
Learning Sparse Gaussian Graphical Model

with l0-regularization

Beipeng Mu∗ Jonathan P. How†

Department of Aeronautics and Astronautics

Massachusetts Institute of Technology

Cambridge, MA 12139

Abstract

For the problem of learning sparse Gaussian graphical models, it is
desirable to obtain both sparse structures as well as good parameter es-
timates. Classical techniques, such as optimizing the l1-regularized maxi-
mum likelihood or Chow-Liu algorithm, either focus on parameter estima-
tion or constrain to specific structure. This paper proposes an alternative
that is based on l0-regularized maximum likelihood and employs a greedy
algorithm to solve the optimization problem. We show that, when the
graph is acyclic, the greedy solution finds the optimal acyclic graph. We
also show it can update the parameters in constant time when connecting
two sub-components, thus work efficiently on sparse graphs. Empirical
results are provided to demonstrate this new algorithm can learn sparse
structures with cycles efficiently and that it dominates l1-regularized ap-
proach on graph likelihood.

1 Introduction

Graphical models are compact probabilistic representations of the conditional
dependence of random variables [1–4]. They have been widely used in proba-
bility theory, Bayesian statistics, machine learning, and successful applications
include speech recognition, computer vision, social networks, genetics, and diag-
nosis of diseases [5–9]. When the dependence between variables is bidirectional
and the distribution of variables are Gaussian, the graphical model is also called
Gaussian graphical models (GGM). This paper discusses the learning of sparse
GGMs. Sparse GGMs are desirable in that they can represent variable correla-
tions with fewer parameters, thereby leading to more efficient storage and faster
inference [10–12]. Learning a GGM has two aspects: learning the structure, i.e.,

∗mubp@mit.edu
†jhow@mit.edu

1

how variables are connected to each other; and learning parameters, i.e., the
correlations between connected variables.

When the graph is assumed to be a tree, exact maximal likelihood (ML)
estimates of the structure can be obtained by the Chow-Liu algorithm [13].
However, the representational capability of trees is limited and thus not appli-
cable to many problems of interest, such as social networks, gene interactions,
sensor networks and so on. Several models have been proposed to extend that
algorithm into non-tree graphs [14–17]. In particular, the recent work of Liu
et al. [17] presents a Conditional Chow-Liu algorithm that divides the vari-
ables into tree variables and feedback variables. Conditioned on the feedback
variables, the tree variables form a tree, thus can be learned by the Chow-Liu
algorithm. The feedback variables are fully connected to each other and to tree
variables. Thus, when the feedback variables are not known a priori, an ap-
proximate algorithm is given to select them in a greed fashion, and the number
of edges grows quickly with number of feedback variables. Since Chow-Liu like
algorithms are based on trees, they cannot deal well with unconnected graphs.
Furthermore, they mainly focus on learning the structure of a graph and there-
fore require extra efforts to optimize the parameters, which can be expensive in
large non-tree graphs. For example, every time a new feedback variable is to be
selected, the algorithm computes the marginal gain of all candidates and picks
the best one, which involves evaluating parameters of the entire graph, and can
be costly when the graph is large [17].

Other researchers have investigated techniques that maximize the likelihood
by directly optimizing parameters in the information matrix [18–24]. To avoid
over-fitting and achieve sparsity, l1-regularization was applied in these models.
l1-regularized ML is convex, so classical nonlinear optimization methods can be
applied to optimize the cost function. For example, line search in GLASSO [21],
interior point in IPM [23], and quasi-Newton in QUIC [24]. The parameter esti-
mate of QUIC converges to the optimal l1-regularized parameters with quadratic
speed and can easily scale to large problems. However, these models do not have
explicit mechanics to control sparsity and purely rely on l1-regularization to have
sparse structures. In reality, l1 does not necessarily give the desired sparse graph
for good estimate of the parameters. To obtain the desired sparse graph, the l1
penalty must be made quite large, thereby distorting the parameters far from
ML estimate.

