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Abstract

Combustion emissions constitute the largest source of anthropogenic emissions in the
US. They lead to the degradation of air quality and human health, by contributing to the
formation of fine particulate matter (PM 2.5 ), which is harmful to human health. Previ-
ous work computed the population PM 2.5 exposure and number of early deaths caused
by emissions from six major sectors: electric power generation, industry, commercial and
residential activities, road transportation, marine transportation and rail transportation.
In the present work we go beyond aggregate sectors and now attribute exposure and early
deaths to sectors, emissions species, time of emission, and location of emission. This en-
ables determination of the emissions reductions that would have the greatest benefit by
sectors, species, time and location. We apply a long-term adjoint sensitivity analysis with
population exposure to PM2.5 in the contiguous US as the objective function, and calcu-
late the four dimensional sensitivities (time and space) of PM 2.5 exposure with respect to
each emissions species. Epidemiological evidence is used to relate increased population
exposure to premature mortalities. This is the first regional application of the adjoint
sensitivity analysis method to characterize long-term air pollution exposure. (A global
scale application has been undertaken related to intercontinental pollution.) We find that
for the electric power generation sector 75% of the attributable PM 2.5 exposure is due to

SO2 emissions, and 80% of the annual impacts are attributed to emissions from April to
September. This suggests that burning of low sulfur coal has greatest benefit in the sum-
mer. In the road transportation sector, 29% of PM 2.5 exposure is due to NO, emissions
and 33% from ammonia (NH3), which is a result of emissions after-treatment technolo-
gies. We estimate that the benefit of reducing NH 3 emissions from road transportation is
~20 times that of NOx per unit mass. 75% of the road transportation ammonia impacts
occur during the months October to March. We rank the states based on their contri-
bution to the overall combustion emissions-attributable PM 2.5 exposure in the US, and
calculate that California contributes 12%, Pennsylvania 7% and Ohio 5.8%. We publicly



release the sensitivity matrices computed, noting their potential use as a rapid air quality
policy assessment tool.

Thesis Supervisor: Steven R.H. Barrett
Title: Assistant Professor of Aeronautics and Astronautics
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1. Introduction

Air pollution and degraded air quality adversely impacts human health [1, 2]. Epidemio-

logical studies link long-term exposure to particulate matter PM 2.5 (fine particulate matter,

with an aerodynamic diameter less than 2.5 pim) to an increased risk of premature mor-

tality [3-5]. Given it is the most significant known cause for early deaths associated with

outdoor air pollution, PM 2.5 has been become the predominant metric to quantify air qual-

ity [1].

Fann et al. [6] estimated the overall PM 2.5 attributable premature mortalities in the US

to be between 130,000 and 340,000 for the year of 2005, and a later study [7] provided an

apportionment of these based on the emission source type. Within the US, combustion

emissions are the predominant source of ground level PM 2.5 concentrations [1]. A study by

Caiazzo et al. [8], which precedes this work, quantified the population PM 2.5 exposure and

early deaths attributable to combustion emissions of the major sectors in the US in 2005.

The major sectors were defined as electric power generation, industry, commercial and

residential, and three modes of transportation: road, marine, and rail transportation. The

number of PM 2.5-related premature mortalities attributable to combustion emissions was

estimated to be 200,000 (90% CI: 90,000-362,000), ranking road transportation activities the

largest contributor with ~53,000 (90% CI: 24,000-95,000) and electric power generation

emissions the second largest with ~52,000 (90% CI: 23,000-94,000) premature mortalities.

It was also shown that ozone-related premature mortalities were 5% of total (ozone and

PM 2.5 attributable) mortalities. (In this work we only consider PM 2.5 .)

13



Caiazzo et al. [8] quantified both the total health impacts and the spatial distribution

of health impacts and PM 2.5 constituents in the US for each of the aforementioned sectors.

While this is suggestive of mitigation measures at the level of prioritizing sectors, it does

not provide information about which emission species, times and locations are responsible

for the impacts, or in which sector there is the greatest marginal benefit for reductions.

The aim of the present thesis is to determine these and specify emissions reductions (in

terms of sector, species, location and time) that will result in the greatest health benefits.

In Caiazzo et al. [8] a forward chemistry-transport model subtraction method was

used to quantify the PM 2.5 impacts. This method involved taking the difference of two

forward atmospheric chemistry-transport simulations, one of the baseline case (includ-

ing all combustion emissions) minus one for which one of the sector's emissions were

eliminated. This approach has the benefit of being simple to implement and producing

many disaggregated (spatially varying) outputs based on a few aggregated inputs. This

method is matched to cases such as when the impact of a single emissions change on

the different parts of the US is needed. In our case, however, the opposite is required.

