Show simple item record

dc.contributor.advisorLionel C. Kimerlingen_US
dc.contributor.authorCamacho-Aguilera, Rodolfo Ernestoen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Materials Science and Engineering.en_US
dc.date.accessioned2013-11-18T17:35:38Z
dc.date.available2013-11-18T17:35:38Z
dc.date.copyright2013en_US
dc.date.issued2013en_US
dc.identifier.urihttp://hdl.handle.net.ezproxyberklee.flo.org/1721.1/82173
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 2013.en_US
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionCataloged from student-submitted PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 253-263).en_US
dc.description.abstractGe-on-Si devices are explored for photonic integration. Importance of Ge in photonics has grown and through techniques developed in our group we demonstrated low density of dislocations (<1x109cm-2) and point defects Ge growth for photonic devices. The focus of this document will be exclusively on Ge light emitters. Ge is an indirect band gap material that has shown the ability to act like a pseudo direct band gap material. Through the use of tensile strain and heavy doping, Ge exhibits properties thought exclusive of direct band gap materials. Dependence on temperature suggests strong interaction between indirect bands, [Delta] and L, and the direct band gap at [Gamma]. The behavior is justified through increase in photoluminescence on Ge. The range of efficient emission is to 120° with the first band interaction, and above 400° on the second band interaction. Low defect concentration in Ge is achieved through chemical vapor deposition at high vacuum (~1x10-8 mbar) in a two-step process. The high temperature growth and low concentration of particles permits epitaxial growth with low defect concentration. Chemical selectivity forbids Ge growth on oxide. Oxide trenches permit the growth on Si for a variety of shapes, without detrimentally affecting the strain of the Ge devices. Dopant concentration above intrinsic growth concentration, ~1x1019cm-3 phosphorus, have been achieved through a series of methods non-CMOS, spin-on dopant; and CMOS, implantation and delta doping. All the techniques explored use enhanced dopant diffusion observed in Ge under heavy n-type doping. A dopant source, or well, is used to distribute the dopants in the Ge without increasing the defect concentration. The approach lead to the development of electrically injected devices, LEDs and LDs. Ge pnn double heterostructure diodes were made under low, ~1x1018cm-3, and heavy n-type doping, >1x1019cm-3. Both devices showed improved performance compared to pin Ge LED. Furthermore, heavy doped Ge diodes exhibit evidence of bleaching or transparency. The techniques described permitted the development of Ge-on-Si laser with a concentration ~1-2x1019cm-3. It is the first demonstration of a Ge laser optically pumped working under the direct band gap assumption like other semiconductors. It represents the evidence of carrier inversion on an indirect band gap semiconductor. With 50cm-1 gain, the material shows Fabry-Perot cavity behavior. Finally, we demonstrated a fully functioning laser diode monolithically integrated on Si. Ge pnn lasers were made exhibiting a gain >1000cm-1 and exhibiting a spectrum range of over 200nm, making Ge the ideal candidate for Si photonics.en_US
dc.description.statementofresponsibilityby Rodolfo E. Camacho-Aguilera.en_US
dc.format.extentvi, 263 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu.ezproxyberklee.flo.org/handle/1721.1/7582en_US
dc.subjectMaterials Science and Engineering.en_US
dc.titleGe-on-Si laser for silicon photonicsen_US
dc.title.alternativeGermanium on Silicon laser for silicon photonicsen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineering
dc.identifier.oclc861620300en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record