This paper focuses on constructing sparse GGMs that also give good ML esti-
mates of the parameters. This goal is achieved by using a l0-regularized ML cost
function, which is then reduced to a mixed integer programming (MIP) prob-
lem. However, the l0 norm is not convex, MIPs are NP-hard, so exact solutions
are intractable. To obtain a tractable solution, a greedy algorithm is presented
to select edges sequentially. It is shown that, when the new edge links two un-
connected components of the graph, the parameter update can be achieved in
constant time, thus the greedy algorithm scales well on sparse graphs where the
number of cycles is small compared to the total number of edges. Furthermore,
the greedy algorithm reduces to Chow-Liu algorithm (which is optimal) over
tree-structured graphs. Empirical results show that the proposed algorithm can

2

correctly identify sub-components and cycles in them rather than an all con-
nected acyclic graph by Chow-Liu algorithm. It dominates the likelihood of
l1-regularized cost function with same level of sparsity.

Section 2 sets up notations and formulates the problem as a Mixed Integer
Programming (MIP) problem. Section 3 presents the approximate algorithm to
solve the MIP problem and related theoretical propositions. Section 4 numeri-
cally compares the proposed algorithm with previously presented l1-regularized
method QUIC [24] and conditional Chow-Liu [17].

2 Problem Setup

Let X = {x1, · · · , xn} be an n-dimensional random vector following an n-variate
Gaussian distribution N (µ,Σ), with mean µ and covariance Σ. Denote P =
Σ−1 as inverse of the covariance matrix, which is also called the precision or
information matrix. Let G = (X,E) be the corresponding graphical model. E is
the set of edges, and (i, j) ∈ E if and only if xi and xj are not independent given
all the remaining variables. It can be shown that in GGM, a non-zero entity in
P corresponds to an edge in E, therefore the GGM structure is equivalent zero
patterns of P , and the GGM parameters are equivalent to learning the non-zero
entities of P (see [20]).

Given N samples x1, · · · , xN , define S to be the sample covariance matrix,
S = 1

n

∑N
i=1(xi − µ̂)(xi − µ̂)T , where µ̂ = 1

N

∑N
i=1 xi. Given an estimate P , the

sample log likelihood l is:

l(P) = NJ(P), J(P) = log |P | − tr(SP), (1)

where tr(·) denotes trace of a matrix and | · | denotes determinant. Maximiz-
ing likelihood is equivalent to maximizing J(P). Without any regularization,
PML = argmaxP J(P) = S−1, which is typically not sparse. l1-regularization is
a widely used option [19, 20, 24] to increase the sparsity:

max
P�0

J1(P) = min
P�0

tr(SP)− log |P |+ λ‖P‖1. (2)

The l1-regularized estimates are empirically more sparse than that of the ML
estimate[20], but this is accomplished at the expense of distorting P from the
desired parameter estimates PML.

To get desired sparsity level but maintain the high likelihood of the estimate
P , we instead use l0-regularization:

max
P�0

J0(P) = min
P�0

tr(SP)− log |P |+ λ‖P‖0. (3)

l0 norm can be computed as the number of non-zero entities in the matrix
P . Also note that the cost function (3) is the Akaike Information Criteria[25]
applied in GGM learning. AIC has been widely used in evaluating models.
For the same structure, l0 norm is constant over parameters in P , so J0(P) is
maximal when P is the maximal likelihood estimate.

3

Define binary variables zij as indicators whether edge (i, j) is selected in the
graph. Denote Z as the set of selected edges, Z = {(i, j)|zij = 1}, and Z̄ as the
complementary set of Z. Denote PZ as the set of elements at position Z. Then
(2) is equivalent to:

max
P,Z

J0(P,Z) = min
P,Z,M

tr (SP)− log det(P) + λM (4)

s.t. PZ̄ = 0∑
i,j

zij ≤M

zij ∈ {0, 1}, P � 0

where M is the total number of edges. Because P � 0 is semi-definite and

symmetric, the binary variables that matter are {zij |i < j}. There are n(n−1)
2

of them to be decided.