We are aiming to calculate the impact of multiple control parameters (species, time, and

location) on population PM 2.5 exposure in the US. The influence of location, source and

emission type on the estimates of human health benefits has previously reported by Fann

et al. [9], using a reduced form (forward) air quality model, which allowed the assess-

ment of 12 emission/source reduction scenarios, using the subtraction method. Perform-

ing forward chemistry-transport model simulations, by examining all of these parameters

(sector, species, location, time) separately, would be computationally impractical.

In the present work an adjoint approach is employed to tackle the problem of quan-

tifying the relationship between the emission characteristics (species, time and location)

and the overall PM2.5 exposure for the six major sectors in the US. The adjoint method

traces sensitivities back to individual sources in a single simulation, and thus provides

information about influences from individual sources on an aggregated output, which in

14



our case is the total population PM 2.5 exposure (or premature mortalities when multiplied

by a concentration-response coefficient) in the US. A more detailed description of adjoint

sensitivity methods in atmospheric modeling can be found in Henze et al. [10], Hakami

et al. [11], and Sandu et al. [12].

Four dimensional (space and time) sensitivity matrices of population PM 2.5 exposure

with respect to the various PM, and PM precursor emissions, are computed. These sensi-

tivities can also used as a rapid policy assessment tool, to quickly quantify the impacts of

emissions scenarios.

The adjoint sensitivity approach has previously been used in the context of intercon-

tinental transport, as well as policy assessment. Koo et al. [13] used it to capture the

intercontinental high-altitude pollution risks to human health. Gilmore et al. [14] used

adjoint sensitivities to assess the temporal and spatial variability in 03 production due to

aviation NOx emissions. Mesbah et al. [15] took advantage of the rapid policy assessment

benefits and estimated the regional impacts of electricity generating units combining it

with an optimization tool to suggest mitigation measures. To our knowledge this is the

first study to use an adjoint approach to compute long-term exposure and health impacts

at a regional scale. [Work by Koo et al. [13] and forthcoming work by Cj. Lee et al. has

applied an adjoint approach to compute health impacts in global scale modeling.]

15
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2. Methods

This section describes the modeling techniques applied to quantify the influence of the

species, location, and time of combustion emissions on long-term total population PM 2.5

exposure and PM 2.5 exposure-attributable early deaths in the US. First, the combustion

emissions dataset is described. The adjoint analysis that computes the sensitivity ma-

trices of PM 2.5 exposure to all the species, locations and times is then presented. The

multiplication of the sensitivity matrices with the emissions from each sector allows the

assessment of the species, locations and times that have the most significant contribution

to the annual PM 2.5 exposure increase on the US. Population exposure is then translated

into premature mortalities using a concentration-response function.

2.1 Emissions dataset

The emissions dataset used in this study is based on the 2005 EPA National Emissions

Inventory, developed by USA EPA [16], and processed by Caiazzo et al. [8], using SMOKE

[17] and source characteristic data from Ashok et al. [18]. It includes combustion emis-

sions from six different sectors: electric power generation, industry, commercial and res-

idential, road transportation, marine transportation and rail transportation. The totals of

the US NOR, SOx and primary PM 2.5 emissions for each sector in Tg/year are summarized

in Table 2.1. Their corresponding relative contribution to the total of emissions is also

tabulated. Emissions of all other species are shown in Table A. 1 in the Appendix.

These emissions totals have decreased between 2005 and the present time [19], and it

17



Table 2.1: Primary PM2.5 , NO, and SO,, emissions totals and percentages with respect to
the baseline scenario. Emissions are expressed in Tg/year for each sector considered in
the study (data for 2005).

Sector Primary PM 2 .5  NOx SOx
Total % Total % Total %

Electric power generation 0.46 11.7% 3.42 16.1% 9.46 70.4%
Industry 0.57 14.5% 2.75 13.0% 2.55 19.0%
Commercial/residential 0.69 17.6% 0.76 3.6% 0.49 3.6%
Road transportation 0.27 6.9% 8.17 38.5 0.16 1.2%
Marine transportation 0.07 1.8 % 1.30 6.1% 0.45 3.4%
Rail transportation 0.03 0.8% 1.01 4.8 % 0.07 0.5%
Other 1.84 46.8% 3.81 18.0% 0.25 1.9%
Total 3.93 100.0% 21.22 100.0 % 13.43 100.0%

remains part of future work to apply the same method the most recent emissions dataset

and its projected values for the future years.

2.2 Air quality modeling

The GEOS-Chem adjoint model that is used to produce sensitivities of PM 2.5 exposure to

emissions is described first, and the way these sensitivities were defined and applied is

then presented.

2.2.1 GEOS-Chem adjoint

GEOS-Chem is a global tropospheric chemistry-transport model, originally developed by

Bey et al. [20]. It performs transport, gas- and aerosol-phase chemistry, as well as wet

and dry deposition calculations. In the GEOS-Chem version that was implemented in the

present work the KPP chemical solver [21] and the RPMARES aerosol equilibrium model

(an implementation of the MARS-A scheme of Binkowski and Roselle [22]) were used.

