure 7) plotted
against the percentage of the contractor software
developers leadership who claimed to have worked
in both the concept definition and the software
requirement analysis activities.

The positive correlation between the two
suggests the program leadership can reduce the
amount of unplanned rework by increasing their
continuity in concept definition and requirement
analysis. More research is needed to better define
the empirical relationship between rework and
continuity but the positive correlation offers
practitioner an area to focus process improvement
initiatives.

0

10

20

30

40

50

60

70

80

#
 o

f
R

e
s

p
o

n
s

e
s

Customer SW

Developers

End User Systems

Eng

Chief

Systems
Eng

Internal

Interfaces

External

Interfaces

System Test Project Mgt Data Mgt

Person(s) Responsible for making sure the requirements are cost effective
and meet end user needs

Meet End User Needs Cost Effective

11

Figure 12: Continuity of Contractor Leadership in Concept Definition and Software Requirement
Analysis Activities versus the Percentage of Unplanned Rework

Finding #7: Formal Training for aerospace
software requirement practitioners does not
appear to be highly effective or abundant.

The program and process leadership were
asked to evaluate the effectiveness of multiple
training methods in helping them perform their
roles and responsibility in the requirement
derivation process. Figure 13 illustrates the
responses of all survey respondents.
Overwhelmingly, survey respondents believed
formal training is not effective.

On-the-job training was found to be the most

widespread method and the only effective training
method. Only approximately 50% of the survey
respondents report they had formal university or
professional training. Most respondents had in-
house training but on average found it to be only
“somewhat effective”.

Feedback from requirement practitioners
suggests formal training would be more effective if
it included some of the OJT elements and students
had “hands-on” experience deriving requirements.
As programs become more complicated the need
for better formal training will only increase.

Figure 13: Estimated Level of Formal Training Effectiveness

1

2

3

4

5

6

7

University Professional In-House On-the-Job Conferences

High Response Avg Low

Highly
Effective

Not
Effective

Somewhat
Effective

As a whole, how effective have the following training programs been in helping
you perform your duties in the software requirement Derivation process?

Estimated Average % of Unplanned Derived Requirements Changes (additions,

modifications, deletions) versus the average % of Contractor program/process
leadership who worked in both Concept Definition and Software Requirements

Analysis

0

5

10

15

20

25

30

35

40

45

50

0 10 20 3 0 4 0 50 60 70

% of Program Process Leadership who worked in both Concept Definition and SW
Requirements Analysis

E
s

ti
m

a
te

d
 %

 o
f

U
n

p
la

n
n

e
d

D
e

ri
v

e
d

 S
W

 R
e

q
u

ir
e

m
e

n
t

C
h

a
n

g
e

s

12

Summary
The findings, recommendations, and

identification of Lean practices were the result of a
comprehensive two-year research effort that
involved over a hundred and fifty individuals from
the MIT faculty, LAI consortium, government, and
industry. This research has illustrated that Lean
principles and methodology transcend the
manufacturing domain and offer real opportunities
for improving the product development process.

The findings presented in this papers offer both
quantitative and qualitative insight into the software
requirement process. An analysis of the data have
identified seven major findings that build a basis for
developing a framework for increasing value-added
contribution of the software requirement process.

Reference:
[1] Ippolito, Brian, Feb 2000, “Identifying Lean
Practices for Deriving Software Requirements”,
MIT SM Thesis, MIT.

 [2] Fredriksson, B., Nov 1994, pp 23-31, “Holistic
system engineering in product development”, The
SAAB-SCANIA GRIFFIN.

[3] Davis, Alan, 1990, Software Requirements:
Analysis & Specification, Prentice Hall.

[4] http://lean.mit.edu/public/index.html

[5] Bracket, Jan 1990, “Software Requirements;
SEI-CM-19-1.2” CMU

[6] Hoult, David P., and C. Lawrence Meador, John
Deyst Jr., Maresi Berry-Dennis, Nov 1995, “Cost
Awareness in Design: The Role of Data
Commonality.”, LAI White Paper #LEAN 995-08,
MIT.