3 Solve l0-regularized ML estimate

Problem (4) is a mixed integer (MIP) semidefinite optimization problem. An
exact solution can be obtained by enumerating Z, then optimizing PZ given Z.
However, the complexity of this approach is combinational and thus intractable
for large problems. Instead of solving the exact problem, we select the edge in a
greedy manner, similar to how [17] greedily selects the feedback variables, but
in this approach we can directly control the sparsity and number of edges.

3.1 Edge Selection Criteria

Define f(Z) as the optimal cost under graph structure Z:

f(Z) = max
PZ̄=0

J0(P,Z) (5)

then the optimal solution can be written as maxZ f(Z). An intuitive way of
selecting edges would be to start from no edges, and then greedily add the edge
that gives the maximal increment change in f(Z):

(i, j) = arg max
(i,j)∈Z̄

f(Z ∪ (i, j))− f(Z).

With this heuristic, each time there is a new edge is added, the algorithm must
recompute f(Z ∪ (i, j)) for all (i, j) ∈ Z̄. Notice f(Z ∪ (i, j)) is defined as the
optimal P given structure Z, so computing f(Z) would involve optimizing P
under the structure Z, which can be slow for large networks.

The alternative approach taken here is to pick the edge that has the steepest
gradient:

(i, j)∗ = argmax
(i,j)∈Z̄,i<j

∥∥∥∥dJ0(P,Z)

d(P)ij

∥∥∥∥
1

= argmax
(i,j)∈Z̄,i<j

‖(S)ij − (P−1)ij‖1 (6)

4

Algorithm 1 l0-regularized GMM estimate

1: Input: empirical covariance S, number of edges M
2: Output: information matrix P
3: Z0 = {(i, i)}, i = 1, · · · , n
4: (P0)ii = 1/(S)ii, i = 1 · · · , n
5: for m = 1 : M do
6: Select a new edge
7: (i∗m, j

∗
m) = argmax(i,j)∈Z̄k,i<j |(S)ij − (P−1

m−1)ij |1
8: Update structure and parameters
9: Zm = Zm−1 ∪ (i∗m, j

∗
m) ∪ (i∗m, j

∗
m),

10: Pm = f(Zm)
11: end for

where ‖ · ‖1 is equivalent to taking absolute value. This idea is similar to that
in l1-regularized approaches [24] that only edges with have steep gradients are
active.

3.2 Stopping Criteria and Alternative MIP

Every time a new edge (i, j) is added, the l0 penalty in cost function (4) increases
by 2λ (edge (j, i) is also added because of symmetry), and the likelihood J(P)
increases by f(Z ∪ (i, j)) − f(Z). Then the intuitive stopping criteria is when
the incremental change in f does not exceed the regularization penalty, i.e.,
f(Z ∪ (i, j)) − f(Z) < 2λ. With this criteria, λ controls the sparsity of the
learned graph, and maps uniquely into a M . Instead of having λ as an input
variable and optimizing over M , an equivalent way is to directly have M as an
input variable, and (4) becomes:

min
P,Z

J0(P,Z) = min
P,Z

tr (SP)− log |P | (7)

s.t. PZ̄ = 0∑
i,j

zij ≤M

zij ∈ {0, 1}, P � 0

Combining the edge selection criterion and the stopping criteria, the l0-
regularized approach is presented in Algorithm 1.

The most computation consuming steps in Algorithm 1 are computing the
matrix inverse (Pm−1)−1

ij in line 7 and updating parameters Pm = f(Zm) in line
10. The following propositions shows this procedure can be done efficiently when
the new edge connects two sub-components, which would enable the algorithm
to scale well on large sparse graphs.

Proposition 1 If edge (i∗m, j
∗
m) is added into the graph at step m and j∗m

5

are not connected in Pm−1, then Pm can be computed analytically in O(1):

Pm =Pm−1 +
(
ei∗m ej∗m

)(r x
x q

)(
eTi∗m
eTj∗m

)
d =Si∗mi∗mSj∗mj∗m − S

2
i∗mj∗m

r =
S2
i∗mj∗m

Sj∗mj∗md
, q =

S2
i∗mj∗m

Si∗mi∗md
, x =

Si∗mj∗m

d
(8)

where ei = (0, · · · , 0, 1, 0, · · · , 0)T is unit vector with appropriate length.