A simplified linearized Ozone scheme (LINOZ) is used for the stratospheric chemistry
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calculations [23]. GEOS-Chem takes as inputs emissions as well as GEOS5 meteorological

data from the Global Modeling and Assimilation Office (GMAO) at the NASA Goddard

Space Flight Centre.

The three dimensional grid focuses on the North American (NA) domain, 140 W to

40 oW longitude, and 10 'N to 70 'N latitude. The resolution of the horizontal grid is 0.5

x 0.666 (latitude x longitude), with 47 vertical layers up to 80 km. Boundary conditions

for the NA domain are obtained by running GEOS-Chem with a global domain (at 40 x 50

resolution). The adjoint simulations are run for a 15-month period, with the first 3 months

of the (backward) simulation used as the adjoint spin-up time. This is time during which

the model is run, but the outputs are not included in the analysis, to ensure that any initial

conditions do not contribute significantly to the air quality impacts during the annual time

period that is of interest.

The uncertainty of GEOS-Chem in predicting PM concentrations was quantified in

terms of normalized mean biases in the same way as in Caiazzo et al. [8]. We note that

total population PM 2.5 exposure as calculated by GEOS-Chem in the present work is 14%

higher than as calculated by CMAQ in Part I. This additional correction is not accounted

for so that differences in modeling are not obscured.

The adjoint model of GEOS-Chem provides a computationally efficient way of calcu-

lating sensitivities. It was developed by [10], and an aviation module was added and used

by Koo et al. [13] and Gilmore et al. [14].

2.2.2 Sensitivities

The computed sensitivities are partial derivatives of a quantity of interest (objective func-

tion) with respect to various control parameters. The quantity of interest (objective func-

tion) for the adjoint sensitivity, J, is the annually averaged population exposure to PM 2.5

over a specific domain. In our case, the domain of interest is the contiguous US, includ-

ing the 48 states and the District of Columbia (i.e. excluding Hawaii and Alaska). The
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objective function J is therefore defined as

1 Nion Niat T

= 7f T * i E E 1:[ /j Xijt1, (2.1)
i=1 j=1 t=1

where i and j are indices for the longitude and latitude, respectively, and Nion and Nat the

number of grid cells in the longitudinal and latitudinal sense, t denotes the time step, T the

number of time steps in the simulation, AX jt is the concentration perturbation of PM 2.5

in ptg/m 3 at time step t in grid cell (i, j) of the ground layer, and pij is the population (over

age 30 as this is consistent with the applicability of the concentration-response function

applied) in grid cell (i, j). Population data was processed from the GRUMP 2006 database

[24]. The sensitivities were computed for the year of 2006.

The three-dimensional sensitivity matrices we obtain from the adjoint at every timestep

t are of the form

Sikt - E__
0ikt

for emissions species w, where J is the previously defined objective function and Ejkt

are the emissions (in kg) of species w in the three-dimensional grid at timestep t. These

show the effect that a kg of emission of specie w at grid location (i, j, k) and time t, has

on the annually averaged population exposure to PM 2.5 within the US.

We calculate the impact of each species, locations and time, on annual average pop-

ulation PM 2.5 exposure increase in the US by taking the inner (Forbenius) product of the

sensitivity with the emissions from each of the sectors, i.e.

pW Z3E

ijkt = ijkt : Eijkt

where Pikt is the total US annual average population PM 2.5 exposure (in people x

1 ptg/m 3) caused by emission Eivjkt (in kg) of species w at location (i, j, k) and time of

emission (and not of exposure) t.

20



The adjoint method quantifies linearized relationship between emissions and PM 2.5 ex-

posure. This makes it well suited to computing the impact of marginal emissions changes,

e.g. at a particular location or time, or of marginal changes in emissions of a particular

species and/or a particular sector. We note that in the context of attributing exposure

to entire sectors, it could be argued that the non-linear response must be captured (as

in Caiazzo et al. [8]), and so there is some degree of inaccuracy in using an adjoint for

this purpose. On the other hand, it could be argued that a linear approximation is more

meaningful as then the total impact equals the sum of the contributions, and attribution

among strongly interacting sectors would have limited conceptual utility. As will be dis-

cussed in Chapter 3, the sector for which results imply a potentially significant degree

of non-linearity is road transportation (dominated by NOx emissions), whereas, for ex-

ample, power generation is dominated by relatively linear SO 2 to sulfate chemistry, and

other sectors are relatively small.

2.3 Health impacts assessment

The health impacts in this work are quantified in terms of premature mortalities. Epi-

demiological studies have developed quantitative associations between increased human

exposure to PM 2.5 and increased risk of premature death [1, 25-27], due mainly to car-

diopulmonary diseases and lung cancer. We compute the expected number of early deaths

using a concentration-response function (CRF) derived from an EPA study. Specifically, a

1% (range 0.4%-1.8%) increase in all-cause mortalities for every 1 pg/m 3 increase in the an-

nually averaged PM 2.5 exposure in the US is applied for adults over the age of 30 years old

[1]. The number of early deaths caused by emission EWkt (in kg) of species w at location

(i, j, k) and time of emission (and not of exposure) t is then

Dijjkt-P'kt 3BR,
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where Bj = B is the baseline all-cause death rate (taken as the US average) and

R = 1% is the risk coefficient.