Proof 1 For brevity, in the proof we leave out superscripts and subscripts with-
out causing confusion, write (i∗m, j

∗
m) as (i, j). If i and j are not connected in

Pm−1, then Pm−1 can be rearranged into a block matrix with zero off-diagonal
entities:

Pm−1 =

(
Qm−1 0

0 Rm−1

)
(9)

where Qm−1 is the part of the graph containing variable xi, Rm−1 is the
part of the graph containing variable xj , and Qm−1, Rm−1 are not connected.
Given Zm−1, J0(P,Zm−1) (defined in (7)) is differentiable over P , so Pm−1 =
argmin J0(P,Zm−1) must satisfy the first order necessary condition:(

dJ0(Pm−1, Zm−1)

dPm−1

)
Zm−1

=
(
S − P−1

m−1

)
Zm−1

= 0 (10)

where ()Zm−1
represent the matrix elements in location Zm−1. Denote SQ as

the sub-matrix of S corresponds to the positions of Qm−1 and so for SR, plug
into (10):

(SQ −Q−1
m−1)Zm−1

= 0, (SR −R−1
m−1)Zm−1

= 0 (11)

After adding an edge (i, j) with parameter x, Pm has the form:

Pm =

(
Qm eie

T
j x

eje
T
i x Rm

)
(12)

The first order necessary condition for Pm is:(
SQ eie

T
j Sij

eje
T
i Sij SR

)
Zm

−
(

Qm eie
T
j x

eje
T
i x Rm

)−1

Zm

= 0 (13)

Applying the following theorem of inverting block matrix,(
A B
BT C

)−1

=

(
(A−BC−1BT)−1 −A−1B(C −BTA−1B)−1

−(C −BTA−1B)−1BTA−1 (C −BTA−1B)−1

)
(14)

6

(
Qm eie

T
j x

eje
T
i x Rm

)−1

=

(
(Qm − (R−1

m)jjx
2eie

T
i)−1 g

gT (Rm − (Q−1
m)iix

2eje
T
j)−1

)
g =−Q−1

m eie
T
j x(Rm − (Q−1

m)iix
2eje

T
j)−1 (15)

Plug (15) into (13) and take the block-wise equality:

(SQ)Zm =((Qm − (R−1
m)jjx

2eie
T
i)−1)Zm

(SR)Zm
=((Rm − (Q−1m)iix

2eje
T
j)−1)Zm

eie
T
j Sij =g (16)

Zm = Zm−1 ∪ (i, j), so Zm = Zm−1 at block Q and R. Further plug in (11):

((Qm − (R−1
m)jjx

2eie
T
i)−1)Zm

=(SQ)Zm
= (SQ)Zm−1

= (Q−1
m−1)Zm−1

((Rm − (Q−1
m)iix

2eje
T
j)−1)Zm

=(SR)Zm
= (SR)Zm−1

= (R−1
m−1)Zm−1

Sij =eTi gej = −(Q−1
m)iiSjjx (17)

It is sufficient to satisfy (17) by only updating 4 entities of Pm−1: (i, j), (i, j),
(j, i) and (j, j).

Qm =Qm−1 + (R−1
m)jjx

2eie
T
i

Rm =Rm−1 + (Q−1
m)iix

2eje
T
j

Sij =− (Q−1
m)iiSjjx (18)

Define q = (Qm)ii − (Qm−1)ii, r = (Rm)ii − (Rm−1)ii and plug in (18)

q =(R−1
m)jjx

2 = ((Rm−1 + eie
T
i r)
−1)jjx

2

r =(Q−1
m)iix

2 = ((Qm−1 + eie
T
i q)
−1)iix

2

Sij =− (Q−1
m)iiSjjx = −((Qm−1 + eie

T
i q)
−1)iiSjjx (19)

Apply theorem (A − BD−1C)−1 = A−1 + A−1B(D − CA−1B)−1CA−1. And
recall (Q−1

m−1)ii = Sii, (R−1
m−1)jj = Sjj from (11):

q = (R−1
m)jjx

2 =
Sjjx

2

1 + rSjj
r = (Q−1

m)iix
2 =

Siix
2

1 + qSii

SiiSjj

1 + qSii
+ Sij = 0

(20)

Solve these equation and get (8).

Compared to P−1
m−1, P−1

m is different only in row and column i∗m, j∗m, thus
can be computed with O(N2) complexity instead of O(N3). When the new
selected edge connects two variables that are already in the same component,
new cycles within this component will be formed, and all parameters in the
component will change. In this case, standard convex optimization algorithms

7

can be used to update the parameters. Given Z, J(P,Z) is twice differentiable
over P , the optimization can be done at least at quadratic convergence speed.
On sparse graphs, we expect this kind of parameter updates do not happen a
lot.

The next proposition shows the proposed approach reduces to Chow-Liu
algorithm on acyclic trees. Because Chow-Liu tree learns the optimal acyclic
graph, it obtains optimality on acyclic graphs.

Proposition 2 Assume that the variables are zero-mean, unit-variance(If
not, variables can be normalized first). If the graph learned by algorithm 1 is
acyclic, it is the optimal acyclic graph.

Proof 2 The approach is to prove that the procedure in algorithm 1 is equiv-
alent to the Chow-Liu procedure when the learned graph is a tree. First note
that because the variables are normalized, the empirical covariance matrix S is
a correlation matrix: Sij = corr(xi, xj), and ‖Sij‖1 ≤ 1.

Chow-Liu algorithm greedily selects edges that does not form cycles based
on mutual information. The mutual information of two Gaussian variables xi
and xj conditioned on all other variables is:

Iij = −1

2
ln
(
1− corr(xi, xj)

2
)

(21)

At step m, define the set of edges that keep the graph acyclic as S̃, and S̃ ⊂ S̄.
When the learned graph is acyclic, (im, jm)∗ ∈ S̃, and (P−1

m−1)i∗m,j∗m
= 0. From

the edge selection criteria (6), we have:

(im, jm)∗ = argmax
(i,j)∈S̄

‖Sij − (P−1
m−1)ij‖1 = argmax

(i,j)∈S̃
‖Sij − (P−1

m−1)ij‖1

= argmax
(i,j)∈S̃

‖Sij‖1 = argmax
(i,j)∈S̃

‖corr(xi, xj)‖1 = argmin
(i,j)∈S̃

(1− corr(xi, xj)
2)

= argmax
(i,j)∈S̃

−1

2
ln(1− (xi, xj)

2) = argmax
(i,j)∈S̃

Ii,j (22)

The last step is exactly the Chow-Liu criterion, so algorithm 1 fully recovers the
Chow-Liu edge selection procedure and thus returns the optimal acyclic graph.

4 Experiment

This section compares the l0-regularized method with a state-of-the-art l1-
regularized method QUIC [24], and a state-of-the-art Chow-Liu based method
called Conditioned Chow-Liu (CCL) [17] on a synthetic dataset as well as an
online wine dataset.

8

Figure 1: Comparison of log likelihood over sparsity

4.1 Wine Dataset

The dataset obtained from UCI on-line repository for machine learning tests[?
]. This dataset is a chemical analysis of wines grown in the same region in Italy
but derived from different cultivars. The analysis determined the quantities
of 12 attributes found in 1599 samples of wines. These 12 attributes are: 1)
fixed acidity, 2) volatile acidity, 3) citric acid, 4) residual sugar, 5) chlorides,
6) free sulfur dioxide, 7) total sulfur dioxide, 8) density, 9) pH, 10) sulphates,
11) alcohol, 12) quality, The data is first normalized by subtracting its mean
and divided by the standard deviation. Then the l0-regularized, l1-regularized
(QUIC) and Conditional Chow-Liu(CCL) algorithms were performed to learn
the correlation of these attributes.