Uncertainty is treated in the same way as in the previous work by Caiazzo et al. [8].

When quantifying the impact of emissions of a particular species, or emissions at a partic-

ular time, we term resulting premature mortalities as "equivalent". We define equivalent

premature mortalities as a measure of the PM 2.5 exposure impact assuming that all PM 2.5

constituents are of equal toxicity and contribute equally towards the increased risk of

death. We draw this distinction because the concentration-risk function applied was ef-

fectively derived for an urban mixture of PM species, and not for a specific PM species, so

its application more narrowly than a mixture of PM types explicitly raises the differential

toxicity question. As was noted by Levy et al. [28], it is likely that different PM species are

not of equal toxicity, but there is a lack of quantitative basis for weighting PM species by

toxicity. We also assume in our equivalent premature mortality metric that an exposure

contribution at any time of the year has the same effect. In other words, any temporal

weighting implicit in the derivation of the concentration-response function, and differ-

ences between sectors, are not accounted for. The equivalent premature mortality metric

is more understandable than showing summed people x 1 [tg/m 3, but we use the term

"equivalent" to draw attention to the aforementioned uncertainties.
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3. Results and Discussion

We first compare the GEOS-Chem adjoint method results with those from the CMAQ

forward modeling of Caiazzo et al. [8] (section 3.1). The following three sections (3.2, 3.3,

3.4) then present the calculation of the impact of the species, time and location of each of

the sectoral emissions.

Table 3.1: Comparison between Caiazzo et al. [8] (CMAQ) and present work (GEOS-
Chem adjoint) excluding secondary organic aerosols (SOAs). The premature mortalities
attributable to each sector are shown, as well as the percentage difference between our

current GEOS-Chem adjoint model and the CMAQ model.

Sector Premature deaths
Part I Part I % difference

Electric power generation 41,570 [18,700-74,830] 41,660 [18,750-75,000] 0.2 %
Industry 33,160 [14900-59,690] 37,440[16,850-67,390] 12.9%
Commercial/residential 32,370 [14,570-58,270] 35,790 [16,110-64,420] 10.6%
Road transportation 33,590[15,120-60,460] 47,780 [21,500-86,000] 42.2 %
Marine transportation 6900 [3110-12420] 5980 [2690-10,760] -13.3 %

Rail transportation 2630 [1180-4730] 2500 [1130-4500] -4.9%
Total 150,220 [67,600-270,400] 171,150 [77,000-308,100] 13.9%

3.1 Model intercomparison

We aggregate the temporal, spatial and speciated results to calculate the overall health

impacts attributable to the combustion emissions for each of the six sectors and compare

these with the forward CMAQ method from Caiazzo et al. [8]. Since the adjoint GEOS-

Chem model does not account for secondary organic aerosols (SOAs) the results from

Caiazzo et al. [8] were corrected to only include primary organic aerosol emissions.
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The comparison is presented in Table 3.1 and it includes percentages differences of

the GEOS-Chem adjoint model from the CMAQ model. Overall the GEOS-Chem adjoint

approach results in a 13.9% higher estimate in early deaths attributable to US combustion

emissions. All individual sector differences are lower than this (in magnitude), except road

transportation (42.2%). Road transportation and power generation are the two largest

sectors in terms of attributable early deaths, and are within - 10% of each other. In

the case of power generation, which as we will show is dominated by sulfate impacts,

there is a 0.2% difference between the CMAQ and GEOS-Chem adjoint results. As SO 2 to

sulfate chemistry is relatively linear compared to the NOx and NH 3 to nitrate chemistry

that mediates the impact of road transportation, and the two sectors are of similar size in

terms of their exposure impact, this suggests that non-linearity may be important in the

case of road transportation (and is less important in other sectors).

Inter-model differences in transport, chemistry and aerosol thermodynamic equilib-

rium codes, as well as other components, may also play a role. The conclusion that can

be drawn from this intercomparison is that CMAQ and the GEOS-Chem adjoint produce

mortality estimates that are generally within 15%, with the exception of road transporta-

tion that is within 50%. We note that these differences are within both the uncertainty in

the concentration-response function and the uncertainty in computed PM concentrations

with either CMAQ or GEOS-Chem.