Figure 1 gives the log likelihood J(P) of the different methods. As shown,
the l0-regularized method and CCL obtain good parameter estimates. More
specifically, the l0-regularized method has much higher likelihood than that of
QUIC given the same level of sparsity and the Conditional Chow-Liu is just
slightly worse. Figure 2 shows the learned structures. For comparison, we pick
the structures learned by QUIC and l0 method that have the same number of
edges. Figure 2 (c) shows the CL tree. It can be seen that QUIC and the l0-
regularized method are able to detect cycles in the graph. CCL only add edges
on top of CL tree, so it can only be denser than a tree. Every time a feedback
node is selected, it connects to all other non-feedback nodes, thus the number
of edges can only be multiples of n. Also note that the slope change of the log
likelihood of the l0-regularized method after 9 edges, with a similar feature in
QUIC at 10 features, which suggest that, for this case, 9–10 features would be
a good balance between likelihood and complexity of the graph.

9

(a) l0 regularized (b) QUIC (c) CCL

Figure 2: Comparison of graph structure

(a) Log likelihood (b) Running time

Figure 3: Comparison on synthetic dataset

4.2 Synthetic Data

In this section, we create a synthetic dataset whose corresponding graph is
sparse and cyclic. In this synthetic dataset, there are 200 variables, and they
form 10 twenty-variable sub-components. In each component the variables are
connected in a circle, the diagonal elements of each sub-component are set to
be 1.25. To maintain positive definiteness, the off-diagonal elements of each
sub-component are set to be -0.5. A total of 200 Gaussian samples with a mean
of zero were generated from this constructed graph to obtain the empirical
covariance matrix.

Figure 3a shows the log likelihood of the same three approaches considered in
example 1. As before, the log likelihood of the l0-regularized approach dominates
that of QUIC. The l0-regularized approach is also better than CCL in that it
has higher likelihood. The l0-regularized result plateaus after 200 edges, which
is the underlying truth. Therefore l0 regularization also provides a way to infer
the underlying true structure. Figure 3b shows the total run time of the three
approaches. For sparse structure (less than 200 edges), l0-regularized approach
has similar run time as QUIC, as it is able to update most parameters for new
selected edges in constant time. When the graph becomes denser, more cycles
are formed, l0-regularized method is slower than QUIC, because it needs to

10

(a) l0 regularized (b) QUIC (c) CCL

Figure 4: Structure learned on synthetic data

optimize all parameters within cycles. CCL. is the slowest among the three.
Figure 4 shows the structures learned by 3 approaches. Again l0-regularized

and l1-regularized approaches are able to handle cycles in graphs, and they
correctly identified 10 cycles within the graph. On the other hand, Chow-Liu
method can only build a tree, thus connects all the variables together.

5 Conclusion and Future Work

In this paper, we used l0-regularization to learn sparse GGM model, and de-
veloped a greedy algorithm to solve the equivalent mixed integer program-
ming problem. The new proposed algorithm is compared with state of art
l1-regularized method QUIC and tree-based method Conditional Chow-Liu on
a wine dataset and synthetic dataset. The numerical results show that l0-
regularization can get the highest likelihood, dominates the l1-regularized method.
It can also correctly identify sub-components in sparse graphs. The likelihood
plateaus when the algorithm hits the correct number of edges thus also gives
insights in model selection.

Future work include further optimize the algorithm, such as optimizing pa-
rameter only over sub-components, intelligent ways to group edges together
when doing line search over parameters in cycles, and better heuristic for ini-
tializing optimization. We are also interested in testing it on big real world
datasets.

References

[1] R. Diestel. Graph Theory. Springer, Berlin, DE, second edition, 2000.

[2] Martin J. Wainwright and Michael I. Jordan. Graphical models, exponential
families, and variational inference. Found. Trends Mach. Learn., 1(1-2):1–305,
January 2008.

11

[3] C. M. Bishop. Pattern Recognition and Machine Learning (Information Science
and Statistics). Springer, first edition, 2007.

[4] D. Koller and N. Friedman. Probabilistic Graphical Models: Principles and Tech-
niques. MIT Press, 2009.

[5] Michael Isard. Pampas: Real-valued graphical models for computer vision. In
Computer Vision and Pattern Recognition, 2003 IEEE Computer Society Con-
ference on, volume 1, pages I–613. IEEE, 2003.