3.2 Speciation

We quantify how much each emissions species from each sector contributes towards the

total annual average population PM 2.s exposure in the US attributable to that sector. Figure

3-1 presents this finding by showing, for each sector, the percentage contribution of each

emission species to overall PM 2.5 exposure attributable to that sector. (Note that this differs

from Caiazzo et al. [8] in that the attribution is to the emission species, not the exposure

24



(a) Elec. power generation (b) Industry (c) Commercial/residential

NO, PM 2s other NH31% NO 14% 5%

NA
Oc 1%

SNO

No OLE SO 5% IOE
2% 3% 2% 2%

(d) Road transportation (e) Marine transportation (f) Rail transportation

PM2 other PM2, other NH PM,, other NH, SO,

Figure 3-1: Speciated attribution of PM2 .s exposure increase the US attributable to each
of the sectors. OLE represents the olefin lumped group and IGLE the internal olefin (R-
HC=CH-R). PM2.5 other is primary PM other than BC or 0G.

species.) Table 3.2 shows the benefits, expressed in terms of avoided equivalent premature

mortalities per Tg of annual emissions reduction for each of the major species and all the

sectors.

The majority of the mortalities (75%) from the electric power generation is attributable

to the SO2 emissions of this sector. 502 is a precursor for sulfate, which dominates the

impacts of the sector.

For the industry sector, we estimate that the largest contributor (34%) to population

exposure originates from primary PM2.5 emissions. SO2 and NH3 follow with 22% and 21%,

respectively. We find that the NO,, emissions account for 9% of the population exposure

attributable this sector.

The commercial and residential activities attributable PM 2.5 exposure impacts are 73%

attributable to primary PM2.5 emissions. This is consistent with the sector having the high-

est contribution of overall primary PM 2.5 emissions. Primary organic aerosols dominate

this non-SQA PM2.5 contribution.
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Table 3.2: Equivalent mortalities reduction benefit expressed in avoided equivalent
deaths/Tg of annual emissions. This metric quantifies how many mortalities are avoided
for 1 Tg emissions reduction of each species and from each sector, assuming a spatially
uniform reduction in the domain, and an equal toxicity for each of the PM 2.5 constituents.

Electric Power Industry Commercial Road Marine Rail
CO 2.17 2.80 3.3 3.14 3.71 3.27

NH 3  1.79x 10 4  2.93 x 10 4  6.53 x 10 4  5.58 x 10 4  8.98 x 10 4  3.16 x 10 4

SO 2  1.66 x10 3  1.60 x 10 3  1.72x10 3  1.59 x 10 3  1.72 x 10 3  1.48 x10 3

N03 1.66 x 103  5.27 x 10 3  7.98 x 10 3  10.3 x 10 3  11.6 x 10 3  6.30 x 10 3

SO2- 0.51 x 104  1.20 x 10 4  1.70x 10 4  1.63 x 10 4  0.79 x 10 4  1.16x10 4

NOx 4.29 x 102  5.89 x 10 2  9.56 x102  8.61 x 10 2  7.66 x 10 2  7.01 X102

Primary PM 2.5  0.80 x 10 4  1.60 x 10 4  1.95 x 10 4  2.67 x 10 4  2.06 x 104 1.62 x 10 4

For road transportation sector, the attributable PM 2.5 exposure impacts are distributed

mostly between four emissions species. We estimate that BC and OC are responsible for

16% and 9% of sector-attributable PM 2.5 exposure , respectively. NH 3 is responsible for

33% of the exposure and equivalent mortalities, whereas NOx emissions account for 29%.

While road transportation is the highest contributor to the overall NOx emissions in

the US (see Table 2.1) , the NOx contribution to the overall PM 2.5 exposure is lower than

that of NH3 for the sector. Efforts to reduce automobile NO emissions by aftertreatment

technologies such as catalytic reduction result in the sector's NH3 emissions. In such cat-

alysts typically ammonia or urea powder is added to the exhaust gas as a reductant, to

enable the reaction of 4NO + 4NH 3 +02 -+ 4N2 + 6H 2 0, which removes the NO from the

exhaust emissions. However, when incorrect amounts of ammonia are injected, or the op-

timal temperature for the reaction is not reached, there is ammonia leakage to the exhaust,

commonly referred to as ammonia slip [29, 30]. Ammonia then leads to secondary particle

formation through reaction with HNO 3 and sulfate (to form ammonium nitrate and am-

moniated sulfate compounds). The extent of the contribution of ammonia emissions to the

overall road transportation attributable population PM exposure suggests that attention

must be paid to the potential compromise between the NO,, emissions reduction benefits

and the NH3 leakage risk disbenefits. This compromise has been noted in literature before
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[31-33], but has not been quantified in terms of exposure or equivalent mortalities to our

knowledge.

The importance of NH 3 in the formation of PM 2.5 is evident in Table 3.2. The relative

benefit of reducing 1 Tg of NH 3 emissions from the road transportation is -20 times

higher than a 1 Tg reduction of NOx emissions. Noting that the NOx and NH 3 attributable

equivalent mortalities are now approximately equal for the sector, this result suggests that

further reductions in NOx emissions at the expense of increased NH3 emissions are only

beneficial in terms of PM exposure if the ratio exceeds 20:1 on a mass basis.

Roe et al. [30] compared the amount of NH 3 emissions from different sources in 2002

and estimated that in the US 70.9% of the NH3 emissions comes from livestock, while 5.2%

comes from on road mobile sources. However, when characterizing the NH3 emissions

in urban areas where they have the greatest potential to amplify PM concentations, this

number increases. Roe et al. [30] found that ~50% of the ammonia contribution in the

New York metropolitan area comes from on road mobile sources.

Marine transportation equivalent premature mortalities are 33% attributable to NO,,

29% to SOx and 35% to primary PM 2.5 emissions. For rail transportation, 56% of the sector's

impacts are attributable to NOx emissions.

3.3 Time of emission

The previous section quantified the annual impacts of the time averaged emissions for

each of the sectors throughout the year. In this section we characterize the temporal

variation of the attributable air quality impacts throughout the year for each sector.

Figure 3-2 shows the daily contribution to the annual equivalent premature mortal-

ities for NH 3, NOx, and BC emissions from the road transportation sector. These four

species in total are responsible for 78% of the annual impacts of the sector. We observe

a significant variation for NH3 throughout the year, with the "winter" months (October
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Figure 3-2: Temporal variability of the health impacts attributable to the main road trans-
portation emission species. Figure 3-2a shows the number of equivalent premature mor-
talities that the daily emissions of each species contributes towards the overall US equiv-
alent deaths from the road sector. Figure 3-2b shows how the sensitivity of a kg/hr of
emissions of each species to the annually averaged population exposure at PM 2.5 varies
through the year. These sensitivities are for the ground level emissions, and are indepen-
dent of sector. The temporal variation plots have been smoothed using a floating average.

to March) NH3 emissions contributing to the annual PM 2.5 impacts three times as much

as the NH3 emissions from the "summer" months (April to September). For NOx on the

other hand, the impacts become more pronounced during the summer months, with the

summer emissions contributing to ~65% of the annual impacts. For the road transporta-

tion sector these variations are driven by the sensitivity variations throughout the year.

These are plotted in Figure 3-2b and are sector independent (except for the assumed alti-

tude of emissions). The high winter impact of NH3 directly scales with the higher winter

sensitivity values.

Noting that the equivalent deaths caused by NH 3 emissions is highest in the winter,

and the equivalent deaths caused by NOx emissions are greatest in the summer, this sug-

gests that the relative benefit of catalytic reduction type emissions control is greatest in

the summer.

In the electric power generation sector we also observe a significant temporal vari-

ability of the impacts, and this is shown in Figure 3-3. The electric power generation
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emissions during the summer months contribute four times as much as the equivalent

emissions during the winter months. This is driven by the temporal variability of the

sensitivity of PM2.5 exposure to SO2 emissions, as shown in Figure 3-3b, where summer

emissions of SO 2 cause four times as much annual average PM 2.5 exposure as in the win-

ter. This suggests further SO 2 reduction in the summer (e.g. by burning of low sulfur coal)

has four times as much benefit as in the winter. We also note that July S02 emissions

from power generation cause an order of magnitude more equivalent deaths per day than

emissions in January.

A similar trend regarding the NO, impacts to that of the road transportation sector is

evident for the other sectors. The temporal variability plots for the rest of the sectors are

provided in the Appendix (Figures B-1, B-2, B-4, B-3).
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Figure 3-3: Temporal variability of the health impacts attributable to the S02 emission
from the electric power generation sector. Figure 3-3a shows the number of equivalent

premature mortalities that the daily emissions of S02 contributes towards the overall US

equivalent deaths from the electric power generation sector. Figure 3-3b shows how the
sensitivity Of PM2.s exposure to a kg/hr of S02 emissions to the annually averaged pop-
ulation exposure at PM2.s varies through the year. This sensitivity are independent of
sector, and is averaged for altitudes between 0 and 1300m, where the electric power gen-
eration emissions occur (accounting for plume rise). The temporal variation plots have
been smoothed using a floating average.
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3.4 Location of emission

The extent to which each state contributes to overall US population PM exposure and early

deaths was computed. Table 3.3 presents the number of premature mortalities and the

relative contribution that each state has towards the total US early deaths from each sector.

We note that California is the highest contributor to the US PM 2.5 in the industry (13.0%),

the commercial and residential (14.9%), the road transportation (16.4%) and the marine

transportation (45.4%) sectors. In the electric power generation sector Pennsylvania, Ohio,

Indiana and Illinois are responsible for ~35% of the impacts.

In terms of impacts from all the sectors together, the state of California contributes

12%. The states that follow are: Pennsylvania (7%), Ohio (5.8%), New York (5.8%) and

Illinois (5.3%).