[6] S. A. Aldosari and J. M. F. Moura. Distributed detection in sensor networks:
connectivity graph and small-world networks. In 39th Asilomar Conference on
Signals, Systems, and Computers, pages 230 – 234, Pacific Grove, CA, Oct. 2005.

[7] Peter D Hoff, Adrian E Raftery, and Mark S Handcock. Latent space ap-
proaches to social network analysis. Journal of the american Statistical asso-
ciation, 97(460):1090–1098, 2002.

[8] Jie Tang, Jimeng Sun, Chi Wang, and Zi Yang. Social influence analysis in large-
scale networks. In Proceedings of the 15th ACM SIGKDD international conference
on Knowledge discovery and data mining, pages 807–816. ACM, 2009.

[9] Steffen L Lauritzen and Nuala A Sheehan. Graphical models for genetic analyses.
Statistical Science, pages 489–514, 2003.

[10] Mark Andrew Paskin. Exploiting locality in probabilistic inference. PhD thesis,
Berkeley, CA, USA, 2004. AAI3165519.

[11] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann, San Francisco, CA, 1988.

[12] Judea Pearl. Reverend bayes on inference engines: A distributed hierarchical
approach. In AAAI, pages 133–136, 1982.

[13] C.K. Chow and C.N. Liu. Approximating discrete probability distributions with
dependence trees. IEEE Trans Info Theory, IT-14(3):462–467, May 1968.

[14] David Karger and Nathan Srebro. Learning markov networks: Maximum bounded
tree-width graphs. In Proceedings of the Twelfth Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 392–401, Philadelphia, PA, USA, 2001.

[15] M. J. Choi, V. Chandrasekaran, and A.S. Willsky. Gaussian multiresolution
models: Exploiting sparse markov and covariance structure. Signal Processing,
IEEE Transactions on, 58(3):1012–1024, March 2010.

[16] Pieter Abbeel, Daphne Koller, and Andrew Y. Ng. Learning factor graphs in
polynomial time and sample complexity. J. Mach. Learn. Res., 7:1743–1788,
December 2006.

[17] Ying Liu and Alan Willsky. Learning gaussian graphical models with observed
or latent fvss. In Advances in Neural Information Processing Systems 26, pages
1833–1841. 2013.

12

[18] Onureena Banerjee, Laurent El Ghaoui, and Alexandre d’Aspremont. Model
selection through sparse maximum likelihood estimation for multivariate gaussian
or binary data. J. Mach. Learn. Res., 9:485–516, June 2008.

[19] K Scheinberg, S Ma, and D Goldfarb. Sparse inverse covariance selection via
alternating linearization methods. In Advances in Neural Information Processing
Systems (NIPS), pages 2101–2109. 2010.

[20] Figen Oztoprak, Jorge Nocedal, Steven Rennie, and Peder A. Olsen. Newton-
like methods for sparse inverse covariance estimation. In Advances in Neural
Information Processing Systems (NIPS), pages 764–772. 2012.

[21] J. Friedman, T. Hastie, and R. Tibshirani. Sparse inverse covariance estimation
with the graphical lasso. Biostatistics, 9, 2009.

[22] John Duchi, Stephen Gould, and Daphne Koller. Projected subgradient methods
for learning sparse gaussians. In International Conference on Uncertainty in
Artificial Intelligence (UAI), 2008.

[23] Lu Li and Kim-Chuan Toh. An inexact interior point method for l1-regularized
sparse covariance selection. MATHEMATICAL PROGRAMMING COMPUTA-
TION, 2, 2010.

[24] Cho-Jui Hsieh, Matyas A. Sustik, Inderjit S. Dhillon, and Pradeep Ravikumar.
Sparse inverse covariance matrix estimation using quadratic approximation. In
Advances in Neural Information Processing Systems 24, pages 2330–2338. 2011.

[25] H. Akaike. A new look at the statistical model identification. IEEE Transactions
on Automatic Control, 19(6):716–723, Dec 1974.

13

	Introduction
	Problem Setup
	Solve l0-regularized ML estimate
	Edge Selection Criteria
	Stopping Criteria and Alternative MIP

	Experiment
	Wine Dataset
	Synthetic Data

	Conclusion and Future Work