In Table 3.3 we also show a column

X % of deaths caused by the state's emissions
% of US population in state

When X > 1 it means that the state causes more early deaths in proportion to its popula-

tion than average, while when X < 1 the state causes fewer early deaths in proportion to

its population than average. Texas (19.7), Alabama (9.8) and Wisconsin (9.3) are the states

with the three highest X factor.
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Table 3.3: PM 2.5 attributable premature mortalities (number of mortalities, NM) of the
sectoral activity from each state. The percentage contribution of each state, as well as the
sums per state, and sums per sector are also included. Note that the sum of the marine
percentages does not add up to 100%. This is because marine emissions are included within
200 nmi off the coastline, some of which do not fall within the state boundaries.

Elec. generation Industry Comm/Res Road Marine Rail
NM % NM % NM % NM % NM % NM %

AL 1817 4.4 862 2.3 527 1.5 472 1.0 24 0.4 44 1.7
AR
AZ
CA
CO
CT
DE
FL
GA
IA
ID
IL
IN
KS
KY
LA
MA
MD
MR
MI

MN
MO
MS
MT
NC
ND
NE
NH
NJ

NM
NV
NY
OH
OK
OR
PA
RI
SC
SD
TN
TX
UT
VA
VT
WA
WI
WV
WY

254
186
342
190
93
90

1302
1952
449
0

2311
3127
501

2529
347
214

1041
22

1632
442
819
237
67

1465
442
338
140
609
94
74

1190
3996
405
23

4761
78

777
28

1095
1950
130

1326
2

25
705
1719
275

434 1.2 161 0.5 227 0.5 17 0.3 43

253 0.7 290 0.8 547 1.1 0 0.0 20
4868 13.0 5348 14.9 7826 16.4 2096 35.1 253

126 0.3 266 0.7 241 0.5 0 0.0 18
185 0.5 872 2.4 875 1.8 20 0.3 8

157 0.4 170 0.5 207 0.4 47 0.8 4
744 2.0 500 1.4 1059 2.2 214 3.6 19

1030 2.8 972 2.7 1548 3.2 14 0.2 62

497 1.3 285 0.8 368 0.8 8 0.1 77
141 0.4 85 0.2 56 0.1 0 0.0 7

2307 6.2 1175 3.3 2812 5.9 78 1.3 282

2007 5.4 912 2.5 1470 3.1 37 0.6 130

353 0.9 156 0.4 235 0.5 1 0.0 72
654 1.7 580 1.6 578 1.2 64 1.1 48

1703 4.5 167 0.5 243 0.5 264 4.4 26

939 2.5 1398 3.9 1290 2.7 38 0.6 31

747 2.0 1552 4.3 1656 3.5 56 0.9 58

71 0.2 193 0.5 84 0.2 9 0.2 0
1877 5.0 955 2.7 2513 5.3 60 1.0 58

656 1.8 611 1.7 775 1.6 35 0.6 69

655 1.7 512 1.4 640 1.3 25 0.4 100

381 1.0 192 0.5 261 0.5 42 0.7 32

154 0.4 27 0.1 39 0.1 0 0.0 20
701 1.9 1042 2.9 1288 2.7 37 0.6 55

85 0.2 33 0.1 51 0.1 0 0.0 32
147 0.4 66 0.2 164 0.3 0 0.0 87
193 0.5 369 1.0 232 0.5 2 0.0 2

1332 3.6 2820 7.9 3702 7.7 349 5.8 30

81 0.2 53 0.1 73 0.2 0 0.0 18
82 0.2 42 0.1 51 0.1 0 0.0 7

1495 4.0 2895 8.1 3982 8.3 183 3.1 80

1711 4.6 1879 5.2 2043 4.3 88 1.5 171

547 1.5 166 0.5 336 0.7 1 0.0 41
138 0.4 532 1.5 154 0.3 49 0.8 15

2124 5.7 2574 7.2 2827 5.9 170 2.8 98

69 0.2 152 0.4 132 0.3 12 0.2 3
420 1.1 397 1.1 534 1.1 23 0.4 26

113 0.3 42 0.1 68 0.1 0 0.0 7
848 2.3 560 1.6 750 1.6 33 0.5 41

2770 7.4 1231 3.4 2275 4.8 371 6.2 110

97 0.3 96 0.3 138 0.3 0 0.0 7
1230 3.3 1309 3.7 1378 2.9 69 1.2 74

34 0.1 109 0.3 58 0.1 0 0.0 1
95 0.3 241 0.7 165 0.3 42 0.7 12

641 1.7 870 2.4 990 2.1 22 0.4 58

421 1.1 298 0.8 209 0.4 16 0.3 19

163 0.4 18 0.0 29 0.1 0 0.0 21

x
9.8
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1.7
0.8

10.1
0.7
0.3
0.1
0.8
2.5
3.1
0.3
11.3
5.2
2.9
1.9
1.0
1.2
2.3
0.0
2.3
2.7
4.0
1.3
0.8
2.2
1.3
3.5
0.1
1.2
0.7
0.3
3.2
6.9
1.6
0.6
3.9
0.1
1.0
0.3
1.7
4.4
0.3
3.0
0.0
0.5
2.3
0.8
0.9

sum/state

3700
1100
1300

20700
800

2100
700

3800
5600
1700
300

9000
7700
1300
4500
2700
3900
5100
400

7100
2600
2800
1100
300

4600
600
800
900

8800
300
300

9800
9900
1500
900

12600
400
2200
300

3300
8700
500

5400
200
600

3300
2700
500

Sum per sector 41600 100 37300 100 35700 100 47700 100 4600 77 2500 100 169400
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4. Conclusions

We apply the GEOS-Chem adjoint to compute four dimensional (space and time) sensi-

tivity matrices for population exposure to PM 2.5 in the US. These sensitivities are used to

quantify the speciated, temporal, and spatial variability in the early deaths attributable to

emissions from major sectors. We characterize the impacts of power generation, indus-

try, commercial/residential, road, marine and rail transportation. To our knowledge, this

is the first time that an adjoint sensitivity analysis is used for long-term exposure and

health impacts estimation on a regional scale.

We find that 75% of the electric power generation sector attributable health impacts

originate from SO 2 emissions. Primary PM 2.5 emissions are responsible for 34% and 73% of

the industry and commercial/residential attributable impacts, respectively. We quantify

the road transportation impacts to be 33% attributable to NH 3, and 29% to NOx emissions.

This indicates the relative importance of NH3 leakage emissions from automobiles, which

until now have been unregulated and demonstrates a tradeoff in emissions control. Marine

transportation impacts are computed to be 25% attributable to SO2, 35% to primary PM 2.5

and 33% to NO. Rail transportation impacts are 56% attributable to NOx emissions, and

35% to primary PM 2 5.

The temporal variability of the impacts is mostly driven by the temporal variability in

the sensitivity values throughout the year, rather than variability in emissions. For the

road transportation sector, we calculate that the winter months contribute three times

as much as the summer months in terms of the NH3 attributable PM2.5 exposure. For
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the electric power generation sector, we find that the summer months contribute four

times as much as the winter months. These findings may pave the way for research into

technologies, operation, or policies that account for the significant variations in the impact

of emissions over the year. For example, using low sulfur coal in the summer would have

four times as much benefit as in the winter.

In terms of spatial variability, we rank the contribution from each state and sector to

the overall combustion emissions attributable health impacts in the US. We find that from

the overall combustion activity in the US, 12% of the attributable health impacts originate

from California, with Pennsylvania and Ohio following with 7% and 5.8% respectively.

The sensitivity matrices computed in this work can be used as a policy assessment

tool, as they enable the assessment of premature mortalities in the US due to any emis-

sions scenario in a very rapid manner. These matrices have been publicly released (with

a wrapped code for ease of use) at http://lae.mit.edu.
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A. Emissions totals

'The emission totals in Tg/year for every sector and species is shown on Table A.1.

Table A.1: Speciated emissions totals for the year of 2005 in Tg/year for each sector.

Elec. Power Industry Commercial Road Marine Rail

CO 0.574 3.028 4.817 39.303 0.182 0.112

ALD 2  0.000 0.002 0.010 0.012 0.000 0.002

FORM 0.006 0.208 0.077 0.082 0.003 0.006
ETHA 0.004 0.141 0.022 0.027 0.000 0.000
NH3 0.023 0.134 0.038 0.142 0.000 0.000
S02 9.446 2.549 0.493 0.160 0.445 0.068

ALDx 0.000 0.030 0.115 0.071 0.000 0.008

SO 4  0.061 0.068 0.011 0.007 0.017 0.000
OC 0.021 0.062 0.335 0.080 0.009 0.005

OLE 0.002 0.066 0.066 0.216 0.001 0.001
IOLE 0.000 0.008 0.021 0.046 0.000 0.000

BC 0.012 0.029 0.052 0.151 0.019 0.020

NO 2  0.341 0.275 0.076 0.758 0.121 0.093
NO 2.004 1.614 0.447 4.834 0.770 0.596

PM 2.5 other 0.363 0.409 0.292 0.034 0.024 0.001
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B. Temporal variation

The temporal variability of the health impacts attributable to the different emissions species

from the different sectors, similar to the ones for the road transportation and the electric

power generation sector that were presented on the main article, are shown here for the

industry (B-1), commercial/residential (B-2), marine transportation (B-3), and rail trans-

portation (B-4) sectors. The number of equivalent premature mortalities that the daily

emissions of each species contribute towards the overall US equivalent deaths from each

sector are shown. The temporal variation plots have been smoothed using a moving av-

erage.
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Figure B-1: Temporal variability of the health impacts attributable to the main industry
sector emission species
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Figure B-2: Temporal variability of the health impacts attributable to the main commer-
cial/residential emission species
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Figure B-3: Temporal variability of the health impacts attributable to the marine trans-
portation emission species
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Figure B-4: Temporal variability of the health impacts attributable to the main rail trans-
portation emission species
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